
Enabling Data Integrity Protection in

Regenerating-Coding-Based Cloud Storage

Henry C. H. Chen and Patrick P. C. Lee

Department of Computer Science and Engineering, The Chinese University of Hong Kong

{chchen,pclee}@cse.cuhk.edu.hk

Technical Report: July 2012.

Abstract—To protect outsourced data in cloud storage against
corruptions, enabling integrity protection, fault tolerance, and
efficient recovery for cloud storage becomes critical. Regenerating
codes provide fault tolerance by striping data across multiple
servers, while using less repair traffic than traditional erasure
codes during failure recovery. Therefore, we study the problem
of remotely checking the integrity of regenerating-coded data
against corruptions under a real-life cloud storage setting. We
design and implement a practical data integrity protection (DIP)
scheme for a specific regenerating code, while preserving the
intrinsic properties of fault tolerance and repair traffic saving.
Our DIP scheme is designed under a Byzantine adversarial
model, and enables a client to feasibly verify the integrity of
random subsets of outsourced data against general or malicious
corruptions. It works under the simple assumption of thin-cloud
storage and allows different parameters to be fine-tuned for the
performance-security trade-off. We implement and evaluate the
overhead of our DIP scheme in a real cloud storage testbed
under different parameter choices. We demonstrate that remote
integrity checking can be feasibly integrated into regenerating
codes in practical deployment.

Index Terms—remote data checking, secure and trusted stor-
age systems, implementation, experimentation

I. INTRODUCTION

Cloud storage offers an on-demand data outsourcing service

model, and is gaining popularity due to its elasticity and low

maintenance cost. However, security concerns arise when data

storage is outsourced to third-party cloud storage providers.

It is desirable to enable cloud clients to verify the integrity

of their outsourced data in the cloud, in case their data has

been accidentally corrupted or maliciously compromised by

insider/outsider Byzantine attacks.

One major use of cloud storage is long-term archival, which

represents a workload that is written once and rarely read.

While the stored data is rarely read, it remains necessary to

ensure its integrity for disaster recovery or compliance with

legal requirements (e.g., [33]). Since it is typical to have a

huge amount of archived data, whole-file checking becomes

prohibitive. Proof of retrievability (POR) [22] and proof of

data possession (PDP) [6] have thus been proposed to verify

the integrity of a large file by spot-checking only a fraction of

the file via various cryptographic primitives.

Suppose that we outsource storage to a server, which could

be a storage site or a cloud storage provider. If we detect

corruptions in our outsourced data (e.g., when a server crashes

or is compromised), then we should repair the corrupted

data and restore the original data. However, putting all data

in a single server is susceptible to the single-point-of-failure

problem [5] and vendor lock-ins [1]. As suggested in [1], [5],

a plausible solution is to stripe data across multiple servers.

Thus, to repair a failed server, we can (i) read data from

other surviving servers, (ii) reconstruct the corrupted data of

the failed server, and (iii) write the reconstructed data to a

new server. POR and PDP are proposed for the single-server

case. MR-PDP [15] and HAIL [11] extend integrity checks

to a multi-server setting using replication and erasure coding,

respectively. In particular, erasure coding (e.g., Reed-Solomon

codes [28]) has less storage overhead than replication under

the same fault-tolerance level.

Regenerating codes [16] have recently been proposed to

minimize repair traffic (i.e., the amount of data being read

from surviving servers). In essence, they achieve this by not

reading and reconstructing the whole file during repair as in

traditional erasure codes, but instead reading a set of chunks

smaller than the original file from other surviving servers

and reconstructing only the lost (or corrupted) data chunks.

An open question is, can we enable integrity checks atop

regenerating codes, while preserving the repair traffic saving

over traditional erasure codes? A related approach is HAIL

[11], which applies integrity protection for erasure codes. It

constructs protection data on a per-file basis and distributes

the protection data across different servers. To repair any

lost protection data in the presence of a server failure, one

needs to access the whole file, and this violates the design

of regenerating codes. Thus, we need a different design of

integrity checking tailored for regenerating codes.

In this paper, we propose the design and implementation

of a practical data integrity protection (DIP) scheme for

regenerating-coding-based cloud storage. We augment the im-

plementation of the functional minimum storage regenerating

(FMSR) code [21] and construct FMSR-DIP, a code that

allows clients to remotely verify the integrity of random

subsets of long-term archival data under a multi-server setting.

FMSR-DIP aims to achieve several design features. First, it

preserves fault tolerance and repair traffic saving as in FMSR

[21]. Second, it assumes only the thin-cloud interface [31],

i.e., the servers only need to support the standard read/write

functionalities. Third, it exports several tunable parameters that

allow clients to trade performance for security.

We implement FMSR-DIP, and evaluate its overhead over

the existing FMSR implementation through extensive testbed

experiments in a cloud storage environment. We evaluate the

running times of different basic operations, including upload,

check, download, and repair, for different parameter choices

of our DIP scheme. In addition, we evaluate the monetary cost

overhead of FMSR-DIP should it be deployed in commercial

clouds. Our work demonstrates the feasibility of enabling

integrity protection, fault tolerance, and efficient recovery for

cloud storage.

The rest of the paper proceeds as follows. Section II reviews

related work in remote data integrity checking. Section III

provides necessary preliminaries for our design. Section IV

presents the design of FMSR-DIP. Section V provides the

implementation details of FMSR-DIP, and how several pa-

rameters can be adjusted for different performance needs.

Section VI gives preliminary security analysis for FMSR-DIP.

Section VII reports evaluation results of FMSR-DIP in a cloud

storage testbed. Finally, Section VIII concludes the paper.

II. RELATED WORK

We consider the problem of checking the integrity of static

data, which is typical in long-term archival storage systems.

This problem is first considered under a single server scenario

by Juels et al. [22] and Ateniese et al. [6], giving rise to the

similar notions proof of retrievability (POR) and proof of data

possession (PDP), respectively. The basic POR scheme [22]

embeds a set of pseudorandom blocks into an encrypted file

stored on the server, and the client can check if the server

keeps the pseudorandom blocks later on. Error correcting

codes are also included in the stored file to allow recovery of

a small amount of errors within a file. However, the number

of checks that the client can issue is limited by the number

of the embedded random blocks. On the other hand, PDP [6]

allows the client to keep a small amount of metadata. The

client can then challenge the server against a set of random

file blocks to see if the server returns the proofs that match

the metadata on the client side. Both schemes can further

minimize the network transfer bandwidth by allowing proofs to

be aggregated. However, such aggregation techniques require

the servers to have certain encoding capabilities.

Several follow-up studies on POR and PDP improve their

computation and communication complexity (e.g., [12], [17],

[30]). Adding protection of dynamic files (i.e., files that can

be updated after being stored) to PDP is considered in [7],

[18]. Some studies focus on the public verifiability of efficient

integrity checking schemes (e.g., [8], [26], [32]).

A major limitation of the above schemes is that they are

designed for a single server setting. If the server is fully

controlled by an adversary, then the above schemes can only

provide detection of corrupted data, but cannot recover the

original data. This leads to the design of efficient data checking

schemes in a multi-server setting. By striping redundant data

across multiple servers, the original files can still be recovered

from a subset of servers even if some servers are down

or compromised. Efficient data integrity checking has been

proposed for different redundancy schemes, such as replication

[15], erasure coding [11], [29], and regenerating coding [13].

We point out that although Chen et al. [13] also consider

regenerating-coded storage, there are several key differences

with our work. First, their design extends single-server com-

pact POR by Shacham et al. [30]. However, such direct

adaptation inherits some shortcomings of the single-server

scheme such as a large storage overhead, as the amount of data

stored increases with a more flexible checking granularity in

the scheme of Shacham et al. [30]. We believe a better solution

is possible by exploiting the cross-server redundancies in a

multiple-server setting. Second, the storage scheme of [13]

assumes that storage servers have the encoding capabilities

of generating a random linear combination of the data, while

we consider a thin-cloud setting [31] where servers only

need to support standard read/write functionalities. Finally,

the evaluations of [13] are conducted on a single desktop,

while ours are conducted on a real cloud storage testbed. We

expect that evaluating atop a real system can give a more

comprehensive and realistic view of the actual performance of

storage operations.

Multi-server (or multi-cloud) storage has been proposed

and implemented to protect against data loss [9], [11], [21]

and mitigate vendor lock-ins [1]. The closest related work to

ours is HAIL [11], which stores data via erasure coding. As

stated in Section I, as HAIL operates on a per-file basis, it

is non-trivial to directly apply HAIL to regenerating codes.

In addition, our work focuses more on the practical issues.

We address how different parameters can be adjusted for the

performance-security trade-off in practical deployment.

III. PRELIMINARIES

In this section, we provide the background details, based on

existing studies, for our data integrity protection (DIP) scheme.

We first describe the functional minimum storage regenerating

(FMSR) code implementation considered in this paper. Then

we state the threat model and the cryptographic primitives

being used in our DIP scheme.

A. FMSR Implementation

We first review the FMSR implementation [21]. FMSR

belongs to Maximum Distance Separable (MDS) codes. An

MDS code is defined by the parameters (n, k), where k < n.

It encodes a file F of size |F | into n pieces of size |F |/k
each. An (n, k)-MDS code states that the original file can be

reconstructed from any k out of n pieces (i.e., the total size

of data required is |F |). An extra feature of FMSR is that

a specific piece can be reconstructed from data of size less

than |F |. FMSR is built on regenerating codes [16], which

minimize the repair bandwidth while preserving the MDS

property based on the concept of network coding [2].

We consider a distributed storage setting in which a file is

striped over n servers using an (n, k)-MDS code. Each server

can be a storage site or even a cloud storage provider, and

is independent of other servers. Suppose that one server fails.

Our goal is to reconstruct the lost data of the failed server in a

new server, so as to maintain the (n, k)-MDS fault tolerance.

Server 1

Proxy
Server 2

Server 3

Server 4

File F of size |F|

New server

F1

F2

F3

F4

P1

P2

P3

P4

P5

P6

P7

P8

P3

P5

P7

P1 P1

P2P2

Fig. 1. An example of how a file is stored and repaired in (4,2)-FMSR. Each
of the code chunks P1, · · · , P8 is a random linear combination of the native
chunks F1, F2, F3, F4. P1 and P2 are distinct random linear combinations
of P3, P5 and P7.

We define the repair traffic as the amount of data being read

from other surviving servers so as to reconstruct the lost data

and write the reconstructed data to the new server. We assume

that there is a proxy that handles the read, reconstruction, and

write operations during repair.

Figure 1 shows how the FMSR works for n = 4 and k = 2.

An (n, k)-FMSR code splits a file of size |F | evenly into

k(n−k) native chunks, and encodes them into n(n−k) code

chunks, where each native and code chunk has size
|F |

k(n−k) .

Each code chunk, denoted by Pi (where 1 ≤ i ≤ n(n − k)),
is constructed by a random linear combination of the native

chunks, similar to the idea in [27]. The n(n−k) code chunks

are stored on n servers (i.e., n − k code chunks per server),

where the k(n − k) code chunks from any k servers can be

decoded to reconstruct the original data. Decoding can be done

by inverting an encoding matrix as described in [25].

Suppose now that one server fails and loses all data. The

conventional repair method for a single-server failure is to

simply reconstruct the whole file by contacting any k surviving

servers, so the repair traffic is |F |. Note that this repair method

applies to all (n, k)-MDS codes. On the other hand, in FMSR,

we first randomly pick a chunk from each of the (n − 1)
surviving servers, and then generate (n − k) random linear

combinations of these (n − 1) chunks to store on a new

server. To guarantee that the MDS fault tolerance is preserved

after multiple rounds of repair, NCCloud performs two-phase

checking on the new code chunks generated in the repair

operation [21]. In the case of (4,2)-FMSR (see Figure 1), the

repair traffic is reduced by 25% to 0.75|F |. It is shown that

the repair traffic of FMSR can be further reduced to 50% for

k = n− 2 if n is large [21].

Note that FMSR is a non-systematic code that keeps only

code chunks rather than native chunks as in systematic codes.

To access part of a file, the client needs to download and

decode the entire file, and this is not suited to applications that

need random reads of different parts of a file. Nevertheless,

FMSR is suited to long-term archival applications, where

the read frequency is low and each read operation typically

restores the entire file.

B. Threat Model

We adopt the adversarial model in [11] as our threat model.

We assume that an adversary is mobile Byzantine, meaning

that the adversary compromises a subset of servers in different

time epochs (i.e., mobile) and exhibits arbitrary behaviors on

the data stored in the compromised servers (i.e., Byzantine).

To ensure meaningful file availability, we assume that the

adversary can compromise and corrupt data in at most n− k
out of the n servers in any epoch, subject to the (n, k)-MDS

fault tolerance requirement. At the end of each epoch, the

client can ask for randomly chosen parts of remotely stored

data and run a probabilistic checking protocol to verify the

data integrity. Servers under the control of the adversary may

or may not correctly return data requested by the client. If

corruption is detected, then the client may trigger the repair

phase to repair corrupted data.

Instead of performing whole-file checking, which incurs a

substantial transfer overhead, it is only feasible for the client

to randomly sample data for integrity checking. The adversary

may corrupt a small portion of data within the error-correcting

capability in each epoch, but the level of corruption can render

the errors unrecoverable after several epochs if they are not

spotted early. This leads to creeping corruption [11]. Thus, it

is necessary that the client can quickly spot the corrupted data

without accessing the whole file.

C. Cryptographic Primitives

Our DIP scheme is built on several cryptographic primitives,

whose detailed descriptions can be found in [19], [20]. The

primitives include: (i) symmetric encryption, (ii) a family of

pseudorandom functions (PRFs), (iii) a family of pseudoran-

dom permutations (PRPs), and (iv) message authentication

codes (MACs). Each of the primitives takes a secret key.

Intuitively, it means that it is computationally infeasible for an

adversary to break the security of a primitive without knowing

its corresponding secret key.

We also need a systematic adversarial error-correcting code

(AECC) [12], [14] to protect against the corruption of a chunk.

In conventional error-correcting codes (ECC), when a large file

is encoded, it is first broken down into smaller stripes to which

ECC is applied independently. AECC uses a family of PRPs

as a building block to randomize the stripe structure so that

it is computationally infeasible for an adversary to target and

corrupt any particular stripe. Note that both FMSR and AECC

provide fault tolerance. The difference is that FMSR applies

to a file that is striped across servers, while AECC applies to

a single chunk stored within a server.

IV. DESIGN

We now present our design of DIP atop the FMSR code, and

we call the new code FMSR-DIP. Our DIP scheme operates

on the FMSR code chunks generated by NCCloud [21], which

is deployed as a client-side proxy that stripes data among

multiple servers (see Figure 1 in Section III).

A. Design Goals

We first state the design goals of FMSR-DIP.

Preservation of regenerating code properties. We pre-

serve the fault tolerance requirement and repair traffic saving

of FMSR (with up to a small constant overhead) as compared

to the conventional repair method in erasure codes.

Thin-cloud storage [31]. Each server (or cloud storage

provider) only provides the basic interface for clients to read

and write their stored files. No computation capabilities on the

servers are required to support our DIP scheme. Specifically,

most cloud storage providers nowadays provide a RESTful

interface, which includes the commands PUT and GET. PUT

allows writing to a file as a whole (no partial updates), and

GET allows reading from a selected range of bytes of a file

via a range GET request. Our DIP scheme should use only

the PUT and GET commands to interact with each server.

Our approach is different from other smart storage services

where servers can aggregate the proofs of multiple checks

(e.g., [6], [11]). We note that several cloud providers nowadays

provide both storage and computation services, with the data

transfer between these services free-of-charge (e.g., Amazon

S3 [4] and EC2 [3]). Thus, cloud storage servers with encoding

capabilities can be achieved by combining these two services,

with the additional expense of renting the computation service.

However, this approach reduces portability [31] and introduces

a complex cost model.

Flexibility. There should not be any limits on the number of

possible challenges that the client can make, since files can be

kept for long-term archival. Also, the challenge size should be

adjustable with different parameter choices, and this is useful

when we want to lower the detection rate when the stored data

grows less important over time. Such flexibility should come

without any additional penalties.

Cost minimization. The cloud storage usage fee is mainly

charged based on the storage space, transfer bandwidth, and

number of requests. To minimize the storage space and transfer

bandwidth, we use AECC (which is also an MDS code). In

particular, the storage overhead of FMSR-DIP should come

only from the AECC applied to each code chunk. Also, to

reduce the number of requests while being compatible with

the thin-cloud setting, we seek to reduce the number of

challenge/response pairs between the client and the servers.

B. Notation

We now define notation for FMSR-DIP, based on FMSR

described in Section III-A. For an (n, k)-FMSR code, we

define {αij}1≤i≤n(n−k),1≤j≤k(n−k) as the set of encoding co-

efficients that encode k(n−k) native chunks {Fj}1≤j≤k(n−k)

into n(n− k) code chunks {Pi}1≤i≤n(n−k). Thus, each code

chunk Pi is formed by Pi =
∑k(n−k)

j=1 αijFj . All arithmetic

operations are performed in the Galois Field GF(28).

We use the cryptographic primitives stated in Section III-C,

and define per-file secret keys κENC, κPRF, κPRP and κMAC for

the encryption, PRF, PRP, and MAC operations, respectively.

The usage of these keys should be clear from the context and

2nd
row

P’8,1

Server 1 Server 2 Server 3 Server 4

P’1 P’3 P’5 P’7P’2 P’4 P’6 P’8

5th
row

P’8,2

P’8,3

P’8,4

P’8,5

P’7,1

P’7,2

P’7,3

P’7,4

P’7,5

P’6,1

P’6,2

P’6,3

P’6,4

P’6,5

P’5,1

P’5,2

P’5,3

P’5,4

P’5,5

P’4,1

P’4,2

P’4,3

P’4,4

P’4,5

P’3,1

P’3,2

P’3,3

P’3,4

P’3,5

P’2,1

P’2,2

P’2,3

P’2,4

P’2,5

P’1,1

P’1,2

P’1,3

P’1,4

P’1,5

Fig. 2. Integration of DIP into (4,2)-FMSR. In this example, each FMSR
code chunk Pi is of size three bytes. FMSR-DIP encodes each chunk
with (5,3)-AECC to give {P ′

i
}, so bytes P ′

i,4
and P ′

i,5
are the AECC

parities of the ith chunk. Then P ′

1,2, P
′

2,2, · · · , P
′

8,2 form the 2nd row and

P ′

1,5, P
′

2,5, · · · , P
′

8,5 form the 5th row.

are omitted below for clarity. Also, we implement AECC as

an (n′, k′) error-correcting code, which encodes k′ fragments

of data into n′ fragments such that up to b(n′−k′)/2c errors,

or up to n′ − k′ erasures, can be corrected.

Each code chunk Pi from NCCloud is encoded by FMSR-

DIP into P ′
i . We define a row as a collection of all bytes

that are at the same offset of all FMSR-DIP-encoded chunks.

That is, the rth row corresponds to the bytes {P ′
ir}1≤i≤n(n−k).

Figure 2 shows the layout of FMSR-DIP-encoded chunks

based on (4, 2)-FMSR.

C. Overview of FMSR-DIP

Our goal is to augment the basic file operations Upload,

Download, and Repair of NCCloud with the DIP feature.

During Upload, FMSR-DIP expands the code chunk size by

a factor of n′/k′ from the AECC. During Download and

Repair, FMSR-DIP maintains the same transfer bandwidth

requirements (with up to a small constant overhead) when

the stored chunks are not corrupted. Also, we introduce an

additional Check operation, which verifies the integrity of a

small part of the stored chunks by downloading random rows

from the servers and checking their consistencies.

Unlike HAIL [11], which applies DIP to the whole file, we

apply DIP to each FMSR code chunk generated by NCCloud.

Thus, when NCCloud reconstructs new code chunks during

the repair of a failed server, we can directly apply DIP to

the new code chunks without accessing the whole file. This

preserves the property of repair traffic saving of FMSR. We

describe the details of the operations below to explain how

our DIP scheme works.

D. Basic Operations

In the following discussion, we assume that FMSR-DIP

operates in units of bytes. In Section V-C, we discuss how

we relax this assumption to trade security for performance.

Upload operation. We first describe how we upload a file

F to servers using FMSR-DIP.

Step 1: Generate the per-file secrets. Before uploading F ,

we generate per-file secrets κENC, κPRP, κPRF, and κMAC.

Step 2: Encode the file using FMSR. We have NCCloud

encode F using (n, k)-FMSR to give n(n − k) code chunks

{Pi} of b bytes each, where b = |F |
k(n−k) . NCCloud also out-

puts a metadata file containing the file size |F | and encoding

coefficients {αij}.

Step 3: Encode each code chunk with FMSR-DIP. Consider

the ith code chunk Pi. We first apply AECC to the b bytes of

the code chunk {Pir}1≤r≤b to generate b′ − b parity bytes

{Pir}b+1≤r≤b′ , where b′ = bn′

k′
. If b is not a multiple of

k′, then we simply pad the code chunk without affecting

the correctness. AECC is used to recover a corrupted row

that cannot be recovered by FMSR alone. We apply the

same AECC to each of the code chunks (i.e., with the same

permutations and encoding parameters).

Then we apply the PRF to all b′ bytes of the code chunk

(including the AECC parities): P ′
ir = Pir ⊕PRF(i||r), where

⊕ is the XOR operator, and i||r denotes the concatenation

of chunk identifier i and row identifier r. PRF protects the

integrity of each row, with the chunk and row identifiers as

inputs.

Finally, we compute a MAC Mi for the first b bytes of the

code chunk with PRF: Mi = MAC(P ′
i1|| . . . ||P

′
ib), where ||

denotes the concatenation. Note that we do not include AECC

parities in the MAC, as typically when we download a file,

only the original FMSR code chunk needs to be downloaded

and verified by the MAC. The parity bytes are downloaded

only when error correction is needed.

Step 4: Update the metadata file and upload. We append n′

and k′ to the metadata file generated by NCCloud. We also

append the MACs of all chunks to the metadata, so that we

can retrieve valid and up-to-date MACs for verification. The

metadata is encrypted with κENC and replicated to each server,

with a small storage overhead (see Section VII). Finally, we

upload the FMSR-DIP-encoded chunks P ′
i ’s to their respective

servers based on FMSR.

Check operation. In the Check operation, we verify ran-

domly chosen rows of bytes based on the FMSR code chunks

generated by NCCloud.

Step 1: Check the metadata file. We download a copy

of the encrypted metadata from each server and check if

all copies are identical. Since the metadata file is replicated

across all servers, we can run majority voting to restore any

corrupted file. We then decrypt the metadata file and retrieve

the encoding coefficients {αij}, the AECC parameters n′ and

k′, and the MACs {Mi}.

Step 2: Sampling and row verification. Based on the FMSR-

DIP-encoded chunk size b′, we randomly generate bλb′c
distinct indices, where λ ∈ (0, 1] is a tunable checking

percentage. For each index r, we download the rth byte from

each of the n(n− k) code chunks (constituting a row). Thus,

we download λb′ rows in total.

For the rth row of bytes {P ′
ir}1≤i≤n(n−k), we remove the

PRF, i.e., Pir = P ′
ir ⊕ PRF(i||r). We then check the consis-

tency of {Pir} with respect to the encoding coefficients {αij}
as follows. Denote encoding matrix A = [αij]n(n−k)×k(n−k)

and chunk vector P = [Pir]1≤i≤n(n−k). We construct a system

of linear equations, denoted by an n(n − k) × k(n − k) + 1
matrix A|PT , such that P

T is the rightmost column of the

system. Then the system (and hence the rth row) is said to be

consistent if rank(A|PT) = rank(A) = k(n− k), meaning

that the rth row of bytes can be uniquely decoded to a correct

solution that corresponds to the original native chunks.

The idea of the above rank checking can be intuitively un-

derstood as follows. In FMSR, the k(n−k) code chunks from

any k servers can be decoded to the original k(n− k) native

chunks, so we must have rank(A) = k(n−k). If chunk vector

P is error-free, then by solving the system of linear equations

A|PT we can retrieve the corresponding bytes in the original

k(n − k) native chunks, so rank(A|PT) = rank(A) =
k(n − k) if the system is consistent. The PRF added to the

code chunk obfuscates the bytes and makes the adversary

more difficult to corrupt the bytes while maintaining the

consistency of the system A|PT . In case of inconsistency, we

have rank(A|PT) > k(n− k), while rank(A) = k(n− k).

Step 3: Error localization. If the rth row is inconsistent, then

we know that some bytes in the row are erroneous. We now

attempt to localize the erroneous bytes in the row, assuming

that there are at most n−k−1 failed servers. We first choose

any k servers and pick the bytes {Pĩr} (with the PRF removed)

for the k(n− k) chunks on those k servers, where the values

ĩ’s denote the k(n− k) indices of the chosen chunks. Denote

encoding matrix Ã = [αĩj]k(n−k)×k(n−k) and chunk vector

P̃ = [Pĩr]. Note that Ã and P̃ can be viewed as the subsets

of A and P defined above, respectively. The MDS property of

FMSR guarantees that the system of linear equations formed

from these k(n − k) bytes gives a unique solution, as any k
out of n servers suffice to recover the original file. However,

this unique solution may not be correct, due to the presence

of erroneous bytes in P̃.

We now pick a chunk Ph from one of the remaining n− k
servers. We append its row of encoding coefficients {αhj}
and byte value Phr to Ã and P̃, respectively. Thus, we now

consider the bytes of a subset of k(n−k)+1 code chunks. If

rank(Ã) = rank(Ã|P̃T), then the system is consistent, and

we mark Phr correct. We repeat this step for all the chunks

from the remaining n − k servers (setting h to be each of

the chunks in turn). After all chunks are exhausted, we pick a

new combination of the original k servers and repeat until all
(

n
k

)

combinations have been tested. Bytes that are not marked

correct at the end of all checks are marked as corrupted.

Note that the above error localization step assumes at most

n − k − 1 failed servers. If n − k servers fail, then we may

recover the errors by downloading the full FMSR-DIP chunks,

as discussed in the Download operation below.

Step 4: Trigger repair. If a server has more than a user-

specified number of bytes marked as corrupted, we consider

it a failed server and trigger the Repair operation (see below).

Download operation. We now describe how we download

a file F from servers.

Step 1: Check the metadata file. Refer to Step 1 of Check.

Step 2: Download and decode the FMSR-DIP-encoded

chunks for file F . To reconstruct file F , we download k(n−k)
FMSR-DIP-encoded chunks from any k servers (without the

AECC parities). After downloading a code chunk, we verify

its integrity with the corresponding MAC. We strip the PRFs

off the FMSR-DIP-encoded chunks to form the FMSR code

chunks, which are then passed to NCCloud for decoding if

they are not corrupted. However, if we have a corrupted code

chunk, then we can fix it with one of the following approaches:

• Download its AECC parities and apply error correction.

Then we verify the corrected chunk with its MAC again.

• Download the (n− k) code chunks from another server.

• A last resort is to download the code chunks from all

n servers. We check all rows of the chunks including

their AECC parities. The rows with a subset of the bytes

marked correct can be recovered with FMSR; the rows

with all bytes marked corrupted are treated as erasures

and will be corrected with AECC. A file is deemed

unrecoverable if there are insufficient code chunks that

pass their MAC verifications.

Repair operation. If some server fails (e.g., when losing all

data, or when having too much corrupted data that cannot be

recovered), then we trigger the repair operation via NCCloud

as follows.

Step 1: Check the metadata file. Refer to Step 1 of Check.

Step 2: Download and decode the needed chunks. This is

similar to Step 2 of Download, as long as there are at most

n− k failed servers (see Section III-B). In particular, if there

is only one failed server, then instead of trying to download

k(n− k) chunks from any k servers, we download one chunk

from all remaining n− 1 servers as in FMSR (see Figure 1 in

Section III).

Step 3: Encode, update metadata, and upload. NCCloud

generates (n−k) chunks to store at the new server. Each chunk

is encoded with FMSR-DIP again (Step 3 of Upload) and

uploaded to the new server. Finally the metadata is updated,

encrypted and replicated to all servers (Step 4 of Upload).

V. IMPLEMENTATION

In this section, we describe our FMSR-DIP implementation

atop NCCloud [21] and how we instantiate cryptographic

primitives. Also, we address how we fine-tune various design

parameters to trade security for performance.

A. Integration of DIP into NCCloud

We implement a standalone DIP module and a storage

interface module, and integrate them with NCCloud as shown

in Figure 3. In the Upload operation, NCCloud generates code

chunks for a file based on FMSR. The code chunks will be

temporarily stored in the local filesystem instead of being

uploaded to the servers as in [21]. The DIP module then reads

the FMSR code chunks from the local filesystem, encodes

them with DIP, and passes the resulting FMSR-DIP code

chunks to the storage interface module, which will upload the

FMSR-DIP chunks to multiple servers (or a cloud-of-clouds

NCCloud DIP

FMSR

code chunks

Storage

interface

FMSR-DIP

code chunks

...

Servers

file

...

Fig. 3. Integration of FMSR-DIP into NCCloud.

[1], [9], [21]). In the Download operation, the DIP module

checks the integrity of the chunks retrieved from the servers

before relaying the chunks to NCCloud for decoding. Note

that we can issue a range GET request to download a selected

range of bytes (see Section IV-A).

B. Instantiating Cryptographic Primitives

We implement all cryptographic operations using OpenSSL

1.0.0g [23]. All cryptographic primitives use 128-bit secret

keys. We require that all secret keys be securely stored on the

client side without being revealed to any server. Since the files

in the cloud are typically of large size, we expect that the secret

keys only incur a small constant overhead. The primitives are

instantiated as described below.

Symmetric encryption. We use AES-128 in cipher-block

chaining (CBC) mode.

Pseudorandom function (PRF). We use AES-128 for PRF.

The PRF input is first transformed to a plaintext block, which

is then encrypted with AES-128. Section V-C discusses how

the size of the PRF output can be fine-tuned.

Pseudorandom permutation (PRP). Our PRP implemen-

tation is based on AES-128, but applied in a different way as

in PRF. Note that the domain size of the PRP is the number

of elements to be permuted. To implement a PRP with a

small and flexible domain size, we follow the approach in

Method 1 of [10]. We first create a list of indices from 0

to d − 1, where d is the desired domain size of our PRP.

Then we encrypt each index in turn with AES-128 and sort

the encrypted indices. Finally, the permutation is given by the

positions of the original indices in the sorted list of encrypted

indices. A more efficient way can be used to generate a small

PRP [12], at the expense of a larger storage overhead.

Message authentication codes (MACs). We use HMAC-

SHA-1 to compute MACs.

Adversarial error-correcting codes (AECCs). We apply

the systematic AECC adapted from [14], [12] as described in

Section III-C, with two main differences. First, for efficiency,

we do not encrypt the AECC parities, since we will apply

PRF to the entire DIP-encoded chunk after applying AECC.

PRF itself serves as an encryption. Second, and most notably,

instead of applying a single PRP to the entire code chunk,

we first divide the code chunk into k′ fragments, and apply

a different PRP to each fragment. The secret key of the PRP

for each fragment is formed by the XOR-sum of a master

PRP secret key and the fragment number. Applying PRP to a

fragment rather than a chunk reduces the domain size and

hence the overall memory usage. The trade-off is that we

reduce the security protection, but it should suffice in practice

(a) Standard ECC

(4,2)-RS

PRP PRP

(4,2)-AECC

(4,2)-RS

(b) Our AECC

Fragment 2 Fragment 3 Fragment 4Fragment 1

3 41 2 7 85 6 c da b g hf

3 41 2 7 85 6 d ac b g fe h

4 21 3 5 76 8 c da b g he f

e

Fig. 4. Comparing standard ECC and our AECC (using for example (4,2)-
Reed-Solomon encoding). The bytes of the same color correspond to the same
stripe.

(see Section VI). Also, our approach is more resilient to

burst errors since each byte of a stripe is confined to its own

fragment, while in permuting over the entire chunk, a stripe

may have many of its bytes clustered together.

Figure 4 shows our AECC implementation, in which we

use zfec [34] for the underlying systematic ECC (based on

Reed-Solomon codes). We first apply a PRP to each of the

k′ fragments within the FMSR code chunk. We then apply

systematic ECC to the permuted chunk, which is divided into

b/k′ stripes of k′ bytes each, where the ith stripe (where

1 ≤ i ≤ b/k′) comprises the bytes in the ith positions of

all fragments. Finally, we permute each fragment of the ECC

parities, and append the permuted parities to the code chunk.

C. Trade-off Parameters

In Section IV, FMSR-DIP operates in units of bytes.

However, byte-level operations may make the implementation

inefficient in practice, especially for large files. Here, we

describe how FMSR-DIP can operate in units of blocks (i.e.,

a sequence of bytes) to trade security for performance. In the

following, we describe the possible tunable parameters that

are supported in FMSR-DIP.

PRP block size. Instead of permuting bytes, we can permute

blocks of a tunable size (called the PRP block size). A larger

PRP block size increases efficiency, but at the same time

decreases security guarantees.

PRF block size. In a byte-level PRF operation, we can

simply take the first byte of the AES-128 output as the PRF

output. In fact, we can also compute a longer PRF and apply

the PRF output to a block of bytes of a tunable size (called

the PRF block size). To extend the PRF beyond the AES block

size (16 bytes), we can pad the nonce with a chain of input

blocks of 16 bytes each, and encrypt them using CBC mode.

However, setting the PRF block size to larger than 16 bytes

shows minimal performance improvement, as AES is invoked

once for every 16 bytes of input in CBC mode and the total

number of AES invocations remains the same for a larger PRF

block size.

Check block size. Reading data from cloud storage is priced

based on the number of GET requests. In the Check operation,

downloading one byte per request will incur a huge monetary

overhead. To reduce the number of GET requests, we can

check a block of bytes of a tunable size (called the check block

size). The checked blocks at the same offset of all code chunks

will contain multiple rows of bytes. Although not necessary, it

is recommended to set the check block size as a multiple of the

PRF block size, so as to align with the PRF block operations.

AECC parameters. The AECC parameters (n′, k′) control

the error tolerance within a code chunk and the domain size

of the PRP being used in AECC. Given the same k′, a

larger n′ implies better protection, but introduces a higher

computational overhead.

Checking percentage. The checking percentage λ defines

the percentage of data of a file to be checked in the Check

operation. A larger λ implies more robust checking, at the

expense of both higher monetary and performance overheads

with more data to download and check.

VI. SECURITY ANALYSIS

In this section, we elaborate the design choices of FMSR-

DIP and investigate its security guarantees.

A. Uses of Security Primitives

We briefly summarize the effects of various security prim-

itives used in FMSR-DIP.

Pseudorandom function (PRF). The effect of applying

PRF on the data is similar to encrypting the data. It randomizes

the data so that it is infeasible for the adversary to manipulate

the original data and hence corrupt the data in such a way

that the corrupted bytes form consistent systems of linear

equations during the Check operation. PRF is important for

guarding against a mobile adversary [11], which can possibly

corrupt data on all servers over time via creeping corruption

(see Section III-B).

Symmetric encryption. We encrypt the metadata to hide

the FMSR encoding coefficients. This protects against the

scenario where the PRF values can be recovered with known

encoding coefficients and original file content.

Adversarial error-correcting codes (AECC). We use

AECC to randomize the stripe structure, so that it is infeasible

for the adversary to deterministically render chunks unrecov-

erable (see Section III-C).

Message authentication codes (MAC). We include the

MACs of individual chunks as metadata, and replicate them

to all servers to allow integrity verification of any chunks.

B. Security Guarantees

We now provide a step-by-step analysis of FMSR-DIP.

Recall from Section V-B that an FMSR code chunk is encoded

by (n′, k′)-AECC. The code chunk is divided into k′ fragments

and b/k′ stripes. Each fragment is permuted by a PRP of size

b/k′, and then each stripe is encoded by an (n′, k′)-ECC to

give a total of n′ bytes each, so the code chunk is encoded by

(n′, k′)-AECC into n′ fragments (see Figure 4 in Section V-B).

Each stripe can correct up to n′−k′ erasures or b(n′−k′)/2c
errors.

We assume that the goal of an adversary is to make at least

any one stripe unrecoverable by corrupting more than (n′ −

k′)/2 bytes from the same stripe, while evading detection by

our probabilistic row verification in the Check operation. Note

that there is a trade-off of choosing how many bytes to corrupt.

A higher corruption rate means that the adversary can corrupt

more bytes in a stripe, but the corruption is also easier to be

detected by our row verification. Our objective is to provide

a mathematical framework that analyzes the security strength

of FMSR-DIP for different parameter choices.

1) Corrupting an AECC Stripe: We first consider the case

where the PRP block size is fixed at 1 byte. We assume that

the PRPs are ideal (i.e., output random permutations), so the

adversary can do no better than corrupt randomly within a

fragment.

We consider a set of adversarial corruption strategies of

the following form: given an overall corruption rate p, the

adversary corrupts only the first i fragments and spreads the

corruptions evenly among these i fragments, for i ∈ ((n′ −
k′)/2, n′]. For example, with (110,100)-AECC, we have 105

corruption strategies. We refer to a strategy as Strategy i, in

which the adversary corrupts only the first i fragments with

rate pi = pn′/i.

Considering only a single stripe, the number of corrupted

bytes is governed by a binomial distribution. Denote the

number of stripes as N = b/k′ and let Ci be the event that

at least one stripe is corrupted and made unrecoverable using

Strategy i. We now have

Pr(Ci) ≤ N ×



1−

b(n′−k′)/2c
∑

j=0

(

i

j

)

pji (1− pi)
i−j



 , (1)

where the right hand side is obtained using the union bound

and it approximates the actual value when the corruption

probability p is low.

The above bound is over-estimated though, so we simulate

each corruption strategy and estimate Pr(Ci) for some concrete

parameters. We use (110, 100)-AECC with 1,048,576 stripes

(corresponding to a 100MB input file). We then vary the

overall corruption rate p from 0.1% to 0.5%, and compute

Pr(Ci) for each of the 105 corruption strategies by taking the

average over 250,000 runs. Figure 5 shows the results. We

observe that Pr(Ci) increases when corruptions are spread over

more fragments. Note that the simulation results are close to

the upper bound above when p = 0.1% or p = 0.2%, but it

increases at a much slower rate across strategies starting from

p = 0.3% (our upper bound gives Pr(Ci) > 1 when i ≥ 41
and p = 0.3%).

Now we consider the effect of the PRP block size. Denote

BP as the PRP block size. Instead of corrupting randomly

within a fragment, the adversary can now do better by cor-

rupting a specific offset in randomly chosen PRP blocks. For a

stripe that is at this chosen offset, this means that the adversary

can achieve an effective corruption rate p×BP , and there are

N/BP stripes in total at a specific offset of any PRP block.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

P
ro

b
a
b
ili

ty

Strategy i

p=0.1%
p=0.2%

p=0.3%
p=0.4%

p=0.5%

Fig. 5. Simulation results of Pr(Ci) versus Strategy i for different corruption
rate p’s.

We can revise Pr(Ci) to account for this.

Pr(Ci) ≤
N

BP
×



1−

b(n′−k′)/2c
∑

j=0

(

i

j

)

(piBP)
j(1− piBP)

i−j



 .

(2)

2) Picking Bytes for Checking: Next we bound the proba-

bility that no corrupted bytes get picked during Check. Denote

the check block size as BC and the checking percentage as λ.

Let Ei be the event that all corrupted bytes do not get picked

during Check when Strategy i is used. For simplicity, we

assume that the check blocks do not span across fragments. For

each check block, the probability that it lands on a corrupted

fragment is i/n′; for any fragment with corruption rate pi,
the probability that none of the corrupted bytes collides with

the check block is approximately ((N − BC)/N)piN for

small pi (upper bound). Since the number of check blocks

is λNn′/BC , we have

Pr(Ei) ≤

(

1−
i

n′

(

1−

(

N −BC

N

)piN
))

λNn
′

BC

. (3)

Intuitively, the adversary has a higher evasion rate Pr(Ei)
if the corrupted bytes are more concentrated (e.g., in the first

few fragments) and if we use a larger check block size. The

reason is that when the corrupted bytes are more concentrated,

a larger check block can capture more corrupted bytes, but at

the same time we use fewer check blocks.

C. Putting It All Together

Let Si be the event that the adversary uses Strategy i to

successfully make at least one stripe unrecoverable without

being detected by row checking. Then, Pr(Si) = Pr(Ci) ×
Pr(Ei), which we can compute via Equations (2) and (3). Note

that if i increases, the corruption rate Pr(Ci) increases, but the

evasion rate Pr(Ei) also decreases. The optimal Strategy i gives

the maximum Pr(Si) over all the strategies.

Example. Consider |F | = 100MB, n′ = 110, k′ = 100, BP =
256, BC = 4096, λ = 1%. Then we have N = 1, 048, 576 and

the adversary succeeds if he can corrupt any 6 bytes in any

stripe. When p = 0.01%, we find that the maximum Pr(Si)

occurs at i = 6 and has the value 1.5 × 10−7 (which equals

Pr(E6) as our bound above already gives Pr(C6) > 1). The

worst strategy is i = 110, in which Pr(Ei) is practically zero.

The adversary can increase Pr(Ei) by decreasing p, but this

decreases Pr(Ci) as well. Using our bounds above, we note

that Pr(Si) is less than 10−6 in this setting for all values of p.

Note that the corruption tolerance here is significantly

higher than conventional ECC, in which the adversary can

make any one stripe unrecoverable by corrupting just 6 bytes

of the same stripe (p = 5.2 × 10−6% for this example) and

evade our detection with essentially probability 1.

VII. EVALUATIONS

We evaluate the practicality of FMSR-DIP in a real storage

setting by measuring the overhead of DIP in the Upload,

Check, Download, and Repair operations. We empirically

evaluate the running time overhead atop a local cloud storage

testbed, and we further analyze the cost overhead with the

pricing models of different commercial cloud providers.

A. Running Time Analysis

We first conduct testbed experiments on a local cloud plat-

form that is built on OpenStack Swift 1.4.2 [24]. We deploy

our FMSR-DIP implementation in single-threaded mode on a

machine equipped with Intel Xeon E5620, 16GB RAM, and

64-bit Ubuntu 11.04. The machine is connected via a Gigabit

switch to an OpenStack Swift platform that is attached with

15 nodes. We create multiple containers on Swift, such that

each container mimics a storage server.

We focus on measuring the running time of each operation.

We assume that all file objects being processed remain intact

(i.e., without corruptions) throughout an operation, so that we

can measure the overhead of FMSR-DIP in normal usage. Our

results are averaged over 40 runs.

Upload. We investigate the effects of four sets of parameters

on the running time of the Upload operation, including (i) the

input file size, (ii) the (n, k) parameters of FMSR, (iii) the

(n′, k′) parameters of AECC, and (iv) the block sizes of PRP

and PRF. We vary one set of these parameters each time, while

fixing the other three sets at default values. By default, we use

a 100MB file, (4,2)-FMSR, (110,100)-AECC, and a block size

of 256B for both PRP and PRF.

Figure 6 plots the running times of the Upload operation for

different sets of parameters, along with their 95% confidence

intervals. We further break down each running time result into

three parts denoted by different labels: (i) “FMSR”, the time

of encoding a file into FMSR chunks by NCCloud, (ii) “DIP-

Encode”, the time of encoding the FMSR chunks with our DIP

scheme, and (iii) “Transfer-Up”, the network transfer time of

uploading FMSR-DIP chunks and metadata to the local cloud.

From Figure 6(a), we observe that the fractional overhead

of DIP encoding increases with the file size, and it ranges from

9.36% (for 1MB) to 41.2% (for 100MB) of the overall time of

Upload. The reason is that for larger files, the connection setup

overhead of the data transmission becomes less dominant. We

expect that the fractional overhead of DIP encoding is smaller

when the servers are deployed over the Internet, where the

transmission time plays a bigger part in the Upload operation.

As shown in Figures 6(b) and 6(c), the DIP encoding time

increases with the redundancy levels of the underlying FMSR

and AECC implementations. For instance, the DIP encoding

time increases from 6.432s to 8.467s when the redundancy

of FMSR increases from (12,10) to (4,2) (see Figure 6(b));

it increases from 8.758s to 13.947s when the redundancy of

AECC increases from (255,243) to (255,232) (see Figure 6(c)).

Figure 6(d) shows that increasing the PRP and PRF block

sizes can reduce the DIP encoding time, yet we observe that

the overhead reduction of PRF is less prominent than that of

PRP. The reason is that we implement PRF based on AES, a

block cipher that must be invoked for every 16 bytes (AES

block size) of the file. Note that one should not make the PRP

block size too large, as an FMSR code chunk is padded to

a multiple of (k′× PRP block size) before being encoded by

DIP.

Check. We evaluate the effects of the check block size and

the checking percentage on the Check operation. By default,

we use the check block size of 256KB and the checking

percentage of 1%. We then vary one set of parameters each

time in our evaluations.

Figure 7 shows the results. The transfer time of downloading

data from the local cloud (denoted by “Transfer-Down”)

dominates the total running time of Check (which includes

the computations of PRF and rank checking). Figure 7(a)

shows that when the check block size is small, the TCP

connection does not have enough time to speed up when

downloading each block, resulting in a much longer download

time. For instance, the download time for the check block size

of 256KB is 3.130s, while that for the check block size of

1KB 21.523s, which is about seven times longer. On the other

hand, Figure 7(b) shows that the overall Check time increases

with the checking percentage, but in a sub-linear rate. We

note that Swift allows a connection session to be reused when

downloading data from the same file, so the connection setup

overhead has less impact when the download size is large.

Download and Repair. We now measure the total running

times of the Download and Repair operations. Here, we

only consider the effects of different file sizes, while other

parameters use the same default values as in Upload. In the

Repair operation, we consider the repair of a single failed

server, which we simulate by setting the path of one of the

Swift containers to a non-existent location.

Figures 8 and 9 show the running times of Download

and Repair, respectively. In Download, the DIP-Decode part

accounts for 4.9% (for 1MB) to 42.2% (for 100MB) for the

overall Download time, while in Repair, the DIP-Decode and

DIP-Encode parts altogether account for 3.4% (for 1MB) to

29.1% (for 100MB) for the overall Repair time.

B. Monetary Cost Analysis

We now describe the monetary overhead of FMSR-DIP

in each of the operations compared to the original FMSR

implementation in NCCloud [21].

Upload. The major source of the monetary overhead of our

DIP scheme compared to NCCloud is (n′, k′)-AECC, which

 0

 5

 10

 15

 20

 25

100MB 50MB 20MB 10MB 5MB 1MBT
im

e
 t
a
k
e
n
 (

s
e
c
o
n
d
s
)

FMSR
DIP-Encode
Transfer-Up

 0

 10

 20

 30

 40

(4,2) (8,6) (12,10)T
im

e
 t
a
k
e
n
 (

s
e
c
o
n
d
s
)

FMSR
DIP-Encode

Transfer-Up

(a) Different file sizes (b) Different (n, k) values of FMSR

 0

 10

 20

 30

 40

 50

(255,223)

(255,232)

(255,243)

(115,100)

(110,100)

(105,100)

T
im

e
 t
a
k
e
n
 (

s
e
c
o
n
d
s
)

FMSR
DIP-Encode

Transfer-Up

 0
 10
 20
 30
 40
 50

(16B,16B)

(64B,16B)

(256B,16B)

(1024B,16B)

(1024B,32B)

(1024B,1024B)

T
im

e
 t
a
k
e
n
 (

s
e
c
o
n
d
s
)

FMSR
DIP-Encode

Transfer-Up

(c) Different (n′, k′) values of AECC (d) Different block sizes of PRP and PRF

Fig. 6. Running times of the Upload operation on a local cloud for different sets of parameters.

 0
 10
 20
 30
 40
 50
 60
 70
 80

256B 1KB 4KB 7KB 25KB 256KBT
im

e
 t

a
k
e

n
 (

s
e

c
o

n
d

s
)

PRF
Rank Checking
Transfer-Down

Misc.

 0

 5

 10

 15

 20

 25

 30

100% 75% 50% 25% 10% 5% 1%T
im

e
 t
a
k
e
n
 (

s
e
c
o
n
d
s
)

PRF
Rank Checking
Transfer-Down

Misc.

(a) Different check block sizes (b) Different checking percentage values

Fig. 7. Running times of the Check operation on a local cloud for different sets of parameters.

 0

 2

 4

 6

 8

100MB 50MB 20MB 10MB 5MB 1MBT
im

e
 t
a
k
e
n
 (

s
e
c
o
n
d
s
)

File size

FMSR
DIP-Decode

Download

Fig. 8. Running time of the entire Download operation on a local cloud.

 0
 5

 10
 15
 20
 25
 30

100MB 50MB 20MB 10MB 5MB 1MBT
im

e
 t
a
k
e
n
 (

s
e
c
o
n
d
s
)

File size

FMSR
DIP-Decode
DIP-Encode

Transfer-Down
Transfer-Up

Misc.

Fig. 9. Running time of the entire Repair operation on a local cloud.

expands the stored data and increases the storage cost by

roughly n′/k′ (note that the inbound transfer cost is free for

all commercial cloud providers that we consider). The cost

due to the expanded file metadata is a negligible constant if

the file size is large enough. For example, when using (4,2)-

FMSR, our encrypted metadata size is 320B, which is 160B

more than the current NCCloud implementation. Furthermore,

some cloud providers such as Rackspace and Azure allow a

small metadata to be associated with an uploaded object for

free.

Check. Since NCCloud does not support the Check oper-

ation, we briefly discuss the sources of the Check cost. The

Check cost is composed of the download bandwidth cost and

the GET request cost. To minimize the download bandwidth

cost, we can reduce the checking percentage. To minimize the

GET request cost, we can set a larger check block size in

order to save on the per-request cost, with a trade-off of less

security protection.

Download. When no corrupted data is detected, we do not

have to download the AECC parities. Thus, the monetary cost

incurred by DIP is similar to NCCloud. Our DIP scheme adds

a small constant overhead (independent of the file size) in

downloading the metadata, which now has a larger size than

the original NCCloud implementation.

Repair. The major monetary overhead again comes from

(n′, k′)-AECC in encoding the new FMSR code blocks. As

discussed above, if there is no corrupted data in surviving

servers, we preserve the network transfer cost of NCCloud

when downloading data from the surviving servers (aside from

the small constant metadata traffic). Also, the inbound transfer

cost of writing reconstructed FMSR-DIP chunks to a new

server is free for many commercial cloud storage providers

[21]. Therefore, we still preserve the cost saving property

of the repair operation in NCCloud when compared to the

conventional repair method (by up to 50% for RAID-6 [21]).

C. Summary

We study how different parameters influence the overhead

of FMSR-DIP. For Upload, which is a regular operation in

archival storage, the DIP encoding part contributes up to about

40% of the running time with our default parameters. For

the monetary cost, the overhead mainly comes from AECC,

which expands our stored data by roughly n′/k′ times. In

particular, we preserve the data transfer cost of NCCloud

during repair, which is the most significant advantage of FMSR

over traditional erasure codes.

We may further reduce the running time of our DIP scheme.

In the evaluations, our DIP scheme runs in single-threaded

mode. Since our DIP encoding module works on a per-chunk

basis, we can parallelize the DIP encoding operations in

multi-threaded mode. We plan to explore the multi-threaded

implementation in future work.

VIII. CONCLUSIONS

Seeing the popularity of outsourcing archival storage to the

cloud, it is desirable to enable clients to verify the integrity

of their data in the cloud. We design and implement a

practical data integrity protection (DIP) scheme for functional

minimum storage regenerating (FMSR) codes under a multi-

server setting. Our DIP scheme preserves the fault tolerance

and repair traffic saving properties of FMSR. To understand the

practicality of the integration of FMSR and DIP, we analyze

its security strength, evaluate its running time overhead via

testbed experiments, and conduct monetary cost analysis.

The source code of our DIP implementation is available at:

http://ansrlab.cse.cuhk.edu.hk/software/fmsrdip.

ACKNOWLEDGMENT

This work was supported by grant AoE/E-02/08 from the

University Grants Committee of Hong Kong.

REFERENCES

[1] H. Abu-Libdeh, L. Princehouse, and H. Weatherspoon. RACS: A Case
for Cloud Storage Diversity. In Proc. of ACM SoCC, 2010.

[2] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung. Network Information
Flow. IEEE Trans. on Information Theory, 46(4):1204–1216, Jul 2000.

[3] Amazon Elastic Compute Cloud. http://aws.amazon.com/ec2/.
[4] Amazon Simple Storage Service. http://aws.amazon.com/s3/.
[5] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,

G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A view of
cloud computing. Communications of the ACM, 53(4):50–58, 2010.

[6] G. Ateniese, R. Burns, R. Curtmola, J. Herring, O. Khan, L. Kissner,
Z. Peterson, and D. Song. Remote Data Checking Using Provable Data
Possession. ACM Trans. on Information and System Security, 14:12:1–
12:34, May 2011.

[7] G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik. Scalable and
Efficient Provable Data Possession. In Proc of SecureComm, 2008.

[8] G. Ateniese, S. Kamara, and J. Katz. Proofs of Storage from Homo-
morphic Identification Protocols. In Proc. of ASIACRYPT, 2009.

[9] A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa. DEPSKY:
Dependable and Secure Storage in a Cloud-of-Clouds. In Proc. of ACM

EuroSys, 2011.
[10] J. Black and P. Rogaway. Ciphers with arbitrary finite domains. In

Topics in Cryptology – CT-RSA 2002, volume 2271 of LNCS, pages
114–130. Springer, 2002.

[11] K. Bowers, A. Juels, and A. Oprea. HAIL: A High-Availability and
Integrity Layer for Cloud Storage. In Proc. of ACM CCS, 2009.

[12] K. Bowers, A. Juels, and A. Oprea. Proofs of Retrievability: Theory
and Implementation. In Proc. of ACM CCSW, 2009.

[13] B. Chen, R. Curtmola, G. Ateniese, and R. Burns. Remote Data
Checking for Network Coding-Based Distributed Storage Systems. In
Proc. of ACM CCSW, 2010.

[14] R. Curtmola, O. Khan, and R. Burns. Robust remote data checking. In
Proc. of ACM StorageSS, 2008.

[15] R. Curtmola, O. Khan, R. Burns, and G. Ateniese. MR-PDP: Multiple-
Replica Provable Data Possession. In Proc. of IEEE ICDCS, 2008.

[16] A. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, and K. Ramchandran.
Network Coding for Distributed Storage Systems. IEEE Trans. on

Information Theory, 56(9):4539–4551, 2010.
[17] Y. Dodis, S. Vadhan, and D. Wichs. Proofs of Retrievability via Hardness

Amplification. In Proc. of TCC, 2009.
[18] C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia. Dynamic

Provable Data Possession. In Proc. of ACM CCS, 2009.
[19] O. Goldreich. Foundations of cryptography: Basic tools, volume 1.

Cambridge Univ Pr, 2001.
[20] O. Goldreich. Foundations of cryptography: Basic applications, vol-

ume 2. Cambridge Univ Pr, 2004.
[21] Y. Hu, H. Chen, P. Lee, and Y. Tang. NCCloud: Applying Network

Coding for the Storage Repair in a Cloud-of-Clouds. In Proc. of USENIX

FAST, 2012.
[22] A. Juels and B. Kaliski Jr. PORs: Proofs of Retrievability for Large

Files. In Proc. of ACM CCS, 2007.
[23] OpenSSL. http://www.openssl.org/.
[24] OpenStack Object Storage. http://www.openstack.org/projects/storage/.
[25] J. S. Plank. A Tutorial on Reed-Solomon Coding for Fault-Tolerance in

RAID-like Systems. Software - Practice & Experience, 27(9):995–1012,
Sep 1997.

[26] R. Popa, J. Lorch, D. Molnar, H. Wang, and L. Zhuang. Enabling
Security in Cloud Storage SLAs with CloudProof. In Proc. of USENIX

ATC, 2011.
[27] M. O. Rabin. Efficient Dispersal of Information for Security, Load

Balancing, and Fault Tolerance. Journal of the ACM, 36(2):335–348,
Apr 1989.

[28] I. Reed and G. Solomon. Polynomial Codes over Certain Finite Fields.
Journal of the Society for Industrial and Applied Mathematics, 8(2):300–
304, 1960.

[29] T. Schwarz and E. Miller. Store, Forget, and Check: Using Algebraic
Signatures to Check Remotely Administered Storage. In Proc. of IEEE

ICDCS, 2006.
[30] H. Shacham and B. Waters. Compact Proofs of Retrievability. In Proc.

of ASIACRYPT, 2008.
[31] M. Vrable, S. Savage, and G. Voelker. Cumulus: Filesystem backup to

the cloud. In Proc. of USENIX FAST, 2009.
[32] C. Wang, Q. Wang, K. Ren, and W. Lou. Privacy-Preserving Public

Auditing for Data Storage Security in Cloud Computing. In Proc. of

IEEE INFOCOM, 2010.
[33] Watson Hall Ltd. UK data retention requirements, 2009.

https://www.watsonhall.com/resources/downloads/paper-uk-data-
retention-requirements.pdf.

[34] zfec. http://pypi.python.org/pypi/.

