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ABSTRACT
Network telemetry is essential for administrators to monitor mas-

sive data traffic in a network-wide manner. Existing telemetry

solutions often face the dilemma between resource efficiency (i.e.,
low CPU, memory, and bandwidth overhead) and full accuracy (i.e.,
error-free and holistic measurement). We break this dilemma via

a network-wide architectural design OmniMon, which simultane-

ously achieves resource efficiency and full accuracy in flow-level

telemetry for large-scale data centers. OmniMon carefully coor-

dinates the collaboration among different types of entities in the

whole network to execute telemetry operations, such that the re-

source constraints of each entity are satisfied without compromis-

ing full accuracy. It further addresses consistency in network-wide

epoch synchronization and accountability in error-free packet loss

inference. We prototype OmniMon in DPDK and P4. Testbed exper-

iments on commodity servers and Tofino switches demonstrate the

effectiveness of OmniMon over state-of-the-art telemetry designs.
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1 INTRODUCTION
Modern data centers host numerous critical applications, thereby

imposing high demands on network management. Administrators

need efficient network telemetry solutions to monitor massive traffic

and understand its network-wide behaviors. Ideally, we aim for

both resource efficiency and full accuracy when developing network

telemetry. For resource efficiency, network entities (e.g., end-hosts
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and switches) face heterogeneous resource constraints in computa-

tion, memory, and bandwidth, so telemetry systems should limit

their performance overhead and never exhaust any specific re-

sources. In particular, the performance overhead of network teleme-

try must be much lower than that of normal packet processing in

routing, NAT, and firewall. Note that achieving resource efficiency

does not mean that the resource usage remains constant as the

network scale grows; instead, the goal of resource efficiency here

is to keep the resource overhead of network telemetry much lower

than that of other network operations. For full accuracy, telemetry

systems should have in-network, always-on visibility that covers

all flows and all entities with error-free flow-level statistics.

Conventional wisdom views resource efficiency and full ac-

curacy as a design trade-off. At one extreme, per-flow monitor-

ing (e.g., Trumpet [49] and Cisco Tetration [15]) aims for fine-

grained, error-free measurement but incurs possibly unbounded

resource usage; at another extreme, coarse-grained monitoring

(e.g., SNMP [12], sFlow [64], and NetFlow [53]) provides best-

effort measurement without accuracy guarantees. Between the

extremes, many telemetry systems adopt approximation algorithms

[5, 26, 28, 29, 38, 48, 62, 63, 65, 72, 75] that achieve high resource effi-

ciency with provably bounded errors, or event matching techniques

[25, 33, 52, 69, 74, 79] that only focus on the traffic of interest.

We pose a fundamental question: Can we break the dilemma be-
tween resource efficiency and full accuracy in network telemetry?We

observe that there exist delicate design trade-offs between resource

availability and in-network visibility among different network en-

tities, including end-hosts and switches in the data plane as well

as a centralized controller in the control plane (§2.1). By carefully

re-architecting the collaboration among network entities subject

to their resource constraints, we can design a new telemetry ar-

chitecture that achieves both resource efficiency and full accuracy.

Note that recent telemetry proposals also take a collaborative ap-

proach [24, 52, 67]. However, they address different design goals

(e.g., expressiveness [24, 52] or in-network visibility [67]) rather

than the resource-accuracy trade-off. Their architectures cannot

readily achieve full accuracy due to the tight switch resources (§2.2).

We fill this void through a complementary collaborative telemetry

architecture that treats both resource efficiency and full accuracy

as ‘‘first-class citizens’’.

We present OmniMon, a novel network-wide architecture that

carefully coordinates telemetry operations among all entities (i.e.,

end-hosts, switches, and the controller), with a primary goal of

simultaneously achieving both resource efficiency and full accu-

racy in flow-level network telemetry for large-scale data centers.

Specifically, OmniMon re-architects network telemetry in a split-
and-merge fashion. By split, OmniMon decomposes network teleme-

try into partial operations and schedules these partial operations

https://doi.org/10.1145/3387514.3405877
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among different entities. This design fully utilizes the available re-

sources of the entire network and bypasses the resource constraints

of individual entities. By merge, OmniMon coordinates all entities

to collaboratively execute the partial operations. It combines the

strengths of both end-hosts and switches (in the data plane) for

error-free per-flow tracking across the entire network; meanwhile,

its controller (in the control plane) conducts network-wide resource

management and collective analysis of all end-hosts and switches.

Note that OmniMon is incrementally deployable on a subset of

end-hosts and switches across the network.

As in any practical distributed system, the network-wide ar-

chitectural design of OmniMon needs to address the reliability

concerns in network telemetry. Thus, OmniMon incorporates two

reliability guarantees, namely consistency and accountability, to
preserve both resource efficiency and full accuracy in practical

deployment. For consistency, we propose a network-wide epoch

synchronization mechanism with a hybrid consistency model, such

that (i) all entities reside at the same epoch at most times and their

epoch boundaries only deviate by a small time difference (up to

60 𝜇s; see §8) and (ii) every packet is synchronized at the same

epoch during its transmission even under cross-epoch network de-

lays. For accountability, we formulate a system of linear equations

for per-switch, per-flow packet loss inference, and ensure that a

unique solution exists in the common case by taking into account

data center network characteristics.

We prototype OmniMon in DPDK [16] and P4 [56]. We also

integrate OmniMon with Sonata [24] to support basic query-driven

telemetry tasks. Our testbed experiments on commodity servers

and Barefoot Tofino switches [70], as well as large-scale simula-

tion, justify the effectiveness of OmniMon over 11 state-of-the-art

telemetry designs. For example, OmniMon reduces the memory

usage by 33-96% and the number of actions by 66-90%, while achiev-

ing zero errors, compared to sketch-based solutions (which have

non-zero errors) [29, 38, 43, 72] in P4 switch deployment.

The source code of our OmniMon prototype is now available

at: https://github.com/N2-Sys/OmniMon. This work does not

raise any ethical issues.

2 BACKGROUND AND MOTIVATION
We first pose the resource and accuracy requirements in network

telemetry and identify the use cases (§2.1). We then discuss the

root causes of having the resource-accuracy trade-off in existing

telemetry systems (§2.2).

2.1 Resource and Accuracy Requirements
We focus on flow-level network telemetry in a data center network,

in which we identify a flow by a flowkey formed by a combination of

packet fields (e.g., 5-tuples). We measure flow-level statistics, in the

form of values, across fixed-length time intervals called epochs. We

represent an epoch as an integer, by dividing the current timestamp

by the epoch length. In particular, we address two requirements in

network telemetry: resource efficiency and full accuracy.

Resource efficiency. We target a data-center-scale network

telemetry framework that includes three types of entities: multiple

end-hosts, multiple switches, and a centralized controller. Each type

of entities imposes different resource constraints. Thus, the frame-

work should satisfy the resource constraints of the corresponding

entities to maintain the overall packet forwarding performance.

Also, it should only leverage the existing functionalities of com-

modity hardware. We elaborate each type of entities as follows.

(i) End-host: End-hosts process network traffic in the network

edge in software (e.g., kernel space [41] and user space [16]). They

provide ample memory space for holistic flow tracking, and high

flexibility for realizing various telemetry approaches. However, as

end-hosts reside in the edge, they have poor in-network visibility

for network-wide measurement. Also, software packet processing

on a commodity host is computationally expensive (e.g., requiring

multiple CPU cores to achieve a rate of 40 Gbps [17]), yet end-hosts

cannot dedicate all CPU resources only for network telemetry as

the CPU resources are also shared by other co-locating applications.

(ii) Switch: Commodity switch ASICs achieve high forwarding

throughput (e.g., several Tbps [10, 70]) and ultra low processing

latency (e.g., sub-microseconds). However, they have scarce on-

chip memory space (e.g., tens of MB to keep states [34, 45]), and

provide limited programmability due to overheating concerns and

high manufacturing costs.

(iii) Controller: The controller is a logical entity that centrally

coordinates all end-hosts and switches to obtain a global network

view. It can comprise multiple servers, so as to combine their CPU

and memory resources for sophisticated analytics and provide fault

tolerance (e.g., via Zookeeper [30]). However, it has limited network

bandwidth to receive a substantial amount of traffic from all end-

hosts and switches.

Full accuracy. We target network telemetry with full accuracy,
which implies both completeness and correctness. By completeness,

we mean to track all traffic (and hence all flows) in all entities and

epochs without missing any information; by correctness, we mean

to track the flowkey and complete values for each flow without

errors. Full accuracy is critical for many telemetry tasks. We show

three use cases that greatly benefit from full accuracy. Note that

such use cases are also supported in existing telemetry systems (e.g.,

[4, 24]), yet any measurement error can degrade their efficiency

and usability in practical deployment.

(i) Performance evaluation: Administrators often propose new

techniques to improve network performance, and verify their cor-

rectness and performance gain in real deployment. One example

is to evaluate the benefits of flowlet-based load balancing [3] over

conventional flow-based load balancing. Administrators can make

refinements using complete per-flow trajectories, which unveil both

per-link utilization and top flows in each link. Full accuracy in per-

flow trajectories avoids measurement variations or flawed refine-

ments, and hence allows administrators to focus on evaluating the

proposed techniques without concerning any measurement error.

(ii) Anomaly detection: Administrators identify network anom-

alies (e.g., misbehaviors or attacks) for reliability and security pur-

poses. Such anomalies are hard to predict before they actually

occur. Thus, administrators require per-epoch statistics of all traffic
to respond to any detected anomalies Full accuracy in per-epoch

statistics eliminates false alarms or undetected anomalies due to any

measurement error, and hence prevents any anomaly from com-

promising the network robustness. Here, we focus on collecting

accurate flow statistics, while providing precise anomaly definitions

https://github.com/N2-Sys/OmniMon
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and configurations is beyond our scope.

(iii) Network diagnosis: Performance degradations (e.g., sudden

high packet loss) are common in production for various reasons,

such as misconfigurations and hardware failures. Administrators

require per-switch, per-flow statistics to localize and repair problem-

atic switches and lossy flows. Full accuracy in per-switch, per-flow

statistics implies that any performance issue can be correctly pin-

pointed in a timely manner without any interference from inaccu-

rate measurement.

2.2 Motivation
Existing telemetry systems (§9) pose resource efficiency and full ac-

curacy as a design trade-off: they either provision enough resources

(i.e., CPU, memory, and bandwidth) to achieve full accuracy, or sac-

rifice full accuracy to satisfy the resource constraints of individual

entities. We argue that the trade-off exists due to two root causes.

Root cause 1: Tight coupling between flow tracking and re-
source management. Existing approaches realize telemetry oper-

ations monolithically, in which an end-host or a switch extracts the

values of each observed flow and provisions resources to track the

values (referenced by flowkeys). To resolve any resource conflict

among flows, the amount of provisioned resources must be suffi-

ciently large, yet it also heavily depends on the required level of

accuracy and the resource constraints of individual entities.

Consider an example that we use a hash table of counters (e.g.,

as in Trumpet [49]) to track the flowkeys and values of all flows.

To resolve hash collisions, we can leverage chaining or Cuckoo

hashing [57] to organize counters for colliding flows. Such a design

can be feasibly realized in software, but not in switch ASICs as

the complex memory management of the hash table is hard to

implement due to limited switch programmability. If we solely

increase the hash table size and rely on uniform hash functions to

resolve hash collisions in switches, the number of counters is huge.

Figure 1(a) shows the memory usage (for 4-byte counters) versus

the number of flows for different hash collision rates (in general,

the collision rate is 1 − 𝑚!

𝑛!𝑚𝑛 for𝑚 counters and 𝑛 flows). Even for

1,000 flows, the memory usage reaches 200MB for a collision rate

of 1%, which is far beyond the switch capacity.

Existing switch-based telemetry systems sacrifice accuracy to

fit all operations into switch ASICs [47, 51]. One solution is to

leverage approximation algorithms (e.g., sampling [62, 63], top-

𝑘 counting [5, 26, 65], and sketches [28, 29, 38, 43, 48, 75]) to fit

compact structures in switch memory. However, full accuracy is

inevitably violated due to limited provisioned resources. Another

solution is to offload traffic to the controller to mitigate switch-side

resource usage [25, 69, 74, 79], but it only monitors the traffic of

interest to avoid overwhelming the link capacity of the controller.

Root cause 2: Limited network-wide collaboration. Several
telemetry designs adopt some forms of collaboration among enti-

ties, yet they target different design goals and remain bounded by

the resource-accuracy trade-off. For example, some systems deploy

a controller to assemble measurement results from end-hosts or

switches [28, 29, 38, 49] and/or tune resources among switches

[43, 47, 48, 62]. Some hybrid architectures [24, 52] allow the collab-

oration among switches and the controller to empower efficient

and expressive telemetry query engines, while others [32, 42, 67]
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Figure 1: Root causes of resource-accuracy trade-off: (a)
Memory usage using simple hashing with full accuracy; (b)
Switch resource overheads in Sonata with controller-switch
collaboration.

allow the collaboration among end-hosts and switches to combine

programmability in end-hosts and visibility in switches. However,

existing collaborative approaches do not coordinate the resources

for full accuracy among all entities (i.e., end-hosts, switches, and
the controller). The limited resources of some entities can make

full accuracy infeasible.

We use Sonata [24], a collaborative telemetry architecture, to

motivate our claims. Sonata targets expressiveness and scalability.

It offloads dataflow operators from the controller to switches to ex-

ploit fast packet processing in switches. However, it cannot mitigate

the memory and bandwidth usage of switch-side operators without

sacrificing accuracy. We take the open-source Sonata prototype

and evaluate its resource consumption using the 11 applications

reported in [24]. We vary per-application memory from 128KB to

1,024 KB, and measure the total switch traffic to the controller on

Barefoot Tofino switches [70].We compare two cases: (i) ‘‘Accuracy

drop’’, the default setup in Sonata’s prototype that does not deal

with hash collisions; and (ii) ‘‘Full accuracy’’, in which we achieve

full accuracy by mapping each flow to 𝑑 (set to 2 here) counters

and evicting a flow to the controller if it has hash collisions in all

the 𝑑 counters (c.f. §3.1 of [24]). We configure 10
5
active flows

at each epoch. Figure 1(b) shows that around 56MB/s of traffic is

triggered in all cases with accuracy degradation. For full accuracy,

the amount of triggered traffic substantially increases due to hash

collisions (e.g., 2.2× the accuracy degradation case for 128KB of

per-application memory). Note that the handling of hash collisions

also incurs excessive usage of other types of switch resources (§8).

3 OmniMon DESIGN
We state our design goals and assumptions (§3.1), and show how

OmniMon achieves resource efficiency and full accuracy (§3.2). We

pose the consistency and accountability issues in our design (§3.3).

3.1 Design Overview
OmniMon is a network-wide telemetry architecture spanning dif-

ferent entities (i.e., end-hosts, switches, and the controller) in a

data center network. It aims for both resource efficiency and full

accuracy from an architectural perspective, by re-architecting the

collaboration among all entities subject to their resource constraints.

It is compatible with existing collaborative telemetry designs; as

a case study, we add a query engine based on Sonata [24] as an

application atop OmniMon for expressive telemetry (§7).

Coordinating the collaboration among different types of entities

is non-trivial due to their heterogeneity in resource availability and
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Figure 2: OmniMon architecture.

in-network visibility (§2.1). To this end, we address three classical

issues adapted from building practical distributed systems: (i) How

do we assign telemetry operations across different entities (i.e.,

end-hosts, switches, and the controller)? (ii) How should different

entities coordinate among themselves? (iii) How should we achieve

reliable coordination in the face of unreliable events?

Assumptions. We make several design assumptions.

• We focus on a data center network under a single administrative

domain, a common deployment setting in modern data centers.

Administrators have access to all entities to apply configurations.

The controller has full knowledge of the packet processing poli-

cies (e.g., routing tables, access control lists, and path changes

due to link failures) in each entity.

• We only consider the packets that actually enter the network (i.e.,

packets dropped in end-hosts are ignored). This can be done by

realizing measurement in proper positions of the network stack

in each end-host (e.g., qdisc in the Linux kernel). Measuring and

dissecting an end-host’s network stack is out of our scope.

• The packet format is extensible. During transmissions, pack-

ets can embed new information in various unused fields (e.g.,

reserved bits in VXLAN) in existing packet headers [3, 20]. Re-

cent advances in user-space networking stacks [16] and pro-

grammable switch ASICs [70] also allow administrators to readily

define customized packet fields. Note that the embedded infor-

mation should be of small size to limit transmission overhead.

3.2 Split-and-Merge Telemetry
Figure 2 presents the OmniMon architecture. Recall that OmniMon

follows a split-and-merge approach for network telemetry (§1).

Specifically, it performs flow tracking and resource management

via four partial operations, namely flowkey tracking, value updates,
flow mapping, and collective analysis. It coordinates these partial
operations among end-hosts, switches, and the controller, subject

to the heterogeneous resource requirements of different entities.

In the following, we describe each partial operation and show

how both resource efficiency and full accuracy are simultaneously

achieved. We first assume that there is a global clock that precisely

synchronizes all entities and there is no packet loss. We later relax

these assumptions in §3.3.

Flowkey tracking. OmniMon holds a copy of the flowkey of each

active flow in the network. When a new flow starts, OmniMon

records its flowkey in a hash table in the source end-host. It removes

the flowkey when the flow terminates, determined by FIN/RST

packets in TCP flows or a long idle time (e.g., 30 minutes [27]).

Value updates. OmniMon tracks flow values in both end-hosts

(with ample memory space) and switches (with in-network visibil-

ity). Each end-host or switch maintains a set of slots with multiple

counters each, and further partitions the slots into groups for dif-

ferent epochs. As end-hosts and switches have different resource

requirements, they perform value updates differently.

With sufficient memory space, an end-host dynamically allocates

one dedicated slot for each flow per epoch. When a flow terminates,

its slots will be recycled. An end-host holds two types of slots,

namely ingress and egress slots. It stores the values of an incoming

flow destined for itself in an ingress slot, and also stores the values

of an outgoing flow originated from itself in an egress slot.

On the other hand, since switches have limited memory space,

we allow a slot to be shared by multiple flows. Each switch maps

a flow to a subset of slots and updates the counters in all those

slots by the flow values. Thus, a slot holds aggregate values from

multiple flows. We later recover the per-flow values via collective

analysis (see below).

Flow mapping. OmniMon coordinates all end-hosts and switches

to properly map flows to slots for flowkey tracking and value up-

dates. Its flow mapping design builds on both in-band packet em-

bedding and out-band messages.

(i) Flow mapping in end-hosts. OmniMon maps a flow to its slots

in both source and destination end-hosts via an index number called

the host index. When the source end-host applies flowkey tracking

for a new flow, it first computes the host index, which denotes the

entry position of the flowkey in the hash table. Then it associates

the host index with the egress slot of the flow, and embeds the

host index and the epoch into each outgoing packet of the flow.

The destination end-host extracts the host index and epoch from

each received packet, and associates them with the ingress slot. The

use of the host index eliminates another hash lookup, which is the

major overhead for end-hosts (Exp#1 in §8).

(ii) Flow mapping in switches. OmniMon uses an index number

called the switch index for each flow to determine how the flow

maps to multiple slots in a switch. The switch index is collabora-

tively selected by the controller and source end-hosts. Specifically,

the controller assigns a unique switch index to each possible flow

mapping to the slots in a switch. It then pre-assigns a disjoint sub-

set of switch indexes to each end-host. A source end-host chooses

one switch index for a new flow (detailed in §5.2) and embeds the

switch index (together with the host index and the epoch) in each

outgoing packet of the flow. When a switch receives a packet, it

retrieves the switch index and epoch from the packet and updates

the corresponding mapped slots. Such a collaborative approach not

only exploits the visibility of the controller to mitigate the hash

collisions in switch slots, but also allows the source end-host to

quickly choose switch slots without querying the controller.

Collective analysis. For each epoch, the controller collects the

hash tables (flowkeys) and the slots (values) from all end-hosts and

switches. It performs collective analysis to associate each flow with

the values recorded in its source and destination end-hosts and each

switch the flow traverses, so as to recover per-flow values from

each end-host and switch. Since OmniMon keeps all flowkeys in

their source end-hosts, the controller can directly obtain per-flow

values (via the host index) from the dedicated slots in the source

and destination end-hosts. Per-flow values in switches can also be
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recovered from the shared slots based on the flowkeys and values

in end-hosts. Specifically, the controller knows all flows mapped to

a shared slot (via the switch index). If there is no packet loss, the

value of the slot is the aggregation of the flows that are mapped

to the slot (e.g., for additive values, the value in the slot equals the

sum of per-flow values); otherwise, with packet losses, OmniMon

recovers per-flow values via packet loss inference (§5).

Summary. OmniMon achieves both resource efficiency and full

accuracy. For full accuracy, the controller exactly recovers per-flow

values in all end-hosts and switches on a per-epoch basis (i.e., both

correctness and completeness are addressed). OmniMon addresses

resource efficiency via three aspects: (i) for memory, it maintains

flowkeys and dedicated per-flow values in end-hosts only, while

keeping only flow values in the shared slots in switches; (ii) for

computation, it performs flow mapping operations collaboratively

in the controller and all end-hosts without involving switches,

while incurring limited overhead (Exp#1 and Exp#7 in §8); (iii) for

bandwidth, the controller collects hash tables and slots without

mirroring all traffic.

Note that such resource usage is insignificant compared to other

network functionalities. For end-hosts, per-packet hashing is af-

fordable as shown in prior work [28, 49]; in contrast, network

stacks in OS kernels or virtualization frameworks perform much

more complicated per-packet processing than per-packet hashing

in OmniMon. For switches, the partial operations of OmniMon in-

cur much less resource usage than standalone telemetry solutions,

as shown in our evaluation (§8).

3.3 Consistency and Accountability
OmniMon faces two unreliability concerns in its network-wide

architectural design: (i) lack of a global clock and (ii) packet losses.

We extend OmniMon with consistency and accountability guaran-

tees, so as to preserve both resource efficiency and full accuracy in

the face of unreliability events.

• Consistency:Without a global clock, OmniMon needs to ensure

that (i) all entities reside at the same epoch at most times, thereby

providing correctness guarantees for per-epoch applications (e.g.,

anomaly detection (§2.1)); and (ii) each packet is always mon-

itored at the same epoch during its transmission (even under

cross-epoch network delays), thereby permitting collective anal-

ysis to correctly associate per-flow values across entities in a

consistent network-wide view of traffic. See §4 for details.

• Accountability: If packet losses happen (e.g., due to network con-

gestion or switch failures), OmniMon needs to correctly infer

per-switch, per-flow packet losses. It is critical to network diag-

nosis (§2.1), and maintains full accuracy in the collective analysis.

See §5 for details.

4 CONSISTENCY
OmniMon achieves consistency via network-wide epoch synchro-

nization, with the goal of synchronizing all entities at the same

epoch and monitoring each packet at the same epoch in its transmis-

sion. We state the challenge of realizing consistency in OmniMon

(§4.1), and propose a new consistency model that closely matches

our objective yet can be feasibly realized (§4.2).
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Figure 3: Existing consistency models.

4.1 Challenge
While consistency has been well studied in distributed computing

research, providing consistency guarantees for network telemetry

with both resource efficiency and full accuracy remains unexplored.

Existing consistency protocols mainly target either strong consis-
tency or weak consistency. We argue why each of them is difficult

to achieve in our context via the examples in Figure 3, in which

two entities (end-hosts or switches) 𝑒1 and 𝑒2 exchange packets.

Strong consistency. Strong consistency aligns epoch boundaries

and ensures that every packet is observed by all entities at the same

epoch. For example, in Figure 3(a), both 𝑒1 and 𝑒2 see Packet A at

Epoch 1 and Packet B at Epoch 2. However, strong consistency pro-

tocols (e.g., Paxos [37]) are complex to implement in switches and

trigger multiple rounds of out-band messages for synchronization.

Weak consistency. Weak consistency synchronizes per-packet

epochs in a best-effort manner, so the epochs among entities may

diverge and a packet may be monitored at different epochs. In

weak consistency, each entity renews its epoch via a local clock

and embeds the current epoch in every outgoing packet (as in

Lamport Clock [36] and Distributed Snapshots [13, 73]). When

an entity receives a packet, it updates its current epoch with the

packet’s embedded epoch if the latter is newer. Otherwise, the

entity updates the packet’s embedded epoch with its current epoch

before forwarding.

Such in-band synchronization incurs limited costs. However,

entities may observe a packet at different epochs as the embedded

epoch can be modified along the packet transmission path. Also,

a heavily clock-delayed entity never updates its epoch until it re-

ceives a packet with a newer epoch, causing unbounded deviations

among epoch boundaries. For example, in Figure 3(b), both 𝑒1 and 𝑒2
synchronize their epochs via in-band packets. However, 𝑒1’s local

clock is delayed and remains at Epoch 1 until it receives Packet B

from 𝑒2. Furthermore, 𝑒1 embeds Epoch 1 in Packet A, while 𝑒2
embeds Epoch 2. Thus, Packet A may be inconsistently treated as

at Epoch 1 or Epoch 2 by different entities in its transmission.

4.2 Hybrid Consistency
OmniMon realizes a hybrid consistency model, which ensures

strong consistency at most times and is downgraded to weak con-

sistency for only a small bounded time period (e.g., tens of 𝜇s).

Our idea is that OmniMon not only embeds epoch information in

in-band packets (as in weak consistency), but also leverages the

controller’s coordination for network-wide epoch synchronization.

Design overview. OmniMon decides the epoch for each packet

once during its transmission. Each end-host maintains a local clock

and decides its current epoch. When a source end-host sends a
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Figure 4: Hybrid consistency in OmniMon.

packet, it embeds its current epoch into the packet. All switches

along the path and the destination end-host monitor the packet in

the corresponding slots based on the embedded epoch. The desti-

nation end-host further updates its current epoch if the embedded

epoch is newer. Note that switches do not maintain local epochs to

keep their processing pipelines simple.

When an end-host updates its epoch via its local clock, it sends

the new epoch to the controller, which relays the new epoch to

all other end-hosts via out-band messages. Thus, all end-hosts can

keep up-to-date epochs even though their local clocks are delayed

or they do not receive any packets with newer embedded epochs.

With this controller-assisted approach, it takes at most two hops

to propagate a new epoch from one end-host to another. Thus, the

time difference between the epoch updates of any two end-hosts

is roughly twice the path delay between the controller and the

end-hosts, which is around tens to hundreds of microseconds in

practice (e.g., less than 60 𝜇s for 1,024 end-hosts in our evaluation)

and is much smaller than the epoch length (e.g., tens or hundreds

of milliseconds [38, 49]).

The controller maintains its local epochs. It updates and relays

the epoch only when receiving an out-band message with a newer

epoch. We can show that each end-host triggers only 𝑂 (1) out-
band messages at each epoch (see the proof in Appendix). Also, the

variations of in-band traffic have limited impact on the consistency

model (Exp#3 in §8).

Figure 4 depicts the hybrid consistency model. At most times,

all end-hosts (e.g., ℎ1 and ℎ2 in the figure) reside at the same epoch.

However, end-hosts may still reside at different epochs at times (e.g.,

when ℎ2 receives Packet C), in which case OmniMon only ensures

weak consistency. Nevertheless, the duration of weak consistency is

limited by the controller-assisted synchronization. Also, OmniMon

ensures that every packet is monitored at the same epoch along

the path, even when its source and destination end-hosts are not

yet synchronized. For example, Packet C is sent by ℎ1 at Epoch 1

but received at Epoch 2 by ℎ2. However, both ℎ1 and ℎ2 monitor

Packet C at Epoch 1 (its embedded epoch). In Appendix, we formally

prove the properties of hybrid consistency.

Algorithm. Algorithm 1 shows the epoch update operations

among the controller and all end-hosts for realizing hybrid con-

sistency. An end-host triggers an update of its epoch by its local

clock (lines 1-3), a newer embedded epoch of a received packet

(lines 4-6), or a newer epoch from an out-band message from the

controller (lines 7-9). If the end-host triggers its epoch update by

its local clock, it also sends the new epoch to the controller. For the

controller, if it receives a newer epoch from an end-host, it updates

its local epoch and sends it to all other end-hosts (lines 10-14).

Algorithm 1 Epoch updates in hybrid consistency

End-host: local epoch 𝑒ℎ
1: function On_New_Epoch_Local_Clock(epoch 𝑒)

2: if 𝑒 > 𝑒ℎ then
3: 𝑒ℎ = 𝑒 , and send 𝑒ℎ to the controller

4: function On_New_Epoch_From_Embedded_Packet(epoch 𝑒)

5: if 𝑒 > 𝑒ℎ then
6: 𝑒ℎ = 𝑒

7: function On_New_Epoch_From_Controller(epoch 𝑒)

8: if 𝑒 > 𝑒ℎ then
9: 𝑒ℎ = 𝑒

Controller: local epoch 𝑒𝑐
10: function On_New_Epoch(epoch 𝑒)

11: if 𝑒 > 𝑒𝑐 then
12: 𝑒𝑐 = 𝑒

13: for all end-host ℎ do
14: Send 𝑒𝑐 to ℎ

Remark. Algorithm 1 is in essence a variant of Lamport Clock (LC)

[36], but differs from LC in two aspects. First, LC solely relies on

packet embedding for epoch updates, while Algorithm 1 relies on

both packet embedding and the controller’s out-band messages to

speed up epoch updates. Second, LC involves all entities to embed

new epochs for value updates, while Algorithm 1 determines the

epochs via the controller and all end-hosts, but not switches. Thus,

LC only provides weak consistency, while Algorithm 1 provides

hybrid consistency.

Distributed controller. As the network size grows, OmniMon

can deploy multiple instances of the controller, each of which man-

ages a finite number of end-hosts. We extend our epoch update

mechanism to enable OmniMon to synchronize the epochs among

the controller instances. Specifically, in addition to the controller

instances that connect to end-hosts (referred to as the leaf instances),
we also configure a controller instance, called the root instance, that
communicates with all leaf instances. Once any leaf instance enters

a new epoch (on receiving a message from one of its connected

end-hosts), it notifies the root instance, which then broadcasts this

new epoch to other leaf instances. Each leaf instance also sends

the epoch update to its connected end-hosts. This two-layer mech-

anism takes at most four hops (i.e., two between a leaf instance

and an end-host, and another two between a leaf instance and the

root instance) to propagate a new epoch. Thus, the time difference

between the epoch updates of any two end-hosts remains small and

bounded. Our evaluation (Exp#4 in §8) shows that a controller in-

stance can manage 1,024 end-hosts, so our two-layer epoch update

mechanism can support the scale of modern data centers.

5 ACCOUNTABILITY
OmniMon achieves accountability by inferring the exact traffic

losses on a per-switch, per-flow basis, such that it can recover per-

flow values from the shared slots in each switch. Our loss inference

is related to classical network tomography [8, 22], yet the latter of-

ten focuses on only end-host information due to limited in-network

visibility and aims to minimize accuracy loss. In contrast, our infer-

ence model is network-wide (covering all end-hosts and switches)

and aims for full accuracy. Here, we target additive flow values,

and describe how to convert non-additive flow statistics to additive

values in Appendix E.
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Figure 5: Motivating example of accountability.

5.1 Problem
Motivating example. Without loss of generality, we focus on

packet counts. We formulate the packet loss inference problem as

solving a system of linear equations (or linear system in short),

where the variables represent individual per-switch, per-flow

packet losses. However, the linear system may have multiple feasi-

ble solutions (i.e., we cannot uniquely infer the exact packet losses).

We consider a toy example (Figure 5) that motivates the problem.

Suppose that there are two lossy flows 𝑓1 and 𝑓2, both of which tra-

verse switches 𝑠1 and 𝑠2 and share the same slots in both switches.

Based on the flow values in the source and destination end-hosts,

we know that each flow loses exactly one packet. Also, by checking

the aggregate flow value in each switch, we know that each switch

drops exactly one packet. However, we cannot tell which flow’s

packet is dropped in each switch: either 𝑠1 drops 𝑓1’s packet and 𝑠2
drops 𝑓2’s packet, or 𝑠1 drops 𝑓2’s packet and 𝑠2 drops 𝑓1’s packet.

The above example shows an extreme case that even only two

lossy flows can make exact packet loss inference infeasible. Never-

theless, by including the characteristics of data center networks, we

can design a collaborative flow mapping algorithm (§5.2) that maps

flows to different switch slots. The algorithm simplifies the linear

system to avoid the extreme case in Figure 5. It also returns a unique

solution of per-switch, per-flow packet losses for the common case.

Formulation. Let 𝑛 be the number of lossy flows (𝑓1, · · · , 𝑓𝑛) and
𝑚 be the number of switches (𝑠1, · · · , 𝑠𝑚). Let 𝑘𝑡 be the number of

slots of switch 𝑠𝑡 to which the lossy flows are mapped (1 ≤ 𝑡 ≤ 𝑚).

For example, Figure 5 has 𝑛 = 2,𝑚 = 2, 𝑘1 = 1, and 𝑘2 = 1. We

formulate the network-wide packet loss inference problem as a

linear system as follows.

• Variables: Let 𝑥𝑖 (1 ≤ 𝑖 ≤ 𝑚𝑛) be a variable that quantifies the

per-switch, per-flow packet loss (in number of lost packets), such

that 𝑥1 to 𝑥𝑛 are respectively the packet losses of 𝑓1 to 𝑓𝑛 in 𝑠1,

𝑥𝑛+1 to 𝑥2𝑛 are respectively the packet losses of 𝑓1 to 𝑓𝑛 in 𝑠2,

and so on. For example, in Figure 5, we define four variables: 𝑥1
and 𝑥2 are respectively the packet losses of 𝑓1 and 𝑓2 in 𝑠1, while

𝑥3 and 𝑥4 are respectively the packet losses of 𝑓1 and 𝑓2 in 𝑠2.

• Equations: We formulate two sets of equations. First, each slot

induces an equation for the lossy flows that are mapped to the slot

itself (i.e.,

∑𝑚
𝑡=1 𝑘𝑡 equations in total). For example, in Figure 5,

the slot in 𝑠1 induces 𝑥1 + 𝑥2 = 1, while the slot in 𝑠2 induces

𝑥3 + 𝑥4 = 1. Second, each flow induces an equation for its total

packet loss based on the difference between the flow values in

the source and destination end-hosts (i.e., 𝑛 equations in total).

For example, in Figure 5, 𝑓1 induces 𝑥1 + 𝑥3 = 1, while 𝑓2 induces

𝑥2 + 𝑥4 = 1.

Let 𝑀𝑡 (1 ≤ 𝑡 ≤ 𝑚) be a 𝑘𝑡 × 𝑛 0-1 matrix that specifies the

mappings of the 𝑛 lossy flows to the 𝑘𝑡 shared slots in switch 𝑠𝑡 .

𝑀𝑡 (𝑖, 𝑗) is one if flow 𝑓𝑗 (1 ≤ 𝑗 ≤ 𝑛) traverses 𝑠𝑡 and is mapped to

slot 𝑖 (1 ≤ 𝑖 ≤ 𝑘𝑡 ) in 𝑠𝑡 ; or zero otherwise. Let 𝐼 be the identitymatrix

of size 𝑛, in which each row indicates the packet loss variables of

one lossy flow along𝑚 switches. We express the linear system as

𝐴 · ®𝑥 = ®𝑏 (e.g., see Figure 5), where𝐴 is a (∑𝑚𝑡=1 𝑘𝑡 +𝑛) ×𝑚𝑛 matrix

given by:

𝐴 =



𝑀1 0 · · · 0

0 𝑀2 · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · 𝑀𝑚

𝐼 𝐼 · · · 𝐼


,

®𝑥 is a column vector of size 𝑚𝑛 with all 𝑥𝑖 ’s, and ®𝑏 is a column

vector of size

∑𝑚
𝑡=1 𝑘𝑡 + 𝑛, composed of

∑𝑚
𝑡=1 𝑘𝑡 packet losses of all∑𝑚

𝑡=1 𝑘𝑡 slots in𝑚 switches as well as 𝑛 total packet losses of all 𝑛

flows. Our goal is to solve for ®𝑥 given 𝐴 and
®𝑏.

Rank analysis. The linear system has a unique solution if and

only if the rank of 𝐴 equals the number of variables𝑚𝑛. The rank

of 𝐴 depends on𝑀𝑡 and 𝐼 . Clearly, 𝐼 has rank 𝑛. Suppose that we

construct a new matrix𝑀 of size (∑𝑚𝑡=1 𝑘𝑡 ) × 𝑛, in which the rows

of 𝑀 are the union of all rows of each 𝑀𝑡 . Let 𝑟 be the rank of

𝑀 . We can prove that the tight upper bound for the rank of 𝐴 is

𝑟 (𝑚− 1) +𝑛 (Appendix). Thus, we can pose the necessary condition

for accountability (i.e., the exact packet losses can be inferred):

Accountability condition: 𝑟 (𝑚 − 1) + 𝑛 =𝑚𝑛.

If𝑚 = 1, the accountability condition always holds; otherwise

if 𝑚 > 1, it holds only when 𝑟 = 𝑛. Note that each row of 𝑀

represents a flow mapping to a slot in a switch. This creates a

connection between accountability and the flow mappings to the

slots in different switches specified by 𝑀 , thereby motivating us

to design a flow mapping algorithm to return an𝑀 that fulfills the

accountability condition.

Challenge. Unfortunately, the accountability condition generally

fails to hold. For example, in Figure 5, the matrix𝑀 , which is formed

by𝑀1 and𝑀2, has a rank 𝑟 = 1, yet there are 𝑛 = 2 flows. In general,

the rank 𝑟 ≤ min{∑𝑚𝑡=1 𝑘𝑡 , 𝑛}. If the number of mapped slots (i.e.,∑𝑚
𝑡=1 𝑘𝑡 ) is less than that of flows (i.e., 𝑛), it is inevitable that 𝑟 < 𝑛

for any flow mapping.

5.2 Collaborative Flow Mapping
Observations. We show how we leverage the characteristics of

data center networks to make the accountability condition hold for

the common case. We make two observations, which have been

confirmed by recent studies on production data centers [2, 6, 23,

60, 68, 79].

(i) Traffic locality. Modern data centers exhibit strong traffic

locality, in which flow trajectories are limited within a rack or a

cluster [6, 60]. For instance, about 85% of intra-data-center traffic at

Facebook stays within a cluster (c.f. Table 3 in [60]). Thus, a lossy

flow often traverses only a few switches, and many variables in ®𝑥
can be set to zero to make the rank requirement of 𝐴 less stringent

(i.e., less than𝑚𝑛).

(ii) Loss sparsity. Packet drops are sparsely distributed across a

data center network, given that recent congestion control mech-
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anisms [2] and failure mitigation mechanisms [23, 68, 79] greatly

suppress packet losses. Such loss sparsity implies that packet losses

likely occur in exactly one switch within a local region (e.g., a small

group of racks or clusters). In other words, for all local lossy flows

that traverse solely within a region, their packet losses are attrib-

uted to a single switch. Thus, we can infer the variables in ®𝑥 for such
local flows (recall that we can solve for the unique solution with

𝑚 = 1 for such local flows based on the accountability condition).

This further relaxes the rank requirement of 𝐴.

Design. The above two observations greatly simplify the linear

system by reducing the number of variables in ®𝑥 . For the remaining

variables in ®𝑥 , we aim to construct via flow mapping a new matrix

𝑀 that has a maximum rank 𝑟 , so that the simplified linear system

can return a unique solution with a high likelihood. However, this

problem remains non-trivial, since lossy flows are unpredictable

and we cannot tell in advance how lossy flows are mapped to

different slots.

OmniMon addresses this issue by mapping a flow to 𝑑 > 1 slots
in each switch, inspired by Bloom filters [7]. Such a design has two

benefits. First, the number of slots mapped by lossy flows increases

and has an expected value equal to 𝑛𝑑 (Appendix). Second, the

number of possible flow mappings increases to 𝑂 (𝐾𝑑 ), where 𝐾 is

the total number of available slots in a switch, so that the likelihood

that two lossy flows are mapped to the same 𝑑 slots decreases. Thus,

the rank of 𝐴 increases, as the number of mapped slots (i.e., rows

of 𝐴) increases and the number of overlapped flow mappings (i.e.,

linearly dependent columns) decreases. For example, the extreme

case in Figure 5 can be avoided.

OmniMon takes a two-phase collaborative approach to ensure

that any new flow is mapped to a different set of 𝑑 slots. In the first

phase, the controller generates all

(𝐾
𝑑

)
possible flow mappings and

partitions the flow mappings for all end-hosts during their startups,

such that each end-host receives a distinct list of flow mappings.

In the second phase, a source end-host selects an unassigned flow

mapping when it sees a new flow, and recycles any assigned flow

mapping upon flow termination, during flowkey tracking (§3.2).

Note that if there are too many active flows, the source end-host

may run out of unassigned flow mappings. In this case, we choose

the least recently used flow mapping for a new flow.

Summary. OmniMon simplifies the linear system through the

characteristics of data center networks to infer the exact packet

losses. We summarize the steps below.

• Step 1: Identify any lossy flow whose difference of flow values in

source and destination end-hosts is non-zero.

• Step 2: Construct𝑀𝑡 (and hence 𝐴) and ®𝑏.
• Step 3: Refine the variables in ®𝑥 . With traffic locality, if a flow

does not traverse a switch, we set the corresponding variable as

zero. With loss sparsity, we examine every local region (by racks

or clusters). If a region has exactly one switch with packet losses,

we identify all local flows in this region and solve for the unique

solution for the corresponding variables of these local flows.

• Step 4: Solve 𝐴 · ®𝑥 = ®𝑏 for the remaining variables.

6 DISCUSSION
We discuss some practical deployment issues of OmniMon.

Scalability. As the network size increases, OmniMon needs more

resources (e.g., memory in switches, CPU power in end-hosts and

the controller, etc.) to achieve full accuracy. However, its resource

usage required for full accuracy grows at a much lower rate than

the growth of the network scale. For end-hosts, since flows are

independent, OmniMon can process flows in different CPU cores

when a single CPU core cannot process all flows. It remains much

more resource-efficient compared to the processing overhead of

network stacks, as its hash computations and value updates incur

low overhead in commodity CPUs [49]. For switches, as 𝐾 slots

provide

(𝐾
𝑑

)
flow mappings, a small increment of 𝐾 can handle

much more flows when 𝑑 > 1. OmniMon remains accurate even

when the actual number of flows exceeds

(𝐾
𝑑

)
(Exp#5 in §8). For the

controller, it is a logical entity that can support multiple physical

servers (§2.1). Also, it only relays limited out-band traffic even for

a large number of end-hosts (§4.2), and can accelerate the linear

system solving with multiple CPU cores [50, 66].

Parameterization. OmniMon allows simple parameter configu-

rations. For end-hosts, we can adjust resources on demand. For

switches, we reuse the slots for different epochs. We need to config-

ure the maximum number of epochs being tracked and the number

of slots per epoch. The number of tracked epochs is derived based on

the epoch length and the tolerable network delay, both of which are

configurable. For example, if we use four epochs of length 100ms

each, we can track the packets with a network delay of up to 400ms;

any packet that is delayed by more than 400ms is not monitored.

The number of slots per epoch depends on the maximum number

of flows being tracked (§5.2). Recall that 𝐾 slots imply

(𝐾
𝑑

)
possible

flow mappings if we map each flow to 𝑑 slots. Given the maximum

number of flows 𝑛, we select 𝐾 and 𝑑 such that

(𝐾
𝑑

)
≥ 𝑛. We now

choose 𝑑 = 2 (a larger 𝑑 implies more computational overhead in

switches).

Generality. OmniMon supports various combinations of packet

fields as flowkey definitions, as well as different types of flow sta-

tistics (e.g., the 344 statistics in [35, 40, 46, 71]). However, since

OmniMon works at the granularity of epochs, it cannot perform

fine-grained collective analysis for packet timestamps. Instead, it

now provides coarse-grained timestamp measurement. For exam-

ple, it estimates the flow completion time in number of epochs by

tracking the first and last epochs where a flow occurs.

Incremental deployment. OmniMon now assumes full deploy-

ment across end-hosts and programmable switches. We can also in-

crementally deploy OmniMon on a subset of end-hosts and switches

of interest (e.g., core switches) for partial measurement (i.e., only

the traffic that traverses the deployed devices is measured). Char-

acterizing the trade-off between incremental deployment and full

accuracy is our future work.

Failure handling.OmniMon needs to handle the failures for differ-

ent types of entities during measurement. For end-hosts, OmniMon

discards the switch slots of any failed end-host, as the flow map-

pings of those slots are assigned and known by the controller (§5.2).

Recovering end-host information is out of our scope, yet it can be

donewith OS-level fault-tolerancemechanisms [9, 18]. For switches,

OmniMon localizes switch failures via loss inference (Exp#8 in Ap-

pendix). For the controller, its fault tolerance can be achieved via

multiple servers (§2.1).



OmniMon: Re-architecting Network Telemetry with Resource Efficiency and Full Accuracy SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

7 IMPLEMENTATION
We implement a prototype of OmniMon. We present the pseudo-

code of all its operations in Appendix.

End-host.We leverage DPDK [16] to remove kernel-space over-

head. We use mTCP [31], a user-space network stack, for the com-

munications between end-hosts and the controller. We implement

different operations (e.g., packet processing, result reporting, and

epoch synchronization) in distinct threads, and encapsulate them

as a library that can be plugged into any platforms (e.g., OVS-DPDK

[54] and PktGen [58]).

Switch. We implement switch operations in P4 [56] and place the

embedded fields between the Ethernet and IP headers. We support

both per-switch and per-port deployments; in per-port deployment,

each port can be viewed as a logical switch. We allocate a region

of registers for all slots, such that a packet can locate its slots in

a region based on its embedded switch index, epoch, and switch

port (in per-port deployment). For efficient slot location, we pre-

compute the partial results of some dependent operations (e.g.,

modulo, left-shift, and add) and store them in match-action tables.

For each packet, we perform a table lookup for partial results and

compute the final results in ALUs.

Controller.We connect the controller to each end-host and switch

with mTCP [31] and ZeroMQ [77], respectively. The controller paral-

lelizes its operations via multi-threading. It solves the linear system

(§5) with the eigen library [19].

Query engine. To support expressive network telemetry, we im-

plement a basic query engine based on Sonata [24]. Specifically,

the query engine transforms a telemetry task with an SQL-like

expression in Sonata. It then invokes Sonata’s compiler to translate

the task into different operators. It extracts the relevant flowkeys

and statistics from the operators. Finally, it generates a specific con-

figuration for OmniMon that monitors only the extracted flowkeys

and statistics.

8 EVALUATION
We conduct testbed experiments that compare OmniMon with 11

state-of-the-art telemetry designs in various aspects.We summarize

our findings for OmniMon:

• It achieves higher throughput than Trumpet [49], an end-host-

based telemetry system (Exp#1).

• It consumes less switch resource usage than four sketch solutions

(which have non-zero errors) [29, 38, 43, 72], while achieving

zero errors (Exp#2).

• It completes controller operations in limited time even with 10
6

flows (Exp#3).

• It incurs less switch resource usage and smaller epoch boundary

deviations than Speedlight [73], a synchronization solution for

network telemetry (Exp#4).

• It infers 99.7% of packet losses in an extreme case (Exp#5).

• It consumes much less resource usage, while achieving better

scalability, than SwitchPointer [67], even when the number of

flows increases to 10
6
(Exp#6).

• It supports 11 anomaly detection applications, in which it incurs

less overhead than Marple [52] and Sonata [24], while achieving

zero errors (Exp#7).

In Appendix, we further evaluate OmniMon via simulation in

large-scale deployment. It achieves perfect diagnosis in four types

of packet losses and outperforms another diagnosis system 007

[4] (Exp#8). It supports performance evaluation for load balancing

algorithms, and locates per-link top flows more accurately than

HashPipe [65] (Exp#9). Finally, we provide a breakdown of switch

resource usage for Exp#2, and per-application resource-accuracy

trade-off for Exp#7.

8.1 Setup
Testbed. We deploy our OmniMon prototype in eight servers and

three Barefoot Tofino switches [70]. Each server has two 12-core

2.2 GHz CPUs, 32 GB RAM, and a two-port 40 Gbps NIC, while each

switch has 32 100Gb ports. We deploy an end-host in each server

and co-locate the controller with one end-host server. We deploy

two switches as edge switches connected by four servers each and

the remaining switch as the core switch connected by both edge

switches.

Workloads. We pick a one-hour trace in CAIDA 2018 [11]. To

simulate the locality of data center traffic, we map the IP addresses

in the trace to our end-hosts and generate a workload in which

85% of flows are edge-local, as reported in [60]. We use different

epoch lengths, such that the number of active flows per end-host

ranges from 10
3
to 10

6
(much more than reported in field studies

[2, 60]). We use PktGen [58] to generate trace workloads in end-

hosts. To remove disk I/O overhead, each end-host loads traces

(with modified IP addresses) into the memory buffer of PktGen,

and emits traffic as fast as possible to stress-test our prototype.

Methodology. OmniMon counts nine types of per-flow statistics:

packet counts, byte counts, SYN counts, FIN/RST counts, SYN-ACK

counts, ACK counts, 40-byte packet counts, number of packets with

special strings (e.g., ‘‘zorro’’), and the latest epoch of a flow. Each

switch deploys four groups of slots. Each group has 3,072 slots for

one epoch, and is recycled when an epoch completes. We map each

flow to 𝑑 = 2 slots (§6). Thus, there are

(
3072

2

)
≈ 4.7 × 10

6
flow

mappings per epoch, which sufficiently accommodate all active

flows (note that a flow appears in both source and destination

end-hosts, so there are at most 4 × 10
6
active flows in the network

assuming that each of the eight end-hosts has at most 10
6
active

flows). Each plot shows the average results over 100 runs, and omits

error bars as they are negligible.

8.2 Results
(Exp#1) End-host overhead.We first evaluate the end-host over-

head by comparing OmniMon with Trumpet [49], a zero-error

end-host-based telemetry system. Note that Trumpet is designed

for only end-hosts, while OmniMon also provides switch-side infor-

mation. The open-source Trumpet prototype (called ‘‘Trumpet-Full

(TF)’’) realizes 4,096 triggers for different network event matchings.

We also implement a simplified variant (called ‘‘Trumpet-Simple

(TS)’’) that uses a single trigger to track the same nine flow sta-

tistics as OmniMon for fair comparisons. Figure 6(a) shows the

throughput of OmniMon (OM), the two Trumpet variants, and the

packet generation using PktGen on a single CPU core. TF achieves

only 6.5Mpps as it performs matching on 4,096 triggers. TS is faster

than TF, but is slower than OmniMon due to event matching over-
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head. OmniMon only has a slight throughput drop of 5.4% (for 10
6

flows) compared to PktGen. Figure 6(b) shows a breakdown of the

number of CPU cycles for per-packet processing in OmniMon. The

throughput drop mainly comes from per-packet hash lookups.

(Exp#2) Switch resource usage.We compare OmniMon in switch

resource usage with four sketch solutions: FlowRadar (FR) [38], Uni-

vMon (UM) [43], ElasticSketch (ES) [72], and SketchLearn (SL) [29].

All sketch solutions perform approximate measurement using a

compact data structure to fit in limited switch memory. We re-build

them to measure per-flow packet counts based on their published

designs in P4 in our switches. For fair comparisons, we build a sim-

plified OmniMon (OS) that measures only per-flow packet counts.

We compare all solutions with our full OmniMon version (OF) that

tracks nine flow statistics.

Figure 7 depicts the switch resource usage, in memory usage,

numbers of stages and actions (which measure computational re-

sources), and packet header vector (PHV) size (which measures

the message size passed across stages). Both FR and UM maintain

extra data structures (e.g., bloom filters and heaps) for flowkey

recovery, and hence incur high memory usage (Figure 7(a)). Also,

sketch solutions perform multiple hash computations that trigger

many stages and actions (Figures 7(b) and 7(c)). ES and SL update

different parts of counters and incur high PHV sizes (Figure 7(d)).

For OmniMon, OS is resource-efficient since its collaborative de-

sign imposes only value updates in switches; even for OF, which

measures more statistics, its switch resource usage is comparable

to the sketch solutions. Note that OmniMon achieves full accuracy,

but sketch solutions cannot.

(Exp#3) Controller overhead. We evaluate the controller over-

head for flow mapping, epoch synchronization, and collective anal-

ysis in our testbed. Recall that we run these operations in distinct

threads (§7). Here, we configure each thread to run in a single

102 103 104 105 106

# of Flows
101

103

105

107

Ti
m

e 
(u

s)

Collective Analysis
Flow Mapping
Epoch Sync

102 103 104 105 106

# of Flows
0

2

4

Th
pt

. D
ro

p 
(%

)  
  

Result Report
Flow Mapping
Epoch Sync

(a) Computation time (b) Impact on end-hosts

Figure 8: (Exp#3) Controller overhead.

Mem Stage Action PHV0

5

10

15

Re
l. 

Re
so

ur
ce

s  

1 1 1 1

12.2

5.0 6.8

1.5

SPL
OM

22 24 26 28 210

# of End-hosts
100
101
102
103
104

Di
ffe

re
nc

es
 (u

s)
   

  

SPL OM

(a) Resource consumption (b) Epoch boundary deviations

1 10 100 1000
Clock Deviation (ms)

0
10
20
30

Re
l. 

Er
ro

r (
%

)  
  

SPL OM

1 10 100 1000
Clock Deviation (ms)

0

10

20

Re
l. 

Er
ro

r (
%

)  
  

SPL OM

(c) Impact on packet counting (d) Impact on FCT estimation

Figure 9: (Exp#4) Consistency.

CPU core. Figure 8(a) shows that epoch synchronization can be

completed within 20 𝜇s, which is critical for epoch boundary devia-

tions. Flow mapping takes more time, but it is invoked only at the

startup. The most expensive operation is collective analysis, whose

completion time is 180ms for 10
6
flows. We find that its major over-

head comes from solving the linear system. Nevertheless, we can

speed up the computation with more CPU cores [50, 66]. Figure 8(b)

shows the impact of these operations on end-hosts by comparing

the end-host throughput with and without these operations. All

operations show limited throughput drop as we isolate them in

distinct threads from packet processing (§7).

(Exp#4) Consistency.We evaluate epoch synchronization by com-

paring OmniMon with the open-source Speedlight (SPL) prototype

[73], a synchronization solution for network telemetry. We adapt

the SPL prototype, written in P4 BMv2 [55], to our Tofino switches.

Figure 9(a) shows the switch resource usage, normalized to that

of the full OmniMon version. SPL realizes the Chandy-Lamport

algorithm [13] and incurs high overhead, while OmniMon is more

resource-efficient as its epoch synchronization is done by end-hosts

and the controller.

We examine the time deviations in per-epoch boundaries when

the local clocks are loosely synchronized. We deploy multiple (up

to 1,024) end-host instances in each server. We tune the local clocks

of end-hosts to differ by 1ms. Figure 9(b) shows that SPL suffers

from a large deviation (nearly to the clock difference 1ms) since

it relies on only in-band packets for synchronization. If the traffic

does not span all end-hosts, some end-hosts remain in the old epoch.

OmniMon limits the deviation to 60 𝜇s even for 1,024 end-hosts, as

it leverages the controller to bound the deviation and uses mTCP to

bypass kernel space (§7).

We further evaluate the accuracy of epoch synchronization in

a straggler case. We configure one straggler end-host whose local
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clock differs from those of others by a range of 1ms to 1 s. Fig-

ure 9(c) measures the average relative error of per-flow packet

counts in this straggler end-host. For SPL, the error increases to

26% and 33% when the difference is 100ms and 1 s, respectively,

as the epoch boundary deviation maps many packets to a wrong

epoch. OmniMon retains zero errors as it includes every packet in

the same epoch across all end-hosts and switches. Figure 9(d) mea-

sures the average relative error of flow completion time. We focus

on long-lived flows that exceed 1 s (which often imply important

network events [14]). Although OmniMonmeasures coarse-grained

timestamps in epochs (§6), its error is only 0.7%, as it bounds the

epoch boundary deviation. For SPL, the error is above 22% when

the clock deviation is 1 s.

(Exp#5) Accountability. Our default setup provisions sufficient

slots to allocate each flow a unique flowmapping. Here, we consider

an extreme case, in which we use 512 slots per switch (i.e.,

(
512

2

)
≈

130K flow mappings). We set the epoch length to two minutes,

so that an epoch now has 380K concurrent flows on average. We

also set a packet drop rate of 0.5%. We compare OmniMon with

two variants: (i) ‘‘Oracle’’, which knows all lossy flows in advance

and maps the lossy flows for minimum slot overlaps to have the

maximum matrix rank; and (ii) ‘‘Random’’, which randomly selects

a slot for each flow. Figure 10(a) shows the number of CPU cycles

for each invocation of the three schemes. OmniMon and Random

consume less than one CPU cycle, while Oracle requires over 300

cycles per packet for maximum-rank mappings.

We also evaluate the fractions of per-switch, per-flow packet

loss variables that can be solved via the four steps in §5.2. For each

of the three schemes, we build the linear system using Steps 1 and 2,

and consider two variants: (i) ‘‘w/o DCN’’, in which we skip Step 3

and solve directly the linear system; and (ii) ‘‘w/ DCN’’, in which

we execute Step 3 that simplifies the linear system with data center

network characteristics. Figure 10(b) shows that without Step 3, all

schemes infer only around 50% of variables, as the number of lossy

flows (i.e., 𝑛) exceeds the total number of available slots (i.e., 512

per switch). With the simplification of Step 3, Oracle infers all vari-

ables, while OmniMon infers 99.7% of variables. Here, OmniMon

cannot achieve 100% of inference as we consider an extreme sce-

nario, yet full accuracy is achievable in practical scenarios (Exp#8

in Appendix).

(Exp#6) Scalability.We compare OmniMon with the open-source

SwitchPointer prototype [67] (SP) in scalability. We adapt the SP

prototype, written in P4 BMv2, to our Tofino switches. Figure 11(a)

shows the switch resource usage normalized to that of OmniMon.

SP focuses on in-network visibility, while the resource-accuracy

trade-off is not its focus. It achieves zero errors with perfect hashing,

but incurs higher switch resource overhead for the complicated

calculations. Note that perfect hashing needs to acquire all possible
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Figure 11: (Exp#6) Scalability.

flowkeys a priori to design perfect hash functions. This is feasible for

IP addresses, but not for 5-tuples (with up to 2
104

flows). Figure 11(b)

compares the memory usage needed for zero-error guarantees. The

memory usage of SP grows linearly with the number of flowkeys

as each slot is associated with one flow, while that of OmniMon

increases at a much slower rate, as 𝐾 slots can accommodate

(𝐾
𝑑

)
flows (§5.2).

(Exp#7) End-to-end performance comparison. We compare

OmniMon with the switch-controller architectures of Sonata [24]

and Marple [52]. Our end-to-end performance comparison ad-

dresses 11 anomaly detection applications reported from Sonata

[24]. The comparison includes three aspects: (i) per-switch resource

usage; (ii) per-switch traffic sent to the controller; and (iii) per-

application detection accuracy. We do not compare the end-host

overhead, as Sonata and Marple do not involve end-hosts in their

designs. As shown in Exp#1 and Exp#3, OmniMon has limited end-

host overhead.

OmniMon tracks nine flow statistics to support the 11 applica-

tions. For Sonata, as in §2.2, we consider both ‘‘Sonata-FA (S-FA)’’

(with full accuracy) and ‘‘Sonata-AD (S-AD)’’ (with accuracy drop),

in which every switch-side operator is configured with 2
16

coun-

ters as in its open-source prototype. For Marple, we implement its

key-value cache and evict old keys to handle hash collisions. We

configure 2
16

cache slots as in Marple [52]. For OmniMon, we em-

ploy a full configuration that includes all nine statistics (‘‘OM-F’’).

We also employ the Sonata-based query engine (§7) to generate a

configuration for each application (‘‘OM-Q’’). We set 10
5
flows at

each epoch. Since Sonata, Marple, and OM-Q deploy each applica-

tion individually, we average their results of the 11 applications

(see Appendix for per-application results).

Figure 12(a) compares per-switch resource usage, normalized

to that of OM-F. Sonata-AD sacrifices accuracy and consumes the

least memory, stages, and actions. Sonata-FA and Marple require

more resources for flowkey tracking and cache eviction. OM-F

uses less switch memory usage than Sonata-FA and Marple, while

tracking all nine statistics, due to its collective analysis (§3.2). Its

usage of the other three types of resources is comparable to the

single application deployment in Sonata-FA and Marple, since it

performs only (simple) value update operations in switches. With

the query engine, the resource usage of OM-Q drops further.

Figure 12(b) compares the per-switch traffic sent to the control

plane. Sonata-FA and Marple preserve the accuracy by evicting

colliding flows to the controller, but trigger much traffic as hash col-

lisions frequently occur with numerous flows. Sonata-AD reduces

per-switch, per-application traffic to 5MB/s, but incurs accuracy

drop. In contrast, OM-F triggers 180KB/s of traffic without accu-

racy drop. The query engine further reduces the traffic (26 KB/s) as

it tracks only the statistics of interest for each application.
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Figure 12(c) compares the detection accuracy quantified by the

F1-score. The F1-score of Sonata-AD is only around 74%, as it does

not resolve the hash collisions in the data plane for resource effi-

ciency. Marple and Sonata-FA improve the accuracy, but incur high

resource overhead in both switches and the controller. OmniMon

achieves both resource efficiency and full accuracy.

9 RELATEDWORK
Resource-accuracy trade-off. Existing network telemetry pro-

posals often make the resource-accuracy trade-off. End-host-based

telemetry systems [1, 49] perform complete per-flow tracking, but

have limited network-wide visibility and incur excessive mem-

ory usage. Switch-based approaches either relax accuracy [47]

or restrict to specific queries [51]. Approximation algorithms

[5, 26, 28, 29, 38, 43, 48, 62, 63, 65, 72, 75] trade accuracy for re-

source efficiency. Some systems mirror traffic to the controller,

in a best-effort manner [59] or on pre-defined traffic patterns

[25, 52, 69, 74, 76, 79], but inevitably miss the traffic that is not

mirrored.

Recent hybrid architectures combine different entities for net-

work telemetry [24, 32, 42, 52, 67]. To mitigate resource burdens,

they rely on sampling [42] and/or event matching [24, 42, 52, 67] to

focus on only the traffic of interest, and hence cannot achieve full

accuracy. Also, they do not address consistency and accountability

in entity coordination.

Consistency. HUYGENS [21] proposes software clock synchro-

nization, but its machine-learning design is complicated in switch

deployment. Swing State [44] ensures consistent data-plane states

via state migration, but poses heavy state update costs. Synchro-

nized Network Snapshot [73] realizes causal consistency (a form

of weak consistency) in P4 switches. OmniMon achieves hybrid

consistency and is more lightweight (Exp#4 in §8).

Accountability. Loss inference is well studied in network teleme-

try. Active probing [23, 68] sends probe packets to measure path

losses, but only covers a subset of paths. Passive monitoring ana-

lyzes network traffic, but relies on domain knowledge [79] and/or

employs approximation techniques [4, 22, 39, 61] to estimate loss

rates. OmniMon exploits the complete statistics in end-hosts as the

ground truth to form a linear system for exact packet loss inference.

10 CONCLUSION
OmniMon is a network telemetry architecture for large-scale data

centers. Its design principle is to re-architect the network-wide

collaboration and carefully coordinate telemetry operations among

all entities. We show how OmniMon achieves both resource ef-

ficiency and full accuracy, with consistency and accountability

guarantees. Experiments show the effectiveness of OmniMon over

11 state-of-the-art telemetry designs; more results are available in

Appendix.
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APPENDICES
Appendices are supporting materials that have not been peer-

reviewed.

Appendix A: Proofs for §4
We formally prove the properties of hybrid consistency in five

steps.

Step 1. We start with a lemma regarding the epoch of each packet

in Lemma 1.

Lemma 1. Every packet is included at the same epoch during its
transmission.

Proof. Recall that the epoch of a packet is decided only once in

the source end-host and embedded in the packet. The embedded

epoch will not be modified during the packet transmission. Every

entity along the packet transmission path will follow this decision

and monitor the packet at the epoch that is being embedded. The

lemma follows. □

Step 2.We next examine the specific weak consistency model that

OmniMon achieves. We first define the concept of partial ordering.
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In our context, we say that two packets 𝐴 and 𝐵 exhibit a partial

order ‘‘𝐴 before 𝐵’’ if and only if either of the following two cases

happens: (i) 𝐴 and 𝐵 are sent by the same end-host and 𝐴 is sent

before 𝐵, or (ii)𝐴 and 𝐵 are sent by different end-hosts, but 𝐵 is sent

after its source end-host receives𝐴. Let 𝐸𝑝𝑜𝑐ℎ(𝑃) denote the epoch
at which some packet 𝑃 resides. Lemma 2 proves that OmniMon

always achieves a specific weak consistency model based on the

Clock Condition [36].

Lemma 2. If two packets 𝐴 and 𝐵 exhibit a partial order ‘‘𝐴 before
𝐵’’, then their embedded epochs must satisfy 𝐸𝑝𝑜𝑐ℎ(𝐴) ≤ 𝐸𝑝𝑜𝑐ℎ(𝐵)
in all entities.

Proof. We examine the two cases under the definition of partial

ordering. In Case (i), 𝐴 and 𝐵 are sent by the same end-host and 𝐴

is sent before 𝐵. In this case, based on the local clock in the source

end-host, we must have 𝐸𝑝𝑜𝑐ℎ(𝐴) ≤ 𝐸𝑝𝑜𝑐ℎ(𝐵). In Case (ii), 𝐴 and

𝐵 are sent by different end-hosts, but 𝐵 is sent after its source end-

host receives 𝐴. Suppose that 𝐵’s source end-host receives 𝐴 at

its local epoch (Epoch 𝑏), where 𝑏 ≤ 𝐸𝑝𝑜𝑐ℎ(𝐵). If 𝐸𝑝𝑜𝑐ℎ(𝐴) ≤ 𝑏,

then clearly 𝐸𝑝𝑜𝑐ℎ(𝐴) ≤ 𝐸𝑝𝑜𝑐ℎ(𝐵); otherwise, 𝐵’s source end-

host will update its local epoch to 𝐸𝑝𝑜𝑐ℎ(𝐴), so 𝐸𝑝𝑜𝑐ℎ(𝐵) ≥ 𝑏 =

𝐸𝑝𝑜𝑐ℎ(𝐴). □

Step 3. Lemma 3 provides an upper bound of the time difference

of an epoch among all end-hosts.

Lemma 3. Let Δ be the maximum delay between an end-host and
the controller. The time difference of an epoch among all end-hosts is
at most 2Δ.

Proof. We examine the time difference between the first end-

host and the last end-host that enter the same epoch. For any

Epoch 𝑥 , suppose that the first end-host enters Epoch 𝑥 at time 𝑡𝑠 .

Let 𝑡𝑙 , 𝑡𝑐 , and 𝑡𝑝 be the times at which the last end-host receives

the epoch notification from its local clock, the controller, and the

first embedded packet, respectively. Then the time difference is

min{𝑡𝑙 , 𝑡𝑐 , 𝑡𝑝 } − 𝑡𝑠 ≤ 𝑡𝑐 − 𝑡𝑠 .

Since the first end-host sends a message to the controller imme-

diately at 𝑡𝑠 , 𝑡𝑐 − 𝑡𝑠 is at most the round-trip delay between an

end-host and the controller, i.e., 2Δ. The lemma follows. □

Step 4. With the bounded time difference of an epoch, Lemma 4

shows that all end-hosts reside at the same epoch (i.e., strong con-

sistency) at most times.

Lemma 4. Let Δ be the maximum delay between an end-host and
the controller. Let ℓ be the length of an epoch. If ℓ > 2Δ, OmniMon
achieves strong consistency for a duration of no less than ℓ − 2Δ at
each epoch.

Proof. For any Epoch 𝑥 , let 𝑡1 and 𝑡2 be the times at which

the first and last end-hosts that enter Epoch 𝑥 , respectively. Based

on Lemma 3, we have 𝑡2 − 𝑡1 ≤ 2Δ. Also, let ℎ be the first end-

host that enters Epoch 𝑥 + 1. Let 𝑡3 and 𝑡4 be the times at which

ℎ enters Epoch 𝑥 and Epoch 𝑥 + 1, respectively. By definition, we

have 𝑡4 − 𝑡3 = ℓ and 𝑡1 ≤ 𝑡3 ≤ 𝑡2. Now, we compute the following.

𝑡4 − 𝑡2 = ℓ + 𝑡3 − 𝑡2 ≥ ℓ + 𝑡1 − 𝑡2 ≥ ℓ − 2Δ.

Note that 𝑡4 − 𝑡2 represents the duration during which all end-hosts

are synchronized at Epoch 𝑥 . The lemma follows. □

Remark. If ℓ is sufficiently larger than Δ, OmniMon achieves

strong consistency at most times.

Step 5. Finally, Lemma 5 bounds the number of out-band messages

triggered per epoch in OmniMon.

Lemma 5. Suppose that OmniMon has 𝑢 end-hosts. For each epoch,
the controller and each end-host process 𝑂 (𝑢) and 𝑂 (1) out-band
messages, respectively, for epoch synchronization.

Proof. At each epoch, the controller receives at most𝑢 out-band

messages, each from one end-host. However, the controller only

relays the first received out-band message to all 𝑢 end-hosts. Thus,

the number of processed (including received and relayed) out-band

messages in the controller is at most 2𝑢.

Also, at each epoch, an end-host sends at most one out-band

message to the controller (only when its epoch update is triggered

by the local clock). Also, it receives one message from the controller

based on the above discussion. Thus, the overhead is 𝑂 (1). □

Remark. We consider an extreme scenario with 10K end-hosts

and an epoch length of 100ms. Suppose that an out-band message

is of size 64 bytes (including Ethernet, IP and TCP headers). This

leads to at most 2 × 10𝐾 × (1000/100) ∗ 64 =12.8MB/s bandwidth,

which is quite low in a data center network with 10K end-hosts.

Appendix B: Proofs for §5
We present proofs for the following two properties: (i) The rank

of 𝐴 has a tight upper bound 𝑟 (𝑚 − 1) + 𝑛, and (ii) the number of

mapped slots has an expected value equal to 𝑛𝑑 .

Rank of 𝐴. We prove the tight upper bound of the rank of matrix

𝐴. Recall that we construct a matrix 𝑀 that comprises the rows

of each 𝑀𝑡 (1 ≤ 𝑡 ≤ 𝑚), and the rank of 𝑀 is 𝑟 . We show that

𝑟 (𝑚 − 1) + 𝑛 is the tight upper bound of the rank of 𝐴.

We first construct a large matrix

𝐴∗ =



𝑀 0 · · · 0

0 𝑀 · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · 𝑀

𝐼 𝐼 · · · 𝐼


.

Obviously, 𝐴 is a sub-matrix of 𝐴∗
. Thus, the rank of 𝐴 is tightly

bounded by the rank of 𝐴∗
. The remaining problem is to show that

the rank of 𝐴∗
is 𝑟 (𝑚 − 1) + 𝑛.

Our proof builds on the definition of rank: the rank of a matrix

is equal to the maximum number of linearly independent rows

or linearly independent columns in the matrix. Here, we focus on

the linearly independent rows (LIRs). Our idea is to first construct

𝑟 (𝑚 − 1) + 𝑛 LIRs for 𝐴∗
, and then show that any 𝑟 (𝑚 − 1) + 𝑛 + 1

rows in 𝐴∗
must be linearly dependent.

Lemma 6. There exist 𝑟 (𝑚 − 1) + 𝑛 LIRs in 𝐴∗.

Proof. We construct the LIRs as follows. Note that the rank of

𝑀 equals 𝑟 . Thus, we have 𝑟 LIRs, each of which has size 𝑛. We can

expand each of them with (𝑚 − 1)𝑛 zeros, such that the expanded



OmniMon: Re-architecting Network Telemetry with Resource Efficiency and Full Accuracy SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

row becomes one row of𝐴∗
. Specifically, for the 𝑖-th (1 ≤ 𝑖 ≤ 𝑚)𝑀

in𝐴∗
, we can add 𝑛(𝑖 − 1) zeros before each LIR, and 𝑛(𝑚 − 𝑖) zeros

after it. Thus, we obtain 𝑟𝑚 expanded rows in total. We denote them

by 𝑅1, 𝑅2, · · · , 𝑅𝑟𝑚 , each of which is an expanded row of size𝑚𝑛,

such that 𝑅𝑟 (𝑖−1)+1, 𝑅𝑟 (𝑖−1)+2, · · · , 𝑅𝑟 (𝑖−1)+𝑟 are expanded rows for

the 𝑖-th𝑀 (1 ≤ 𝑖 ≤ 𝑚).

Now we select the first 𝑟 (𝑚 − 1) expanded rows, i.e., 𝑅1, 𝑅2, · · · ,
𝑅𝑟 (𝑚−1) . We also select the last 𝑛 rows in𝐴∗

, which are denoted by

𝐼1, 𝐼2, · · · , 𝐼𝑛 . We show that this collection of 𝑟 (𝑚 − 1) + 𝑛 rows are

linearly independent. Specifically, we consider the linear combina-

tion 𝐿 = 𝛼1𝑅1+𝛼2𝑅2+· · ·+𝛼𝑟 (𝑚−1)𝑅𝑟 (𝑚−1) +𝛽1𝐼1+𝛽2𝐼2+· · ·+𝛽𝑛𝐼𝑛 ,
which is a vector of length𝑚𝑛. We prove that 𝐿 is a vector with all

zero elements only if all coefficients 𝛼𝑖 (1 ≤ 𝑖 ≤ 𝑟 (𝑚 − 1)) and 𝛽 𝑗
(1 ≤ 𝑗 ≤ 𝑛) are also zeros.

Our proof partitions 𝐿 into 𝑚 groups with 𝑛 elements each.

We first analyze the last group. If 𝐿 is a zero vector, the 𝑗-th

element (1 ≤ 𝑗 ≤ 𝑛) in the last group is contributed only

by 𝐼 𝑗 . Thus, 𝛽 𝑗 must be zero. Then for the 𝑖-th group (1 ≤
𝑖 ≤ 𝑚 − 1), only 𝑟 rows 𝑅𝑟 (𝑖−1)+1, 𝑅𝑟 (𝑖−1)+2, · · · , 𝑅𝑟 (𝑖−1)+𝑟 con-

tribute non-zero values for the 𝑛 elements in this group. Since

𝑅𝑟 (𝑖−1)+1, 𝑅𝑟 (𝑖−1)+2, · · · , 𝑅𝑟 (𝑖−1)+𝑟 are linearly independent, we can
deduce that 𝛼𝑟 (𝑖−1)+1, 𝛼𝑟 (𝑖−1)+2, · · · , 𝛼𝑟 (𝑖−1)+𝑟 must be all zeros to

make the linear combination a zero vector. Thus, we prove that all

coefficients are zeros. The lemma follows. □

Next, we show that any 𝑟 (𝑚 − 1) + 𝑛 + 1 rows in 𝐴∗
must be

linearly dependent.

Lemma 7. Any 𝑟 (𝑚 − 1) + 𝑛 + 1 rows in 𝐴∗ must be linearly
dependent.

Proof. Consider an arbitrary collection that is composed of

𝑟 (𝑚 − 1) + 𝑛 + 1 rows in 𝐴. If any𝑀 contributes more than 𝑟 rows,

these rows must be linearly dependent because the rank of𝑀 is 𝑟 .

Thus, we focus on the case where each𝑀 contributes at most 𝑟

LIRs. Without the loss of generality, suppose that the first𝑚−1ma-

trices of𝑀 contribute 𝑟 LIRs each, denoted by 𝑅1, 𝑅2, · · · , 𝑅𝑟 (𝑚−1)
as the above proof. The 𝑛 + 1 rows come from the last 𝑀 and

𝐼1, 𝐼2, · · · , 𝐼𝑛 . Obviously, at least one row is from the last 𝑀 . For

each row (denoted by 𝑃 ) in the last 𝑀 , we can construct a lin-

ear combination 𝛼1𝑅1 + 𝛼2𝑅2 + · · · + 𝛼𝑟 (𝑚−1)𝑅𝑟 (𝑚−1) , such that

𝛼1𝑅1 + 𝛼2𝑅2 + · · · + 𝛼𝑟 (𝑚−1)𝑅𝑟 (𝑚−1) + 𝑃 is a vector of size 𝑚𝑛

and every group of 𝑛 elements is the same as each other. Note

that each 𝐼𝑖 (1 ≤ 𝑖 ≤ 𝑛) also has𝑚 groups of 𝑛 elements and all

groups are the same. Such 𝑛 + 1 rows must be linearly dependent

since there are at most 𝑛 linearly independent columns. Since the

𝑛 + 1 rows are either constructed by the linear combination of

𝛼1𝑅1 + 𝛼2𝑅2 + · · · + 𝛼𝑟 (𝑚−1)𝑅𝑟 (𝑚−1) + 𝑃 or directly from some 𝐼𝑖
(1 ≤ 𝑖 ≤ 𝑛), the 𝑟 (𝑚 − 1) + 𝑛 + 1 rows are linear dependent. □

The two lemmas lead to the following theorem.

Theorem 1. If 𝑀 has a rank 𝑟 , the rank of 𝐴 has a tight upper
bound 𝑟 (𝑚 − 1) + 𝑛, where 𝑛 is the number of lossy flows and𝑚 is
the number of switches traversed by any lossy flow.

Number of mapped slots. We analyze the number of slots 𝑘

mapped by 𝑛 lossy flows, given 𝐾 slots in total and 𝑑 distinct slots
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Figure 13: (Exp#8) Packet loss diagnosis.

per flow. For each slot, the probability that it is mapped by a partic-

ular flow is

𝑝1 =

(𝐾−1
𝑑−1

)(𝐾
𝑑

) =
𝑑

𝐾
.

With 𝑛 lossy flows, the probability that it is touched by at least one

flow is

𝑝𝑛 = 1 − (1 − 𝑝1)𝑛 ≈ 𝑛𝑝1 =
𝑛𝑑

𝐾
with sufficiently large 𝐾.

Since the 𝐾 slots are independent, the number of touched slots

follows a Binomial distribution with expectation 𝐾 · 𝑝𝑛 = 𝑛𝑑 and

variation 𝐾 · 𝑝𝑛 (1 − 𝑝𝑛) = (𝑛𝑑)2
𝐾

.

Appendix C: Additional Experiments
Simulator. We build a simulator to evaluate OmniMon in large-

scale deployment. The simulator forms an 8-ary Fat-Tree topology

with 128 end-hosts and 80 switches. It uses a single thread to realize

the packet forwarding and OmniMon operations of all end-hosts,

switches, and the controller across epochs. It can also inject packet

losses to mimic lossy environments. We use the same CAIDA trace

[11] to drive our simulations as in testbed experiments. In particular,

we map the IP addresses in the trace to our end-hosts, such that

the ratios of pod-local and aggregate-local flows are 15% and 70%,

respectively. We also configure 8,192 slots in each switch (port) in

per-switch (per-port) deployment.

(Exp#8) Packet loss diagnosis. We now use the simulator to

show that OmniMon can detect four types of packet losses: (i)

switch congestions (SG), (ii) gray failures (GF), (iii) switch crash

(SC), and (iv) link failures (LF). We configure each type of packet

losses as follows. We first randomly select eight switches (resp.

links) as problematic switches (resp. links), implying that the failure

probabilities for switches and links are 10% and 3%, respectively,

in our 8-ray fat tree. In a switch congestion, we randomly drop

packets at a rate of 1%; in a gray failure, we randomly sample 1% of

flows to drop; for switch crashes and link failures, we drop all traffic

in a faulty switch/link after a failure occurs. We assume that the

failures occur in the forwarding module, so that flow values in each

faulty switch remain available. We repeat the experiment 100 times

for each type of packet losses. Note that our scenarios are even

more severe than those reported in recent studies [4, 23, 60, 78].

We compare OmniMon with 007 [4], a diagnosis system that

infers packet losses on a per-path basis. Since the results of 007 sig-

nificantly vary across the 100 runs, we plot the error bars showing

its maximum and minimum. Figure 13(a) compares their F1 scores

(i.e., the harmonic mean of precision and recall). OmniMon achieves

perfect detection for all failures, while the accuracy of 007 is quite

low. The reason is that 007 builds on a flow voting mechanism

for finding faulty switches or links. When the failure probability is
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Figure 14: (Exp#9) Load balancing evaluation.

high, the presence of a large number of lossy flows can lead to many

noisy votes. Figure 13(b) further shows how OmniMon achieves

accountability by measuring the percentage of loss variables that

can be solved based on the steps in §5.1. We consider two schemes:

(i) skipping Step 3 and directly solving the original linear system

(‘‘w/o DCN’’); (ii) taking into account the traffic characteristics of

data center networks (DCNs) (i.e., executing Step 3) and solving

the simplified linear system (‘‘w/DCN’’). Without the DCN charac-

teristics, we can infer all loss variables except for switch failures

(72%), since a switch failure produces much more lossy flows than

the other three types of packet losses and makes the accountability

condition fail. With the DCN characteristics, all loss variables can

be solved, thereby achieving accountability.

(Exp#9) Load balancing evaluation. We study the performance

evaluation effectiveness of OmniMon on the load balancing deploy-

ment in a data center network. We evaluate two load balancing

algorithms: flow-based ECMP and flowlet-based CONGA [3]. For

each algorithm, we feed our traces into the 8-ary Fat-Tree, and simu-

late the per-packet forwarding operations in each switch. OmniMon

collects the actual per-flow bytes in each switch to construct a full

view of the entire network.

Figure 14(a) counts the number of heavy links in both algo-

rithms. Here, a link is considered to be heavy if the ratio of its

traffic (in bytes) to the total traffic exceeds some threshold. We

vary the threshold from 1% to 5% of the total traffic. The results

show that CONGA introduces more heavy links than ECMP when

the threshold is 1%. However, CONGA has fewer heavy links for

larger thresholds (i.e., better load balancing). Figure 14(b) further

identifies per-link heavy hitters that account for 10% of the link

utilization. We measure the false negative rate (FNR), false positive

rate (FPR), and per-flow relative error (RE) of OmniMon and Hash-

Pipe [65], a switch-based heavy-hitter detector. We plot the error

bars showing its maximum and minimum. HashPipe incurs 8% of

false positives and 3% of relative error since it only approximately

records the top-𝑘 flows. In contrast, OmniMon achieves zero er-

rors. This provides guidelines for administrators to fine-tune the

deployment of a new load balancing algorithm.

Breakdown of resource consumptions. Tables 1 and 3 list the

complete breakdown of switch overhead and the amount of traffic

transferred to the controller, respectively, of each solution in Exp#2

and Exp#6. For Sonata, Marple, and OmniMon, the tables show the

per-application resource consumptions in detail. We provide not

only the results of the per-switch setup as in §8, but also those of

the per-port setup.

Appendix D: Complete Entity Operations
Algorithms 2, 3, and 4 present the pseudo-code of the operations of

end-hosts, switches, and the controller, respectively.

End-hosts. Algorithm 2 shows the operations of an end-host. Each

end-host maintains: (i) a hash table (line 2), (ii) an array of egress

slots (line 3), (iii) an array of ingress slots (line 4), (iv) a local epoch

(line 5), (v) a set of switch indexes, which is pre-assigned by the con-

troller and allocated to flows (line 6), and (vi) an array of counters

for the usage of switch indexes (line 7).

When sending a packet (lines 8-19), an end-host first queries the

flowkey in the hash table (line 9) to obtain both the host index and

the switch index (line 10). Otherwise, if the hash table does not

include the flowkey, the end-host chooses a new host index and

a new switch index (line 12), and inserts the flowkey to the hash

table (line 13) (the index selection (lines 37-42) has been elaborated

in §3.2 and §5.2). It also increments the usage count of the switch

index (line 14). With the host index, flow values in the egress slot

will be updated (line 15). The end-host then embeds its current

epoch, host index, and switch index into the packet (line 16) and

emits the packet (line 17). If the flow terminates, it decrements the

usage count (lines 18-19).

On the receipt of a packet (lines 20-27), the destination end-host

extracts the source end-host (line 21), host index (line 22), and em-

bedded epoch (line 23). It then updates the corresponding ingress

slot (line 24). It updates its local epoch based on embedded pack-

ets (lines 25-27), local clock (lines 28-32), and controller messages

(lines 33-36).

Whenever the local epoch is updated, an end-host not only

performs synchronization, but also reports local results to the

controller for collective analysis. It clears the hash table (i.e., re-

moves terminated flows) and resets slot counters for the new epoch

(lines 26, 30, and 35).

Switches. Algorithm 3 shows the switch operations. For each

packet, a switch retrieves the switch index and epoch embedded in

the packet (lines 2-3), as well as the set of slot indexes based on the

switch index (line 4). It then updates the corresponding slots with

the flow value in the packet (lines 5-6).

Controller. Algorithm 4 shows the controller operations. In collec-

tive analysis (lines 1-14), the controller first collects results from all

end-hosts and switches (lines 2-3). For each flow, the controller first

examines its flow values in the source and destination end-hosts via

the host index (line 7). If the values in the two end-hosts are equal,

the controller decomposes the values from each switch slot along

the packet transmission path with the flow values in end-hosts

(lines 8-10). Otherwise, if the flow values differ in the source and

destination end-hosts (line 13), this flow is a lossy one (line 14).

The controller performs exact loss inference for all lossy flows

(lines 13-14). The controller also performs network-wide epoch

synchronization (lines 15-19) (§4) and collaborative flow mapping

(lines 20-21) (§5). For collaborative flow mapping, the controller

hashes each switch index (indicating one possible mapping to slots),

and returns a set of switch indexes to the end-host, such that the

hash value of each switch index equals the end-host ID.

Appendix E: Generality of OmniMon
Weprovidemore detailed elaboration on the generality of OmniMon.

Flowkeys. OmniMon supports various combinations of packet

fields as flowkey definitions. Specifically, end-hosts can track the

flowkeys that include all packet fields of interest (e.g., 5-tuple).
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Solutions Tofino resources
Memory (MB) Stage Action PHV (Byte)

Queries (Marple | Sonata-FA | Sonata-AD | Omnimon-QE-Switch | Omnimon-QE-Port)
TCP new connection 1.21 1.26 0.36 0.17 0.41 9 8 5 2 2 18 21 13 7 7 194 189 175 120 120

SSH brute force 2.92 2.47 1.85 0.17 0.69 12 11 7 2 2 24 30 25 7 7 244 201 218 116 116

SuperSpreader 2.33 2.41 0.67 0.02 0.02 10 11 5 1 1 21 26 14 2 2 235 198 162 112 112

Port scan 2.05 2.41 0.63 0.02 0.02 10 11 11 1 1 22 26 17 2 2 229 169 172 112 112

DDoS 2.33 2.41 1.23 0.02 0.02 10 11 8 1 1 20 26 17 2 2 233 201 205 112 112

SYN flood 3.49 2.51 1.39 0.45 1.94 9 12 6 3 3 31 35 37 15 15 272 223 258 120 120

Completed flows 2.36 2.49 0.84 0.31 0.76 10 12 11 2 2 26 34 45 11 11 235 223 255 120 120

Slowloris attack 2.62 2.49 1.97 0.31 2.43 11 11 7 2 4 24 34 37 11 11 277 232 247 120 120

DNS tunneling 1.27 2.6 0.8 0.17 1.25 6 12 5 2 2 19 34 22 7 7 201 231 205 120 120

Zorro attack 2.92 2.49 1.04 0.17 0.69 12 11 6 2 2 24 33 24 7 7 244 220 220 130 130

Reflection DNS 0.11 0.1 0.1 0.17 1.25 3 3 3 2 2 11 11 11 7 7 164 164 157 120 120

Total 23.61 23.64 10.88 1.98 9.48 102 35 74 20 22 240 133 262 78 78 2528 1981 2274 1302 1302

Sketch Solutions
FlowRadar 6.58 11 26 133

UnivMon 6.4 12 67 128

ElasticSketch 0.59 10 23 163

SketchLearn 1.16 10 40 158

OmniMon Solutions
Only packet count (per switch) 0.24 2 7 120

Only packet count (per port) 1.25 2 7 120

Full statistics (per switch) 1.49 9 39 130

Full statistics (per port) 6.25 10 39 130

Table 1: Complete switch resource overheads of solutions in Exp#2 and Exp#6.

Solutions Traffic to Controller
Message (Msg/s) Byte (KB/s)

Queries (Marple | Sonata-FA | Sonata-AD | Omnimon-QE-Switch | Omnimon-QE-Port)
TCP new connection 171 17 16 10 10 10250.32 1.21 1.19 10 320

SSH brute force 10 0 0 10 10 25600.02 0 0 20 640

SuperSpreader 1555 3649 57 0 0 20578.89 3590.45 4.82 0 0

Port scan 816 1042 25 0 0 17971.58 1049.64 1.75 0 0

DDoS 1576 3528 94 0 0 20580.25 3843.88 150.45 0 0

SYN flood 536 23366 23366 10 10 30753.67 26172.16 26452.55 60 1920

Completed flows 72 1053 1053 10 10 20483.97 95.33 107.98 20 640

Slowloris attack 29153 29143 29143 10 10 1865.18 29025.58 29491.87 80 2560

DNS tunneling 315 474 474 10 10 10259.57 41.47 43.36 40 1280

Zorro attack 10 1 1 10 10 25600.05 0.03 0.08 20 640

Reflection DNS 315 305 305 10 10 19.57 23.26 23.26 40 1280

Total 34529 62398 54533 80 80 183963.07 63843.01 56277.31 290 9280

Sketch Solutions
FlowRadar 10 16000

UnivMon 10 42240

ElasticSketch 10 3840

SketchLearn 10 1320

OmniMon Solutions
Only packet count (per switch) 10 160

Only packet count (per port) 10 1280

Full statistics (per switch) 10 800

Full statistics (per port) 10 6400

Table 2: Complete triggered traffic of solutions in Exp#2 and Exp#6.

Queries Recall (%) Precision (%) F1-Score (%)
TCP new connection 100 100 100

SSH brute force 100 100 100

SuperSpreader 45 75 56

Port scan 20 90 32

DDoS 54 92 68

SYN flood 99 40 57

Completed flows 100 68 81

Slowloris attack 33 82 47

DNS tunneling 100 100 100

Zorro attack - - -

Reflection DNS 100 100 100

Mean 75 85 74

Table 3: Accuracy of Sonata-AD Queries in Exp#6.

During collective analysis, the controller can aggregate the flows

for specific combinations of packet fields (e.g., source IP address).

For example, end-hosts can track 5-tuple flowkeys, while the con-

troller can group the flows by the source IP address for per-host

measurement.

Flow statistics. OmniMon supports different types of flow statis-

tics, include the 344 statistics in [35, 40, 46, 71]. In particular, a

flow statistic typically performs a specific aggregated operator over

all packets of a flow. Currently, OmniMon supports various basic

online analytical processing (OLAP) operators (e.g., COUNT, SUM,
MAX, MIN), which are enabled by end-hosts and programmable

switches. More complex operators (e.g., RANGE and AVG) can be

computed by the basic operators offline.

However, there are two concerns that may potentially limit

the support of general flow statistics. First, OmniMon cannot per-

form collective analysis on packet timestamps. Currently, it ad-

dresses this limitation by measuring timestamps at the granularity
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Algorithm 2 End-host operations

1: function Initialization

2: Hash table 𝐻 = ∅ ⊲ §3

3: Array of egress slots 𝐸𝑆 [ℎ] for end-host ℎ ⊲ §3

4: Array of ingress slots 𝐼𝑆 [ℎ] [𝑒 ] for end-host ℎ and epoch 𝑒 ⊲ §3

5: Local epoch 𝑒ℎ = 0 ⊲ §4

6: Set of switch indexes 𝐼 , assigned by controller ⊲ §5

7: Array of switch index usage counters𝑈 [𝑠 ] for switch index 𝑠

⊲ Egress packet processing, §3

8: function On_Sending_Packet(packet 𝑝 with flowkey 𝑘)

9: if 𝑘 ∈ 𝐻 then
10: (switchIndex, hostIndex) = 𝐻 [𝑘 ]
11: else
12: (switchIndex, hostIndex) = getIndexes(𝑘 , 𝐻 , 𝐼 )

13: Insert 𝐻 [𝑘 ] = (switchIndex, hostIndex)
14: Increment𝑈 [switchIndex] by 1
15: Update egress slot 𝐸𝑆 [hostIndex] with 𝑝
16: Embed 𝑒ℎ , switchIndex and hostIndex in 𝑝

17: Emit 𝑝

18: if Flow 𝑘 terminates then
19: Decrement𝑈 [switchIndex] by 1

⊲ Ingress packet processing, §3

20: function On_Receiving_Packet(packet 𝑝)

21: Extract source end-host ℎ based on source_ip
22: Extract epoch 𝑒 from 𝑝

23: Extract hostIndex from 𝑝

24: Update ingress slot 𝐼𝑆 [hostIndex] [𝑒 ] with 𝑝
25: if 𝑒 > 𝑒ℎ then ⊲ Epoch synchronization, §4

26: Send 𝐻 , 𝐸𝑆 , and 𝐼𝑆 to controller, then reset

27: 𝑒ℎ = 𝑒

⊲ Epoch synchronization, §4

28: function On_New_Epoch_By_Local_Clock(new epoch 𝑒)

29: if 𝑒 > 𝑒ℎ then
30: Send 𝐻 , 𝐸𝑆 , and 𝐼𝑆 to controller, then reset

31: 𝑒ℎ = 𝑒

32: Notify 𝑒 to controller

⊲ Epoch synchronization, §4

33: function On_New_Epoch_From_Controller(new epoch 𝑒)

34: if 𝑒 > 𝑒ℎ then
35: Send 𝐻 , 𝐸𝑆 , and 𝐼𝑆 to controller, then reset

36: 𝑒ℎ = 𝑒

⊲ Flow mapping, §3 and §5

37: function getIndexes(flowkey 𝑘 , hash table 𝐻 , switch index set 𝐼 )

38: hostIndex = 𝐻.getPosition(𝑘)
39: if available switch index 𝑖 ∈ 𝐼 then
40: switchIndex = 𝑖

41: else
42: switchIndex = arg min𝑖∈𝐼 𝑈 [𝑖 ]
43: return (switchIndex, hostIndex)

Algorithm 3 Switch operations

Data structures: Slots 𝑆 [𝑒 ] [𝑖 ] for 𝑖-th slot at epoch 𝑒

1: function On_Receiving_Packet(packet 𝑝)

2: Retrieve switch index switchIndex from 𝑝

3: Retrieve epoch 𝑒

4: Retrieve the set of slot indexes from switchIndex
5: for all 𝑖 ∈ set of slot indexes do
6: Update 𝑆 [𝑒 ] [𝑖 ] with the flow value in 𝑝

of epochs, as elaborated in §6.

The second limitation comes from the accountability guaran-

tee, in which the linear system requires additive flow statistics.

OmniMon addresses this by converting non-additive statistics into

additive ones, followed by applying the linear system to the con-

verted additive statistics to infer missing values due to packet loss.

Specifically, OmniMon still sums up the non-additive values in

switches. To compute the correct sum in switches, it leverages the

correct flow statistics in end-hosts: whenever the statistics are up-

dated, a source end-host embeds the (zero-error) difference between

Algorithm 4 Controller operations

Data structures: Epoch 𝑒𝑐 , Set of all switch indexes 𝐼

⊲ §3

1: function Collective analysis(epoch 𝑒)

2: Collect hash table 𝐻 , egress slots 𝐼𝑆 and ingress slots 𝐸𝑆 from all end-hosts

3: Collect switch slots 𝑆 from all switches

4: Set of lossy flows 𝐿𝑓 = ∅
5: for all flow 𝑓 in every 𝐻 do
6: Obtain (hostIndex, switchIndex) of 𝑓 from 𝐻

7: if 𝐼𝑆 [hostIndex] == 𝐸𝑆 [hostIndex] then
8: Obtain true flow values from 𝐸𝑆 [switchIndex]
9: for all switch 𝑠 along 𝑓 ’s path do
10: Subtract flow values of 𝑓 from 𝑆 [switchIndex] of 𝑠
11: else
12: 𝐿𝑓 = 𝐿𝑓 ∪ {𝑓 }
13: if 𝐿𝑓 ≠ ∅ then
14: Perform packet loss inference (§5)

⊲ §4

15: function On_New_Epoch(epoch 𝑒)

16: if 𝑒 > 𝑒𝑐 then
17: 𝑒𝑐 = 𝑒

18: for all host ℎ do
19: Send 𝑒𝑐 to ℎ

⊲ §5

20: function Flow_Mapping(end-host ℎ)

21: return {𝑥 ∈ 𝐼 |ℎ𝑎𝑠ℎ (𝑥) = ℎ.𝑖𝑑 }

Src Host
f1: 40->100

120 + 60 = 180

Switch

Src Host
f2: 80

Packet: difference 60

Figure 15: Example of non-additive statistics.

the old and new values of the statistics in the packet header. When

a switch receives the packet, it extracts the difference and adds

the difference to the corresponding slots. This extension incurs no

additional overhead in switches, since a switch performs the same

operations as for additive values. However, it requires extra fields

in packets. Given that the updates of non-additive statistics are

relatively less frequent (e.g., MAX and MIN), we expect that the extra
overhead is acceptable.

Example. We illustrate how OmniMon addresses non-additive

values via an example, in which it measures the maximum packet

size of each flow. As shown in Figure 15, we assume that there are

two flows 𝑓1 and 𝑓2 share a slot in the switch. At the beginning,

the maximum packet size of 𝑓1 and 𝑓2 are 40 and 80, respectively.

The slot hence records their sum 120. Now 𝑓1 has a new packet

with size 100. The source end-host of 𝑓1 first updates the maximum

packet size of 𝑓1, and then embeds the difference 100 − 40 = 60 in

the packet header. The switch adds up the difference so that the

sum of maximum packet size becomes 180.
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