
On the Speedup of Single-Disk Failure Recovery in XOR-Coded Storage Systems:

Theory and Practice

Yunfeng Zhu†, Patrick P. C. Lee∗, Yuchong Hu∗, Liping Xiang†, and Yinlong Xu†

†University of Science and Technology of China, ∗The Chinese University of Hong Kong

{zyfl,xlping}@mail.ustc.edu.cn, pclee@cse.cuhk.edu.hk, ychu@inc.cuhk.edu.hk, ylxu@ustc.edu.cn

Abstract—Modern storage systems stripe redundant data
across multiple disks to provide availability guarantees against
disk failures. One form of data redundancy is based on XOR-
based erasure codes, which use only XOR operations for encoding
and decoding. In addition to providing failure tolerance, a
storage system must also provide fast failure recovery to avoid
data unavailability. We consider the problem of speeding up
the recovery of a single-disk failure for arbitrary XOR-based
erasure codes. We address this problem from both theoretical
and practical perspectives. We propose a replace recovery algo-
rithm, which uses a hill-climbing technique to search for a fast
recovery solution, such that the solution search can be completed
within a short time period. We further implement our replace
recovery algorithm atop a parallelized architecture to justify its
practicality. We experiment our replace recovery algorithm and
its parallelized implementation on a networked storage system
testbed, and demonstrate that our replace recovery algorithm
uses less recovery time than the conventional approach.

I. INTRODUCTION

We have witnessed different implementations of large-scale

storage systems for various applications such as data centers,

peer-to-peer storage, and cloud storage. Examples of such im-

plementations include OceanStore [18], GFS [10], TotalRecall

[1], and Dynamo [8]. In a large-scale storage system, data

is distributed over a collection of disks (or more generally,

physical storage devices). To ensure data availability, it is

necessary to tolerate disk failures, which are common in

large-scale storage systems [10]. Data availability can be

achieved by keeping redundant data in multiple disks based

on replication or erasure coding. One form of data redundancy

is based on the Maximum Distance Separable (MDS) codes,

which are defined by the parameters n and k. An (n, k) MDS

code divides a data object into k equal-size fragments and

encodes them into n fragments, such that any k out of the

n encoded fragments can be used to reconstruct the original

object (we call this the MDS property).

In addition to tolerating disk failures, it is also necessary to

recover disk failures, so as to preserve the required redundancy

level and avoid data unavailability. In this paper, we focus

on the recovery of a single-disk failure, which occurs more

frequently than a concurrent multi-disk failure in practice.

Recovery of a single-disk failure can be achieved by retrieving

data from existing surviving disks and reconstructing the

lost data of the failed disk in a new disk. To minimize the

overall recovery time and achieve fast recovery, one important

objective is to minimize the amount of data being read from

the surviving disks.

Here, we focus on the recovery problem for a family of

special-purpose MDS codes called XOR-based erasure codes,

in which encoding and decoding are purely based on XOR op-

erations. Existing XOR-based erasure codes provide different

redundancy levels that can tolerate double-disk failures (e.g.,

RDP [5], EVENODD [2], X-code [27]), triple-disk failures

(e.g., STAR [15]), or a general number of failures (e.g.,

Cauchy Reed-Solomon (CRS) codes [3]). Recent studies have

proposed recovery solutions to minimize the amount of data

being read for different double-fault tolerant codes, including

RDP [26], EVENODD [25], and X-code [28]. However,

extending such results for the STAR and CRS codes, which

can tolerate more than two disk failures, is non-trivial due to

the very different data layouts. Also, existing results are mainly

developed via theoretical analysis and simulation. It remains

unclear regarding the practical performance of the recovery

solutions when they are deployed in a real storage system.

Thus, the motivation of this work is to develop a generalized

recovery solution that applies to arbitrary XOR-based erasure

codes, from both theoretical and practical deployment perspec-

tives.

In this paper, we focus on speeding up the recovery of a

single-disk failure for a class of XOR-based erasure codes.

Our primary objective is to minimize the amount of data read

from the surviving disks for recovery and hence the overall

time of the recovery operation, while the recovery solution

can be quickly determined. We propose a replace recovery

algorithm, which uses a hill-climbing (greedy) approach [23]

to optimize the recovery solution. It starts with a feasible

recovery solution, and incrementally replaces the current so-

lution with another one that reads less data. We validate that it

provides near-optimal recovery for different variants of STAR

and CRS codes. Also, it is shown to achieve polynomial

complexity. Note that our replace recovery can be extended

for the setting where disks are heterogeneous with different

performance costs. This implies that our replace recovery can

be applied in online mode based on the current performance

costs of surviving disks, while existing enumeration recovery

(e.g., [16]) is infeasible in doing so due to its exponential

complexity.

We implement our replace recovery atop a parallelized,

multi-core-based architecture, so as to justify its practicality

in real deployment. We conduct experiments on a networked

storage system testbed of different scales (with up to 21

disk nodes). We validate the recovery time improvement of

our replace recovery over the conventional recovery approach

(which we define in Section II) for different XOR-based era-

sure codes. Also, even in the parallel recovery implementation,

we still observe the recovery time reduction of our replace

recovery. Unlike existing disk-based simulations [26], our

testbed experiments capture the actual read/write performance

using real storage devices.

The remainder of the paper proceeds as follows. Section II

reviews related studies on single-disk failure recovery, and

Section III proposes a simplified recovery model. Section IV

presents our replace recovery algorithm. Section V shows

our implementation of disk recovery based on parallelization.

Section VI presents our experimental results. Section VII

concludes this paper.

II. BACKGROUND AND RELATED WORK

A. Background: XOR-based Erasure Codes

We first define the vocabularies based on [21]. We consider

a storage system employing an XOR-based erasure code. It

contains an array of n disks, in which k disks hold data, and

the remaining m = n−k disks hold coding information (which

we call parity) encoded from the data. Each disk is partitioned

into fixed-size strips with ω symbols each. A symbol can

refer to a fixed-size data block (or chunk) depending on the

implementation of the storage system. Each strip in a parity

disk is encoded from a strip in each data disk. We call the

collection of n = k +m strips that encode together a stripe.

A parity set is a set containing a parity symbol together with

the data symbols encoded in the parity symbol. In reality, each

stripe is encoded independently, and the data and parity strips

are rotated among the disks for load balancing [21]. Thus, the

definitions of the data (parity) disks may vary across stripes,

depending on where the data (parity) strips are located.

Note that we require the XOR-based erasure code satisfy

the MDS property (see Section I), such that the original data

can be reconstructed from any k out of n surviving disks. In

other words, the storage system can tolerate any m = n − k

concurrent disk failures.

We illustrate the above definitions via an example. We

consider an XOR-based erasure code called RDP [5], which

is a double-fault tolerant code (i.e., m = 2) that achieves

optimality both in computations and I/Os. The RDP encoding

is applied to each stripe, which is a two-dimensional array of

size (p−1)×(p+1), where p is a prime number larger than 2.

The first (p− 1) columns in the array store data information,

while the last two columns store parity information. Figure 1

shows how RDP encoding works for p = 5, where di,j is

the i-th symbol in column j. The first four disks (Disks 0

to 3) are the data disks, while the last two disks (Disks 4

and 5) are the parity disks. Disk 4 contains all the row parity

symbols, e.g., d0,4 is the XOR’s of symbols d0,0, d0,1, d0,2,

d0,3. Disk 5 contains all the diagonal parity symbols, e.g., d0,5
is the XOR’s of symbols d0,0, d3,2, d2,3, d1,4. In addition to

RDP, there are other examples of XOR-based erasure codes

that are also double-fault tolerant, such as EVENODD [2] and

X-Code [27].

Disk0 Disk1 Disk2 Disk3 Disk4 Disk5

d0,0 d0,1 d0,2 d0,3

d1,0 d1,1 d1,2 d1,3

d2,0 d2,1 d2,2 d2,3

d3,0 d3,1 d3,2 d3,3

d0,4

d1,4

d2,4

d3,4

d0,5

d1,5

d2,5

d3,5

Data Disks Parity Disks

Fig. 1. RDP code with p = 5.

We note that every XOR-based erasure code can be repre-

sented by a generator matrix [21]. To illustrate, we consider

the Cauchy Reed Solomon (CRS) codes [3], which can tolerate

a general number of disk failures. Figure 2 shows the encoding

mechanism of CRS codes for k = 4, m = 2 and ω = 3. The

idea is to multiply a ωn × ωk matrix of bits with a column

vector of ωk data bits, so as to form a stripe of ωn data and

parity bits.

Here, we use the term “disk” in a broad sense to refer to

a general physical storage device (e.g., a storage server or a

network drive) deployed in a storage system. A disk can fail

and lose all stored data, and we aim to reconstruct the lost

data in a new disk.

To recover disk failures, the conventional recovery approach

downloads the data and parity symbols from k disks, such that

the amount of information being downloaded per file is equal

to the original file size. Note that this conventional recovery

approach applies to all MDS codes (e.g., Reed-Solomon codes

[22] and all XOR-based erasure codes) and any number of disk

failures no more than m. However, the frequency of a single-

disk failure is often higher than that of a concurrent multi-disk

failure. This is generally true when the aggregated disk failure

rate is lower than the disk recovery rate [26]. Thus, using the

conventional recovery approach as a baseline, many studies

(e.g., [16], [25], [26], [28]) propose more effective recovery

solutions specifically for recovering a single-disk failure. In

this paper, we focus on the following objective of optimizing

the recovery solution, namely, we seek to minimize the number

of symbols being read (or I/Os) from the surviving disks for

the single-disk failure recovery.

In this paper, we focus on recovering a failed data disk. If

the failed disk is a parity disk, then we assume that its recovery

is identical to its corresponding encoding process [26]. Thus,

in our discussion, by a single-disk failure, we mean the failure

of a single data disk.

Before we discuss the recovery solutions for XOR-based

erasure codes, we point out that regenerating codes [9] have

recently been proposed to minimize the recovery bandwidth in

distributed storage systems. The idea is that surviving storage

nodes compute and transmit linear combinations of their stored

data during failure recovery. On the other hand, in XOR-based

erasure codes, we do not require storage nodes (or disks) be

equipped with computational capabilities.

D
a
ta

P
a
ri

ty

DataGenerator Matrix Stripe

w
0

1

2

3

4

5

6

7

8

9

10

11

0

{

* =

D

D

D

D

D

D

D

D

D

D

D

D

C

1

2

3

4

C

C

C

C

5C

1

0

2

3

4

5

Disks

0

1

2

3

4

5

6

7

8

9

10

11

D

D

D

D

D

D

D

D

D

D

D

D

0

1

2

3

4

5

6

7

8

9

10

11

D

D

D

D

D

D

D

D

D

D

D

D

0C

1

2

3

4

C

C

C

C

5C

Fig. 2. CRS for k = 4, m = 2 and ω = 3.

We now overview the related work on the recovery of

single-disk failures in XOR-based erasure codes. We classify

existing recovery solutions into two families, namely hybrid

recovery and enumeration recovery.

B. Hybrid Recovery

Some studies propose optimal recovery schemes for a

single-disk failure specifically for double-fault tolerant XOR-

based erasure codes, with an objective of minimizing the

number of read symbols. Xiang et al. [26] study the optimal

recovery of a single-disk failure for RDP, and the recovery so-

lution reduces the number of read symbols by 25% compared

to conventional recovery. Wang et al. [25] consider a similar

single-failure recovery problem in a distributed storage system

that uses EVENODD, and prove the same 25% improvement

as in RDP. Xu et al. [28] also propose optimal single-disk

failure recovery for X-code. These studies use the same

core idea of hybrid recovery for RDP in [26]. Thus, in the

following, we use RDP to explain the hybrid recovery idea.

To recover a single-disk failure, the conventional recovery

approach in essence recovers each lost symbol in the failed

disk independently. Specifically, if a data disk is failed, we

only use the row parity symbols together with all other

surviving data symbols in each row to recover each lost symbol

of the failed disk. We illustrate the idea of the conventional

recovery approach using Figure 1. For example, if Disk 1 fails,

one can read d0,0, d0,2, d0,3, d0,4 to recover d0,1 of Disk 1.

Thus, the total number of read symbols for repairing Disk 1

is 16. In contrast, hybrid recovery [26] uses a combination of

row and diagonal parity sets of data and parity symbols to

repair Disk 1, such as:

• d1,0, d3,3, d2,4, d1,5 to recover d0,1
• d0,2, d2,0, d3,4, d2,5 to recover d1,1
• d2,0, d2,2, d2,3, d2,4 to recover d2,1
• d3,0, d3,2, d3,3, d3,4 to recover d3,1

Since the above 16 symbols contain four overlapping sym-

bols d3,3, d2,4, d2,0, d3,4, the total number of read symbols for

repairing Disk 1 is reduced to 12 (i.e., by 25%). Thus, the

core idea of hybrid recovery is to find the set of maximum-

overlapping symbols to minimize the number of read symbols

for recovery. Note that this hybrid recovery idea also provides

optimal recovery solutions for EVENODD [25] and X-code

[28].

C. Enumeration Recovery

For general XOR-based erasure codes, one way to achieve

optimal recovery is to enumerate all recovery possibilities

based on the generator matrix. Such an approach, which we

call enumeration recovery, applies to any XOR-based erasure

code and is studied in [16] (an extended version appeared

in [17], which considers how to minimize the amount of

data being read in degraded read operations as well). Similar

approaches are also proposed for non-MDS codes [11].

Here, we use the example of CRS in Figure 2 to explain how

enumeration recovery works. To recover a data disk failure in

CRS, the conventional recovery approach may select the parity

symbols in the first parity disk together with all surviving

data symbols. For example, if Disk 0 is failed and data

symbols D0, D1, D2 are lost, then we can read parity symbols

C0, C1, C2 and data symbols D3, D4, ..., D11 for recovery.

Thus, the total number of symbols being read is 12. Alterna-

tively, we can reduce the number of symbols by enumerating

the recovery equations [11], [16]. A recovery equation is a

collection of symbols in a stripe whose corresponding rows in

the generator matrix sum to zero. An example of a recovery

equation is D0, D3, D6, D9, C0. Obviously, we can recover

any lost symbol in one recovery equation from all other

surviving symbols in the recovery equation. For example, if

D0 is lost, then the remaining symbols D3, D6, D9, C0 can

be used to recover D0. Suppose that we enumerate all the

recovery equations for the generator matrix. Then we can

formulate the optimal recovery problem for Disk 0 as follows:

Given three sets E0, E1, E2, where Ei is the set of all the

recovery equations for lost symbol Di (0 ≤ i ≤ 2), we select

one equation ei from each set Ei such that the number of

symbols in the union of all ei’s is minimized. In this example,

we obtain an optimal solution:

• e0: D0, D5, D6, D7, D10, C3,

• e1: D1, D4, D7, D10, C1,

• e2: D2, D5, D8, D11, C2.

The total number of symbols in the union of e0, e1, e2 except

D0, D1, D2 is equal to the number of read symbols for

recovery, which is reduced to 10. However, we point out that

the number of recovery equations grows exponentially with

the number of disks. In general, the problem of finding the

optimal recovery solution that minimizes the number of read

symbols is NP-hard [16].

III. RECOVERY MODEL

A. Motivation

While enumeration recovery can find the optimal recovery

solution for a single-disk failure in any XOR-based erasure

codes, it has a very high computational overhead. One can

show that enumeration recovery has a search space of up to

2mω recovery equations, where m denotes the number of tol-

erable failures and ω is the strip size. To solve for the optimal

recovery solution, one enumeration recovery implementation is

to construct a weighted graph containing nodes that represent

recovery equations, and then find the shortest path on the

graph [16]. Depending on the implementation of the shortest-

path algorithm, the size of the graph can be potentially huge,

as there are an exponential number of nodes (i.e., recovery

equations). In Section IV-C, we show via simulations the

expensive running time performance of enumeration recovery

using commodity hardware. In the following, we describe

several scenarios where enumeration recovery is infeasible to

deploy.

Limited hardware resources. Since the number of recovery

equations increases exponentially with m and ω, enumeration

recovery may consume substantial resources for enumerating

all recovery equations when m and ω are large, which corre-

spond to the codes with a large strip size and a higher level of

fault-tolerance, respectively. For example, for the STAR code

[15], we have m = 3 and ω = p−1. If p = 13, then at most 236

recovery equations need to be enumerated. In Section IV-C,

our simulations show that with mω ≥ 20, our enumeration

recovery implementation deployed on commodity hardware

cannot be finished within 13 days. Although one can use

parallelization to speed up the enumeration process, the com-

putational complexity remains exponential. Therefore, enu-

meration recovery becomes computationally infeasible when

the available hardware resources are limited.

Remote recovery scenario. Nowadays, data recovery of a

failed storage system can be outsourced to third-party compa-

nies (e.g., DataRecovery [6] and DataTech Labs [7]). However,

the recovery service providers usually do not know in advance

the coding scheme and parameters of the failed storage system.

It is also difficult, while not impossible, to determine in

advance the optimal solutions for all possible coding schemes

and parameters. Thus, finding the optimal recovery solution

for a failed storage system can be viewed as an on-demand

decision task.

Online recovery scenario. Enumeration recovery aims to

minimize the number of read symbols for recovery. We

can see that the optimal recovery solution is deterministic,

meaning that for a given failed disk, a coding scheme, and the

corresponding parameters, the set of symbols being read from

surviving disks is fixed. Thus, if m and ω are small, one can

first determine the optimal solutions offline for each possible

failed disk. However, practical storage systems are typically

composed of storage devices with heterogeneous capabilities

(e.g., processing power, connectivity bandwidth) [19], [20]. In

order to recover the failed disk effectively, it is intuitive to

retrieve fewer (more) data symbols from the surviving disks

with lower (higher) capabilities. Disk capabilities may vary,

depending on the current usage load of the storage system.

Thus, it is important to find the optimal recovery solution

online based on the current disk capabilities. However, even

it is possible to modify the enumeration recovery approach

to account for the heterogeneous setting, its exponential com-

plexity makes the online approach infeasible to capture the

current disk capabilities in a timely manner.

B. Simplified Recovery Model

Given the high computational complexity of enumeration

recovery, we are motivated to find a new recovery approach

that can achieve effective recovery performance in a compu-

tationally feasible manner. We note that the main bottleneck

of enumeration recovery is the huge search space of recovery

equations. To narrow down the search space, we make one

observation.

Observation: Consider a storage system using an XOR-based

erasure code with parameters (n, k,m, ω). Suppose that a

strip of ω symbols D0, D1, . . . , Dω−1 is lost. Let Ei be

the set of all recovery equations for each lost symbol Di

(0 ≤ i ≤ ω − 1). Then it is likely that there exists an opti-

mal recovery solution satisfying the corresponding recovery

equations e0, e1, . . . , eω−1 (selected from E0, E1, . . . , Eω−1,

respectively) such that this solution has exactly ω parity

symbols.

Clearly, there must be a feasible recovery solution with

exactly ω parity symbols, for example, by using the ω parity

symbols in any parity disk and the data symbols in the k − 1
data disks based on the MDS property (see Section I). Our

observation here is to address the optimality condition. Our

intuition is that the failure of a single data disk corresponds to

the loss of a strip of ω data symbols per stripe, so we need only

ω parity symbols to recover the lost ω data symbols. If we use

more than ω parity symbols, then it is likely to involve more

data symbols to be read. In some situations, we can use exactly

ω parity symbols to deduce the optimal recovery solution. To

illustrate, in Section II-B, the optimal recovery solution for

RDP contains exactly ω = 4 parity symbols d2,4, d1,5, d3,4,

and d2,5; in Section II-C, the optimal solution contains ω = 3
parity symbols C1, C2, and C3.

Actually, we can always find an optimal recovery solution

that has exactly ω parity symbols for RDP codes, as proven in

[26], although it remains open if we can always find an optimal

recovery solution with ω parity symbols for general codes.

Nevertheless, using this observation as our search criterion

suffices for practical purposes, based on our simulations (see

Section IV) and experiments (see Section VI). We now for-

mulate a simplified recovery model that solves the single-disk

failure recovery problem for any XOR-based erasure codes.

Simplified Recovery Model. To recover a failed disk, we aim

to choose a collection of parity symbols (together with the

corresponding surviving data symbols that encode the parity

symbols) to regenerate a strip of ω data symbols per stripe,

subject to:

1) The collection of parity symbols is of size ω symbols.

2) The collection of parity symbols (and their encoding

data symbols) suffices to resolve the ω lost data symbols.

3) The number of all data symbols encoded in the ω parity

symbols is minimum.

The above simplified recovery model now reduces the

solution space to the collections of parity symbols of a fixed

size (instead of arbitrary collections of parity symbols). This

significantly reduces the computational complexity of recovery

as compared to enumeration recovery.

Objectives. Based on the simplified recovery model, our goal

is to design a recovery algorithm that achieves the following

objectives:

1) Search efficiency. The algorithm finds a recovery solu-

tion with polynomial complexity.

2) Effective recovery performance. The number of read

symbols of the resulting recovery solution should be

close to that of the optimal solution.

3) Adaptable to heterogeneous disk capabilities. The recov-

ery algorithm can be easily converted to handle hetero-

geneous disk capabilities, and hence can promptly return

an effective recovery solution in the online recovery

scenario.

IV. REPLACE RECOVERY ALGORITHM

Our simplified recovery model states that there exists a

recovery solution that contains exactly ω parity symbols for

regenerating ω lost data symbols for each stripe in a single-

disk failure. However, it remains computationally expensive

to search for the “best” collection of ω parity symbols (out

of
(

mω

ω

)

possible candidates) in general. In this section, we

propose a computationally efficient replace recovery algorithm

that seeks to minimize the number of read symbols for single-

disk failure recovery, and the algorithm is applicable for any

XOR-based erasure codes.

The idea of our replace recovery algorithm is as follows. Let

Pi be the set of parity symbols in the ith parity disk, where

1 ≤ i ≤ m. Let X be the collection of ω parity symbols

used for recovery, and Y be the collection of parity symbols

that are considered to be included in X . First, we initialize

X with the ω parity symbols of P1. It can be easily shown

that X can resolve the ω lost data symbols with other k − 1
surviving disks, due to the MDS property (see Section I). Then

we set Y to be the collection of parity symbols in P2. Now we

replace “some” parity symbols in X with the same number of

parity symbols in Y , such that X still resolves the ω lost data

symbols, while reducing the most number of read symbols.

We repeat this by resetting Y with P3, · · · ,Pm. Finally, we

obtain the resulting X . The parity symbols in X , as well as

the corresponding encoding data symbols, are retrieved for

recovery. In essence, our replace recovery algorithm uses a

hill-climbing (greedy) approach [23] to optimize the solution.

Before presenting our replace recovery algorithm, we need a

primitive function that determines if X is valid to resolve the ω

data symbols after being replaced with other parity symbols

in Y . For each parity symbol, we define an ω-bit encoding

vector that specifies how the strip of lost data symbols is

encoded to the parity symbol. The ith bit (where 1 ≤ i ≤ ω)

of the encoding vector of a parity symbol is set to 1 if the ith

data symbol is encoding to that parity symbol, or 0 otherwise.

For example, referring to the CRS example in Figure 2, the

encoding vectors for the parity symbols C0 and C1 are (1,0,0)

and (0,1,0), respectively. We say X is valid if the encoding

vectors for the ω parity symbols in X satisfy that: (i) they

Algorithm 1 Replace Recovery Algorithm

1: Initialize X = P1

2: for i = 2 to m do
3: Set Y = Pi

4: for each parity symbol Y in Y do
5: Set f = false;
6: for each parity symbol X in X do
7: Set X ′ = X − {X}+ {Y }
8: if X ′ is valid and reduces the number of read symbols

of X then
9: Compute RX,Y = number of read symbols of X ′

10: Set f = true;
11: end if
12: end for
13: end for
14: if f == true then
15: Find (X ′, Y ′) = argmin(X,Y) RX,Y

16: Replace X ′ with Y ′ in X
17: Remove Y ′ from Y
18: end if
19: Repeat Steps 4-18 until Y is empty or f == false
20: end for
21: Return X

cover all the ω lost data symbols and (ii) they are linearly

independent (e.g., checked by Gaussian Elimination).

A. Algorithm Design

Algorithmic details. Algorithm 1 shows the core design of

our replace recovery algorithm. We initialize X with P1 (Step

1). Then we consider Y = Pi (2 ≤ i ≤ m) (Step 3). For each

parity symbol in Y , we compute the number of read symbols

by replacing every parity symbol in X (Steps 4-13). Note that

we only consider the replacement that is valid and can reduce

the number of read symbols of X (Step 8). We then find the

replacement with the minimum number of read symbols, and

replace the old parity symbol X ′ in X with the new parity

symbol Y ′ in Y and remove Y ′ from Y (Steps 14-18). We

repeat Steps 4-18 until Y is empty or there is no reduction by

any replacement (Step 19).

Example. We illustrate Algorithm 1 via the CRS example in

Figure 2. First, we initialize X with {C0, C1, C2} of the first

parity disk (Disk 4). Note that the number of read symbols

of X is 12 per stripe (i.e., the number of all data symbols

in a stripe). Now we consider Y = {C3, C4, C5}. We can

verify that C3, C4, and C5 can only replace C0, C1, and

C2, respectively, to make X valid. All replacements give the

number of read symbols equal to 10 symbols (the maximum

reduction achievable). Let us replace C0 by C3 (i.e., X = {C3,

C1, C2}). We now consider again Y = {C4, C5}, but it does

not give any reduction of the number of read symbols. Since

m = 2, we finish Algorithm 1 and return X = {C3, C1, C2}
for recovery. Note that this is also an optimal solution.

Complexity. We now evaluate the complexity of Algorithm 1

for searching X . We can easily see that the for-loop of Steps

4-13 takes O(ω2) time, and Step 19 will repeat the for-loop

for at most ω times. We iterate Steps 4-19 for m − 1 parity

disks, so the total search complexity is O(mω3), which is

polynomial-time.

Algorithmic enhancements. We can improve the accuracy

of Algorithm 1 by searching for more candidate collections

of parity symbols for X . This increases the likelihood for

our replace search to achieve the optimal point. Here, we

propose two enhancements that increase our search space,

while maintaining the polynomial complexity.

• Multiple rounds. In Step 1, we only use P1 for the initial-

ization of X . We can repeat Algorithm 1 for additional

m− 1 rounds by using Pi (2 ≤ i ≤ m) for initialization.

• Successive searches. In Step 2, after we consider

Pi, we re-consider the previously considered i −
2 parity symbol collections P2, · · · Pi−1, as they

might provide better results. We can replace the

for-loop in Step 2 with successive searches as:

P2,P3, (P2),P4, (P2,P3), · · · ,Pi, (P2, · · · ,Pi−1), · · ·
(this technique is also called univariate search).

The successive searches increase the iterations of Step 2 by m

times, and the multiple initializations iterate the whole process

by another m times. Thus, the search complexity increases to

O(m3ω3), which remains polynomial-time.

Generalized recovery cost. Algorithm 1 is designed to min-

imize the number of read symbols during recovery. We now

show how it can be adapted for the scenario where disks

have heterogeneous capabilities. Suppose that for the recovery

solution X of failed disk k, the recovery operation reads yi
symbols from disk Di (i 6= k). Let ci be the unit recovery

cost of downloading a single symbol from disk Di. We can

define the generalized recovery cost C =
∑n

i=0,i6=k ciyi, and

substitute the computation of the number of read symbols

with that of C in Algorithm 1 (in Steps 8-9). Note that

the generalized recovery cost can be tailored for different

optimization objectives depending on the definition of the

unit cost ci. For example, if we set ci to be the inverse of

the connectivity bandwidth of disk Di, then the optimization

objective denotes the total recovery time of reading all symbols

from other surviving disks one-by-one. Note that the unit cost

ci can be obtained during the storage system setup or be

measured online according to the current usage conditions.

In this paper, we mainly focus on minimizing the number

of symbols read (i.e., ci = 1 for all i). Recent work [29]

discusses the failure recovery for XOR-based erasure codes

on heterogeneous storage devices and proposes a cost-based

heterogeneous recovery scheme for two RAID-6 (double-fault

tolerant) codes RDP and EVENODD. The idea of the recovery

scheme is to eliminate the search for the recovery solutions

that are known to make no improvements to the resulting

recovery performance, thereby improving the efficiency of the

solution search process. Note that the search space of the

recovery scheme in [29] remains exponential with respect to

the number of disks in the system, and it is still an open issue

of how to extend the results of [29] for general XOR-based

erasure codes. In future work, we plan to evaluate the perfor-

mance of our replace recovery approach for other optimization

objectives, and explore its applicability for general XOR-based

erasure codes.

B. Evaluation of Recovery Performance

We now evaluate via simulations the performance of our

proposed replace recovery algorithm. Our goal is to show that

the number of read symbols returned by replace recovery is

very close to that of enumeration recovery. Here, we mainly

focus on the STAR and CRS codes, which can tolerate three

and a general number of concurrent disk failures, respectively.

While replace recovery is applicable for double-fault tolerant

codes, we do not consider them as their optimal recovery

solutions have been discussed in [26], [25], [28]. Here, our

replace recovery algorithm is based on Algorithm 1, with the

algorithmic enhancements enabled (see Section IV-A).

Let us first consider STAR [15]. For any prime number p,

STAR is composed of p+3 disks, where the first p columns are

data disks and the remaining three columns are parity disks.

We first present a theorem that specifies the lower bound of the

optimal recovery solution for STAR. The proof is in Appendix.

Theorem 4.1: The minimum number of read symbols for

a single-disk failure recovery for STAR is lower bounded by

(2
3
p2 − p) (symbols per stripe).

We use simulations to compare both conventional and

replace recoveries with the lower bound. Figure 3 shows the

results. We observe that replace recovery is very close to the

lower bound for p < 40. We also verify that replace recovery

can give a result lower than 0.69p2 for p < 1000.

 0

 200

 400

 600

 800

 1000

 1200

 1400

5 7 11 13 17 19 23 29 31 37

S
y
m

b
o

ls
 N

e
e

d
e

d
 f

o
r

R
e

c
o

v
e

ry

p

Conventional Replace Lower Bound

Fig. 3. Number of symbols per stripe needed for a single-disk failure recovery
in STAR.

We now consider CRS. We use simulations to evaluate

the savings of replace recovery over conventional recovery

in terms of the number of read symbols. We also evaluate

the savings of enumeration recovery to verify the accuracy

of replace recovery. Figure 4 presents the results for different

combinations of m, ω, and k. For m = 2, we observe that

replace recovery achieves the same optimal result as in enu-

meration recovery, and the savings over conventional recovery

are 15.75-25.00%. For m = 3, replace recovery achieves

near-optimal performance. When compared to conventional

recovery, the savings of replace recovery are 16.25-22.22%,

while the savings of enumeration recovery are 19.75-25.00%.

C. Evaluation of Search Performance

We now evaluate via simulations the search performance

of both enumeration and replace recoveries using commodity

 0

 20

 40

 60

 80

 100

k=6 k=7 k=8 k=9 k=10%
 S

y
m

b
o
ls

 N
e
e
d
e
d
 f
o
r

R
e
c
o
v
e
ry

Enumeration Replace

 0

 20

 40

 60

 80

 100

k=6 k=7 k=8 k=9 k=10%
 S

y
m

b
o
ls

 N
e
e
d
e
d
 f
o
r

R
e
c
o
v
e
ry

Enumeration Replace

 0

 20

 40

 60

 80

 100

k=6 k=7 k=8 k=9 k=10

%
 S

y
m

b
o
ls

 N
e
e
d
e
d
 f
o
r

R
e
c
o
v
e
ry

Enumeration Replace

 0

 20

 40

 60

 80

 100

k=6 k=7 k=8 k=9 k=10

%
 S

y
m

b
o
ls

 N
e
e
d
e
d
 f
o
r

R
e
c
o
v
e
ry

Enumeration Replace

CRS(m=2, ω=4) CRS(m=2, ω=5) CRS(m=3, ω=4) CRS(m=3, ω=5)

Fig. 4. Number of symbols (per stripe) needed for single-disk failure recovery for enumeration and replace recoveries in CRS with m=2 and m=3.

hardware configurations. Our goal is to show that enumera-

tion recovery becomes infeasible for large parameters, while

replace recovery can be completed with significantly less

computational time.

Our evaluation is conducted on a Linux desktop computer

running with 3.2GHz CPU and 2GB RAM. As discussed in

Section III, in enumeration recovery, the maximum number

of recovery equations being enumerated is 2mω . Here, we

consider CRS, which allows us to configure different values

of m and ω.

Table I shows the search time for different CRS variants

when enumeration and replace recoveries are used. The search

time of enumeration recovery increases exponentially with the

number of recovery equations. For example, for k = 10, m =
3, and ω = 6, it takes more than 18 hours to find the optimal

solution for recovering one failed disk; for k = 12, m = 4,

and ω = 5, the search cannot be finished within 13 days. On

the other hand, the search time of replace recovery can be

completed within 0.5 seconds for all the CRS variants that we

consider.

TABLE I
SEARCH PERFORMANCE OF ENUMERATION AND REPLACE RECOVERIES.

CRS(k,m,ω) mω Time Time
(Enumeration) (Replace)

CRS(10,3,5) 15 6m32s 0.08s
CRS(12,4,4) 16 17m17s 0.09s
CRS(10,3,6) 18 18h15m17s 0.24s
CRS(12,4,5) 20 13d18h6m43s 0.30s

V. DESIGN AND IMPLEMENTATION

In this section, we present the design and implementation

for our replace recovery algorithm. We implement it on a

parallel architecture that can scale the recovery performance

in practice.

A. Recovery Thread

We implement the recovery operation with a recovery

thread, a process that interconnects all disks and coordinates

all data reads and writes with the disks. A recovery thread can

be viewed as an intermediate controller process that relays

data among the disks. To recover a single-disk failure, the

recovery thread performs three steps: (i) reading data from

the surviving disks, (ii) reconstructing the lost data, and (iii)

writing the reconstructed data to a new disk. Note that the

recovery thread implementation only requires the disks support

standard read/write functions.

B. Parallel Recovery Architecture

For further performance improvements, we implement a

parallel recovery architecture that parallelizes the recovery

operation via multi-threaded and multi-server designs. Figure 5

shows the architecture. In Section VI, we show that replace

recovery outperforms conventional recovery in both single-

threaded and parallel implementations.

Multi-threaded recovery. As modern architectures shift to-

ward multi-core, parallelizing the recovery process with mul-

tiple recovery threads becomes possible within a multi-core

server. Two multi-threaded techniques have been proposed for

recovery in RAID systems [12]: disk-oriented reconstruction

(DOR) and stripe-oriented reconstruction (SOR). We can im-

plement the DOR and SOR as follows. In DOR, we create

n > 1 recovery threads, each associated with one disk, where

n is the total number of disks. Each of the n−1 threads reads

data chunks from its associated surviving disk, and the remain-

ing thread reconstructs and writes the resulting data chunks to

the new disk. In contrast, in SOR, we create multiple recovery

threads, each associated with a group of stripes (note that each

stripe spans all the disks). Each thread recovers its own group

of stripes. Since DOR needs to manage many threads if the

number of disks increases, in our implementation, we use SOR

as our multi-threaded recovery strategy.

Multi-server recovery. To further boost the recovery perfor-

mance, we deploy a cluster of recovery servers to extend the

scale of parallelism. The cluster is composed of one dispatcher

and multiple executers, as shown in Figure 5. The dispatcher

splits the whole recovery operation into different independent

tasks, each of which corresponds to the recovery of a group

of stripes. It then assigns each task to a different executer. An

executer notifies the dispatcher after completing its task, so

that it can be assigned the next task. Each assigned task can be

further decomposed into different groups of stripes, each being

processed by a recovery thread based on the SOR approach.

Note that in actual deployment, the executors are deployed in

different servers, while the dispatcher may be deployed in one

of the executor servers, given that its dispatching workload is

lightweight in general.

C. Implementation

We implement both conventional and replace recoveries for

the following XOR-based erasure codes: RDP [26], EVEN-

ODD [25], X-Code [28] (all of which are double-fault toler-

ant), STAR (triple-fault tolerant), and Cauchy Reed-Solomon

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5New Disk 1

Executer 1 Executer 2 Executer 3

Repair Task Dispatcher

(Multi-Core)

1 2 3 4 5 6

1

2

3

4

5

6

Task Queue

Fig. 5. Our parallel recovery architecture for scaling the recovery perfor-
mance.

(CRS) codes (multi-failure tolerant). While there are many ex-

isting double-fault tolerant XOR-based erasure codes, we pick

RDP, EVENODD, and X-Code because their optimal recovery

solutions have been found (see [26], [25], [28], respectively)

and we can compare the solutions of our replace recovery

approach with their respective optimal results. Note that the

numbers of disks (i.e., n) being used for RDP, EVENODD,

X-Code, and STAR are mainly determined by a prime number

p. For clarity, Table II summarizes the configurations of the

codes that we have implemented based on p.

TABLE II
CONFIGURATIONS OF THE CODES THAT WE CONSIDER.

Code n k m Remarks

RDP p+ 1 p− 1 2 prime p > 2

EVENODD p+ 2 p 2 prime p

X-Code p p− 2 2 prime p

STAR p+ 3 p 3 prime p

CRS For general n = k +m

We set the unit of XOR of encoding/decoding to be four

bytes long, so as to make our implementation compatible with

both 32-bit/64-bit machines [21]. The stripe unit in CRS is a

ω-bit word, where ω must be large enough so that the total

number of disks n is at most 2ω . Note that in CRS, ω does

not need to be a multiple of the machine word length, but

should be as small as possible. Here, we select ω = 6 for

CRS, meaning that we allow at most 64 disks in the system.

Note that from our simulations, we also see the improvements

of our replace recovery algorithm for different values of ω (see

Figure 4).

In our implementation, we treat each symbol as a chunk,

which could be of large size in general. Unlike typical file

systems that use small block sizes (for example, the default

block size in Linux file systems is 4KB), operating on large

chunks is typical in distributed storage systems (e.g., GFS [10]

uses the chunk size 64MB). We evaluate how the recovery

performance is influenced by the chunk size in our experiments

(see Section VI).

...

recovery architecture

disks

Gigabit switch
files

NCFS

Fig. 6. Our testbed topology.

VI. EXPERIMENTS

We now conduct testbed experiments on the single-disk

recovery approaches for different XOR-based erasure codes.

Note that replace recovery seeks to minimize the number of

read symbols during recovery, and hence the overall time to

complete the recovery operation. The goal of our testbed ex-

periments is to demonstrate that our replace recovery algorithm

reduces the recovery time over conventional recovery in both

single-threaded and parallelized recovery implementations.

Unlike disk simulations [26], our experimental results capture

the actual I/O performance with real storage nodes.

A. Methodology

Our experimental testbed is built on an open-source net-

worked storage system called NCFS [14], a networked storage

system that interconnects, over a network, different physical

storage devices, each of which corresponds to a disk as being

considered in our experiments. It transparently stripes data

across all disks according to the respective coding scheme.

We integrate different coding schemes into NCFS. We deploy

our recovery architecture (see Section V) alongside NCFS and

the disks, while our architecture implements both conventional

and replace recoveries.

Figure 6 shows our testbed. We interconnect all physical

entities over a Gigabit Ethernet switch. Both NCFS and the

recovery architecture communicate with the storage devices

via the ATA over Ethernet protocol [13]. In Experiments 1 and

2, we use only a single recovery thread in our recovery archi-

tecture (i.e., without using parallelization), which is deployed

on a Linux-based server equipped with an Intel Quad-Core

2.66GHz CPU and 4GB RAM. In Experiment 3, we evaluate

the recovery performance using parallelization.

Our storage system consists of a cluster of (logical) disks,

each represented by a physical storage device. We experiment

different numbers of disks in the cluster, with at most 21 disks

depending on the parameters chosen for the coding schemes.

The cluster of disks is formed by the combination of the

following three storage device types:

• Pentium 4 PCs, each equipped with a 100-Mbps Ethernet

interface,

• network attached storage (NAS) devices, each equipped

with a 1-Gbps Ethernet interface, and

• Intel Core i5-2400 Quad-Core servers, each also equipped

with a 1-Gbps Ethernet interface.

We are mainly interested in the metric recovery time (per

MB of data being recovered) needed to perform a recovery

operation. We obtain the average recovery time as follows.

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

512KB

1024KB

2048KB

4096KB

8192KB

R
e
c
o
v
e
ry

 t
im

e
 (

in
 s

e
c
o
n
d
s
)

p
e
r

M
B

RDP(p=7)
STAR(p=7)

CRS(7,2)

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

512KB

1024KB

2048KB

4096KB

8192KB

R
e
c
o
v
e
ry

 t
im

e
 (

in
 s

e
c
o
n
d
s
)

p
e
r

M
B

RDP(p=7)
STAR(p=7)

CRS(7,2)

 0

 0.05

 0.1

 0.15

 0.2

512KB

1024KB

2048KB

4096KB

8192KB

R
e
c
o
v
e
ry

 t
im

e
 (

in
 s

e
c
o
n
d
s
)

p
e
r

M
B

Read Process
Write Process

Reconstruction

(a) Conventional recovery (b) Replace recovery (c) Time breakdown for STAR(p = 7)

Fig. 7. Experiment 1 - Impact of chunk size.

We write 1GB of data into each disk via NCFS using the

specified coding scheme (i.e., if there are n disks, then we

write a total of nGB). Then NCFS will stripe the data across

the disks. We disable one of the data disks in the storage

system to make it resemble a failed disk. We then perform

the recovery operation, that is, reading data from surviving

disks, reconstructing data, and writing data to a new disk that

we prepare. The recovery operation is done three times. We

repeat this for all data disks, and obtain the overall average.

For instance, referring to RDP (p = 5) in Figure 1 (see

Section II-B), there are four data disks. Thus, we run a total

of 4×3 recovery operations, and average the recovery times

over the 12 runs.

B. Results

Experiment 1: Impact of chunk size. We first evaluate how

different chunk sizes influence the recovery performance. We

consider different chunk sizes, ranging from 512KB to 8MB.

We focus on various coding schemes that can tolerate different

numbers of failures, including RDP(p = 7), STAR(p = 7), and

CRS(k = 7, m = 2).

Figures 7(a) and 7(b) show the recovery time (per MB) for

different chunk sizes using conventional and replace recover-

ies, respectively. We observe that as the chunk size increases,

the recovery time decreases. The reason is that given the same

amount of data, the number of accesses decreases for a larger

chunk size. The rate of decrease diminishes as the chunk size

further increases, so we expect that the recovery time stabilizes

for a large enough chunk size. As shown in Figures 7(a)

and 7(b), the decrease trend applies to both conventional and

replace recoveries. In fact, similar results are observed for all

coding schemes and we omitted the results here in the interest

of space.

As described in Section V-A, a recovery operation consists

of three main parts. In order to evaluate the contribution of

each part to the whole recovery performance, we provide a

performance breakdown for the recovery operation. Here we

take conventional recovery for STAR(p = 7) as an example.

Figure 7(c) shows the breakdown (i.e., reading data from

surviving disks, reconstructing lost data, and writing data to

a new disk) for STAR. We observe that the reconstruction

part contributes less than 10% in STAR, and we believe that

the XOR-based encoding/decoding operations in STAR have

minimal computational overhead. More importantly, the read

part contributes over 60% of the overall recovery time for all

chunk sizes. Note that if the number of disks increases, then

more data will be read from surviving disks (see Figure 3 in

Section IV), so it is expected that the read part will contribute

a larger proportion to the overall recovery time. To summarize,

the experiment results show that in order to reduce the overall

recovery time, it is critical to minimize the number of read

symbols, and hence the amount of data read from surviving

disks.

In the following experiments, we fix the chunk size to be

512KB, which been chosen by some existing storage systems

(e.g., OBFS [24]). Although the 512KB chunk size gives the

maximum (worst) recovery time in general, our main goal is

to compare the relative recovery performance of conventional

and replace recoveries, rather than their actual recovery per-

formance. Using a smaller chunk size enables us to divide

the data into more stripes, so that we can better evaluate the

recovery performance in SOR-based multi-threaded recovery

(see Experiment 3).

Experiment 2: Recovery time performance. We now com-

pare the recovery times of different XOR-based erasure codes

using both conventional and replace recoveries, assuming a

single recovery thread is used.

Figure 8 shows the results for various double-failure tol-

erant coding schemes, including RDP, EVENODD, X-Code,

CRS(k, m = 2). We note that replace recovery reduces the

recovery time of conventional recovery in all cases. As shown

in Experiment 1, the data read part contributes the largest

proportion of the recovery time. Since replace recovery aims to

reduce the amount of data being read from surviving disks, it

reduces the overall recovery time. Take RDP as an example.

Replace recovery reduces the recovery time respectively by

20.9% (p = 7), 23.9% (p = 11), 22.5% (p = 13), and

22.0% (p = 17). These empirical results also conform to

the previous theoretical analysis [26], which shows that the

optimal recovery can reduce the number of reads by at about

25%.

Figure 9 shows the results for various coding schemes

that tolerate any three or more disk failures. We observe

that for STAR, replace recovery reduces the recovery time

of conventional recovery by 25-29% (for p = 11, 13, and

17), which is consistent with our analysis in Section IV. For

CRS(k = 10, m = 6) and CRS(k = 12, m = 4), our

experimental results indicate 15.5% and 11.1% reductions of

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

p=7 p=11 p=13 p=17

R
e
c
o
v
e
ry

 t
im

e
 (

in
 s

e
c
o
n
d
s
)

p
e
r

M
B

Conventional Replace

0.209

0.239
0.225

0.220

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

p=7 p=11 p=13 p=17

R
e
c
o
v
e
ry

 t
im

e
 (

in
 s

e
c
o
n
d
s
)

p
e
r

M
B

Conventional Replace

0.146

0.185
0.211

0.183

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

p=7 p=11 p=13 p=17

R
e
c
o
v
e
ry

 t
im

e
 (

in
 s

e
c
o
n
d
s
)

p
e
r

M
B

Conventional Replace

0.118

0.234
0.232

0.245

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

(7,2) (11,2) (13,2) (17,2)

R
e
c
o
v
e
ry

 t
im

e
 (

in
 s

e
c
o
n
d
s
)

p
e
r

M
B

Conventional Replace

0.158

0.201
0.193

0.191

RDP EVENODD X-CODE CRS(k, m = 2)

Fig. 8. Experiment 2 - Comparisons between conventional and replace recoveries for different double-fault tolerant codes. We also indicate the percentage
decrease in recovery time of replace recovery over conventional recovery for each code.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

p=7 p=11 p=13 p=17

R
e

c
o

v
e

ry
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

p
e

r
M

B

Conventional Replace

0.144

0.286
0.258

0.262

(a) STAR

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

(7,3) (11,3) (13,3) (17,3)

R
e

c
o

v
e

ry
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

p
e

r
M

B

Conventional Replace

0.167

0.123
0.088

0.128

(b) CRS(k, m = 3)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

- (12,4) (10,6) -

R
e

c
o

v
e

ry
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

p
e

r
M

B

Conventional Replace

0.111
0.155

(c) CRS(k, m > 3)

Fig. 9. Experiment 2 - Comparisons between conventional and replace recoveries for different codes that tolerate any three or more disk failures. We also
indicate the percentage decrease in recovery time of replace recovery over conventional recovery for each code.

recovery time, respectively. It is important to note that the

parameters (k = 10, m = 6) have been used in a commercial

dispersed storage system [4].

Experiment 3: Parallel recovery. We now evaluate the re-

covery performance based on parallelization (see Section V-B).

We aim to show that replace recovery still outperforms con-

ventional recovery in parallelized implementation. Here, we

use RDP(p = 13), STAR(p = 13), and CRS(k = 12, m = 4)

as representatives for different degrees of fault tolerance.

We first evaluate the recovery performance of SOR-based

multi-threaded implementation, while we still use a single

recovery server. Figure 10 shows the recovery time versus

the number of recovery threads being deployed in a single

server. As the number of threads increases (with no more

than four threads), the recovery times for both conventional

and replace recoveries significantly decrease. For example, let

us we consider CRS(k = 12, m = 4). When four recovery

threads are used, the recovery times of conventional and

replace recoveries are reduced by 61% and 64%, respectively

when compared to the single-threaded case. However, when

the number of threads goes beyond four, the improvement is

marginal. The main reason is that the performance gain is

bounded by the number of CPU cores (recall that our recovery

server is equipped with a Quad-Core CPU).

More importantly, the results presented in Figure 10 show

the applicability of replace recovery in parallelized implemen-

tation. We observe that replace recovery uses less recovery

time than conventional recovery regardless of the number of

recovery threads being used. For example, in STAR, replace

recovery reduces the recovery time of conventional recovery

by 25.7-28.7%; in CRS, the recovery time reduction is 15.3-

18.6% when more than one recovery thread is used.

We now evaluate the recovery performance when we use

multiple recovery servers. Here, we deploy two executors in

two separate Quad-Core servers (as opposed to one Quad-

Core server in our prior experiments) for parallel recovery. We

configure each executor server to run four recovery threads

(i.e., we have a total of eight recovery threads). Also, we

deploy the dispatcher in one of the executor servers. In multi-

server recovery mode, the dispatcher splits the whole recovery

process into eight tasks (with a group of stripes). It first

dispatches one task to each of the two executers. When one of

the executors finishes its assigned task, the dispatcher assigns

that executor another task. We verify that in all runs of our

experiments, each of the two executers is always assigned four

tasks. This is expected, as the executors have the same number

of CPU cores.

We now measure the recovery time performance with this

parallel setup. Figure 11 compares the recovery times of four

recovery approaches: (i) single-server, multi-threaded (conven-

tional), (ii) single-server, multi-threaded (replace), and (iii)

multi-server (conventional), and (iv) multi-server (replace). We

observe that multi-server implementation reduces the recovery

time compared to the single-server implementation. For ex-

ample, for replace recovery, the multi-server implementation

reduces the recovery time by 24.4%, 22.0%, 19.82% for RDP,

STAR, and CRS, respectively when compared to the single-

server approach. In theory, we should expect 50% reduction,

but the coordination overhead between the dispatcher and

executors may degrade the actual performance. Nevertheless,

the multi-server approach can provide additional recovery time

improvements.

Note that even in multi-server implementation, we still

observe the improvements of replace recovery over conven-

tional recovery, as the recovery time is reduced by 25.3%,

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

1 2 4 6 8 10 12R
e

c
o

v
e

ry
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

p
e

r
M

B

Number of Threads

Conventional Replace

0.225

0.238

0.218 0.174 0.187 0.181 0.176

(a) RDP(p = 13)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

1 2 4 6 8 10 12R
e

c
o

v
e

ry
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

p
e

r
M

B

Number of Threads

Conventional Replace

0.258

0.263

0.262 0.287 0.263 0.263 0.257

(b) STAR(p = 13)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

1 2 4 6 8 10 12R
e

c
o

v
e

ry
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

p
e

r
M

B

Number of Threads

Conventional Replace

0.111

0.153

0.186
0.179 0.166 0.160 0.156

(c) CRS(k = 12, m = 4)

Fig. 10. Experiment 3 - Multi-threaded recovery based on SOR.

 0

 0.05

 0.1

 0.15

 0.2

RDP(p=13) STAR(p=13) CRS(12,4)

R
e

c
o

v
e

ry
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

p
e

r
M

B

Multi-threaded (Conventional)
Multi-threaded (Replace)
Multi-server (Conventional)
Multi-server (Replace)

0.218 0.262 0.186

0.253 0.280 0.215

Fig. 11. Experiment 3 - Parallel recovery. Each number denotes the overall
percentage decrease of recovery time compared to conventional recovery.

28.0%, 21.50% for RDP, STAR, and CRS, respectively. The

results also validate the applicability of replace recovery in

parallelized implementation.

VII. CONCLUSIONS

We address the problem of speeding up single-disk failure

recovery for large-scale storage systems that use XOR-based

erasure codes. Our objective is to minimize the amount of data,

or the number of symbols, being read from surviving disks

during the recovery operation. We address the problem from

both theoretical and practical perspectives. From a theoretical

perspective, we propose a replace recovery algorithm that

provides near-optimal recovery performance for STAR and

CRS codes, while the algorithm has a polynomial computa-

tional complexity. From a practical perspective, we design and

implement our replace recovery algorithm on top of a parallel

recovery architecture for scalable recovery performance. Ex-

periments on a networked storage system testbed show that

our replace recovery significantly reduces the recovery time

over conventional recovery in both single-threaded and parallel

recovery implementations.

APPENDIX

Proof of Theorem 4.1. We define a parity set as the set that

contains a parity symbol and the data symbols encoded into

that parity symbol. To recover a failed data disk in STAR, we

can select x parity sets of slope 0, y parity sets of slope −1,

and z parity sets of slope 1. We can select p−1 parity sets from

any combinations of x, y, and z, such that x+ y+ z = p− 1.

Thus, the number of symbols in the selected parity sets is

xp + (y + z)(p − 1), in which the number of overlapping

symbols is at most x(y + z) + yz. Thus, the number of read

symbols for recovery per stripe (denoted by R) will be:

R ≥ xp+ (y + z)(p− 1)− x(y + z)− yz

= (p− 1)p− (y + z)− x(y + z)− yz

= (p− 1)p− (y + z)− (p− 1− y − z)(y + z)

− yz

= (p− 1)p+ (y + z)2 − p(y + z)− yz

≥ (p− 1)p+
3

4
(y + z)2 − p(y + z)

=
3

4
[(y + z)2 −

4

3
p(y + z) +

4

9
p
2] + (p− 1)p

−
1

3
p
2

≥ (p− 1)p−
1

3
p
2

=
2

3
p
2 − p (symbols per stripe).

We can see that R is lower bounded by (2
3
p2−p) symbols.

ACKNOWLEDGMENT

This work is supported by the National Nature Science

Foundation of China under Grant No. 61073038 and the 111

Project under Grant No. B07033.

REFERENCES

[1] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and G. Voelker. Total Recall:
System Support for Automated Availability Management. In Proc. of

NSDI, 2004.

[2] M. Blaum, J. Brady, J. Bruck, and J. Menon. EVENODD: An Efficient
Scheme for Tolerating Double Disk Failures in RAID Architectures.
IEEE Trans. on Computers, 44(2):192–202, 1995.

[3] J. Blomer, M. Kalfane, R. Karp, M. Karpinski, M. Luby, and D. Zucker-
man. An XOR-Based Erasure-Resilient Coding Scheme. International

Computer Sciences Institute Technical Report ICSI TR-95-048, 1995.

[4] CLEVERSAFE. Cleversafe Dispersed Storage. http://www.cleversafe.
org/downloads, 2008.

[5] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, and
S. Sankar. Row-Diagonal Parity for Double Disk Failure Correction. In
Proc. of USENIX FAST, 2004.

[6] DataRecovery. http://www.datarecovery.com/.

[7] DataTech Labs. http://www.datatechlab.com/.

[8] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
Amazon’s Highly Available Key-Value Store. In Proc. of ACM SOSP,
2007.

[9] A. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, and K. Ramchandran.
Network coding for distributed storage systems. IEEE Trans. on

Information Theory, 56(9):4539–4551, 2010.

[10] S. Ghemawat, H. Gobioff, and S. Leung. The Google File System. In
Proc. of ACM SOSP, 2003.

[11] K. Greenan, X. Li, and J. Wylie. Flat XOR-Based Erasure Codes in
Storage Systems: Constructions, Efficient Recovery, and Tradeoffs. In
Proc. of IEEE MSST, 2010.

[12] M. Holland, G. Gibson, and D. Siewiorek. Architectures and Algorithms
for On-line Failure Recovery in Redundant Disk Arrays. Distributed and

Parallel Databases, 2(3):295–335, 1994.
[13] S. Hopkins and B. Coile. AoE (ATA over Ethernet). http://support.

coraid.com/documents/AoEr11.txt, Feb 2009.
[14] Y. Hu, C.-M. Yu, Y.-K. Li, P. P. C. Lee, and J. C. S. Lui. NCFS: On the

Practicality and Extensibility of a Network-Coding-Based Distributed
File System. In Proc. of NetCod, July 2011.

[15] C. Huang and L. Xu. STAR: An Efficient Coding Scheme for Correcting
Triple Storage Node Failures. IEEE Trans. on Computers, 57(7):889–
901, 2008.

[16] O. Khan, R. Burns, J. Plank, and C. Huang. In Search of I/O-Optimal
Recovery from Disk Failures. In Proc. of USENIX HotStorage, 2011.

[17] O. Khan, R. Burns, J. S. Plank, W. Pierce, and C. Huang. Rethinking
Erasure Codes for Cloud File Systems: Minimizing I/O for Recovery
and Degraded Reads. In Proc. of USENIX FAST, 2012.

[18] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, C. Wells, et al. Oceanstore:
An Architecture for Global-Scale Persistent Storage. In Proc. of ACM

ASPLOS, 2000.
[19] J. Li, S. Yang, and X. Wang. Building Parallel Regeneration Trees

in Distributed Storage Systems with Asymmetric Links. In Proc. of

CollaborateCom, pages 1–10. IEEE, 2010.
[20] J. Li, S. Yang, X. Wang, and B. Li. Tree-Structured Data Regeneration

in Distributed Storage Systems with Regenerating Codes. In Proc. of

IEEE INFOCOM, 2010.
[21] J. Plank, J. Luo, C. Schuman, L. Xu, and Z. Wilcox-O’Hearn. A Per-

formance Evaluation and Examination of Open-Source Erasure Coding
Libraries for Storage. In Proc. of USENIX FAST, pages 253–265, 2009.

[22] I. Reed and G. Solomon. Polynomial Codes over Certain Finite Fields.
Journal of the Society for Industrial and Applied Mathematics, 8(2):300–
304, 1960.

[23] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, 2009.

[24] F. Wang, S. Brandt, E. Miller, and D. Long. OBFS: A File System for
Object-based Storage Devices. In Proc. of IEEE MSST, pages 283–300.
Citeseer, 2004.

[25] Z. Wang, A. Dimakis, and J. Bruck. Rebuilding for Array Codes in
Distributed Storage Systems. In IEEE GLOBECOM Workshops, 2010.

[26] L. Xiang, Y. Xu, J. Lui, Q. Chang, Y. Pan, and R. Li. A Hybrid
Approach to Failed Disk Recovery Using RAID-6 Codes: Algorithms
and Performance Evaluation. ACM Trans. on Storage, 7(3):11, 2011.

[27] L. Xu and J. Bruck. X-code: MDS Array Codes with Optimal Encoding.
IEEE Trans. on Information Theory, 45(1):272–276, 1999.

[28] S. Xu, R. Li, P. Lee, Y. Zhu, L. Xiang, Y. Xu, and J. Lui. On the
Recovery of Single-node Failure for X-code-based Distributed Storage
Systems. Technical report, University of Science and Technology of
China, 2011.

[29] Y. Zhu, P. P. C. Lee, L. Xiang, Y. Xu, and L. Gao. A Cost-based
Heterogeneous Recovery Scheme for Distributed Storage Systems with
RAID-6 Codes. In Proc. of IEEE/IFIP DSN, 2012.

