
Efficient Routing for Cooperative Data Regeneration in
Heterogeneous Storage Networks

Zhirong Shen†, Patrick P. C. Lee‡, and Jiwu Shu†∗
†Department of Computer Science and Technology, Tsinghua University

‡Department of Computer Science and Engineering, The Chinese University of Hong Kong
zhirong.shen2601@gmail.com, pclee@cse.cuhk.edu.hk, shujw@tsinghua.edu.cn

∗Corresponding author: Jiwu Shu (shujw@tsinghua.edu.cn)

Abstract—Large-scale storage systems often face node failures
that lead to data loss. Cooperative regeneration has been exten-
sively studied to minimize the repair traffic of simultaneously
reconstructing the lost data of multiple failed nodes. However,
existing cooperative regeneration schemes assume that nodes are
homogeneous. They do not consider how to minimize the general
regenerating cost when taking into account node heterogeneity.

This paper presents the first systematic study on enhancing
conventional cooperation regeneration (CCR) schemes in a het-
erogeneous environment. We formulate cooperative regeneration
as a cost-based routing optimization model, and propose a new
cost-based heterogeneity-aware cooperative regeneration (HCR)
framework. The main novelty of HCR is to decompose CCR
schemes into two stages (i.e., expansion and aggregation) that can
be opportunistically carried out by different nodes depending on
their costs. To efficiently select the nodes for expansion execution
without exhaustive enumeration, we design two greedy algorithms
based on the hill-climbing technique. We also formulate the
routing problem in the aggregation stage as a Steiner Tree
Problem. Finally, we conduct extensive trace-driven simulations
and show that HCR can reduce up to 75.4% transmission time
of CCR. Also, we demonstrate that HCR remains robust even
when the heterogeneity information is not accurately measured.

I. INTRODUCTION

Large-scale distributed storage systems are widely deployed
nowadays either in wide-area storage systems (e.g., Cleversafe
[1]) or in peer-to-peer storage systems (e.g., PAST [6]). They
often build on off-the-shelf storage nodes in a decentralized
manner. Thus, node failures are prevalent due to various kinds
of unexpected errors, such as disk crashes or silent data
corruptions, and eventually the stored data is permanently lost.
To maintain data availability, a storage system maintains a
degree of data redundancy across the nodes, using replication
or erasure coding. Recently, regenerating codes [5] have been
proposed to reduce the repair traffic (i.e., the amount of data
transferred to regenerate lost data), so as to speed up failure
recovery and minimize the window of vulnerability.

Given the increasing scale of storage systems, repairing
multiple node failures becomes critical. First, node failures are
often correlated and co-occurring, such as in clustered storage
[7] or wide-area storage [18]. Also, to avoid unnecessary
repairs, lazy regeneration [2] may be adopted to recover
multiple node failures in batch only when the number of
accumulated failed nodes reaches a toleration limit. In view
of this, cooperative regeneration has been extensively studied
by previous work (e.g., [9], [10], [14], [21], [22]). It extends

regenerating codes [5] to allow the coded data to be exchanged
among the new replacement nodes (see Section II-B).

However, cooperative regeneration becomes complicated
in a heterogeneous environment where nodes have different
costs (e.g., monetary cost and transmission time) during re-
generation. Node heterogeneity is common in practical stor-
age systems due to regular upgrades of system components
[25] or variance in communication bandwidths [4]. On the
other hand, current studies on cooperative regeneration [9],
[13], [14], [21], [22] mainly focus on the star-structured
network topology with homogeneous connections, i.e., every
new replacement node needs to directly receive data from
the surviving nodes, and the new replacement nodes locally
regenerate the lost data. As we show in this paper, the perfor-
mance of cooperative regeneration remains unsatisfactory in a
heterogeneous environment.

In this paper, we present the first systematic study on
cooperative regeneration in heterogeneous distributed storage
systems, and propose a novel cost-based heterogeneity-aware
cooperative regeneration (HCR) framework. Specifically, we
formulate a routing optimization problem that aims to min-
imize the regeneration cost of cooperative regeneration in a
heterogeneous environment, where the regeneration cost can
be defined as the total time or monetary cost incurred for the
regeneration. The key novelty of HCR is to decompose the en-
coding operation for data regeneration on the new replacement
node, which is actually the multiplication between a vector and
a matrix, into two stages (i.e., expansion and aggregation),
such that the regeneration cost can be further cut down by
opportunistically executing these stages on appropriate nodes
based on their costs. Note that HCR is applicable for general
cooperative regeneration schemes.

To speed up the execution of HCR without exhaustive
enumeration, we propose two greedy algorithms based on the
hill-climbing (greedy) technique [20] to find the appropriate
nodes and perform the expansion stage, so as to timely
determine the near-optimal selection through iteratively re-
placing the currently chosen nodes with those that achieve less
regeneration cost. We further formulate the routing problem in
the aggregation stage as the Steiner Tree Problem [11], such
that the optimal aggregation routing can be solved by finding
the Steiner Minimal Tree [11].

Our contributions can be summarized as follows:

• We formulate a routing optimization problem for the
cost-based cooperative regeneration in a heterogeneous
scenario, and accordingly propose a new regeneration
framework that separates the procedure of existing coop-
erative regeneration into two stages, i.e., expansion and
aggregation.

• By considering node heterogeneity, we propose two
greedy algorithms that can timely select the near-optimal
solution to perform the expansion stage. We next prove
that the establishment of aggregation routing can be
formulated as the Steiner Tree Problem.

• We conduct a series of trace-driven simulations and
demonstrate that HCR reduces up to 75.4% of trans-
mission time of CCR. Compared with the brute-force
enumeration, HCR is much more efficient while achiev-
ing near optimality. Moreover, HCR remains robust in
regeneration cost reduction even when the information
of heterogeneity cannot be accurately measured.

The remainder of this paper proceeds as follows. In Sec-
tion II, we present the background of cooperative regeneration.
In Section III, we formulate our new regeneration framework.
In Section IV, we describe our HCR design. In Section V,
we present the evaluation results. Finally, in Section VI, we
conclude the paper.

II. BACKGROUND AND RELATED WORK

A. Basics

We consider a distributed storage system composed of mul-
tiple storage nodes. To maintain data availability in the pres-
ence of node failures, a storage system maintains a degree of
data redundancy across the nodes. Suppose that node failures
happen, a storage system then introduces replacement nodes
termed “newcomers” to the system. These newcomers then
receive data from other surviving nodes termed “providers”
and reconstruct the lost data.

Erasure coding is a redundancy approach that is well
adopted in today’s distributed storage systems. Specifically,
we configure two parameters n and k (where k < n) for
erasure coding. An (n, k) erasure coding scheme partitions a
file of size F into k equal-size chunks of size F

k each and
encodes them into n coded chunks, such that any k out of
n coded chunks suffices to reconstruct the original file. To
recover the lost data of a failed node, conventional erasure
coding sends the data with the same size of original file from
the providers to the newcomer for data reconstruction [5]. We
call this amount of data transferred for recovery to be “repair
traffic”.

To balance between the storage efficiency and repair traf-
fic, regenerating codes [5] allow the providers to have the
computational capability to encode the stored data and send
the encoded data, so that the repair traffic can be signifi-
cantly reduced. Specifically, each provider divides a chunk
into multiple pieces called “packets”. It then encodes the
packets, say by linear combinations, and sends the encoded
data for regeneration. Two specific optimal regenerating codes

are proposed: Minimum-Storage Regenerating (MSR) codes
[5], [23], which maintain the minimum storage redundancy
while minimizing the repair traffic, and Minimum-Bandwidth
Regenerating (MBR) codes [19], which allow more storage
redundancy so as to further minimize the repair traffic.

B. Cooperative Regeneration

Regenerating codes are first proposed for minimizing the
repair traffic for a single node failure. Given the prevalence of
multiple node failures [7], [18], a new regeneration method to
cope with multiple node failures is critical.

Hu et al. [9] investigate the regeneration for r (r ≥ 1)
nodes that fail concurrently. They propose a new regeneration
approach called cooperative regeneration, which allows the
newcomers to exchange the received information during the
regeneration. It significantly decreases the repair traffic than
the way that individually applies the traditional regeneration r
times. As a variant of cooperative regeneration, the pipelined
regeneration [13] reduces the number of involved nodes dur-
ing the regeneration. The problem of cooperative pipelined
regeneration scheme is also studied in [14]. Previous studies
mainly realize functional repair, i.e., the reconstructed data
may not be consistent with the lost data. Shum et al. [21]
propose an exact repair solution that regenerates exactly the
data lost. Li et al. [12] further develop a construction that
exactly regenerates the data on any two newcomers based
on exact MSR codes. Li et al. [17] design and implement a
framework called CORE, which extends existing regenerating
code constructions for single node failure recovery to support
exact repair for multiple failures. However, the above studies
do not consider node heterogeneity.

C. Heterogeneity

Heterogeneous regeneration takes into account the differ-
ences in the deployment environment, such as bandwidth,
storage space of nodes, and the network topology. Li et al. [15]
propose a tree-structured regeneration scheme to accelerate the
regeneration process by seeking the regeneration tree with the
maximum bounded bandwidth. However, this method may hurt
data integrity because of transmitting insufficient data [24].
Aiming at this shortcoming, Wang et al. [24] suggest retrieving
different amounts of data from different providers based on
their heterogeneous bandwidths, so as to minimize the regen-
eration time. Zhang et al. [26] investigate the application of
erasure codes in data centers with different network topologies,
and consider the reduction on the amount of transmitted data
during node reconstruction. However, previous studies still
pay limited attention to the cooperative regeneration in a
heterogeneous environment.

III. PROBLEM FORMULATION

In this section, we first define the system framework of
conventional cooperative regeneration (CCR), which covers
many existing schemes (e.g., [9], [13], [14], [21]), either for
the schemes (like [9]) with functional repair or the schemes
(like [21]) with exact repair. We then propose a new framework

TABLE I
MAIN NOTATION IN THIS PAPER.

Notation Descriptions
Defined in Section II

(n, k) erasure coding parameters (k < n)
Defined in Section III

s number of packets stored on a node
r number of newcomers in regeneration
d number of contacted providers in regeneration (k ≤ d ≤ n−r)
X set of possible providers {x1, x2, · · · , xn−r}
Y set of newcomers {y1, y2, · · · , yr}
βh,i retrieved packet from provider xh to newcomer yi (1 ≤ h ≤

n− r, 1 ≤ i ≤ r)
β′i,j exchanged packet from newcomer yi to newcomer yj (1 ≤

i 6= j ≤ r)
ti,j d × 1 column vector of newcomer yi to produce β′i,j (1 ≤

i 6= j ≤ r)
Mi (d+ r− 1)× s encoding matrix of newcomer yi (1 ≤ i ≤ r)
G modeled graph
V set of vertices in G, V = X ∪ Y
E set of edges in G
U set of all valid regeneration routings
w(vi, vj) weight function of an edge from vi to vj (vi, vj ∈ V)
ei a vector of all collected packets of newcomer yi (1 ≤ i ≤ r)
pi a vector of all retrieved packets of yi
qi a vector of all exchanged packets of yi

based on CCR for a heterogeneous environment and formulate
a routing optimization problem. Table I lists the main notation
used in this paper.

A. Framework of CCR

When the number of failed nodes reaches r in a system
with n nodes, cooperative regeneration begins by introducing
r newcomers for data regeneration. Without loss of generality,
we let the newcomers be Y = {y1, · · · , yr}, the possible
providers are X = {x1, · · · , xn−r}, and thus the nodes in
the new storage systems are V = {v1, · · · , vn} = X ∪ Y .

Preparation Step: Every file is first partitioned into k
chunks, which are then encoded into n chunks (n ≥ k) using
(n, k) erasure coding. Each chunk is further partitioned into
s packets and stored on a node, where the value of s and
other coefficients in this framework depend on the specific
regeneration scheme. For example, the scheme in [9] defines
s = n− k and d = n− r.

Retrieval Step: Suppose that there are r ≥ 1 node failures.
Each of the r newcomers retrieves packets from d providers
(d ≤ n − r). Without loss of generality, we assume every
newcomer contacts the providers {x1, · · · , xd} for packet
retrieval. Each requested provider then delivers a packet to
the newcomer by encoding the stored s packets through a
linear combination. We call this kind of packets retrieved
from providers as “retrieved packets” and let βi,j denote the
retrieved packet sent from the provider xi (1 ≤ i ≤ d) to the
newcomer yj (1 ≤ j ≤ r). After this stage, each newcomer
will obtain d retrieved packets.

Exchange Step: For every pair of newcomers yi and yj
(1 ≤ i 6= j ≤ r), if yi wants to exchange packets with yj ,
it will encode its d retrieved packets into one coded packet
by multiplying d retrieved packets with an exchanged vector
ti,j , where ti,j is a d × 1 column vector. We call this kind

X2

X1

X3

y1

X2

X1

X3 y2

The Regeneration of y1

The Regeneration of y2

11

1
1

1

1
1

1

(a) CCR Framework.

X3X2X1

y2y1

364260362585

30

10

5 12

(b) The Heterogeneity.

Fig. 1. The cost of CCR framework in a heterogeneous environment. The
arrow shows the number of transmitted packets. The total cost is 344.

of packets as “exchanged packets” and let β′i,j denote the
exchanged packet issued from yi to yj (1 ≤ i 6= j ≤ r). After
the exchange stage, each of the r newcomers receives (r− 1)
exchanged packets.

Encoding Step: Finally yi encodes all the collected (d +
r − 1) packets ei =

(
pi qi

)
, where pi = (β1,i · · · βd,i)

and qi = (β′1,i · · · β′i−1,i β′i+1,i · · · β′r,i), into s packets
by multiplying ei with the encoding matrix Mi whose size is
(d+ r − 1)× s.

B. Limitations of CCR

In a heterogeneous environment, the direct deployment of
CCR may cause a considerable amount of cost. Figure 1
illustrates an example, where the packet size is set as 1. Then
the cost of CCR framework in this scenario is 344.

The CCR framework has three rigid requirements that
restrict it to achieve further reduction on the regeneration cost.
First, newcomers should collect all the packets in preparation
for encoding operation. Second, the whole of Encoding Step
is forced to be fully executed on the newcomers. Third, CCR
ignores the heterogeneity among connections and the data is
delivered via the direct connection between the source and
destination nodes. Based on these restrictions, we thus pose
the following question: Can we explore the regeneration cost
reduction by relaxing these constraints?

C. Motivation

The framework of CCR indicates that the regenerated pack-
ets of each newcomer are generated by performing linear com-
binations to all the retrieved packets. Motivated by this finding,
we can decompose the linear combinations into several sub-
operations, select appropriate nodes for execution according
to the heterogeneity, and establish the regeneration routing,
such that the regeneration cost can be reduced. Holding this
motivation, we have the following toy example.
A Toy Example: Based on the heterogeneous environment
in Figure 1(b), suppose the system adopts the cooperative
regeneration scheme in [9], where n = 5, k = 3, r = 2,
d = 3, s = 2. A regeneration routing under the new framework
is shown in Figure 2, where the packet size is set as 1.

In this example, the retrieved packets of y1 (i.e., p1 =(
β1,1 β2,1 β3,1

)
) will be first sent to the node x3 and the

retrieved packets of y2 (i.e., p2 =
(
β1,2 β2,2 β3,2

)
) will be

delivered to x1 (shown in Figure 2(a)).
We next describe how to regenerate the data on y1 in

the new regeneration framework (shown in Figure 2(b)). The

X2

X1

X3 y2

y1

X2

X1

X3 y2

Expansion of Retrieved
Packets of y1

y1

Expansion of Retrieved
Packets of y2

(a) Expansion: the cost is
37. Each link will transmit
one packet.

X3X2X1

y2y1

364260362585

30

10

5 12

(b) Aggregation of y1:
the cost is 92. Each
link will transmit two
packets.

X3X2X1

y2y1

364260362585

30

10

5 12

(c) Aggregation of y2:
the cost is 92. Each
link will transmit two
packets.

Fig. 2. A toy example to regeneration y1 and y2 in the new regeneration
framework (n = 5, k = 3, r = 2, d = 3, s = 2).

definitions of symbols can be reviewed in Table I. Suppose
the encoding matrix M1 (with the size (d + r − 1) × s) and
the exchanged vector t2,1 (with the size d×1) are as follows.

M1 =

 m1,1 m1,2

...
...

m4,1 m4,2

 , t2,1 =

 t2,1,1
t2,1,2
t2,1,3

Stage 1: Each retrieved packets of y2 (i.e., βi,2 for 1 ≤ i ≤ 3)
can be “expanded” by performing the following calculation
according to the Exchanged Step and Encoding Step in
Section III-A.

βi,2 · t2,1,i ·
(
m4,1 m4,2

)
This expansion produces two packets (i.e., βi,2 · t2,1,i ·m4,1

and βi,2 · t2,1,i ·m4,2).
At the same time, each retrieved packets of y1 (i.e., βi,1 for

1 ≤ i ≤ 3) resided on x3 can also be expanded to two packets
by running

βi,1 ·
(
mi,1 mi,2

)
Stage 2: In this stage, one has to add the packets that are
relevant to the regenerated data on y1. The expanded packets
of βi,2 (1 ≤ i ≤ 3) on x1 will be aggregated as follows.

(

3∑
i=1

βi,2 · t2,1,i) ·
(
m4,1 m4,2

)
= p2 · t2,1 ·

(
m4,1 m4,2

)
= β′2,1 ·

(
m4,1 m4,2

)
This result is composed of two packets and will be sent to x3
for further aggregation (see Figure 2(b)). At the same time, the
expanded packets of βi,1 (1 ≤ i ≤ 3) on x3 will be aggregated
as follows.

3∑
i=1

(βi,1 ·
(
mi,1 mi,2

)
) = p1 ·

 m1,1 m1,2

...
...

m3,1 m3,2

When receiving β′2,1 ·

(
m4,1 m4,2

)
, we can regenerate the

data on y1 by running

p1 ·

 m1,1 m1,2

...
...

m3,1 m3,2

+ β′2,1 ·
(
m4,1 m4,2

)
= e1 ·M1

As described in the Encoding Step of Section III-A, e1 ·M1

is the data to be regenerated on y1, and the produced two
packets will then be delivered to y1. The regeneration of y2
is similar (shown in Figure 2(c)).

We then analyze the regeneration cost of this
routing established by the new regeneration framework.
The routing in Figure 2(a) involves the edges
{E(x1, x3), E(x2, x3), E(x2, x1), E(x3, x1)}, each of which
will deliver 1 packet. Therefore, the regeneration cost in this
stage is C1 = 37. In the routing in Figure 2(b) and Figure 2(c)
involves edges {E(x1, x3), E(x3, y1), E(x3, y2)}, where
E(x1, x3) transmits 4 packets and other two connections
deliver 2 packets. Thus, the regeneration cost in this stage is
C2 = 184.

Finally, the regeneration cost of y1 and y2 will be C1+C2 =
221, which is much less than that of CCR whose regeneration
cost is 344 as shown in Figure 1.

D. A New Cooperative Regeneration Framework

Motivated by the above example, we present a new cooper-
ative regeneration framework for a heterogeneous environment
in the theoretical way. The new framework is driven by two
observations.

Observation 1: Every regenerated packet in each newcomer
can be expressed as a linear combination of all the retrieved
packets of r newcomers.

In the Encoding Step of Section III-A, the newcomer yi
(1 ≤ i ≤ r) finally collects packets ei that is composed of
the retrieved packets pi and the exchanged packets qi, and
regenerates the data ei ·Mi, where pi =

(
β1,i · · · βd,i

)
,

qi =
(
β′1,i · · · β′i−1,i β′i+1,i · · · β′r,i

)
, and

Mi =

 mi,1

...
mi,d+r−1

 (1)

Notice that β′h,i = phth,i, where ph is the retrieved packets
of the newcomer yh (1 ≤ h 6= i ≤ r) and th,i is a d × 1
exchanged vector (see the Exchanged Step of Section III-A).
mi,j denotes the j-th row vector of Mi (1 ≤ j ≤ d+ r − 1).

We can divide the encoding matrix Mi into a d×s submatrix
Mi1 , and a (r− 1)× s submatrix Mi2 . Then the regenerated
packets on yi are

eiMi =
(
pi qi

)(Mi1

Mi2

)
= piMi1 + qiMi2

= piMi1 +
(
β′1,i · · · β′i−1,i β

′
i+1,i · · · β′r,i

)
Mi2

= piMi1 +
∑

1≤h<i

β′h,imi,d+h +
∑

i<h≤r

β′h,imi,d+h−1

= piMi1 +
∑

1≤h 6=i≤r

phZh,i

(2)

where Zh,i =

{
th,imi,d+h 1 ≤ h < i
th,imi,d+h−1 i < h ≤ r (3)

Like Mi1 , Zh,i is also a matrix whose size is d×s. Therefore,
Equation (2) indicates that the regenerated data eiMi on yi

is actually linear combinations of all newcomers’ retrieved
packets {p1, · · · ,pr} realized by the linear multiplications
between r vectors and r matrices. Specifically, to regenerate
the data on yi, the retrieved packets of yi (i.e., pi) should
multiply with Mi1 , while other newcomer’s retrieved packets
(i.e., ph for 1 ≤ h 6= i ≤ r) should multiply with Zh,i.

Observation 2: A linear multiplication between a vector
and a matrix can be partitioned into two sub-operations.

We take pi and Mi1 in Equation (2) as an example, where

pi =
(
β1,i · · · βd,i

)
,Mi1 =

 mi,1

...
mi,d

d×s

(4)

To calculate the multiplication pi ·Mi1 , we can first expand
every packet βj,i (1 ≤ j ≤ d) to a vector called “packet
vector” with s values by multiplying βj,i with every value
of mi,j , and produce βj,imi,j . We call this sub-operation as
“expansion”.

After the expansion, we can perform another sub-operation
called “aggregation” by adding the produced d vectors and
finally obtain

∑d
j=1 βj,imi,j = pi ·Mi1 .

Based on the above observations, we propose a novel cost-
based heterogeneity-aware cooperative regeneration (HCR)
framework, which has two key properties. First, we can
partition the linear multiplications performed on the newcomer
into the expansion and aggregation stages. Second, we can
select appropriate nodes to execute the two stages according
to the node heterogeneity, so as to decrease the regeneration
cost. The expansion and aggregation stages are described as
follows.

1) Expansion: This stage will let each retrieved packet of
r newcomers appoint a node (called “expansion node”) to
perform the expansion operation to assist the regenerations
of r newcomers. The delivery will always choose the shortest
path from the providers to the expansion nodes.

For a retrieved packet, it will be expanded in different
ways in different newcomers’ regenerations. To regenerate
yi (1 ≤ i ≤ r), its retrieved packets pi will be expanded
based on Mi1 (referred to Equation (2)). Once to regenerate
yj (1 ≤ j 6= i ≤ r), pi should be expanded based on Zi,j

(referred to Equation (2)). Therefore, the aggregation stage of
each newcomer is independent.

2) Aggregation: In this stage, each newcomer yi (1 ≤ i ≤ r)
will establish an aggregation routing connecting all the ex-
pansion nodes and regenerating the data on yi. A node is
treated to be farther from the newcomer if it should go through
more nodes along the routing to reach the newcomer. The
aggregation principle is that a node will receive the packet
vectors from its connected nodes that are much farther from
the newcomer, combine the received packet vectors, and send
the result to the next node that is closer to the newcomer along
the routing. For example, Figure 2(b) shows an aggregation
routing of the newcomer y1, where x1 is much farther from
y1 compared with x3 and it should send the packet vector to
x3 for packet aggregation. The final aggregation result of yi
will correctly output eiMi.

Summary: From above descriptions, we can observe that for
any scheme covered by the CCR framework, it can also be
realized under the new regeneration framework without any
modification. The difference lies in that the new regeneration
framework separately executes the Encoding Step based on
the node heterogeneity.

The new regeneration framework lets the intermediate node
along the regeneration routing to assist in the regeneration.
It is more scalable than CCR, in which all the packets are
processed by newcomers only. Besides, the new regeneration
model does not restrict the parallelism in the regeneration, as
the computations and data transfers on the nodes that assist in
the regeneration can be executed in a pipelined manner.

E. Optimization Regeneration Routing Model

Given the new regeneration framework, a subsequent ques-
tion is how to find the regeneration routing to achieve the min-
imal cost. Specifically, a regeneration routing should include
the selected providers, the selected expansion nodes, and the
aggregation routing. We can formulate this problem as follows.

Suppose V = {v1, · · · , vn} denotes the set of nodes and
E = {E(vi, vj)|vi, vj ∈ V} is the set of connections, where
E(vi, vj) is the connection between vi and vj . Then the system
topology is modeled as a complete connected undirected graph
G(V, E , w), where w is the weight function that maps E to a
set of nonnegative numbers. A weight value w(vi, vj) denotes
the cost to transmit a unit of data (e.g., byte) via E(vi, vj).

For a cooperative regeneration scheme (e.g., [9], [13], [21]),
suppose U(VU , EU , w, lU) is a regeneration routing under the
new framework, where VU and EU are the involved vertices
and edges in U , respectively. Let lU be a function that records
the size of delivered data through EU in U . For example,
lU (vi, vj) denotes the size of transmitted data along E(vi, vj)
in U . Our objective is to find the regeneration routing that
minimizes the cost for the cooperative regeneration schemes
deployed under the new framework. Specifically, for a coop-
erative regeneration scheme, if U denotes the set of all the
possible regeneration routings, then the optimization problem
can be formulated as follows:

Minimize CU =
∑

E(vi,vj)∈EU

w(vi, vj)lU (vi, vj), U ∈ U .

In general, the physical meaning of the regeneration cost de-
pends on how w(vi, vj) is defined. We show several examples
of CU under different interpretations of w(vi, vj).

• If w(vi, vj) = 1 for all vi, then CU denotes the number
of packets transmitted for regeneration.

• If w(vi, vj) is the inverse of the bandwidth between vi
and vj , then the regeneration cost CU denotes the total
amount of transmission time, which can be treated as the
total elapsed time for the system to serve the regeneration.

• If w(vi, vj) is the monetary cost to transmit a unit of data
along lU (vi, vj), then CU denotes the total monetary cost
for regeneration.

X3X2X1

y2y1

364260362585

30

10

5 12

(a)

X3X2X1

y2y1

364260362585

30

10

5 12

(b)

Fig. 3. Two Steiner Trees constructed over {y1, x1, x3}, where {x1, x3}
are expansion nodes and y1 is a newcomer.

We require the weight values to be periodically probed [4].
In this case, the weight values may not be always stable, which
adds requirements as follows.

1) Efficiency. This optimization model should be solved
timely before the weight values become outdated.

2) Insensitivity. The optimal routing should own the insen-
sitivity property, i.e., a slight deviation of the measured
weight values should not affect the optimality of the
selected routing in the real scenario.

Discussion: Although some of the links (resp. nodes) of
the optimal regeneration routing may be transmissive (resp.
computational) overload, the minimum regeneration cost (e.g.,
the minimum regeneration time or monetary cost) will be
achieved. Besides, we can also add an extra restricted con-
dition on the maximum load allowed on each link to avoid
the overload case.

IV. HETEROGENEOUS COOPERATIVE REGENERATION

Given that the new regeneration framework can significantly
decrease the regeneration cost, a remaining question is how to
efficiently solve the optimization model by selecting appropri-
ate nodes to execute the two stages. To answer this question,
we first map the minimal aggregation routing to the Steiner
Tree Problem, and then propose two greedy algorithms to
timely find the contacted providers and expansion nodes, so
as to obtain the routing with near-minimal regeneration cost.

A. Seeking of Minimal Aggregation Routing

In this section, we first discuss how to determine the
aggregation routing of each newcomer yi (1 ≤ i ≤ r) when
given the expansion nodes, which is the cornerstone in the
seeking of expansion nodes and contacted providers. Actually,
the seeking of aggregation routing is equivalent to the Steiner
Tree Problem. We begin with the definition of Steiner Tree.

Definition 1. (Steiner Tree [11]) Given an undirected graph
G = (V, E , w), any tree in G spanning over a given set of
nodes A ⊆ V is called a Steiner Tree for A and G.

Figure 3 shows two Steiner Trees spanning over
{y1, x1, x3}, where we assume {x1, x3} are expansion nodes,
and y1 is a newcomer. In Figure 3(a), the Steiner Tree is strictly
constructed over the given nodes {y1, x1, x3} and its weight
is 46. Another Steiner Tree shown in Figure 3(b) includes an
extra node x2 and its weight is 42.

Theorem 1. In the graph G = (V, E , w), suppose the collec-
tion of expansion nodes is N ⊆ V and yi (1 ≤ i ≤ r) is a
newcomer. Any Steiner Tree Ti for G and N ∪ {yi}, whose
root is yi and leaves are the expansion nodes, corresponds to
one aggregation routing in the regeneration of yi.

Proof. On one hand, given a Steiner Tree Ti whose root is
a newcomer yi (1 ≤ i ≤ r) and leaf nodes are expansion
nodes, we first prove that it establishes an aggregation routing
of yi. For every leaf node, as it is the expansion node, it should
aggregate the packet vectors it keeps for the regeneration of yi,
and forward the produced packet vector to its parent (e.g., x1
transmits the packet vector to x3 in Figure 3(a)). For any non-
leaf node except the root node yi, there are two possible cases.
If it is not the expansion node (e.g., x2 in Figure 3(b)), it then
simply aggregates the received packet vectors from its children
and forwards the result to its parent. If it is an expansion
node, it should aggregate the received packet vectors with
those it expands and forward the result to its parent (e.g.,
x3 receives packet vectors from x1, aggregates them with its
packet vectors, and sends the result to y1 in Figure 3(a)).
Finally, the newcomer yi (e.g., y1 in Figure 3) will receive the
aggregation of all the packet vectors on the expansion nodes.

On the other hand, given an aggregation routing Ti that
covers the involved expansion nodes and yi, we will prove that
it corresponds to a Steiner Tree whose root is the newcomer
yi (1 ≤ i ≤ r) and leaves are expansion nodes N . First, for
any two nodes in Ti, both of them connect the newcomer yi,
therefore Ti is connected. Second, each node will only send
the data to a node that is closer to the newcomer, therefore the
cycle will not exist in Ti. As a summary, Ti is a tree. For Ti,
the expansion nodes in Ti should be leaves, since other nodes
do not keep any packet vector for delivery. Meanwhile, yi is
the final destination of all the related packet vectors for its
regeneration. Therefore, for Ti, yi is the root and expansion
nodes are leaves. Since Ti should always include the expansion
nodes N and yi, Ti is a Steiner Tree for G and N ∪{yi}.

Based on Theorem 1, we can derive the Lemma 1.

Lemma 1. Given G = (V, E , w), the optimal aggregation
routing of yi (1 ≤ i ≤ r), is a Steiner Minimal Tree for
N∪{yi} and G, where N is the collection of expansion nodes.

Steiner Minimal Tree is a NP-Complete problem [11] and
can be approximately solved by using an existing greedy
algorithm. A typical greedy algorithm initializes the tree Ti
by first randomly selecting a node from N ∪{yi}. Every time
it selects another node from N ∪ {yi} which has the shortest
distance from the tree Ti, records the corresponding nodes
in the shortest path, and extracts related nodes to Ti from
N ∪{yi}. This procedure repeats until Ti covers all the nodes
of N ∪ {yi}. The complexity of this algorithm is O(|N |n2).

B. Selection of Expansion Nodes

After the seeking of minimal aggregation routing when the
expansion nodes are fixed, a subsequent question is how to

X2

X1

X3 y2

y1

X2

X1

X3 y2

Expansion of Retrieved
Packets of y1

Expansion of Retrieved
Packets of y2

y1

(a) Stage 1

X2

X1

X3 y2

y1

X2

X1

X3 y2

Expansion of Retrieved
Packets of y1

Expansion of Retrieved
Packets of y2

y1

(b) Stage 2

X2

X1

X3 y2

y1

X2

X1

X3 y2

Expansion of Retrieved
Packets of y1

Expansion of Retrieved
Packets of y2

y1

(c) Stage 3

Fig. 4. The selection of expansion nodes (r = 2 and d = 3). (a) y2 is the
common expansion node of all the retrieved packets. (b) The retrieved packets
of a newcomer will choose the same expansion node. (c) Different retrieved
packets can have different expansion nodes.

choose the appropriate expansion nodes when given the select-
ed providers, so as to achieve the minimal regeneration cost.
The straightforward enumeration tries all possible expansion
nodes for each retrieved packet and incurs ndr trials, which
greatly overwhelms the search. To efficiently provide an online
regeneration routing, we now propose a greedy algorithm as
shown in Algorithm 1. The algorithm is composed of three
stages, where the search space of stage i (i = 1, 2) is the subset
of stage i+1. The main idea is that this algorithm will work
in a smaller search space first. If there is no better routing,
the algorithm will jump to the next stage with a larger search
space for deep seeking. This design significantly reduces the
search effort and iteratively approaches the optimal routing.
Algorithm Details: In stage 1 (shown in Figure 4(a)), all the
rd retrieved packets select a random node as the common
expansion node. The cost g∗ (i.e., the minimal delivery cost in
expansion stage and the minimal aggregation cost to regenerate
r newcomers) under this selection is recorded (step 3).

In stage 2, the retrieved packets of a same newcomer will
select a common expansion node. For example, the retrieved
packets of y1 will select y2 as the common expansion node
as shown in Figure 4(b). At first, it repeatedly calculates
the regeneration cost, when setting each candidate in V to
act as the universal expansion node of retrieved packets that
belong to a common newcomer (step 6∼8). If this setting
owns less regeneration cost compared to the current minimal
cost g∗, then g∗ is updated and the setting is recorded (step
9∼10). Finally, the replacement with the minimal cost will be
performed and the iteration increases by 1 (step 11∼12).

Conversely, in stage 3, each retrieved packet can have its
own expansion node (see Figure 4(c)). During the expansion
node replacement of each retrieved packet, it always records
the replacement information that brings less cost and accord-
ingly updates the current minimal cost g∗ (step 16∼20). This
stage finally performs the replacement with the minimal cost
(step 21∼22). The last two stages will repeat until the iteration
is t1 or there is no cost saving for any potential replacement
(step 13, step 23).

C. Selection of Providers

After investigating the selection of expansion nodes when
the selected providers are given, in this section, we then
turn to the provider selection. For r newcomers, to choose d

Algorithm 1: Expansion Nodes Selection
Input: A connected graph G, the vertices V , the expected steps

t1, and the selected providers S.
1 set iteration=0
2 B Stage1: Retrieved packets have a common expansion

node.

3 randomly set a node as the expansion node of all rd retrieved
packets, calculate the cost g∗

4 B Stage2: Retrieved packets of the same newcomer have a

common expansion node.

5 set f = 0
6 for each newcomer do
7 for each candidate vc ∈ V = X ∪ Y do
8 compute the cost g if setting vc as the expansion node

of the retrieved packets of this newcomer
9 if g < g∗ then

10 f = 1, g∗ = g, record the setting

11 if f = 1 then
12 perform the recorded replacement with the cost g∗,

iteration++
13 repeat step 5 ∼ 12 until f = 0 or iteration=t1
14 B Stage3: Different retrieved packets have different

expansion nodes.

15 set f = 0
16 for each retrieved packet do
17 for each candidate vc ∈ V = X ∪ Y do
18 calculate the cost g once setting vc as the expansion

node of this retrieved packet
19 if g < g∗ then
20 f = 1, g∗ = g, record the setting

21 if f = 1 then
22 perform the setting with the cost g∗, iteration++

23 repeat step 15∼22 until f = 0 or iteration=t1

Algorithm 2: Provider Selection
Input: The connected graph G, and the expected steps t2.

1 set Si = {x1, · · · , xd} for each newcomer yi (1 ≤ i ≤ r)
2 set Ri = {xd+1, · · · , xn−r} for yi (1 ≤ i ≤ r)
3 set f = 0, step=0, record current cost g∗

4 for each newcomer yi do
5 for each provider xp ∈ Si do
6 for each candidate xc ∈ Ri do
7 calculate g if replacing xp with xc in Si
8 if g < g∗ then
9 g∗ = g, f = 1, record the replacement

10 if f = 1 then
11 find the replacement pair (x′p, x′c) that reaches g∗

12 Si = Si − x′p + x′c, Ri = Ri − x′c + x′p, step++

13 repeat steps 3∼12 until f = 0 or step=t2

providers (d ≤ n− r) from (n− r) surviving nodes for every
newcomer, the enumeration of selecting all possible providers
will incur up to

(
n−r
d

)r
tests. To improve the search efficiency,

we propose a greedy algorithm for provider selection in
Algorithm 2.
Algorithm Details: This algorithm starts with a primary set of
selected providers Si for each newcomer yi (1 ≤ i ≤ r) (step
1) and initializes the set of candidate providersRi (step 2). For

each newcomer yi, it repeatedly executes the replacement by
substituting every provider in Si with each candidate inRi and
calculates the cost (step 4∼7). If the replacement brings cost
saving over the optimal routing currently found (step 8), then
it records the replacement, updates the current minimal cost
g∗, and sets f to 1 (step 9). It then performs the replacement
that brings the minimal cost, and increases the iteration step
by 1 (step 10∼step 12). This process repeats until either there
is no saving by any replacement or the iteration step reaches
the expected value t2 (step 13). Note that the cost of given
providers {Si}ri=1 is the minimum regeneration cost when
{Si}ri=1 are selected by r newcomers. We can calculate it by
utilizing the selections of expansion nodes in Section IV-B and
the seeking of minimal aggregation routing in Section IV-A.

D. Complexity Analysis of Nodes Selection

We mainly analyze the computation complexity of provider
selection and expansion node selection. Firstly, for provider
selection, the number of replacements in Algorithm 2 is at
most t2r(n−r−d)d. For expansion nodes selection of r new-
comers, the number of replacements in Algorithm 1 is at most
t1rdn. Therefore, the computation complexity to select the
appropriate providers and expansion nodes with near-optimal
regeneration cost in HCR is less than O(t1t2r

2d2(n−r−d)n),
where r + d ≤ n. In real storage systems, r, d, and n
are usually assigned with small values [3], [7]. Meanwhile,
the selection of t1 and t2 can also be adjusted by system
administrators based on the preference on search time or
regeneration cost.

V. EVALUATION

A. Evaluation Setup

We compare the regeneration routings found by HCR with
both CCR and the Enumeration scheme. Compare with HCR,
CCR will randomly select the providers. Enumeration scheme
will test every possible trial of providers and expansion nodes
and select the optimal routing.

We first define the system configuration (n, d, r), where n
is the number of storage nodes, d denotes the number of
providers, and r is the number of newcomers. We choose
the scheme [21] for cooperative regeneration and the erasure
coding in [21] defines k = d < n − r and s = r in the
regeneration. We set t1 = t2 = 100 and run our simulations
on a server with a quad-core Intel Xeon X5472 CPU at 3GHz
and 8GB RAM. The operating system is Ubuntu 10.04.3 LTS.

Existing storage systems often prefer a small parameter of
n to avoid huge repair traffic. For example, HDFS-RAID [3]
adopts the (n = 10, k = 4) erasure coding scheme. Therefore,
our tests range n from 5 to 15.

Trace-driven Simulation: We run trace-driven simulations
under a PlanetLab-like environment constructed by uniformly
choosing bandwidth values between all node pairs from the
range [0.3Mbps, 120Mbps]. This simulation method is also
used in [15], [16]. The inverse of bandwidth values will be
served as the weights. Therefore the regeneration cost reflects
the transmission time of data in the regeneration. We also

utilize the clean trace app-cleaned.avt of “PlanetLab all pairs
ping” [8], which monitors the availability of hundreds of
nodes from Jan. 2004 to Jan. 2005. This trace records the
session availability of every node in the continuous form [up-
time,down-time]. The up-time/down-time is the moment
when a node is first detected to be up/down for an available
session. A node is more unstable if it has more up/down events.

Evaluation Method: We sort the nodes according to the
number of sessions and select n most unstable nodes that are
up at time 0, which indicates that the system is intact at time
0. As time goes by, the system will become unstable as some
nodes are down. We assume that once a node is detected
to be down, it will be regarded as failed as its stored data
becomes unavailable. Once the number of failed nodes reaches
r, a cooperative regeneration will be activated, which will
follow the routings established by HCR and CCR respectively.
The next r nodes (following the n most unstable nodes that
are selected) will replace the failed nodes, and serve as the
newcomers. We assume each node in the original storage
system stores data files with the size of 1GB. The test is run
for many times and the final results are averaged.

B. Evaluation Results

Experiment 1 (Ratio of Distinct Packets): We first com-
pare the number of distinct packets that are needed to be
transmitted during the regeneration between CCR and HCR,
where the number of distinct packets of CCR is normalized
to be 1.

Figure 5(a) first compares the ratio of distinct packets under
different number of providers, where n = 12 and r = 4. We
can find that HCR needs a bit more distinct packets compared
with CCR. However, the ratio will decrease when the number
of contacted providers increases. When d = 8, HCR needs to
transmit about 9.1% more distinct packets.

Figure 5(b) also compares the ratio of distinct packets under
different number of newcomers, where n = 14 and d = 6.
When r = 8, HCR only needs to transmit 7.7% extra distinct
packets compared with CCR. We can learn that HCR only
causes a bit more distinct packets compared with CCR, and
seeks the better regeneration routing with huge cost saving
according to the node heterogeneity (see Experiment 3). It can
be treated as a tradeoff between repair traffic and regeneration
cost.

Experiment 2 (Approximation Ratio and Search Time):
Figure 6 compares HCR with Enumeration on approximation
ratio and search time. We evaluate the “approximation ratio”
by the ratio of the transmission time of the optimal routing
found by HCR to that of the optimal one sought by Enumera-
tion. Therefore, the approximation ratio reflects the optimality
of the routing found by HCR. We see that the optimal routing
found by HCR achieves the same transmission time compared
with that obtained by Enumeration for most tested system
configurations (shown in Figure 6(a)). Even when the system
configuration is (n = 12, d = 2, r = 3), HCR only incurs an
extra of 4.0% transmission time over Enumeration.

(a) Under different number of
providers.

(b) Under different number of new-
comers.

Fig. 5. The comparison on number of distinct packets.

(5,2,3)
(6,2,3)

(7,2,3)
(8,2,3)

(9,2,3)
(10,2,3)

(11,2,3)
(12,2,3)

0.0

0.5

1.0

1.5

2.0

A
p

p
ro

xi
m

a
tio

n
 R

a
tio

System Configuration

 Lower Bound
 Approximation Ratio

(a) Approximation ratio.

(5,2,3)
(6,2,3)

(7,2,3)
(8,2,3)

(9,2,3)
(10,2,3)

(11,2,3)
(12,2,3)

0

5000

10000

15000

20000

25000

30000

S
e

a
rc

h
 T

im
e

 (
S

e
c)

System Configuration

 Enumeration
 HCR

(b) Search time.

Fig. 6. The comparison on approximation ratio and search time.

Meanwhile, HCR greatly reduces the required time to find
the optimal regeneration routing as shown in Figure 6(b). For
example, when the system configuration is (n = 12, k =
2, r = 3), Enumeration needs about 7.7 hours to identify the
optimal regeneration routing. It may be prohibitive especially
when the regeneration routing needs to be determined on-
line based on the current system loads. On the contrary, HCR
merely needs 4.4s under the same system configuration.

Experiment 3 (Transmission Time): We also compare
HCR with CCR on the transmission time under different
system parameters.

We first evaluate the transmission time under different
system scales as presented in Figure 7(a), where d = 5 and
r = 3. First, HCR significantly decreases the transmission
time compared with CCR. For example, under the system
configuration (n = 15, d = 5, r = 3), the transmission time of
HCR is 75.4% less than that of CCR. Second, with the system
scales up, the transmission time of HCR will decrease. This is
because there are more candidate providers to be selected in
HCR, the transmission time will then be potentially reduced.

We then investigate the transmission time under different
number of providers, where n = 12 and r = 4. The
evaluated results are shown in Figure 7(b). We can find that the
transmission time of both HCR and CCR will increase with
the number of providers. Meanwhile, HCR can still retain its
efficiency when the number of providers varies. The saving
on transmission time brought by HCR is 59.0% when d = 4,
and will reach 59.3% when d = 8.

We finally let n = 12 and d = 4, and measure the
transmission time when the number of newcomers varies. The

final results are illustrated in Figure 7(c). We can observe
that both HCR and CCR need more transmission time when
r increases. This is because more data are needed to be
transmitted and regenerated when there are more newcomers.

This comparison also indicates that HCR though needs a bit
more distinct packets to be transmitted, it can greatly reduce
the regeneration time by utilizing the node heterogeneity.

Experiment 4 (Connection Sensitivity Analysis): In most
practical scenarios, the weight values usually cannot be accu-
rately measured. Thus, it is critical to ensure that the optimal
routing we obtain under inaccurate weights is still close to the
optimal one under the actual weights. We call it insensitivity.
We first define the concept of deviation ratio:

deviation ratio =
the measured weight value

the real weight value
(5)

In this experiment, we will evaluate the insensitivity of
HCR when the deviation ratio is: (1) 1 (i.e., the weight is
accurately measured); (2) uniformly selected from the range
of [0.9, 1.1], [0.8, 1.2], and [0.7, 1.3], respectively. We conduct
the experiment under different system parameters in Figure 8.

Figure 8(a) first gives the insensitivity of HCR under
different system scales, where d = 5 and r = 3. It indicates
that HCR can retain its insensitivity where there are different
numbers of nodes in a system. For example, when the de-
viation ratio ranges from [0.7, 1.3], the found routing at the
inaccurate bandwidth will cause 5.0% more transmission time
compare with that obtained at the accurate bandwidth under
the system configuration (n = 12, d = 5, r = 3).

Figure 8(b) shows the insensitivity of HCR under different
number of providers, where n = 12 and r = 4. We can
observe that the optimal regeneration routing found by HCR
in the environment with inaccurate bandwidth will still close
to the optimal one found in real environment. Generally, the
environment with the larger deviation ratio will exert more
influence on the optimality of the found routing.

Figure 8(c) gives the insensitivity of HCR under different
number of newcomers, where n = 12 and d = 4. HCR owns
good insensitivity property when the deviation ratio is in the
range of both [0.9, 1, 1] and [0.8, 1.2]. When the deviation ratio
is [0.7, 1.3], the gap between the optimal routing found in this
inaccurate environment and that of real environment is still
very narrow. For example, when the system is (n = 12, d = 4,
r = 8), the optimal regeneration routing in this inaccurate
scenario merely needs 4.9% more transmission time.

VI. CONCLUSION

In this paper, we present HCR, an efficient routing that helps
the existing cooperative regeneration schemes to decrease the
regeneration cost in the heterogeneous environment. We first
analyze the procedure in CCR, and propose two stages to
explore the regeneration cost saving. We further design two
greedy algorithms to select the near-optimal execution nodes,
and prove that the aggregation routing in the newcomer’s
regeneration is equivalent to the construction of Steiner Tree.
Finally, through a series of trace-driven simulations, we justify
both the effectiveness and the insensitivity of HCR.

8 9 10 11 12 13 14 15
0

500

1000

1500

2000

2500

3000

Tr
an

sm
is

si
on

 T
im

e
(S

ec
)

Num. of Nodes

 CCR
 HCR

(a) Under different system scales.

4 5 6 7 8
0

500

1000

1500

2000

2500

3000
 CCR
 HCR

Tr
an

sm
is

si
on

 T
im

e
(S

ec
)

Num. of Providers

(b) Under different number of providers.

2 3 4 5 6 7 8
0

500

1000

1500

2000

2500

3000

3500

Tr
an

sm
is

si
on

 T
im

e
(S

ec
)

Num. of Newcomers

 CCR
 HCR

(c) Under different number of newcomers.

Fig. 7. The comparison on transmission time.

8 9 10 11 12 13 14 15
0

200

400

600

800

1000

1200

Tr
an

sm
is

si
on

 T
im

e
(S

ec
)

Num. of Nodes

 HCR-1
 HCR-[0.9,1.1]
 HCR-[0.8,1.2]
 HCR-[0.7,1.3]

(a) Under different system scales.

4 5 6 7 8
0

200

400

600

800

1000

1200

1400

 HCR-1
 HCR-[0.9,1.1]
 HCR-[0.8,1.2]
 HCR-[0.7,1.3]

Tr
an

sm
is

si
on

 T
im

e
(S

ec
)

Num. of Providers

(b) Under different number of providers.

2 3 4 5 6 7 8
0

200

400

600

800

1000

1200

1400 HCR-1
 HCR-[0.9,1.1]
 HCR-[0.8,1.2]
 HCR-[0.7,1.3]

Tr
an

sm
is

si
on

 T
im

e
(S

ec
)

Num. of Newcomers

(c) Under different number of newcomers.

Fig. 8. The comparison on sensitivity.

ACKNOWLEDGMENT

This work was supported in part by the National Nat-
ural Science Foundation of China (Grant No. 61232003,
61327902), the Beijing Municipal Science and Technology
Commission of China (Grant No. D151100000815003), the
State Key Laboratory of Highend Server and Storage Technol-
ogy (Grant No. 2014HSSA02), University Grants Committee
of Hong Kong (Grant No. AoE/E-02/08), and Research Grants
Council of Hong Kong (Grant No. ECS CUHK419212).

REFERENCES

[1] Cleversafe dispersed storage. http://www.cleversafe.org/downloads,
2008.

[2] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and G. M. Voelker. Total
recall: System support for automated availability management. In Proc.
of USENIX NSDI, 2004.

[3] D. Borthakur, R. Schmidt, R. Vadali, S. Chen, and P. Kling. Hdfs raid.
In Hadoop User Group Meeting, 2010.

[4] M. Chowdhury, S. Kandula, and I. Stoica. Leveraging endpoint flexi-
bility in data-intensive clusters. In Proc. of ACM SIGCOMM, 2013.

[5] A. Dimakis, P. Godfrey, M. Wainwright, and K. Ramchandran. Network
coding for distributed storage systems. In Proc. of INFOCOM, 2007.

[6] P. Druschel and A. Rowstron. Past: A large-scale, persistent peer-to-peer
storage utility. In Prof. of USENIX HotStorage, 2001.

[7] D. Ford, F. Labelle, F. Popovici, M. Stokely, V. Truong, L. Barroso,
C. Grimes, and S. Quinlan. Availability in globally distributed storage
systems. In Proc. of USENIX OSDI, 2010.

[8] B. Godfrey. Repository of availability traces, 2006.
[9] Y. Hu, Y. Xu, X. Wang, C. Zhan, and P. Li. Cooperative recovery of

distributed storage systems from multiple losses with network coding.
IEEE JSAC, 28(2):268–276, 2010.

[10] A.-M. Kermarrec, N. Le Scouarnec, and G. Straub. Repairing multiple
failures with coordinated and adaptive regenerating codes. In Proc. of
NetCod. IEEE, 2011.

[11] E. Keyder and H. Geffner. Trees of shortest paths vs. steiner trees:
Understanding and improving delete relaxation heuristics. In Proc. of
IJCAI, 2009.

[12] J. Li and B. Li. Cooperative repair with minimum-storage regenerating
codes for distributed storage. In Proc. of IEEE INFOCOM, 2014.

[13] J. Li, X. Wang, and B. Li. Pipelined regeneration with regenerating
codes for distributed storage systems. In Proc. of NetCod, 2011.

[14] J. Li, X. Wang, and B. Li. Cooperative pipelined regeneration in
distributed storage systems. In Proc. of IEEE INFOCOM, 2013.

[15] J. Li, S. Yang, X. Wang, and B. Li. Tree-structured data regeneration in
distributed storage systems with regenerating codes. In Proc. of IEEE
INFOCOM, 2010.

[16] J. Li, S. Yang, X. Wang, X. Xue, and B. Li. Tree-structured data
regeneration with network coding in distributed storage systems. In
Proc. of IWQoS, 2009.

[17] R. Li, J. Lin, and P. P. C. Lee. Enabling concurrent failure recovery
for regenerating-coding-based storage systems: From theory to practice.
IEEE Trans. Computers, 64(7):1898–1911, 2015.

[18] S. Nath, H. Yu, P. Gibbons, and S. Seshan. Subtleties in tolerating
correlated failures in wide-area storage systems. In Proc. of NSDI, 2006.

[19] K. Rashmi, N. Shah, and P. Kumar. Optimal exact-regenerating codes
for distributed storage at the msr and mbr points via a product-matrix
construction. IEEE Trans. Inf. Theory, 2011.

[20] S. Russell and P. Norvig. Artificial intelligence: A modern approach.
2009.

[21] K. Shum. Cooperative regenerating codes for distributed storage
systems. arXiv preprint arXiv:1101.5257, 2011.

[22] K. Shum and Y. Hu. Existence of minimum-repair-bandwidth coopera-
tive regenerating codes. In Proc. of NetCod. IEEE, 2011.

[23] C. Suh and K. Ramchandran. Exact-repair mds codes for distributed
storage using interference alignment. In Proc. of ISIT, 2010.

[24] Y. Wang, D. Wei, X. Yin, and X. Wang. Heterogeneity-aware data
regeneration in distributed storage systems. In Proc. of IEEE INFOCOM,
2014.

[25] M. Zaharia, A. Konwinski, A. Joseph, R. Katz, and I. Stoica. Improving
mapreduce performance in heterogeneous environments. In Proc. of
USENIX OSDI, 2008.

[26] J. Zhang, X. Liao, S. Li, Y. Hua, X. Liu, and B. Lin. Aggrecode:
Constructing route intersection for data reconstruction in erasure coded
storage. In Proc. of IEEE INFOCOM, 2014.

