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Abstract—WeChat is one of the most popular mobile messaging
applications worldwide. However, due to the proprietary nature
of WeChat, its characteristics and performance impact on cellular
networks remain largely unexplored. This paper presents the first
measurement study that dissects real-world WeChat traffic in a
cellular network. We build ChatDissect, a protocol inference tool
that infers the unique protocol formats and semantics of WeChat
in a fine-grained manner. ChatDissect enables us to distinguish
WeChat and its specific tasks from general network traffic traces.
As a case study, we collect a real-world dataset from a commercial
3G cellular network in China and use ChatDissect to identify
around 150K WeChat users with 16GB of WeChat payloads.
We unveil the signatures, server architecture, and workflows
of WeChat, and further analyze the activities of the extracted
WeChat traffic.

I. INTRODUCTION

WeChat, developed by Tencent Holdings based in China,

is one of the most popular mobile messaging applications

worldwide. It includes various functionalities such as instant

messaging, real-time chatting, and social networking, and

supports various message types such as text, voices, pictures,

and videos. By August 2014, WeChat reportedly has around

438.2 million active users worldwide, including 100 million

users outside China, and accounts for almost 50% of Internet

resources among social networks in China [4].

The popularity and diversity of WeChat raise a lot of

open questions regarding user activities, service usage, and

traffic patterns. However, only few studies (see Section VII)

have addressed these questions, and they are limited in scope

and scale. Characterizing WeChat is challenging due to its

proprietary nature and the lack of its protocol specifications.

Thus, it is complicated to distinguish WeChat from network

traffic that comprises a mix of applications, not to mention to

classify the specific functionalities inside WeChat.

In view of this, we leverage protocol inference to infer both

formats and semantics of WeChat protocols, with a primary

objective to perform fine-grained dissection of WeChat. By

fine-grained, we mean that we can (i) distinguish WeChat traf-

fic from network traffic traces, (ii) classify different WeChat

functionalities, (iii) unveil WeChat workflows and its architec-

ture, and (iv) characterize WeChat traffic dynamics.

To this end, we present the first measurement study of

WeChat traffic in a cellular network. We make the following

contributions:

• We design ChatDissect, a protocol inference tool that

performs fine-grained dissection of WeChat. ChatDissect

builds on existing protocol inference techniques, such

as the longest common substring technique (e.g. [15],

[18]) and the Voting Experts algorithm [6], to extract the

signatures of WeChat that specify both the formats and

semantics of WeChat protocols.

• As a case study, we collect real-world traces from a 3G

operational cellular network in a city of China. We use

ChatDissect to identify around 150K WeChat users with

16GB of WeChat traffic.

• We unveil the signatures, server architecture, and work-

flows of WeChat. Such information, to our knowledge,

has not been explored before.

• We further analyze the user and service/task activities of

WeChat traffic, and present the key observations.

The benefits of our measurement study are two-fold. First,

for cellular network operators, due to the ever-increasing

usage of mobile messaging applications, understanding the

traffic behaviors of WeChat, or mobile messaging applications

in general, is critical for better resource provisioning and

network planning. Second, for WeChat and mobile messaging

application developers, they can use the measurement results

to enhance their applications for better user experience.

The rest of the paper proceeds as follows. Section II presents

an overview of WeChat via controlled experiments. Section III

presents the ChatDissect design. Section IV describes our real-

world dataset that drives our evaluation. Section V analyzes

the WeChat protocol derived from ChatDissect, and presents

its signatures, architecture, and workflows. Section VI charac-

terizes the WeChat traffic in our traces. Section VII reviews

related work, and Section VIII concludes this paper.

II. A GLANCE AT WECHAT

We provide a high-level overview of WeChat from a mea-

surement perspective. We use controlled experiments to extract

clean WeChat traffic, from which we identify the key WeChat

characteristics that guide our later measurement study.

A. WeChat Services

WeChat supports different types of functionalities. We call

the operation of each functionality a task, and collectively call

the tasks of the same type a service. Our measurement study

focuses on the following five services:

• Instant messaging: It relays messages among users in

store-and-forward mode. Examples of instant messages

include texts, voices, pictures, and videos.

• Real-time chatting: It supports real-time communication

of voices and videos among users. It can operate in either

full-duplex VoIP mode or half-duplex walkie-talkie mode.978-1-4673-7113-1/15/$31.00 ©2015 IEEE



• Social networking: It forms a social network among

users. It implements a sharing platform called Moments,

in which users can post texts, upload photos, and share

Internet resources with their friends. Users can also

comment or click “like” on the posts.

• Media access: It enables users to access various multime-

dia resources, which can be WeChat-specific (e.g., sub-

scription articles published by WeChat users) or shared

from Internet (e.g., a video from a third-party site).

• System: The above four services are triggered by users.

The WeChat system itself also generates messages, such

as heartbeats and querying news.

WeChat also supports other services, such as friend finding,

payments, and games. However, such services only account

for a small proportion of traffic in our measurement study

(see Section VI), so we do not consider them in this work.

B. Controlled Experiments

We conduct controlled experiments to collect clean WeChat

traffic, which serves as ground truths for our study.

1) Methodologies: We first overview the setup of our

controlled experiments. We deploy two smartphones, one

Android and one iPhone, and connect both smartphones to the

Internet via wireless. We collect traffic traces generated by the

smartphones and parse them using Wireshark [19]. We install a

WeChat client on each smartphone and perform different tasks

of the four user-triggered services described in Section II-A.

We repeat each operation multiple times. We test two WeChat

client versions: 4.5 and 5.0, which are released in February

2013 and August 2013, respectively (at the time of the writing,

the latest WeChat version is 6.1).

To reduce noise, we disable all foreground applications

on the smartphones. However, the smartphones still gener-

ate background traffic (e.g., iOS periodically probes Apple

servers), which cannot be easily disabled. Thus, we perform

post-processing on the captured traces to filter out any un-

wanted traffic. Specifically, we manually look up the host-

names of the server IP addresses in the traces. We eliminate

any packet from the traces if its server IP address does not

belong to WeChat.

After filtering, we obtain a total of 22K IP packets with

12MB of WeChat traffic. We see both TCP and UDP packets

at the transport layer. We also identify by Wireshark that some

TCP packets are HTTP and some UDP packets are DNS at

the application layer, while the application protocols of the

remaining packets are unknown. Thus, we categorize WeChat

traffic into four flow types: W-HTTP, W-DNS, W-TCP, and W-

UDP, which correspond to HTTP packets, DNS packets, non-

HTTP TCP packets, and non-DNS UDP packets, respectively.

We group packets into flows by 5-tuples (i.e.,

source/destination IP addresses, source/destination ports,

and protocol). We do not distinguish the direction of packets,

but instead aggregate the uplink (i.e., phone-to-Internet) and

downlink (i.e., Internet-to-phone) traffic with the same five

tuples into one flow. We further determine the start and end

points of each flow. For W-HTTP and W-TCP, we use SYN

TABLE I
FLOW TYPES OF OPERATIONS IN CONTROLLED EXPERIMENTS.

Service Task W-HTTP W-UDP W-TCP

Send/receive texts
√

Instant Send/receive pictures
√ √

Messaging Send/receive voices
√

Send/receive videos
√

Real-time
VoIP video

√ √ √

Chatting
VoIP voice

√ √ √

Walkie-talkie
√ √ √

Refresh

View a post

View a user

Social Post texts

Networking Post photos
√ √

Delete posts

Comment a post

Click “like”

Media access Media access
√ √

System Not user-generated
√

1 Some tasks are not included in the controlled experiments. How-
ever, our later analysis addresses a more extensive set of WeChat
tasks through careful signature extraction.

and FIN/RST to determine the start and end points of a flow,

respectively. Also, if the interval between two TCP packets

of the same five tuples exceeds a TCP timeout (30 minutes

in this work), we treat them as two individual flows. For

W-DNS and W-UDP, we employ a UDP timeout (1 minute

in this work) to separate flows. We call a flow active if it has

started but not yet terminated.

2) Results: Table I details the tasks of different services,

and describes the flow types observed in each task. We ignore

W-DNS flows, whose occurrences depend on whether the DNS

mappings have been cached. We provide some preliminary

findings here.

Flow types vary: Tasks are implemented with different flow

types. Also, the same task may be implemented with more than

one flow type.

W-HTTP flows are short-term: W-HTTP flows are non-

persistent and most of them have short durations less than 10s.

We can easily determine the task of each W-HTTP flow by

examining the HTTP request and response of the same 5-tuple.

W-TCP flows encapsulate multiple tasks: We find that

multiple user-triggered tasks are encapsulated in a single

persistent W-TCP flow. Thus, one challenge of our analysis is

to decompose a W-TCP flow into different tasks. Payloads in

W-TCP flows are encrypted, although we expect that protocol

information is embedded in the first few bytes of a subset of

packets [13].

System messages are found in W-TCP flows: In addition

to user-generated traffic, we observe many traffic spikes within

a W-TCP flow. These spikes are likely system tasks, such as

heartbeats. A challenge is to separate the user-generated and

system-generated traffic from a W-TCP flow.

Real-time chatting uses W-UDP flows: All W-UDP traffic

that we capture is due to real-time chatting. We find that each

real-time chat starts with a number of small-size and short-

term W-UDP flows to multiple servers, and later uses one or

two long-term W-UDP flows for chatting.



Fig. 1. ChatDissect architecture.

III. CHATDISSECT DESIGN

We present ChatDissect, which specifically aims for fine-

grained dissection of WeChat. Figure 1 outlines the ChatDis-

sect architecture. Since WeChat is proprietary and its protocol

specification is unknown to the public, the core component of

ChatDissect is to analyze WeChat packet payloads and extract

signatures that characterize the formats and semantics of the

WeChat protocol messages. We assume that a packet payload

is formatted as a sequence of fields, each of which is associated

with a set of values that describe the semantics of the field.

We define a signature as a field and its values.

ChatDissect uses the clean WeChat traffic captured from

controlled experiments (see Section II-B) as the training set

to extract signatures. Using the signatures as inputs, it parses

traffic traces to distinguish WeChat traffic and classify WeChat

tasks. To improve dissection accuracy, ChatDissect feedbacks

the classification results to extract additional signatures that

are not included in our controlled experiments but are found

in traffic traces.

ChatDissect leverages and extends existing protocol infer-

ence techniques specifically for our WeChat analysis. We point

out that our contribution is not to propose new methodologies,

but instead we focus on how we properly combine existing

methodologies in ChatDissect and make fine-grained dissec-

tion of WeChat possible.

The current ChatDissect design has the following limita-

tions. Although ChatDissect can parse network traffic and

perform WeChat dissection in real time, its signature extraction

involves manual validation (see Section III-A4) as in many

signature-based intrusion detection systems. Nevertheless, we

expect that we only need to extract signatures infrequently

(e.g., when WeChat upgrades its software). Also, ChatDissect

operates at the byte-level granularity, and cannot distinguish

bit-level fields. We validate that ChatDissect currently works

effectively with WeChat versions 4.5 and 5.0, but it needs to

be enhanced if the later version of WeChat uses bit-level fields.

A. Extracting Signatures

Recall that WeChat traffic comprises four flow types: W-

DNS, W-HTTP, W-UDP, and W-TCP. Our goal is to extract

signatures for each of the flow types. Since the flow types are

inherently different, it is difficult to find a unified methodology

to extract signatures for all flow types. Thus, ChatDissect is

designed to extract signatures with two approaches. First, for

TABLE II
PARAMETER SETTINGS IN CHATDISSECT.

Parameter Description Value

LCS for Field Keyword Extraction

Minimum length of an extracted LCS 4

Minimum coverage of an extracted LCS 5%

VE Algorithm for Field Segmentation

Length of sliding window 10

Minimum votes of a field boundary 6

Maximum length of a segmented field 4

Minimum coverage threshold of a segmentation result 10%

Heuristics for Field Type Inference

Maximum consecutive occurrences for a request/response field 3

Minimum correlation coefficient for a length field 0.99

Maximum relative entropy of the distribution of opcode values 0.5

Heuristics for Opcode Correlation

Maximum CV of inter-arrival time for a period task 0.2

Maximum time gap in which a task triggers an opcode (second) 1

Minimum ratio to determine a triggering 100

W-DNS and W-HTTP flows, we directly inspect the DNS and

HTTP fields, respectively. Second, for W-UDP and W-TCP

flows, we conduct protocol inference through the following

three steps: (i) segmenting payloads into candidate fields, (ii)

categorizing candidate fields into different field types, and (iii)

identifying opcode fields (i.e., the fields that identify WeChat

tasks) and correlating their field values with specific WeChat

tasks. We describe the first approach in Section III-A1, and

the second approach in Sections III-A2 to III-A4.

ChatDissect uses various threshold parameters, as summa-

rized in Table II. We select the parameters based on either the

default values in prior work or our experience.

1) Direct Field Inspection: ChatDissect extracts signatures

for W-DNS and W-HTTP flows based on the DNS and HTTP

documentations, respectively. One challenge is that both DNS

and HTTP have an enormous number of fields, each of which

can have diversified values. Thus, ChatDissect only examines

the “representative” fields of DNS and HTTP that can uniquely

identify W-DNS and W-HTTP flows, respectively, and extract

keywords that “best” represent the field values.

Field selection: Selecting the representative fields for

WeChat requires domain knowledge. Here, we consider a few

fields that we believe can differentiate W-DNS and W-HTTP

flows. Specifically, we make two observations for W-DNS

and W-HTTP flows. First, they communicate with WeChat

servers, and the hostnames of WeChat servers are included in

payloads. Second, W-HTTP flows originate from the WeChat

client, whose information is included in the User-Agent field.

Thus, we select the following representative fields: for DNS,

we examine the queried hostnames in DNS requests; for HTTP,

we examine five fields including Host, Referer, User-agent,

Method, and URL in HTTP requests. The first three fields of

HTTP are used for differentiating W-HTTP flows, while the

fields Method and URL (which appear in the request line) are

later used for classifying WeChat tasks.

Keyword extraction: Given the diversity of field values,

we extract keywords that capture the important information of

the values of the selected fields. For a field with only a few



possible values (e.g., the Method field in HTTP), each of the

observed values is treated as a keyword; for other fields, we

extract the keywords based on the longest common substring

(LCS) approach, which has been used extensively in traffic

classification (e.g., [15], [18]). The LCS approach identifies

the best possible substring (a contiguous set of bytes) that

characterizes most flows of a protocol. Specifically, we extract

the LCS for every pair of observed strings. For example, we

observe that the hostnames of WeChat servers differ slightly

across geographic locations (e.g., “hkshort.weixin.qq.com”

and “shshort.weixin.qq.com” for Hong Kong and Shanghai

servers, respectively). Using the LCS approach, we obtain

“short.weixin.qq.com”. The LCS approach is often configured

by two thresholds to select the most important LCSes [18]: (i)

the selected LCS should have a minimum length, and (ii) the

selected LCS should cover a minimum proportion of observed

strings. We set the thresholds as 4 bytes and 5%, respectively.

2) Payload Segmentation: Given the lack of documenta-

tions, we cannot directly inspect the fields of W-UDP and

W-TCP flows. Instead, we infer the fields by analyzing the

payload characteristics. From our controlled experiments (see

Section II-B), we observe that the payloads of W-UDP and

W-TCP flows are encrypted, but we expect that protocol

information is embedded in the first few bytes of payloads

[13]. Thus, we choose to extract signatures from the first 16

bytes of every packet of each of the W-UDP and W-TCP flows.

We first partition each packet payload into different portions

of contiguous bytes, such that each portion represents a field

of WeChat with a high probability. ChatDissect extends one of

the state-of-the-art payload segmentation techniques ProWord

[21] for this purpose. ProWord adopts an unsupervised Voting

Experts (VE) algorithm [6] to identify field boundaries based

on statistical distributions. We further extend the VE algorithm

of ProWord specifically for WeChat.

Basic VE algorithm of ProWord: We first describe the

basic VE algorithm used by ProWord. The VE algorithm

applies a sliding window of length L bytes to a packet payload.

In each L-byte sliding window, it computes two entropies: (i)

word internal entropy, which defines the entropy of words in

the window, and (ii) word boundary entropy, which defines

the entropy of the boundary at the end of words in the

window. The VE algorithm then votes for two positions in each

sliding window as candidate field boundaries, such that the

string between the boundaries has a low word internal entropy

value (i.e., it is likely a complete field) and the boundaries

have high word boundary entropy values (i.e., they are likely

boundaries). It finally selects the positions as the output field

boundaries that (i) have more votes than adjacent positions

and (ii) have at least a threshold number of votes. However,

the basic VE algorithm is limited in two aspects for WeChat

traffic. We elaborate the issues and explain how we extend the

basic VE algorithm in the context of WeChat.

(i) Iterative VE algorithm: One of our observations is that

the fields of WeChat often contain a small number of bytes,

and some of them are even single bytes. We find that the

basic VE algorithm is too conservative and produces too few

field boundaries in WeChat payloads, leading to long fields.

For example, if we choose the default values of ProWord [21]

by setting L = 10 and the minimum vote threshold as 6,

then more than 50% of W-TCP payloads have only one field

boundary. We also test other parameters and see similar results.

To address this problem, ChatDissect iteratively executes the

VE algorithm to segment a long field until either all fields

are shorter than a maximum field length threshold or any field

cannot be further partitioned. In our case, we set the maximum

field length threshold as 4 bytes.

(ii) Packet defragmentation: Another of our observations

is that WeChat fragments a large W-TCP flow into small

packets in the application layer. The protocol information is

only included in the first few bytes of a subset of packets (we

call them protocol packets), while the remaining packets (we

call them non-protocol packets) have no protocol information.

The basic VE algorithm only performs payload segmentation,

but cannot separate protocol and non-protocol packets. Thus,

we need to address the application-layer fragmentation issue.

Note that the issue only appears in W-TCP flows, but not in

W-UDP flows.

To distinguish between protocol and non-protocol packets,

ChatDissect categorizes packets by how they are segmented

by the VE algorithm. Packets with the identical segmentation

result are put into the same group. If the proportion of packets

of a group is larger than a minimum coverage threshold (which

we set as 10%), then we treat all packets in the class as

protocol packets; otherwise, the packets are treated as non-

protocol packets.

ChatDissect then assembles non-protocol packets with the

corresponding protocol packets. It first sorts the packets of

each W-TCP flow by TCP sequence numbers and removes all

retransmitted packets. Then it concatenates each non-protocol

packet with the preceding protocol packet with the same

direction (uplink or downlink). For each protocol packet and

the following non-protocol packets that belong to the same

W-TCP flow, we treat them collectively as a single flow

(i.e., a long W-TCP flow can be further decomposed into

multiple flows). Later, we identify the WeChat task for each

decomposed flow.

3) Field Type Inference: Our previous payload segmenta-

tion step identifies protocol packets and divides each of their

payloads into fields. We now examine the values of the fields

and categorize them into different field types. In this work,

we are interested in five field types of WeChat. (i) Constant:

it takes a constant value and often represents a magic number

in the protocol; (ii) Sequence number: it keeps packet ordering

within a flow; (iii) Request/response: it indicates if the packet

is a request or response. Note that a request may be originated

from a server, such as news feeding; (iv) Length: it refers to

the number of bytes of all packets in a decomposed flow; and

(v) Opcode: it identifies a specific WeChat task.

We enumerate all fields in the protocol packets. For each

field, we check it against different heuristics (in the order

we present below) and attempt to assign each field with one

of the above five types. (i) For the constant field, we check



if the observed values are identical among all packets. (ii)

For the sequence number field, we check if the observed

values are monotonic increasing. (iii) For the request/response

field, we check if the field has exactly two values and if any

consecutive occurrences of either value have length no larger

than a maximum length threshold (which we set to 3). (iv)

For the length field, we compute the correlation coefficient

of the field values and the number of bytes, and check if

the coefficient is larger than a threshold (which we set to

0.99). (v) Finally, we identify the opcode field, which often

appears near the beginning of a payload, and has only few

values. We examine the remaining unidentified fields, draw

the distribution of the observed values of each such field, and

compute the normalized entropy. The opcode field is chosen

to be the first field from the beginning of a payload that has

the normalized entropy less than an entropy threshold (which

we set to 0.5). All remaining fields that do not belong to any

of the above five types are marked as unidentified.

4) Opcode Correlation: Finally, ChatDissect correlates

each opcode value (or opcode in short) with a WeChat task.

Since WeChat tasks have varying characteristics, we exploit

several types of extra information to help our correlation.

First, we correlate some opcodes with the traces collected

in our controlled experiments (see Section II-B). For each

task that we perform in controlled experiments, we extract the

corresponding portion of the traces and identify the opcode.

Note that this approach only identifies a small number of

opcodes, and cannot identify the opcodes of the tasks that

are not performed.

Second, we reverse-engineer the source code of WeChat

client software and recover the opcodes. Our observation is

that many tasks use different flow types for the same task

in different platforms. For example, the task of sending a

picture message uses the HTTP POST method in iPhone, and

the URL field of the W-HTTP request is “/cgi-bin/micromsg-

bin/uploadmsgimg”. However, the same task uses W-TCP in

Android, and its corresponding opcode is 9 by our trace

correlation (see above). We find that the source code often

includes both the URLs identified in W-HTTP flows and

opcodes in W-TCP flows. Thus, we perform reverse engineer-

ing as follows. We start with the Android APK package of

WeChat 4.5. We use the tools dex2jar [8] and JD-Gui [12] to

disassemble the APK package into a collection of Java source

code files. Then we search for each URL identified in our W-

HTTP flows and find the corresponding opcode. The URLs

can be obtained from the clean traces captured in controlled

experiments or feedback results from the classified WeChat

traffic (see Section III-B).

Finally, we examine the opcodes of the system tasks that

are generated by the WeChat system rather than by users. We

consider two types of system tasks: (i) periodic tasks (e.g.,

heartbeats) and (ii) background tasks triggered by another task

(e.g., synchronization tasks triggered after a successful login).

For periodic tasks, we calculate the coefficient of variation

(CV) (i.e., the standard-deviation-to-mean ratio) for the inter-

arrival times among all occurrences of an opcode in a flow.

If the CV values of an opcode in all flows are less than a

maximum CV threshold, we regard the opcode as a periodic

task. For the triggered background tasks, we determine if

an occurrence of task T triggers an occurrence of opcode

O following the heuristic of Sherlock [1]. Specifically, we

compute the probability that T is followed by O in a time

interval less than a maximum task gap threshold (which we

set as 1 second). If the ratio of the probability to the average

arrival rate of T exceeds a minimum ratio threshold (which

we set as 100), we treat opcode O triggered by task T .

B. Classifying WeChat Traffic

Given the input traffic traces, ChatDissect distinguishes

WeChat traffic and classifies it into tasks. Specifically, Chat-

Dissect first groups packets of the input traces by 5-tuple flows,

and categorizes the flows as one of the four flow types: (i) DNS

(i.e., UDP flows whose server-side ports are 53), (ii) HTTP

(i.e., TCP flows that contain HTTP keywords such as “POST”,

“GET”, and “HTTP”), (iii) non-DNS UDP flows, and (iv) non-

HTTP TCP flows. We then check if they match the signatures

for W-DNS, W-HTTP, W-UDP, and W-TCP, respectively. In a

nutshell, we partition the packet payloads into fields, and check

if the field values match the same signatures. In Section V, we

elaborate the signatures of WeChat that we have identified.
In some cases, the signature matching procedure may have

false positives. For example, some W-UDP flows only contain

a single-byte constant field and a two-byte sequence number

field as the signatures, which may be found in non-WeChat

packets. To remedy this, we inspect every packet of a UDP

flow, and ensure that the flow is a W-UDP flow only if all

packets match WeChat signatures.
ChatDissect starts with the clean traces captured from con-

trolled experiments to extract signatures. However, the clean

traces may only cover a subset of WeChat tasks. Thus, we

enable ChatDissect to exploit feedback information after pars-

ing network traffic traces. Specifically, if a flow is classified

as a WeChat flow and it accesses a WeChat server, we collect

the packets of all the unclassified flows with the same server-

side IP address and port number. We then apply the same

signature extraction procedures to the collected packets. We

also manually check the correctness of the new signatures.
We may need multiple rounds of feedbacks for signature

extraction, until no more signatures are extracted. Neverthe-

less, based on our traces (see Section IV), our experience is

that we only need to feedback our results once (i.e., after

the first round of parsing the traces), and we can extract all

possible WeChat signatures in the traces. In particular, the

signatures obtained from the controlled experiments enable us

to distinguish all WeChat traffic, and the signatures obtained

from the feedback enable us to further identify tasks based on

URLs (in W-HTTP flows) and opcodes (in W-UDP and W-

TCP flows). We need further validation on the effectiveness

of the feedback approach, and we pose it as future work.

IV. DATASET

Our measurement study is driven by real-world network

traffic traces collected from a commercial 3G UMTS cellular



network in a city of China. Our dataset spans five three-hour

periods in three different days of November 2013 (i.e., 15

hours of traffic in total). The collection periods represent the

busy hours of network usage. It contains around 450 million

raw IP packets, accounting for 185GB of data. We provide

the statistics of the dataset when we perform evaluation on

WeChat in Section VI.

We do not collect any control-plane subscriber information

due to privacy concerns. Our analysis uses private IP addresses

to distinguish users, as in previous work [17]. As private IP

addresses may be reused, we assume that if a private IP has no

data transmission for more than 60 minutes, its user session

expires [17]. Based on this heuristic, we find that the dataset

covers 310K users.

We discuss limitations of our dataset. First, our dataset was

collected over a year ago (from the time of this writing), and it

may not reflect today’s usage. In particular, it only covers the

WeChat traffic of versions up to 5.0. Second, most WeChat

payloads are encrypted (although the protocol information

remains), so we cannot identify some WeChat characteristics

embedded inside the payloads, such as the friend lists of

users. Finally, the scale of the dataset remains limited both

spatially (e.g., a single collection point) and temporally (e.g.,

no full-day traffic). One important future work is to validate

our findings with larger-scale and more up-to-date traces.

V. WECHAT PROTOCOL DISSECTION

In this section, we present the signatures, server architecture,

and workflows of WeChat.

A. WeChat Signatures

We have extracted the signatures of WeChat from our traces

in Section IV and use them to identify all WeChat traffic

from the traces. We summarize the key characteristics of the

signatures for different flow types. We plan to release the

detailed signatures as a technical report accompanying the final

version of the paper.

W-DNS and W-HTTP: We find that both flow types are

associated with a small number of server hostnames. All server

hostnames contain WeChat’s Chinese aliases such as “weixin”,

“wx”, and “mm” (a short form for “MicroMessenger”). We

believe that these hostnames represent the servers belonging

to the WeChat core architecture. Some of the servers (e.g.,

“*.weixin.qq.com”) are responsible for performing the actual

WeChat tasks. The others provide storage services for WeChat

resources (e.g., photos) in the social networking service.

W-HTTP uses both POST and GET methods in requests.

W-HTTP POST requests only access either of the two hosts:

“short.weixin.qq.com” and “support.weixin.qq.com”, and their

URLs contain either of the two prefixes: “/cgi-bin/micromsg-

bin/” and “/cgi-bin/mmsupport-bin/”. The URLs with the

former prefix are responsible for performing most WeChat

tasks such as the instant messaging, social networking and

system tasks. The latter prefix corresponds to the tasks for

media access to the third-party sites. On the other hand, all

W-HTTP GET requests are issued to retrieve resources. The

Fig. 2. First 16 bytes of W-TCP protocol packets.

Fig. 3. First 16 bytes of W-UDP packets.

W-HTTP GET requests always set the User-Agent field as

“MicroMessenger” and configure the Referer field to contain

WeChat-specific names such as “wechat” or “weixin”. We can

further identify the types of the resources by the hostnames and

URLs. Specifically, the hosts “mmsns.qpic.cn”, “wx.qlogo.cn”,

and “wx.qq.com” correspond to the servers storing WeChat-

specific resources. The URLs to these hosts further reveal

the detailed WeChat services that use the WeChat-specific

resources. For example, the task of retrieving social network

photos can be identified by the URL keyword “mmsns”, which

is a short form for “MicroMessengerSocialNetworkS”. Apart

from the tasks of retrieving WeChat-specific resources, we

treat a W-HTTP GET request as accessing to third-party

resources if its host is not included in our identified signatures.

W-TCP: We find that W-TCP protocol packets can all

be characterized by the first 16 bytes, whose field formats

are depicted in Figure 2. Bytes 0 to 3 form a length field

and specify the total number of bytes of a task (including

all protocol and non-protocol packets); bytes 4 to 7 form a

constant field and always have value 0x00100001; bytes 8 to

10 are the request/response field, with 0x000000 indicating

a request and 0x3b9aca indicating a response; byte 11 is

the opcode field; bytes 12 to 15 form a sequence number field

that indexes each task in a W-TCP flow.

We have identified 126 opcodes for W-TCP flows and cor-

related each opcode with a specific task (see Section III-A4).

Specifically, 18 opcodes are obtained through manual corre-

lation with the traces collected from controlled experiments;

91 opcodes are associated through reverse-engineering the

WeChat client package; the remaining 17 opcodes are as-

sociated with the system tasks including the periodic and

background tasks.

W-UDP: Since UDP is connectionless, every W-UDP

packet keeps the protocol information in its first 16 bytes.

We identify four signature types for W-UDP, as shown in

Figure 3. The first two signature types are the uplink and



Fig. 4. WeChat server architecture.

downlink heartbeats for the real-time chatting, both of which

contain three constant fields: the first two constant fields are

in byte 1 and bytes 3 to 5; the third constant fields have

different lengths according to our segmentation results, as the

downlink heartbeats have one more byte. The third signature

type represents real-time chat content, including VoIP and

walkie-talkie. Its signature format is defined by four bytes:

byte 1 is the opcode; bytes 2 to 3 form a sequence number

field; byte 4 is a constant field. The fourth signature type

represents the signaling of real-time chats. It has three constant

fields: bytes 0 to 1, byte 7, and bytes 9 to 12. In addition, it

contains a 3-byte sequence number field from bytes 2 to 4.

B. WeChat Server Architecture

Our inferred WeChat signatures also give us a view of

WeChat architecture, as shown in Figure 4. The core architec-

ture is composed of a set of server clusters. The long servers

“long.weixin.qq.com” and the short servers “short.weixin.qq.

com” process most WeChat tasks using the persistent W-

TCP flows and non-persistent W-HTTP flows, respectively.

They are responsible for all the instant messaging and sys-

tem tasks, as well as most tasks in the social networking

service. They are also used for some real-time chatting

functions, such as sending a real-time chat invitation. The

chatting servers “voip.weixin.qq.com” are mainly responsi-

ble for sending/receiving real-time chatting messages. The

resource servers are responsible for storing WeChat resources

(e.g., photos in social networks), while WeChat clients may

also access resources from third-parity sites. Furthermore, the

support servers “support.weixin.qq.com” relay traffic between

WeChat clients and third-party sites.

Figure 5 further shows how a client communicates with the

servers to perform a task. Figure 5(a) presents two workflows

for most WeChat tasks: a client either (i) sends a W-TCP

request in which the opcode indicates the specific task to the

long servers, or (ii) sends a W-HTTP POST request, with the

prefix “/cgi-bin/micromsg-bin” in the URL field, to a short

server to perform a task. Figure 5(b) shows how WeChat

clients access resources. WeChat provides two methods for

this purpose: a client either (i) directly sends a W-HTTP

GET request for the resources, or (ii) sends a W-HTTP

POST request to the WeChat support servers, which relay the

request to third-parity sites. The most complicated workflow

is real-time chatting, which is shown in Figure 5(c). Real-

(a) Most WeChat tasks

(b) Media access, including WeChat and third-party resources

(c) Real-time chatting

Fig. 5. WeChat workflows.

time chatting involves three flow types. To establish a real-

time chatting session, WeChat clients use W-TCP to send and

reply invitations. The clients also select a chatting server using

W-UDP in the establishment. During chatting, clients send

chatting contents of both VoIP and walkie-talkie, as well as

VoIP signaling messages, through the selected chatting server.

The clients also generate heartbeats using W-TCP (for long

servers) or W-HTTP (for short servers). On chat termination,

the clients send VoIP signaling messages and chatting statistics

to the chatting and short servers, respectively.

C. Summary

We summarize our findings. First, WeChat employs a set

of server clusters to handle different types of tasks. Their

performance requirements are different. For example, the tasks

performed by the long servers (e.g., instant messaging) and the

support servers (e.g., media access) are sensitive to the user-

perceived delay, while the tasks performed by the chatting

servers require sufficient bandwidth.

Also, most WeChat tasks are performed via persistent W-

TCP flows or non-persistent W-HTTP flows, while real-time

chatting tasks are performed via W-UDP flows. We further

study the traffic characteristics of each flow type in Section VI.



TABLE III
SUMMARY OF THE NUMBER OF USERS AND TRAFFIC VOLUME.

Date Time
# of Users (K) Traffic Volume (GB)
Total WeChat Total WeChat

1 2013-11-01 8-11am 51.94 30.23 39.14 3.34

2 2013-11-01 6-9pm 72.22 38.70 49.08 3.94

3 2013-11-04 8-11am 65.15 25.74 28.68 2.66

4 2013-11-04 6-9pm 65.67 32.01 37.35 3.77

5 2013-11-05 8-11am 50.83 24.59 30.58 2.30

Total 305.81 151.27 184.84 16.00

VI. WECHAT TRAFFIC CHARACTERISTICS

In this section, we study the characteristics of WeChat

traffic from two perspectives: (i) user activities and (ii) service

and task activities. Table III summarizes the statistics of the

number of users and traffic volume in our dataset. Among all

310K users (i.e., private IP addresses) in our dataset, 150K

(49.46%) of them carry WeChat traffic. These users generate

1.35M (8.31%) WeChat flows and 35M (7.98%) WeChat

packets, accounting for 16GB (8.66%) of traffic volume.

A. User Activities

We analyze the WeChat usage among the 150K WeChat

users. We plot the cumulative distribution functions (CDFs)

of the number of WeChat users versus different metrics.

We first consider the WeChat usage in terms of traffic

volume. Figure 6(a) plots the CDF for the WeChat traffic

volume generated by a user. We observe some heavy WeChat

users who generate a large amount of WeChat traffic. For

example, the top 150 (0.1%) users generate 10MB of traffic

each and the top 20K (13%) users generate nearly 100KB

of traffic each. Figure 6(b) also plots the CDF for the relative

WeChat traffic volume of a user to the total volume of the same

user. WeChat accounts for more than 50% of traffic volume in

45K (30%) users. 11K (7%) users include only WeChat traffic.

We further analyze the WeChat usage time. We divide time

into one-second bins and count the number of bins that involve

WeChat. We consider two types of usage time: (i) a user sends

or receives WeChat traffic (labeled as “Data Transfer”) and (ii)

a user has an active WeChat flow (labeled as “Active”) (see

Section II-B for the definition of an active flow). Figure 6(c)

plots the CDFs for the usage time. We observe some long-

term users. For example, the top 10K (7%) and 38K (26%)

users keep WeChat active for over 2 hours and 30 minutes,

respectively. Figure 6(d) plots the CDFs for the relative usage

time of a user to the total usage time of the same user. It

shows that around 71K (46%) users keep an active WeChat

flow for most of the time (above 80%). However, only a small

fraction of time is actually used to transfer WeChat traffic.

Figure 6(c) shows that the time with WeChat traffic transfers

is less than one minute in 131K (87%) users; Figure 6(d) also

shows that only 27K (18%) users spend more than 10% of

time in transferring WeChat traffic. This implies that WeChat

users are silent most of the time.

B. Service and Task Activities

We analyze WeChat usage across different services and

tasks. We are interested in the five services and their corre-
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Fig. 6. User activities in terms of volume and usage time.

sponding tasks as described in Section II-A. From our dataset,

we identify the tasks in such services, as detailed in Table IV.

The tasks cover over 99.8% of all WeChat traffic in our dataset.

1) Volume Analysis: Table IV details the number of WeChat

users and the traffic volume of various tasks categorized by

different services. We see that the usage of the services diverse

a lot. For example, only 60 (0.04%) users employ the real-time

chatting service, but the system service is commonly found in

the WeChat traffic of nearly all users (over 99%).

We also find that the downlink traffic dominates over the

uplink traffic. Specifically, the total volume of the downlink

traffic is 14.5GB (90.61%), while that of the uplink traffic is

only 1.5GB (9.39%). We correlate this observation with user

behaviors. We find that the downlink-consuming tasks have

more users than the uplink-consuming tasks. For example,

the social networking service covers nearly 51K (34%) users.

Only 1,842 (1.19%) users post a text and 1,324 (0.85%) users

upload photos, yet all social networking users refresh posts

and nearly 25K (16.45%) users download photos. The task

of downloading social networking photos generates 7.94GB

(49.60%) of traffic, among which the uplink traffic only has

volume 182MB (1.11%).

The difference between uplink and downlink traffic is also

huge in the instant messaging service, although the same

type of instant messages (e.g., text) has similar numbers of

sending users and receiving users. For example, 5,029 (3.25%)

users send voice messages and 7,259 (4.69%) users receive

voice messages. However, receiving voices generates 345MB

(2.10%) traffic, which is significantly larger than that generated

by sending voices, whose volume is 92MB (0.56%). One main

reason for the difference is due to the group communication

pattern in the instant messaging service, as a user sends one

message to multiple users.

2) Flow Characteristics: We now measure the flow charac-

teristics of WeChat tasks. We focus on the tasks implemented

with W-HTTP and W-TCP because the two flow types cover

most WeChat tasks.



TABLE IV
WECHAT SERVICE AND TASK USAGES.

Service
# of Users

Task
# of Users Volume (MB) (ratio to total WeChat traffic volume)

(ratio to total users) (ratio to total users) Total Uplink Downlink

20,269 (13.08%)

Send texts 15,679 (10.12%) 45.009 (0.27%) 26.608 (0.16%) 18.401 (0.11%)
Receive texts 18,964 (12.24%) 86.796 (0.53%) 35.138 (0.21%) 51.658 (0.32%)
Send pictures 1,962 (1.27%) 25.988 (0.16%) 24.813 (0.15%) 1.175 (0.01%)
Receive pictures 2,593 (1.67%) 131.516 (0.80%) 1.964 (0.01%) 129.552 (0.79%)

Instant Send voices 5,029 (3.25%) 92.403 (0.56%) 87.196 (0.53%) 5.207 (0.03%)
Messaging Receive voices 7,259 (4.69%) 345.152 (2.10%) 3.917 (0.02%) 341.235 (2.08%)

Send videos 55 (0.04%) 3.182 (0.02%) 3.138 (0.02%) 0.044 (<0.01%)
Receive videos 69 (0.04%) 30.238 (0.18%) 0.124 (<0.01%) 30.114 (0.18%)
Send emoji 1,216 (0.78%) 0.921 (0.01%) 0.718 (<0.01%) 0.203 (<0.01%)
Receive emoji 1,814 (1.17%) 2.247 (0.01%) 0.921 (<0.01%) 1.326 (<0.01%)

60 (0.04%)

Control messages 60 (0.04%) 0.289 (<0.01%) 0.186 (<0.01%) 0.103 (<0.01%)
Real-time Chatting heartbeats 55 (0.04%) 31.097 (0.19%) 0.516 (<0.01%) 30.581 (0.19%)
Chatting Walkie-talkie content 2 (<0.01%) 2.392 (0.02%) 1.419 (0.01%) 0.973 (0.01%)

VoIP content 32 (0.02%) 776.066 (4.73%) 423.309 (2.58%) 352.757 (2.15%)

52,490 (33.88%)

Get header images 14,430 (9.31%) 452.322 (2.76%) 35.258 (0.22%) 417.064 (2.54%)
Get photos 25,480 (16.45%) 8134.363 (49.60%) 181.931 (1.11%) 7952.432 (48.49%)
Post a text 1,842 (1.19%) 4.119 (0.03%) 2.101 (0.02%) 2.018 (0.01%)
Post a photo 1,324 (0.85%) 130.774 (0.80%) 127.898 (0.78%) 2.876 (0.02%)

Social Refresh moment 52,490 (33.88%) 288.892 (1.76%) 43.764 (0.27%) 245.128 (1.49%)
Networking View a user 7,133 (4.60%) 57.763 (0.35%) 7.476 (0.04%) 50.287 (0.31%)

View a post 3,358 (2.16%) 9.349 (0.06%) 1.517 (0.01%) 7.832 (0.05%)
Comment a post 5,375 (3.47%) 15.458 (0.09%) 4.249 (0.02%) 11.209 (0.07%)
Tag a post 323 (0.21%) 0.181 (<0.01%) 0.115 (<0.01%) 0.066 (<0.01%)
Other operations 122 (0.08%) 1.512 (0.01%) 0.451 (<0.01%) 1.061 (<0.01%)

Media Access 16,390 (10.58%) Media access 16,390 (10.58%) 4511.506 (27.51%) 95.263 (0.58%) 4416.243 (26.93%)

System 153,507 (99.09%)

W-TCP heartbeats 121,824 (78.64%) 30.422 (0.19%) 17.862 (0.11%) 12.560 (0.08%)
Report to servers 67,366 (43.48%) 185.390 (1.13%) 157.544 (0.96%) 27.846 (0.17%)
Query servers 72,778 (46.97%) 457.361 (2.79%) 94.142 (0.57%) 363.219 (2.22%)
Connect to servers 115,665 (74.66%) 171.193 (1.04%) 70.788 (0.43%) 100.405 (0.61%)
DNS 146,268 (94.41%) 177.996 (1.09%) 65.025 (0.40%) 112.971 (0.69%)
Server push news 55,091 (35.56%) 168.734 (1.03%) 21.975 (0.13%) 146.759 (0.90%)

Other N/A N/A < 150 (0.1%) each 28.230 (0.17%) 15.043 (0.09%) 13.187 (0.08%)

Total N/A N/A 154,916 (100.00%) 16398.861 (100.00%) 1539.974 (9.39%) 14858.887 (90.61%)

TABLE V
AVERAGE SIZES PER REQUEST AND PER RESPONSE FOR INSTANT

MESSAGING TASKS.

Task

Average Size Average Size

per Request (bytes) per Response (bytes)

W-TCP W-HTTP W-TCP W-HTTP

Send texts 340 N/A 221 N/A

Receive texts 196 408 358 580

Send pictures 4,935 5,216 209 401

Receive pictures 256 454 38,645 41,693

Send voices 2,191 2,823 183 372

Receive voices 276 511 27,143 37,248

Send videos 16,405 17,465 196 384

Receive videos 231 430 53,189 58,733

Send emoji 406 627 183 370

Receive emoji N/A 331 N/A 523

The tasks implemented with W-HTTP and W-TCP exhibit

the request-response fashion. We observe 3.11M requests and

2.93M responses in our traces. As an example, Table V lists the

average sizes per request and per response for instant messag-

ing tasks, which use W-HTTP or W-TCP for communication.

We see that most of the requests and responses have size

less than 1KB. On the other hand, we also observe a few

large requests and responses. These tasks are used to send

or receive multiple media resources. For example, receiving

video messages has an average response size of 58KB.

We see that the tasks implemented with W-HTTP have

larger request and response sizes than those implemented with

W-TCP, since the binary format of W-TCP is more compact in

volume than the text format of W-HTTP. For example, W-TCP

uses a single-byte opcode to indicate tasks, while W-HTTP

specifies its tasks in the URL field, which has tens of bytes.

We further analyze the time patterns of both W-HTTP

and W-TCP implementations. Figure 7(a) shows the CDFs of

number of tasks versus the completion times of both imple-

mentations. We see that W-TCP has shorter completion time,

with more than 80% of W-TCP tasks are completed within

0.1s. On the other hand, W-HTTP has longer completion time,

mainly because the tasks require to establish a TCP connection

via 3-way handshake for the communication.

Recall that a single W-TCP flow often encapsulates multiple

tasks (see Section II-B). Figure 7(b) shows the inter-task time

distribution in a W-TCP flow. We see that around 40% of cases

have inter-task time around 300s, mainly because W-TCP

flows generate periodic heartbeats every 300s. In general, the

inter-task time varies a lot. The short inter-task time (e.g., less

than 0.1s) corresponds to the system tasks, such as querying

the servers for news after users connect to the servers; the

long inter-task time (e.g., over 10s) corresponds to the user-

generated tasks. For example, the time between sending two

instant messages often takes tens of seconds.

C. Summary

We summarize our findings. First, WeChat is used by a

significant portion of users (nearly 50% in our dataset). Many

users keep persistent flows with WeChat servers for a long
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Fig. 7. Time patterns of W-TCP and W-HTTP.

time, but only transfer a small amount of traffic. This may

pose maintenance overhead on WeChat servers.

Second, our WeChat traces show a much higher volume

of downlink traffic than that of uplink traffic (90.61% versus

9.39%). This suggests some potential optimizations for better

user experiences. For example, WeChat developers can op-

timize their storage servers for read-intensive workloads, or

leverage the content delivery network to reduce the response

time and avoid redundant transfers.

Finally, WeChat employs two flow types to implement most

of the tasks: persistent W-TCP flows and non-persistent W-

HTTP flows. The W-TCP implementation has better perfor-

mance as it has less traffic and faster completion time, but

generates heartbeat messages to keep a flow persistent. How to

choose between W-HTTP and W-TCP implementations needs

further investigation.

VII. RELATED WORK

There has been a plethora of studies on analyzing messaging

applications. For example, Xiao et al. [20] characterize the

traffic patterns of instant messaging applications such as AIM

and MSN. Bonfiglio et al. [2] measure the performance, user

activities and signaling overheads of Skype. On the other hand,

WeChat is more complicated as it supports various types of

tasks and messages (see Section II-A). Some studies analyze

WhatsApp, another popular mobile messaging application.

Church et al. [5] and O’Hara et al. [16] study the user activities

of WhatsApp, mainly by user interviews and surveys. Fiadino

et al. [9] study the flow-level characteristics of WhatsApp

based on traces collected from a European nationwide network

core, and the traces cover millions of chat flows, audio/content

flows, and video flows. Liu et al. [14] study WeChat video

messaging based on traces captured from mobile devices.

ChatDissect exploits payload features to infer the protocol

format of WeChat. Protocol inference has been well studied

in network traffic measurements. Many studies (e.g., [3], [7],

[10], [11], [15], [18], [21]) also exploit machine learning tech-

niques to examine the statistical features of packet payloads,

and infer the format of protocol fields and extract payload

signatures. However, existing machine learning approaches

have not been applied for characterizing mobile messaging

applications. ChatDissect makes the first attempt to apply

machine learning (e.g., the Voting Experts algorithm) to infer

the protocol format. It further analyzes the field semantics

(e.g., opcodes) to classify WeChat tasks.

VIII. CONCLUSIONS

We present the first measurement study of WeChat in a

cellular network. WeChat supports different types of tasks,

messages, and flows. Thus, we build ChatDissect, which

characterizes the formats and semantics of different WeChat

tasks in a fine-grained manner. We use ChatDissect to study

WeChat traffic collected in a real-world cellular data network.

We present the WeChat server architecture and workflows, and

characterize the user and service/task activities of WeChat. Our

measurement study provides insights into better designing and

managing mobile messaging applications in cellular networks.
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