
Double Regenerating Codes for Hierarchical Data Centers

Yuchong Hu1, Patrick P. C. Lee2, and Xiaoyang Zhang1

1Huazhong University of Science and Technology, 2The Chinese University of Hong Kong

Email: yuchonghu@hust.edu.cn, pclee@cse.cuhk.edu.hk, zhangxiaoyang1993@gmail.com

Abstract—Data centers increasingly adopt erasure coding to
ensure fault-tolerant storage with low redundancy, yet the hier-
archical nature of data centers incurs substantial oversubscribed
cross-rack bandwidth in failure repair. We present Double
Regenerating Codes (DRC), whose idea is to perform two-stage
regeneration, so as to minimize the cross-rack repair bandwidth
for a single-node repair with the minimum storage redundancy.
We prove the existence of a DRC construction, and show via
quantitative comparisons that DRC significantly reduces the
cross-rack repair bandwidth of state-of-the-art minimum storage
regenerating codes.

I. INTRODUCTION

Enterprises deploy data centers for large-scale storage, yet

a critical deployment challenge is to tolerate data loss against

failures. Erasure coding enables high fault-tolerant storage

with much less redundancy than traditional replication. Given

the ever-increasing data growth, erasure coding is widely

adopted for data center storage (e.g., [6], [8], [11], [16]). For

example, Facebook reportedly reduces the storage redundancy

from 3× in triple replication to 1.4× via erasure coding [11],

[16], thereby saving petabytes of storage.

An erasure code is often constructed by two configurable

parameters n and k (where k < n). Given the original data of

size M , an (n, k) erasure code divides the original data into

k fragments of size M/k each, and transforms them into n
encoded fragments of the same size. Each encoded fragment

is stored in a distinct node (or server). This paper focuses

on the erasure code constructions that satisfy the maximum

distance separable (MDS) property, meaning that any k out

of n encoded fragments suffice to reconstruct the original data,

while the storage redundancy is the minimum.

Erasure coding trades performance for storage efficiency.

In particular, the repair of any lost fragment involves transfers

of additional fragments. The conventional way of repairing

a lost fragment is to retrieve k fragments from other non-

failed nodes, so as to reconstruct the original data and hence

the lost fragment. To reduce the repair bandwidth (i.e., the

amount of transferred traffic for repair), regenerating codes [4]

are erasure codes that realize the optimal trade-off between

repair bandwidth and storage efficiency, by allowing non-

failed nodes to encode and send their stored fragments during

repair. One construction of regenerating codes is minimum

storage regenerating (MSR) codes [4], which minimize the

repair bandwidth for reconstructing a single lost fragment

while preserving the MDS property.

However, deploying erasure coding in data centers remains

challenging due to the hierarchical nature of data centers.

A data center is typically organized in multiple racks, each

comprising multiple nodes for storage. Nodes within each rack

are inter-connected via a top-of-rack switch, and the top-of-

rack switches of multiple racks are further inter-connected via

a network core of switches. To tolerate both node and rack

failures, a typical approach is to place fragments in distinct

nodes, each of which is located in a distinct rack [6], [8],

[11], [13], [14], [16]. Such a placement causes the repair of

any lost fragment to inevitably transfer fragments from other

non-failed nodes across racks. This incurs substantial cross-

rack bandwidth, which is heavily oversubscribed, for example,

by a factor of 5 to 20 [1], [3], [19] (i.e., the cross-rack capacity

available per node in the worst case is only 1/5 to 1/20 of the

inner-rack capacity). Thus, our goal is to minimize the cross-

rack repair bandwidth (i.e., the amount of cross-rack data

transferred during repair) in hierarchical data centers. Here,

we focus on the repair of a single-node failure, which is the

most common failure scenario in practice [8], [13], [14].

We observe that instead of placing one fragment per rack,

we can place multiple fragments per rack (while we still keep

one fragment per node), and exploit inner-rack regeneration

to reduce the cross-rack repair bandwidth. Figure 1 provides

a motivating example with n = 6 and k = 3. Suppose that

node 1 fails. Figure 1(a) shows the conventional repair, in

which the cross-rack repair bandwidth is the original data size

M . Figure 1(b) shows the repair with MSR codes, in which the

cross-rack repair bandwidth is 5M/9 based on the optimality

results in [4]. Figure 1(c) shows our new repair scheme,

which reduces the cross-rack repair bandwidth to M/3, or

equivalently, 40% lower than that of MSR codes. The core

idea in Figure 1(c) is to perform regeneration twice: first within

a rack and then across multiple racks. We call this approach

double regeneration, whose repair design specifically targets

the unbalanced nature of inner-rack and cross-rack capacities

in hierarchical data centers.

Double regeneration makes two trade-offs. First, the code in

Figure 1(c) can only tolerate a single-rack failure (as opposed

to three-rack failures in Figures 1(a) and 1(b)). Nevertheless,

rack failures are much rarer than node failures in practice [6].

Thus, instead of tolerating multiple node and rack failures, we

can tolerate the same multiple-node failures but only a single-

rack failure. Second, the sum of the inner-rack and cross-rack

repair bandwidths in Figure 1(c) is M , which is higher than

that in MSR codes (i.e., 5M/9). Nevertheless, the inner-rack

capacity is more abundant than the cross-rack capacity due

to oversubscription. Thus, we can trade the inner-rack repair

bandwidth for the cross-rack repair bandwidth.

This paper proposes Double Regenerating Codes (DRC) for

Rack Node

(a) Conventional

1

5

6

1

M/3
2

3

4

M/3

M/3

1

5

6

1

M/9
2

3

4

M/9

M/9

M/9

M/9

1

5

6

1

M/3

2

3

4

M/6

M/6

M/6

M/6

(b) MSR Codes (c) Double Regeneration

Fig. 1. Example with n = 6 and k = 3: (a) Conventional repair reconstructs
original data and incurs the cross-rack repair bandwidth M ; (b) MSR codes
incur the cross-rack repair bandwidth 5M/9 [4]; (c) Double regeneration
performs inner-rack encoding and incurs the cross-rack repair bandwidth
M/3.

hierarchical data centers. Our contributions are two-fold. First,

we prove that there exists a DRC construction that minimizes

the cross-rack repair bandwidth for a single-node repair, while

preserving the MDS property (i.e., DRC maintains the mini-

mum storage redundancy). Second, we show via quantitative

comparisons that DRC reduces the cross-rack repair bandwidth

of state-of-the-art MSR codes by up to 45.5%.

II. DOUBLE REGENERATION

We provide a system model that formalizes double regener-

ation. We analyze the system model via an information flow

graph, and derive the lower bound of the cross-rack repair

bandwidth under double regeneration.

A. System Model

We encode the original data of size M into n fragments

of size M/k each using an (n, k) MDS erasure code. We

then distribute the encoded fragments across n nodes (i.e.,

one encoded fragment per node) that are evenly located in r
racks with n/r nodes each. We pose three conditions on the

parameters: (i) n is a multiple of r (i.e., n
r is an integer); (ii)

we require n
r ≤ k, so that any single-node failure cannot be

repaired locally within a rack and there must be cross-rack

repair bandwidth incurred; and (iii) we require n
r ≤ n− k, so

that there is no data loss in a single-rack failure. Note that we

can increase the tolerable number of rack failures by adding

more redundancy (i.e., increasing n− k). Let rack Rh be the

hth rack (where 1 ≤ h ≤ r), and node Xh,i be the ith node

in rack Rh (where 1 ≤ i ≤ n/r).

A single-node repair in double regeneration works as fol-

lows. Without loss of generality, our analysis assumes that

node X1,1 fails throughout the paper. We select a new node

X1,1 in rack R1 to restore the lost fragment in X1,1. The

R1

R2

R3

X
out

1,1X
in

1,1 M/3X
out

1,1X
in

1,1 M/3

X
out

1,2X
in

1,2 M/3

X
out

2,1X
in

2,1 M/3

X
out

2,2X
in

2,2 M/3

X
out

3,1X
in

3,1 M/3

X
out

3,2X
in

3,2 M/3

M/3

M/3

M/3

TS

8
8

8
8

8
8

β

β

M/3

8

8
8

Cut

Fig. 2. Information flow graph for n = 6, k = 3, and r = 3.

repair has two stages. In the first repair stage, in rack Rh

(where 2 ≤ h ≤ r), we select a special node Xh,1 (without

loss of generality), which collects encoded data from each

of surviving nodes (including itself) in the same rack (i.e.,

Xh,1, Xh,2, · · · , Xh,n/r). We call this special node a relayer,

which re-encodes the collected data and sends the re-encoded

data to X1,1 across racks. In the second repair stage, X1,1

first collects encoded data from each of other surviving nodes

X1,2, X1,3, · · · , X1,n/r in rack R1. It then reconstructs the lost

fragment using all collected data from within the same rack

and from the relayers in other racks.

Our analysis assumes that the bandwidth between any pair

of racks is homogeneous and denotes it by β. Accordingly, the

cross-rack repair bandwidth for a single-node repair is (r−1)β.

Our goal is to minimize β, while preserving the MDS property.

B. Information Flow Graph

We construct an information flow graph G(n, k, r, β) to de-

scribe a data center network for a single-node repair. Figure 2

depicts G for n = 6, k = 3, and r = 3.

G has three types of nodes: (i) virtual source S and

(ii) data collector T , which correspond to the source and

destination nodes of information flow, respectively; and (iii)

the input/output node pair (Xin
h,i, X

out
h,i), which corresponds to

the storage node Xh,i. Similarly, the input/output node pair

(Xin
1,1, Xout

1,1) represents the new node X1,1.

G has six types of directed edges: (i) an edge from S to

every Xin
h,i with infinite capacity; (ii) an edge from Xin

h,i to

Xout
h,i , and from Xin

1,1 to Xout
1,1 , with capacity M/k (i.e., the

amount of stored data); (iii) an edge from Xin
h,i to Xout

h,1 (h 6=
1,i 6= 1) with capacity M/k (i.e., the maximum amount of

inner-rack repair traffic between two nodes in Rh); (iv) an

edge from Xout
1,i (i 6= 1) to Xin

1,1 with capacity M/k (i.e.,

the maximum amount of inner-rack repair traffic between two

nodes in rack R1); (v) an edge from Xout
h,1 (h 6= 1) to Xin

1,1

with capacity β (i.e., the maximum amount of cross-rack repair

traffic between two racks); and (vi) an edge from each of

k selected output nodes to T with infinite capacity for data

reconstruction.

C. Lower Bound

We derive the lower bound of β by considering the capac-

ities of all possible min-cuts of G. We define a cut as the set

of directed edges such that any path from S to T must have

at least one edge in the cut. A min-cut is the cut that has the

minimum sum of capacities of all its edges. Note that there are
(

n
k

)

possible data collectors due to the MDS property. Thus,

there are
(

n
k

)

variants of G, and hence
(

n
k

)

possible min-cuts.

Lemma 1 ([4]). If all
(

n
k

)

possible min-cuts of G separating

S and T are no smaller than M , then random linear network

codes suffice to rebuild the original data when any k out of

n nodes are connected to T , with a probability that is driven

arbitrarily to one by increasing the field size.

Based on Lemma 1, we present the next lemma that specifies

the necessary condition of the lower bound of β in G if there

exist valid network codes.

Lemma 2. If the capacities of all
(

n
k

)

possible min-cuts of G
are at least M , then β ≥ M

k · 1
r−⌊kr/n⌋ .

Proof: To specify the min-cut corresponding to each data

collector, suppose that the following k nodes are connected to

T so that the original data can be rebuilt: (i) the new node

X1,1; (ii) x nodes of rack R1 (except the failed node X1,1);

(iii) y relayers; (iv) w1 nodes whose inner-rack relayers are not

connected to T ; and (v) w2 nodes whose inner-rack relayers

are connected to T . By definition,

1 + x+ y + w1 + w2 = k. (1)

Figure 2 gives x = 1, y = 0, w1 = 1, and w2 = 0.

Let Λ(x, y, w1, w2) denote the capacity of a cut, which is a

function of x, y, w1, and w2.

We derive Λ as follows. We do not consider the cut that

has an edge directed either from S or to T , since this edge

has infinite capacity. We observe that (e.g., see Figure 2): (i)

all surviving nodes of R1 (e.g., X1,2) can contribute (n/r −
1) · M/k to Λ; (ii) all nodes whose inner-rack relayers are

connected to T (e.g., X2,1 and X2,2) can contribute y · n/r ·
M/k to Λ; (iii) all (r − 1 − y) relayers that are not connect

to T (e.g., X3,1) can contribute (r − 1 − y)β to Λ1; (iv) the

w1 nodes whose inner-rack relayers are not connected to T
can contribute w1 ·M/k to Λ; (v) the w2 nodes whose inner-

rack relayers are connected to T cannot contribute anything

to Λ since all its information has been contributed by their

inner-rack relayers. Thus, the capacity of a cut is:

Λ = (n/r − 1) ·M/k + y · n/r ·M/k

+(r − 1− y)β + w1 ·M/k. (2)

Since Λ of all the
(

n
k

)

min-cuts are at least M , Equation (2)

implies that for all
(

n
k

)

variants of G,

β ≥ M/k · (n/r −
w1 + n− k − 1

r − 1− y
). (3)

1X3,1 can contribute 2M/k to Λ, but β is clearly no larger than 2M/k
since the former has the encoded information from the latter.

Let β′(y, w1) be the right side of Equation (3). Then for all
(

n
k

)

variants of G, Equation (3) can be reduced to:

β ≥ max{β′(y, w1)}. (4)

We now derive max{β′(y, w1)}. At most n/r− 1 nodes in

rack R1 (with failed node X1,1) can be connected to T . Thus,

x ≤ n/r − 1. (5)

Also, for each rack whose relayer is connected to T , at most

n/r − 1 nodes can also be connected to T . Thus,

w2 ≤ (n/r − 1)y. (6)

By Equation (1), we observe that larger values of x and w2

will make a smaller value range for y and w1. By Equation (3),

we observe that β′(y, w1) ∝ −y and β′(y, w1) ∝ −w1. Thus,

β′(y, w1) is maximized when x and w2 attain their maximum

values (i.e., x = n/r− 1 and w2 = (n/r− 1)y). In this case,

Equation (1) can be reduced to:

w1 = k − n/r − y · n/r. (7)

Since w1 ≥ 0, Equation (7) implies that

y ≤ ⌊kr/n⌋ − 1, y ∈ Z. (8)

Therefore, if Equations (7) and (8) hold, max{β′(y, w1)} can

be derived. That is,

max{β′(y, w1)} =
M

k
·

1

r − ⌊kr/n⌋
(9)

By Equations (4) and (9), Lemma 2 concludes.

III. CODE CONSTRUCTION

Lemma 2 provides the necessary condition of the lower

bound of β if we ensure the existence of random linear

network codes. If we can construct linear codes that match the

lower bound of β, the bound is tight and the code construction

is bandwidth-optimal. We now propose such a linear code

construction, called Double Regenerating Codes (DRC), such

that its optimal single-node repair satisfies β = M
k · 1

r−⌊kr/n⌋
and maintains the MDS property after a single-node repair.

We prove the existence of DRC, by extending the proof of

[20] for hierarchical data centers.

To explain our DRC construction, we extend our system

model in Section II-A. We divide the original data of size

M into qk (uncoded) blocks, where q = r − ⌊kr/n⌋, and

transform them into qn encoded blocks. Each node stores an

encoded fragment consisting of q encoded blocks, each of

which has size equal to the lower bound of β. For each node

Xh,i (where 1 ≤ h ≤ r and 1 ≤ i ≤ n/r), its jth (encoded)

block (where 1 ≤ j ≤ q) is a linear combination of the qk
original blocks over a finite field F. Let ph,i,j be a column

vector of size qk that specifies the coefficients for the above

linear combination. Let Ph,i be a qk × q matrix comprising

the column vectors {ph,i,j}1≤j≤q . Thus, we can now specify

DRC by the collection {Ph,i}1≤h≤r,1≤i≤n/r. In the following,

we use Ph,i and ph,i,j to refer to the fragment and the jth

block stored in Xh,i, respectively.

The single-node repair under DRC works as follows, based

on the system model in Section II-A. Suppose that X1,1 fails,

and we reconstruct a new fragment P ′
1,1 in a new node X1,1.

In the first repair stage, each relayer Xh,1 (where 2 ≤ h ≤ r)

computes a new block, p′
h, from all stored blocks in rack Rh:

p′
h = [Ph,1;Ph,2; · · · ;Ph,n/r] · ch, (10)

where ch denotes a coefficient vector of size qn/r. In the

second repair stage, X1,1 computes a new fragment, P′
1,1,

from all the surviving blocks in rack R1 as well as p′
h’s from

the relayers in rack Rh’s (where 2 ≤ h ≤ r):

P′
1,1 = [P1,2; · · · ;P1,n/r;p

′
2; · · ·p

′
r] ·D, (11)

where D is a (q(n/r − 1) + r − 1)× q coefficient matrix.

To maintain the MDS property, we ensure that for any k out

of n nodes, the span of the qk vectors of any k nodes has full

rank. Let U be a set of any k − 1 fragments out of all Ph,i’s

except P1,1 (i.e., U is a set of any k−1 surviving fragments).

We first present the following lemma.

Lemma 3. Consider the collection {Ph,i}1≤h≤r,1≤i≤n/r that

satisfies the MDS property and let {P1,2, · · · ,P1,n/r} ⊆ U . It

is possible to select the following qk vectors whose span has

full rank: (i) we select q vectors from each of k− 1 fragments

in U ; (ii) there must exist q racks excluding R1 such that each

of these q racks has at least one fragment that is not in U ,

and we select one vector from each of these q fragments.

Proof: The fragments in U can fully cover at most 1 +
⌊ (k−1)−(n/r−1)

n/r ⌋ = ⌊kr/n⌋ racks including R1. Thus, we

must be able to find r − ⌊kr/n⌋ = q racks (without R1),

such that each of these racks has one fragment that does not

belong to U . We call these q fragments Ph1,i1 , · · · ,Phq,iq .

Our proof is similar to that of Lemma 4 of [20]. We define

a set V that is initialized as ∅. We find one vector from one of

the q fragments Ph1,i1 , · · · ,Phq,iq that is linearly independent

of the set of vectors currently in V ∪ U ; if so, we add the

vector to V . We repeat this process for the remaining fragments

iteratively until we add q vectors to V .

We argue that we can always add one vector to V in each

iteration. We prove by contradiction. Suppose that we cannot

find such a vector from the remaining fragments before the

mth iteration. For any remaining fragment, say Phm,im , the

span of vectors in V ∪U ∪{Phm,im} has rank less than q(k−
1) + q = qk (i.e., it does not have full rank). However, the

span of U ∪ {Phm,im} must have full rank because of the

MDS property (since they represent k surviving fragments).

This leads to a contradiction. Thus, the span of the qk vectors

in V ∪U must have full rank after q iterations, and the lemma

holds.

We now prove the existence of DRC by showing that it

maintains the MDS property after a single-node repair.

Theorem 1. There exists a linear coding construction for DRC

defined in the finite field F, such that the MDS property is

still maintained after a single-node repair with a probability

arbitrarily driven to 1 by increasing the field size of F.

Proof: Suppose that the collection {Ph,i}1≤h≤r,1≤i≤n/r sat-

isfies the MDS property initially. We show that there exist ch
(2 ≤ h ≤ r) and D (resp. Equations (10) and (11)), such that

after a single-node repair, the new collection {P′
1,1,P1,2, · · · ,

P1,n/r, · · · ,Pr,1, · · · ,Pr,n/r} maintains the MDS property.

Clearly, all surviving fragments in {Ph,i}2≤h≤r,1≤i≤n/r

satisfy the MDS property. We only need to show that the span

of the qk vectors in {P ′
1,1} ∪ U has full rank for any possible

U . We consider two cases of U .

Case 1: {P1,2, · · · ,P1,n/r} ⊆ U . Based on Equations (10)

and (11), we can tune ch and D such that P′
1,1 is composed

of the q vectors out of q different racks aside R1 (i.e., the q
vectors of V after q iterations), and the span of the q vectors

plus the vectors in U have full rank, based on Lemma 3.

Case 2: {P1,2, · · · ,P1,n/r} (U . In other words, there

exists one P1,i′ /∈ U (where 2 ≤ i′ ≤ n/r). By Equation (11),

we can tune D so that P ′
1,1 is composed of the q vectors of

P1,i′ , and the set of vectors in {P1,i′}∪U must have full rank

due to the MDS property.

For both cases, we can show that det({P′
1,1,U}) is

a nonzero number for some assignments of ch and D

since the span of vectors in {P′
1,1,U} has full rank. This

means that det({P′
1,1,U}) is a non-zero polynomial. Thus,

det({P′
1,1,U}) 6= 0 holds with a probability arbitrarily driven

to one by increasing the field size of F, as a result of the

Schwartz-Zippel Theorem [10]. The arguments can be found

in [20] and we omit details here. Thus, Theorem 1 holds.

IV. QUANTITATIVE COMPARISONS

We obtain the cross-rack repair bandwidth for a single-node

repair for several erasure codes:

• RS: Reed-Solomon (RS) codes [15] use the conventional

repair (Section I), whose cross-rack repair bandwidth

equals the original data size M .

• MSR: From [4], the repair bandwidth of MSR codes is
M
k · d

d−k+1 when the new node connects to d surviving

nodes. Since MSR-coded data is spread across nodes

in distinct racks [13], the minimum cross-rack repair

bandwidth is the same as the minimum repair bandwidth.

We choose the minimum cross-rack repair bandwidth at

d = n− 1, i.e., M
k · n−1

n−k .

• DRC: The minimum cross-rack repair bandwidth (from

r−1 surviving racks) is (r−1)min{β} = M
k · r−1

r−⌊kr/n⌋ .

• IEC: For comparisons, we borrow the idea from [4] and

assume the existence of ideal erasure codes (IEC), whose

cross-rack repair bandwidth equals the lost data size of

the failed node, i.e., M/k.

We set n−k = 2, 3, 4, which tolerates at most four failures

as in practical data centers [8], [16]. For DRC, we set r under

following conditions (Section II-A): n is a multiple of r, r ≥
n
k , and r ≥ n

n−k . Also, we make r an integer.

Figure 3 depicts the cross-rack repair bandwidths of differ-

ent erasure codes versus the number of nodes n in terms of the

percentage of the original data size M . The cross-rack repair

bandwidth of DRC is always less than that of MSR codes, by

up to 45.5% (e.g., n = 12, k = 8, r = 4). Also, DRC has the

0

0.2

0.4

0.6

0.8

1

6 8 10 12

P
e
rc

e
n

ta
g

e
 o

f
M

n

0

0.2

0.4

0.6

0.8

1

6 8 10 12 n

0

0.2

0.4

0.6

0.8

1

6 8 10 12

RS

MSR

DRC(r=n/2)

DRC(r=n/3)

DRC(r=n/4)

IEC

n

(a) n− k = 2 (b) n− k = 3 (c) n− k = 4

Fig. 3. Cross-rack repair bandwidth (in percentage of M) versus n for repairing a single-node failure. We only plot DRC where r is an integer.

same cross-rack repair bandwidth as IEC in some cases (e.g.,

n = 6, k = 3, r = 3). In general, under the same n and k,

when r is smaller, the cross-rack repair bandwidth of DRC

becomes smaller as well; however, there exist some cases that

a smaller r increases the cross-rack repair bandwidth (e.g.,

when n = 12, k = 8, and r changes from 4 to 3). The reason

is that the “floor” function may keep ⌊kr
n ⌋ the same even if r

becomes smaller.

V. RELATED WORK

Some follow-up studies on regenerating codes consider the

heterogeneity of network bandwidth in the repair problem.

For example, tree-structured regeneration [9] allows nodes

to relay repair traffic in a tree topology, thereby reducing

the overall repair time. Other studies (e.g., [2], [5], [17])

consider heterogeneity of node or link resources, and derive

the minimum repair bandwidth or the maximum information

theoretic capacity. Our work focuses on minimizing the more

critical cross-rack bandwidth in data centers.

The special topological structure of rack-based data centers

motivates different repair studies. The studies [7], [12] focus

on a two-rack topology. The work [18] considers a multi-rack

topology, but focuses on locally repairable codes (which are

non-MDS). In addition, the above approaches do not exploit

node cooperation within a rack to minimize the cross-rack

repair bandwidth. Our DRC is MDS and provably minimizes

the cross-rack repair bandwidth.

VI. CONCLUSIONS

We present Double Regenerating Codes (DRC) for erasure-

coded storage in hierarchical data centers. DRC minimizes

the cross-rack repair bandwidth for a single-node repair, while

keeping minimum storage redundancy. We prove its existence

and demonstrate the repair effectiveness of DRC.

VII. ACKNOWLEDGMENTS

This work was supported by the National Natural Sci-

ence Foundation of China (Grant No. 61502191), CCF-

Tencent Open Fund 2015, Wuhan National Laboratory for

Optoelectronics School of Computer Science and Technol-

ogy, University Grants Committee of Hong Kong (Grant

No. AoE/E-02/08), Cisco University Research Program Fund

(CG#593756) from Silicon Valley Community Foundation,

and Research Committee of CUHK.

REFERENCES

[1] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. Vijaykumar.
ShuffleWatcher: Shuffle-aware Scheduling in Multi-tenant MapReduce
Clusters. In Proc. of USENIX ATC, 2014.

[2] S. Akhlaghi, A. Kiani, and M. R. Ghanavati. Cost-bandwidth tradeoff in
distributed storage systems. Computer Communications, 33(17):2105–
2115, 2010.

[3] T. Benson, A. Akella, and D. A. Maltz. Network Traffic Characteristics
of Data Centers in the Wild. In Proc. of ACM IMC, 2010.

[4] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright, and K. Ramchan-
dran. Network Coding for Distributed Storage Systems. IEEE Trans.
on Info. Theory, 56(9):4539–4551, Sep 2010.

[5] T. Ernvall, S. El Rouayheb, C. Hollanti, and H. V. Poor. Capacity and
Security of Heterogeneous Distributed Storage Systems. IEEE JSAC,
31(12):2701–2709, 2013.

[6] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong, L. Barroso,
C. Grimes, and S. Quinlan. Availability in Globally Distributed Storage
Systems. In Proc. of USENIX OSDI, 2010.

[7] B. Gaston, J. Pujol, and M. Villanueva. A Realistic Distributed Storage
System That Minimizes Data Storage and Repair Bandwidth. In Proc.
of Data Compression Conf., 2013.

[8] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and
S. Yekhanin. Erasure Coding in Windows Azure Storage. In Proc. of
USENIX ATC, 2012.

[9] J. Li, S. Yang, X. Wang, and B. Li. Tree-structured Data Regeneration
in Distributed Storage Systems with Regenerating Codes. In Proc. of
IEEE INFOCOM, 2010.

[10] R. Motwani and P. Raghavan. Randomized Algorithms. In Cambridge
University Press, 1995.

[11] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu, S. Pan,
S. Shankar, V. Sivakumar, L. Tang, and S. Kumar. f4: Facebook’s Warm
Blob Storage System. In Proc. of USENIX OSDI, 2014.

[12] J. Pernas, C. Yuen, B. Gastón, and J. Pujol. Non-homogeneous Two-
rack Model for Distributed Storage Systems. In Proc. of IEEE ISIT,
2013.

[13] K. V. Rashmi, P. Nakkiran, J. Wang, N. B. Shah, and K. Ramchandran.
Having Your Cake and Eating It Too: Jointly Optimal Erasure Codes
for I/O, Storage, and Network-bandwidth. In Proc. of USENIX FAST,
2015.

[14] K. V. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and
K. Ramchandran. A Hitchhiker’s Guide to Fast and Efficient Data
Reconstruction in Erasure-coded Data Centers. In Proc. of ACM
SIGCOMM, 2014.

[15] I. Reed and G. Solomon. Polynomial Codes over Certain Finite Fields.
Journal of the Society for Industrial and Applied Mathematics, 8(2):300–
304, 1960.

[16] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur. Xoring Elephants: Novel Erasure
Codes for Big Data. In Proc. of VLDB Endowment, 2013.

[17] N. B. Shah, K. V. Rashmi, and P. V. Kumar. A Flexible Class of
Regenerating Codes for Distributed Storage. In Proc. of IEEE ISIT,
2010.

[18] M. A. Tebbi, T. H. Chan, and C. W. Sung. A Code Design Framework
for Multi-rack Distributed Storage. In IEEE ITW, 2014.

[19] A. Vahdat, M. Al-Fares, N. Farrington, R. N. Mysore, G. Porter, and
S. Radhakrishnan. Scale-out networking in the data center. IEEE Micro,
30(4):29–41, 2010.

[20] Y. Wu, A. G. Dimakis, and K. Ramchandran. Deterministic regenerating
codes for distributed storage. In Allerton Conference on Control,
Computing and Communication, 2007.

