
FeatureSpy: Detecting Learning-Content Attacks via
Feature Inspection in Secure Deduplicated Storage

Jingwei Li† , Yanjing Ren‡, Patrick P. C. Lee‡ , Yuyu Wang† , Ting Chen†, and Xiaosong Zhang†

†University of Electronic Science and Technology of China ‡The Chinese University of Hong Kong

Abstract—Secure deduplicated storage is a critical paradigm
for cloud storage outsourcing to achieve both operational cost
savings (via deduplication) and outsourced data confidentiality (via
encryption). However, existing secure deduplicated storage designs
are vulnerable to learning-content attacks, in which malicious
clients can infer the sensitive contents of outsourced data by
monitoring the deduplication pattern. We show via a simple case
study that learning-content attacks are indeed feasible and can
infer sensitive information in short time under a real cloud setting.
To this end, we present FeatureSpy, a secure deduplicated storage
system that effectively detects learning-content attacks based on
the observation that such attacks often generate a large volume
of similar data. FeatureSpy builds on two core design elements,
namely (i) similarity-preserving encryption that supports similarity
detection on encrypted chunks and (ii) shielded attack detection
that leverages Intel SGX to accurately detect learning-content
attacks without being readily evaded by adversaries. Trace-driven
experiments on real-world and synthetic datasets show that our
FeatureSpy prototype achieves high accuracy and low performance
overhead in attack detection.

I. INTRODUCTION

Enterprise and individual clients often outsource storage
management to the cloud, so as to save the costs of self-
managing huge amounts of data. To make storage outsourcing
cost-efficient, source-based deduplication can be used to
eliminate the transfers and storage of duplicate contents from a
client to the cloud [26]. Specifically, before the client uploads
a data chunk to the cloud, it first computes the fingerprint (e.g.,
cryptographic hash) of the data chunk. It sends the fingerprint
to the cloud, which checks if the same data chunk copy with
the same fingerprint has already been stored (by the client itself
or other clients). If so, the client does not need to upload the
data, thereby achieving both bandwidth and storage savings.

Cost-efficient storage outsourcing should provide security
guarantees against malicious attacks by the cloud or even clients
themselves. There are two known secure approaches (elaborated
in §II-A): (i) encrypted deduplication [18], [19], in which
clients encrypt data chunks before source-based deduplication
for confidentiality, while ensuring that duplicate data chunks
are always encrypted to the same encrypted chunks to maintain
deduplication effectiveness; and (ii) proof-of-ownership (PoW)
[25], which requires a client to prove to the cloud that it indeed
has authorized access to its outsourced data chunks, so as
to protect against side-channel attacks [25], [26], [39] that
allow malicious clients to obtain unauthorized access to the
outsourced data chunks.

Corresponding author: Ting Chen (brokendragon@uestc.edu.cn)

However, existing secure deduplicated storage designs, even
coupled with encrypted deduplication and PoW, remain vul-
nerable to learning-content attacks [26], [57], in which a
malicious client can upload multiple forged files and check if
the upload of any forged file is eliminated due to source-based
deduplication; if so, it implies that the forged file is duplicate
with some currently stored file. Learning-content attacks are
indeed practical and severe, as an adversary can infer sensitive
content (e.g., salary in an employment offer letter) within a
short time period (e.g., a few minutes as shown in §II-B).
Note that encrypted deduplication and PoW cannot defend
against learning-content attacks, since the malicious clients
only intentionally craft the forged files, yet they still follow
the same upload protocol as benign clients.

We present FeatureSpy, a secure deduplicated storage system
that augments encrypted deduplication and PoW with the
detection of learning-content attacks. FeatureSpy builds on the
insight that in learning-content attacks, a malicious client needs
to generate a sufficient number of similar (but non-duplicate)
data chunks for the attack to be effective; in contrast, practical
(non-compromised) workloads are less likely to have many
similar data chunks in a short time period. Based on the insight,
FeatureSpy examines the content similarity across data chunks
and reports the attack if many similar data chunks are found.
To summarize, this paper makes the following contributions:

• We show via a case study that a malicious client can
feasibly launch learning-content attacks in the LAN and
cloud environments in a short time period (e.g., two and
eight minutes, respectively).

• We design FeatureSpy to support secure deduplicated storage
with the detection of learning-content attacks. One key
challenge of the design is that a malicious client can tamper
with the attack detection procedure. To this end, we design
FeatureSpy with two new primitives: (i) similarity-preserving
encryption, which preserves content similarity in encryption,
so that attack detection can be applied to encrypted data
chunks; and (ii) shielded attack detection, which provides
shielded executions for attack detection via Intel SGX [5],
in order to prevent evasion from malicious clients.

• We conduct extensive trace-driven experiments using real-
world and synthetic datasets. We show that FeatureSpy
is configurable about the trade-off between the detection
accuracy and false positive rate in detecting learning-content
attacks. In the default configuration, even the forged files
have limited similarity (e.g., 3.1% contents are modified),

it preserves the detection accuracy of at least 73% with the
false positive rate of up to 11%. FeatureSpy also incurs as
low as 15.0% and 0.8% throughput drops in uploads and
downloads, respectively, compared with SGXDedup [45], a
state-of-the-art high-performance secure deduplicated storage
system that cannot defend against learning-content attacks.
The source code of FeatureSpy prototype is available at

https://github.com/tinoryj/FeatureSpy.

II. BACKGROUND AND MOTIVATION

A. Basics

Deduplication. Deduplication is a well-studied redundancy
elimination technique being widely deployed in modern storage
management. It is shown to effectively achieve substantial
storage savings in practical workloads such as virtual disk
images [28], file systems [36], backups [52], and container
images [56]. It works by partitioning data into fixed-size
or variable-size chunks. Each chunk is identified by the
cryptographic hash (i.e., fingerprint) of the corresponding
content, assuming that it is highly unlikely to have distinct
chunks with the same fingerprint [20]. Deduplication uses a
key-value store (called the fingerprint index) that tracks the
fingerprints of all already stored chunks. It only stores a new
chunk whose fingerprint is new to the fingerprint index, thereby
achieving storage savings.

In this paper, we focus on applying deduplication into
outsourced storage, in which a client stores data in a third-party
storage service provider (e.g., cloud). The cloud maintains the
fingerprint index and performs (global) deduplication on the
data from the same or different clients. We also consider source-
based deduplication [26], in which a client uploads only the
non-duplicate chunks (§I) to the cloud to save both bandwidth
and storage costs of duplicate chunks.

Encrypted deduplication. To protect outsourced data from
being eavesdropped by external adversaries and the cloud,
we consider encrypted deduplication, which encrypts input
plaintext chunks into ciphertext chunks via symmetric-key
encryption before deduplication, while preserving the dedu-
plication effectiveness on ciphertext chunks. The core idea of
encrypted deduplication is to derive the key from the chunk
content, so that duplicate plaintext chunks are always encrypted
into duplicate ciphertext chunks. Message-locked encryption
(MLE) [19] is a cryptographic primitive that formalizes how the
symmetric key (called the MLE key) is derived from the chunk
content. One MLE implementation is convergent encryption
[23], which computes the MLE key as the cryptographic hash
of the plaintext chunk content. Another MLE implementation
is server-aided MLE [18], which performs MLE key generation
in a dedicated key manager in order to resist the offline brute-
force attacks against convergent encryption. Our work builds
on server-aided MLE.

Proof-of-ownership (PoW). In source-based encrypted dedu-
plication, a client first submits the fingerprint of a ciphertext
chunk to the cloud, and uploads only the ciphertext chunk that
is deemed non-duplicate. However, source-based encrypted

deduplication is vulnerable to side-channel attacks [25], [26],
[39]. One side-channel attack is that a malicious client can
submit the fingerprint of some target ciphertext chunk to check
if the chunk has already been stored [26]. Another side-channel
attack [25], [39] is that a malicious client can use the fingerprint
of some target ciphertext chunk to mislead the cloud that it
has full access to the chunk, thereby obtaining unauthorized
rights for downloading the chunk [25], [39].

Source-based encrypted deduplication can be coupled with
proof-of-ownership (PoW) [25] to defend against the above
side-channel attacks. Specifically, when the client submits the
fingerprint of a ciphertext chunk to the cloud, it also attaches a
short verification value (called the proof) generated by a PoW
protocol between the client and the cloud. Based on the proof,
the cloud verifies if the client is the owner that actually holds
the ciphertext chunk in entirety.

B. Learning-Content Attacks

Secure deduplicated storage, even under the protection
of encrypted deduplication and PoW, remains vulnerable to
learning-content attacks [26], [57]. In such attacks, we assume
that (i) a malicious client knows a priori the most of the content
of a target file of some victim client and (ii) the message
space of the remaining sensitive content has a limited number
of possibilities. Then the malicious client aims to infer the
remaining sensitive content of the target file by (i) creating
forged files with different possibilities of the sensitive content,
(ii) performing source-based deduplication on each forged file,
and (iii) deducing the forged file as the target file if no chunks
of the forged file need to be uploaded (i.e., the forged file is
duplicate in entirety). Since each forged file is created and
owned by the malicious client, PoW is insufficient to defend
against learning-content attacks.

While learning-content attacks are known [26], [57], it
remains open whether such attacks are feasible in practice. We
show via a case study that learning-content attacks are indeed
feasible and severe. Suppose that Alice received an employment
offer letter, and Trudy wants to infer Alice’s salary in her offer.
Both Alice and Trudy belong to the same organization that
manages backups in an outsourced storage system with source-
based deduplication, protected under encrypted deduplication
and PoW. Alice stores her offer letter as a backup, and Trudy’s
goal is to create different forged letters, with all possible salaries,
to infer if any forged letter matches Alice’s offer letter.

To simulate the attack scenario, we start with Google’s offer
letter template [8]. We change the Name, annual salary (say,
a multiple of 6 K [26] between 204 K and 804 K), and sign-on
bonus (say, a multiple of 10 K between 300 K and 600 K) to
generate the offer letters, each of which has a size of 18.5 KiB.
In source-based deduplication, suppose that each letter file is
partitioned into chunks via Rabin fingerprinting [43] with an
average chunk size of 8 KiB [50]. Each plaintext chunk is
encrypted under MLE, and its ciphertext chunk is uploaded
only if it is non-duplicate. Initially, Alice first uploads her offer
letter. Trudy creates forged letters with different possible annual
salary and sign-on bonus amounts. He uploads each forged

Setups # uploads Traffic Time
LAN 841.0 ± 608.3 7.1 ± 5.1 MiB 105.0 ± 76.1 s
Cloud 475.5 ± 339.8 s

TABLE I: Average costs of learning-content attacks. The results are
averaged over 10 runs, with 95% confidence intervals under student’s
t-distribution.

letter, and checks if the full forged letter (if it is non-duplicate),
or only metadata information (if it is duplicate), is sent to the
cloud by monitoring the network traffic. He stops the uploads
if he finds that a forged letter is duplicate.

We simulate the attack ten times and evaluate the attack
in both LAN and cloud setups; in the LAN setup, the clients
and the cloud are in the same local testbed (see §VI-C for
the detailed setup), while in the cloud setup, the clients are in
a local testbed and the cloud is deployed as a rented virtual
machine (VM) in Alibaba Cloud [1]. Table I shows the average
costs for Trudy to infer Alice’s offer. On average, Trudy only
needs to issue 841 forged letters, or equivalently 7.1 MiB
of network traffic (including the transfers of non-duplicate
ciphertext chunks and metadata). It takes only 105.0 s and
475.5 s for Trudy to infer Alice’s offer letter in the LAN and
cloud setups, respectively.

C. Trusted Execution

To defend against learning-content attacks in secure dedu-
plicated storage while preserving the bandwidth and storage
savings of source-based deduplication, we design a robust
mechanism that detects learning-content attacks based on
trusted execution technologies. In this work, we choose Intel
Software Guarded Extensions (SGX) [5] to realize trusted
execution, due to its limited performance overhead [27], [45].

SGX extends Intel CPU with security-related instructions
inside the CPU hardware. It allocates an enclave, which pro-
vides a trusted execution environment, in a hardware-guarded
memory region (called the enclave page cache (EPC)), such
that the enclave hosts sensitive contents with confidentiality
and integrity guarantees.

Although Intel has deprecated SGX in the next Intel Core
platforms [51], it will continuously support SGX in future
Intel Xeon platforms [44]. Also, our design has a small trusted
computing base (§III), and can be adapted to other trusted
execution technology (e.g., ARM TrustZone [40]).

III. FEATURESPY OVERVIEW

This paper presents FeatureSpy, a secure deduplicated storage
system that augments encrypted deduplication and PoW to
detect learning-content attacks. It aims for the following goals:
• Bandwidth and storage savings. It maintains bandwidth

and storage savings via source-based deduplication.
• Secure deduplication. It provides confidentiality for out-

sourced data via encrypted deduplication and protects source-
based deduplication with PoW.

• Robust and efficient attack detection. It leverages SGX to
reliably detect learning-content attacks against the tampering
by some malicious client. It also achieves high accuracy

Multiple Clients

Source-based
Encrypted Deduplication Cloud

Compromised by
malicious adversary

File Enclave
🔒

🔒
🔒

Detect attacks

Fig. 1: Architecture of FeatureSpy. An enclave is maintained in each
client to detect learning-content attacks.

and low misjudgements in attack detection. Furthermore, it
performs attack detection on the write path and incurs low
performance overhead in SGX.

• Small trusted computing base. It manages a small enclave
size and minimal function call interfaces for the enclave;
this is a necessary design goal to avoid abusing interface
function calls [34].

A. Architecture

Figure 1 depicts the architecture of FeatureSpy. We consider a
storage outsourcing scenario, in which multiple clients regularly
upload data snapshots (e.g., virtual disk images [28], file
systems [36], backups [52], and container images [56]) to the
cloud for persistent archival storage; such snapshots have high
content similarity that favors deduplication (§II-A). A client
partitions file data into plaintext chunks and computes the
ciphertext chunks and fingerprints for source-based encrypted
deduplication.

In FeatureSpy, each client maintains an enclave to detect
learning-content attacks. Initially, we compile the enclave code
into a shared object [5]. We distribute the shared object, along
with a signature, to each client and the cloud for integrity
verification. Each client creates the corresponding enclave
by loading the shared object, and the cloud authenticates the
enclave via remote attestation [5] to ensure that the correct
code is loaded into the enclave. FeatureSpy allows a benign
client to transfer only non-duplicate ciphertext chunks via its
enclave to the cloud, and aborts a malicious client that is caught
by the enclave for launching learning-content attacks.

B. Threat Model

FeatureSpy provides confidentiality guarantees for its out-
sourced data via encryption against the eavesdropping by
external adversaries and the cloud. In addition, FeatureSpy
protects against a malicious client that aims to infer the original
plaintext chunks of other non-compromised clients. Specifically,
the malicious client can access its own plaintext chunks and
keys, and launch learning-content attacks by arbitrarily creating
forged files. Also, it can tamper with in-memory operations, in
order that its attacks can bypass the detection of FeatureSpy.
For example, while a benign client processes chunks in multiple
phases (e.g., key generation, encryption, and deduplication),
the malicious client may skip some phases and inject forged
files that are only processed by the remaining phases.

Our threat model makes the following assumptions.
• The communication between each client and the cloud is

protected by SSL/TLS against eavesdropping.

• The enclave within each client is trusted and authenticated.
It preserves confidentiality for in-enclave contents [45], [48].

• FeatureSpy can protect against corruptions of outsourced data
with proof data possession [14] and proof of retrievability
[29], as well as against storage failures via redundancy (e.g.,
in multi-cloud storage [33]). We do not address such issues
in this work.

C. Main Idea and Challenges

Main idea. Our insight is that learning-content attacks often
generate many similar chunks. By similar, we mean that the
chunks are non-duplicate but have largely the same content
with information changes in only a few regions. For example,
in our case study (§II-B), Trudy enumerates all possible annual
salaries and sign-on bonuses, both of which are stored in the
same chunk due to the data partitioning of the employment
letter template. He forges a large number of chunks that only
differ in the salary and bonus amounts. Compared with a
chunk of an average size of 8 KiB, the forged chunks only
have small content differences (i.e., multiple bytes). Note that
our arguments still apply even if the salaries and bonuses are
stored in different chunks. In general, we argue that the forged
chunks in learning-content attacks cannot have large content
differences; otherwise, the attacks will be ineffective by nature
due to the extremely high cost of enumerating all possibilities.

From the defense perspective, we observe that practical non-
compromised workloads are unlikely to have too many similar
chunks that co-occur together. To justify, we analyze the four
real-world datasets of backup snapshots, Linux, GCC, CouchDB,
and Gitlab (see §VI-A for dataset details). We partition each file
of a snapshot into variable-size chunks via Rabin fingerprinting
[43] with an average chunk size of 8 KiB [9]. We use the
similarity detection scheme [47] (described in §IV-A) to identify
similar chunks. Specifically, we transform the Rabin fingerprint
of each sliding window of a chunk by multiple linear functions.
For each linear function, we generate a sub-feature as the Rabin
fingerprint of a sliding window whose transformed result has
the maximum value across all sliding windows. We derive a
feature as the concatenation of a number (e.g., four [47]) of
sub-features.

Suppose that we generate a single feature for each chunk
and find the largest subset of chunks with the same feature
within a snapshot. We measure the fraction of chunks of this
largest subset over all chunks in the snapshot. Figure 2 shows
that the snapshots only have up to 2.1% of chunks (in GCC)
with the same feature.

This inspires the design of FeatureSpy, which detects
learning-content attacks by examining the similarity of chunks.
Specifically, FeatureSpy extracts a set of features of each chunk
from a client, and reports the attack if the client generates many
chunks with the same set of features.
Challenges. Realizing FeatureSpy in secure deduplicated
storage is non-trivial, since the malicious client may tamper
with contents and operations (§III-B). In this work, we leverage
SGX to run attack detection within the enclave. One major
challenge of using SGX is to maintain a small enclave size,

0

1.0

2.0

0 25 50 75 100
Snapshots (%)

F
ra

c
tio

n
 (

%
) Linux GCC

CouchDB Gitlab

Fig. 2: Fraction of the largest subset of chunks with the same feature
over all chunks in a snapshot; the x-axis is the percentile of snapshots,
sorted by the fraction in descending order.

Chunk

Sim
ilarity-Preserving
Encryption

Feature
Extraction

Source-based
Deduplication

FeatureSpy
Feature Key
Generation

in Unprotected Memory

Attack
Detection

Enclave

PoW
MLE Key

Generation

Shielded Attack
Detection

Fig. 3: Design workflow of FeatureSpy.

so as to mitigate performance overhead [13], [22], [27], [45]
and security risks [34]. Thus, running all client-side operations
inside the enclave is infeasible.

To keep small enclave usage, FeatureSpy opts to run only
attack detection and PoW within the enclave, while performing
encrypted deduplication (including key management and encryp-
tion) in unprotected memory based on server-aided MLE [18]
(§II-A). However, this poses a major design issue of whether
FeatureSpy should perform attack detection on plaintext chunks
(before encryption) or ciphertext chunks (after encryption). For
the former, a malicious client can bypass attack detection by
injecting forged chunks after the encryption phase (before the
chunks are uploaded to the cloud); for the latter, the current
encryption operation of MLE (§II-A) destroys content similarity
(i.e., similar but non-identical plaintext chunks are encrypted
into totally distinct ciphertext chunks) and prohibits our attack
detection that builds on the detection of similar chunks.

IV. DETAILED DESIGN

In this section, we present the detailed design of FeatureSpy.
Figure 3 presents the design workflow. FeatureSpy is deployed
in each client, and processes plaintext chunks from the client
before they are securely outsourced to the cloud. It first extracts
features from each plaintext chunk and derives a feature key
(§IV-A). Based on the feature key and MLE key, it performs
similarity-preserving encryption (§IV-B), which maps similar
(but non-identical) and identical plaintext chunks to similar
and identical ciphertext chunks, respectively, so as to make our
attack detection on ciphertext chunks feasible, while preserving
the deduplication effectiveness as in MLE. Finally, it performs
shielded attack detection (§IV-C), which accurately detects
learning-content attacks using small enclave usage, without
readily being bypassed by malicious clients.

A. Feature Extraction and Key Generation

We elaborate how FeatureSpy extracts features from the
chunk content and performs key generation.

Feature extraction. There are various approaches in the
literature (e.g., [21], [47], [55]) to extract features from some
data content to capture the content characteristics. In this work,
we use the similarity detection scheme in [47]. Note that we
do not claim the novelty of this design.

In similarity detection [47], FeatureSpy defines N pairs of
coefficients (ai,mi), each of which indicates a linear function
to transform a Rabin fingerprint P [43] into some output
πi(P). For each plaintext chunk M, FeatureSpy computes Rabin
fingerprints over 64-byte sliding windows of chunk data (each
sliding window returns one Rabin fingerprint). We compute
πi(P) for each Rabin fingerprint P as follows:

πi(P) = ai ∗P+mi mod 264, for 1 ≤ i ≤ N. (1)

FeatureSpy derives N sub-features, in which the i-th sub-feature
is the Rabin fingerprint P if πi(P) is the maximum over the
Rabin fingerprints across all sliding windows. It computes a
feature by concatenating multiple (e.g., four [47]) sub-features,
and represents each plaintext chunk by S = N

4 features. Let
N = 12 [47] (i.e., S = 3), Pi be the i-th sub-feature (1 ≤ i ≤ 12)
and Fj be the j-th feature (j = 1,2,3). We have:

Fj = H(P4 j−3||P4 j−2||P4 j−1||P4 j), for j = 1,2,3, (2)

for some cryptographic hash function H(·). Two chunks with
more common features are more likely to be similar.
Key generation. FeatureSpy generates a feature key based on
the S features, so that similar chunks are likely to share the same
feature key. This is a critical requirement to preserve similarity
in encryption (§IV-B). Specifically, FeatureSpy concatenates
all S features, and computes the feature key based on the
cryptographic hash of the concatenation. Note that two chunks
have an identical feature key only if their content differences do
not alter any of the S features. Thus, a small S leads to a loose
key generation criterion and tends to generate the same feature
key for a large number of chunks. On the other hand, with a
large S, FeatureSpy generates the same feature key only for
the highly similar chunks with very few changed contents. In
§VI-B, we will study how the choice of S impacts the trade-off
between the detection accuracy and false positive rate in attack
detection.

B. Similarity-preserving Encryption

To allow attack detection based on ciphertext chunks (§IV-C),
FeatureSpy needs to preserve the similarity of the original
plaintext chunks after encryption and detect if there exist many
ciphertext chunks generated from similar plaintext chunks.
Recall that MLE destroys content similarity, since the MLE
key is generated based on the whole content of each plaintext
chunk (§III-C). Our idea is to perform encryption based on the
feature key. Since similar chunks are likely to have the same
feature key (§IV-A), this can preserve content similarity.

One straightforward (but with security limitations) approach
is feature-based encryption (FBE) [53], which directly encrypts
each plaintext chunk with its feature key based on the cipher
block chaining (CBC) block cipher mode. Specifically, similar
chunks have few content changes and are likely to have identical

blocks starting from the beginning of chunk data. Since the
CBC encryption of each data block (16 bytes long) depends
on the encryption of the previous block, if two ciphertext
chunks have multiple initial blocks in common, we can deduce
that the ciphertext chunks are likely to be generated from
similar plaintext chunks. However, FBE is vulnerable to key
compromise, since a feature key is the same for all chunks
with an identical set of features. A malicious client can use a
compromised feature key to fully decrypt many similar chunks,
even though some of the chunks are unauthorized to access.

We propose similarity-preserving encryption (SPE), which
extends MLE with similarity preservation. Our idea is to encrypt
only a small part of chunk content with feature key to preserve
similarity, while the remaining large part is still protected by
the MLE key to defeat against key compromise (note that the
compromise of the MLE key of one chunk does not leak the
information about any other chunk [18]). Specifically, due to
the small content differences of similar chunks, SPE samples
the first 32 bytes (with 0.4% of an 8 KiB chunk) from each
plaintext chunk called the indicator. It encrypts the indicator
of each plaintext chunk with the feature key, and encrypts the
remaining large part (with 99.6% of an 8 KiB chunk) of chunk
content with the MLE key. Similar chunks are likely to have
the same indicator, and their encrypted indicators are also the
same due to the same feature key. We can find the similar
chunks by verifying if their encrypted indicators (i.e., the first
32 bytes of each ciphertext chunk) are identical. Note that SPE
still achieves storage savings with deduplication, since identical
chunks also have the same set of features, and hence the same
feature key and MLE key.

SPE defends against key compromise by mitigating the
information leakage as follows. Our insight is that if the feature
key of a compromised chunk (say, M) is leaked, it can only be
used to decrypt the indicators of the similar chunks that have
the same set of features as M. Such similar chunks are likely
to have the same indicator as M; in this case, SPE does not
allow an adversary to learn a different indicator and it does
not incur additional information leakage beyond the indicator.
In addition, the remaining large part of M is still encrypted by
the MLE key and protected under MLE [19].

C. Shielded Attack Detection

FeatureSpy proposes shielded attack detection to prevent a
malicious client from tampering with in-memory operations and
bypassing the detection phase (§III-B). Our idea is to couple
attack detection and PoW together in the enclave, such that
valid PoW proofs are truthfully generated for the authenticated
chunks that have been examined for attack detection. Since the
PoW proofs need to be verified before deduplication (§II-A),
the malicious client cannot skip the detection phase to process
forged contents. We present the design details as follows.
Attack detection. A straightforward design of FeatureSpy is
to count the indicator of each ciphertext chunk in the enclave
and report an attack if there exist many ciphertext chunks with
the same indicator. However, it is infeasible to process all
ciphertext chunks of a backup snapshot in attack detection and

report the attack until the snapshot is completely processed, as
the attack has already made damages before being detected.
Also, as a snapshot typically has a large size, counting the
indicators of all ciphertext chunks increases the enclave size.

FeatureSpy opts to detect attacks on the ciphertext chunks
on a per-batch basis. The idea is that if a tampered snapshot
has many similar chunks, it must have at least one batch that
contains a large fraction of similar chunks. Specifically, the
enclave manages a hash table to track how many ciphertext
chunks in a batch have the same indicators (the default batch
size W = 16 K). Each hash table entry maps a unique indicator
(32 bytes long) to the number of times (4 bytes long) that the
indicator occurs across different ciphertext chunks in the batch.
Note that the hash table has a size up to 16 K × (32 bytes +
4 bytes) ≈ 0.6 MiB and adds negligible EPC overhead.

For each ciphertext chunk, the enclave queries the hash table
based on the chunk’s indicator. If an indicator does not exist, it
adds the indicator into the hash table and initializes the count
as one; otherwise, it increments the count by one. If the count
reaches a pre-defined threshold T (e.g., 1% by default) of the
batch size W , the enclave reports an attack and aborts the PoW
operation (see below) for the client. After processing a batch
of ciphertext chunks, the enclave clears all hash table entries
to process the next batch of ciphertext chunks.

PoW. FeatureSpy implements PoW inside the enclave [45].
Specifically, for each examined ciphertext chunk of a batch,
the enclave computes its fingerprint, and generates a signature
based on the concatenation of all chunk fingerprints of the
batch. The cloud checks if each fingerprint corresponds to
a stored ciphertext chunk (i.e., deduplication) only when the
signature is successfully verified.

D. Security Analysis

Confidentiality against a compromised cloud. We have
discussed the security improvement of SPE over FBE when keys
have been compromised (§IV-B). We now focus on the case
that the keys are not leaked beforehand. Bellare et al. [19] have
shown that any polynomial-time adversary cannot distinguish
the MLE-based ciphertext of a plaintext chunk from a random
value when the plaintext chunk is drawn from a large space
(i.e., plaintext chunks are unpredictable). SPE extends MLE by
encrypting the indicator with the feature key, and preserves the
security of MLE if any feature is unpredictable. Specifically,
under SPE, it is infeasible to enumerate all possible feature keys
by a polynomial-time adversary. Then the encrypted indicator
is also indistinguishable from a random value if the underlying
symmetric encryption is secure. Note that we can further relax
the unpredictable assumption via server-aided key generation
[18] (see §V for implementation details).

Robustness against a malicious client. We have discussed
that an adversary cannot forge chunks to bypass the detection
phase (§IV-C). We now focus on the robustness against other
malicious actions (§III-B).
• Case 1: Tampering with unprotected operations. A

malicious client may manipulate features, indicators, and keys,

in order to cheat the enclave for passing detection. However,
these manipulations are not helpful to learn contents from
a benign client that follows our design, since they lead to
distinct ciphertext chunks with those produced by regular SPE
(applied by the benign client). This prohibits deduplication,
and learning-content attacks that rely on the information
leakage of source-based deduplication are impossible.

• Case 2: Tampering with data processing. A malicious
client may carefully inject forged files, such that each batch
just includes a small fraction of similar chunks. FeatureSpy
mitigates learning-content attacks by slowing down the attack
procedure. Suppose that an adversary needs to generate a
number of similar chunks to enumerate all possible contents.
Without FeatureSpy, it can fill each batch with W similar
chunks for the attack (recall that W is the batch size; see
§IV-C); with FeatureSpy, it can only submit up to W ×T
similar chunks in a batch without being detected (recall
that T is the fractional threshold for attack detection; see
§IV-C), meaning that the adversary needs to generate 1/T
times more batches in order to generate the same number of
similar chunks to enumerate all possible contents. A smaller
T implies that the adversary needs a longer time to launch
learning-content attacks, yet FeatureSpy may have a higher
false positive rate in attack detection.

V. IMPLEMENTATION

We implement a FeatureSpy prototype based on SGXDedup
[45], a state-of-the-art SGX-based secure deduplicated storage
system. SGXDedup builds on server-aided MLE [18], which
maintains a key manager to manage a global secret. The key
manager generates the MLE key for each plaintext chunk
based on both the chunk fingerprint and the global secret to
defend against offline brute-force attacks [18]. SGXDedup also
deploys a client-side enclave and implements source-based
deduplication with PoW inside the enclave (§IV-C) to defend
against side-channel attacks. However, SGXDedup does not
address learning-content attacks.

FeatureSpy augments SGXDedup with the detection of
learning-content attacks. To address the unpredictability as-
sumption for both chunks and features (§IV-D), the client
performs server-aided key generation for MLE keys (like
SGXDedup) and feature keys. To boost performance, the client
parallelizes feature extraction with multiple (e.g., three by
default) threads and pipelines the processes of chunking, key
generation, encryption, attack detection, and uploads. Also,
the cloud manages non-duplicate ciphertext chunks in units
of containers with 8 MiB each for storage, and maintains an
in-memory least-recently-used cache (1 GiB) to hold the most
recently restored containers. For each download request, it first
searches for the containers in the cache, and retrieves them
from disk only if they are not in the cache.

VI. EVALUATION

A. Datasets

Synthetic datasets. We consider a set of synthetic snapshots
to study the trade-off between the detection accuracy and false

Datasets Snapshots Raw Size Deduplication Ratio
Linux 84 42.7 GiB 3.8
GCC 85 33.0 GiB 7.2

CouchDB 83 22.9 GiB 1.8
Gitlab 79 74.4 GiB 1.1
FSL 10 407.5 GiB 9.3
MS 10 902.6 GiB 5.6

TABLE II: Characteristics of real-world datasets. The deduplication
ratio is defined as the ratio between the size of pre-deduplicated data
and the size of post-deduplicated data; a higher deduplication ratio
means that the dataset has more content redundancies.

positive rate of attack detection (Exp#1). Suppose that each
chunk has a size of 8 KiB. We create a 1 GiB base snapshot
with fully random chunks (i.e., no duplicate or similar chunks).
We use the base snapshot to generate two types of synthetic
snapshots. First, we randomly inject a configurable number of
forged files into the base snapshot, so as to simulate the case
that an adversary mixes forged files and legitimate contents
in uploads. Here, we fix each forged file with only a single
chunk, and control the similarity of different forged files by the
number of changed positions in the chunk and the number of
different bytes in each changed position. We do not consider
larger forged files, since the adversary needs to enumerate
additional similar chunks and is more likely to be caught by
FeatureSpy. Second, we randomly replace a fraction of chunks
in the base snapshot by similar chunks, so as to simulate real-
world non-compromised snapshots. We use such snapshots to
study the false positive rates in different FeatureSpy instances.
Real-world datasets. We consider six real-world datasets
(Table II): (i) Linux [7], which includes 84 snapshots from the
stable versions (between v2.6.11 and v5.13) of Linux source
code; (ii) GCC [3], which includes 85 snapshots from the
release versions (between v4.0.0 and v12.1.0) of GNU GCC
source code; (iii) CouchDB [2], which includes 83 docker
images of CouchDB in the versions between v2.5.2 and v6.6.2;
(iv) Gitlab [4], which includes 79 docker images of Gitlab-ce in
the official release versions between v14.0.0-ce.0 and v14.9.4-
ce.0; (v) FSL [9], which includes 10 weekly home directory
backup snapshots from a shared network file system; and (vi)
MS [36], which includes 10 windows file system snapshots
with a logical size of about 100 GiB each. We will use Linux,
GCC, CouchDB, and Gitlab snapshots to evaluate the detection
accuracy of FeatureSpy when the malicious client mixes the
forged employment letters of our case study (§II-B) with real-
world uploads (Exp#2). Also, FSL and MS are large-scale
workloads but only include chunk metadata rather than actual
data, so we reproduce the chunks for both traces to evaluate
the performance of FeatureSpy (Exp#4).

B. Detection Analysis

Default configuration. We configure FeatureSpy as follows.
For each plaintext chunk, we extract S = 3 features to perform
feature key generation (except Exp#1 that varies S to study the
trade-off of different FeatureSpy instances). To perform attack
detection, we fix the size of the indicator as 32 bytes and W
= 16 K.

S=1 S=2 S=3

 0

 25

 50

 75

100

1024 2048 3072
Number of forged files (n)

D
e
te

c
ti
o

n
 (

%
)

2 3 4 5
Modified positions (x)

2 4 8 16 32 64
Modified bytes (y)

(a) x = 4, y = 32 (b) n = 2048, y = 32 (c) n = 2048, x = 4

 0

 25

 50

 75

100

0.01 0.015 0.02
Replacement ratio (r)F

a
ls

e
 p

o
si

ti
ve

 (
%

)

2 3 4 5
Modified positions (x)

2 4 8 16 32 64
Modified bytes (y)

(d) x = 4, y = 32 (e) r = 0.015, y = 32 (f) r = 0.015, x = 4

Fig. 4: (Exp#1) Trade-off study between detection accuracy and false
positives of different FeatureSpy instances.

Exp#1 (Trade-off study). We evaluate the trade-off of different
FeatureSpy instances configured by S. We first focus on the
synthetic snapshots (§VI-A) that are mixed with a varying
number n of 8-KiB forged files, which are configured with x
differed positions and y different bytes in each differed position.
For fair comparison, we fix the fractional threshold T of all
instances as 1%, and measure the detection accuracy by the
detection rate, defined as the ratio between the number of such
mixed snapshots that are successfully detected by FeatureSpy
and the total number of mixed snapshots. Specifically, we
randomly generate 100 mixed snapshots and evaluate the
detection rates of FeatureSpy instances (S = 1, 2, and 3).

Figure 4(a) shows the results when we fix x = 4 and y =
32, and vary n from 1,024 to 3,072. The detection rates of
all instances increase with the number of forged files, since a
large n injects more similar chunks. Also, the instances S = 1
and 2 can effectively report the existence of attacks (e.g., the
detection rate is above 95%) even the malicious client only
injects a small number (e.g., 1,536) of forged files, since a small
S tends to assign identical feature keys to many chunks (§IV-A).
This increases the probability of detecting similar chunks by
FeatureSpy. Figures 4(b) and 4(c) show the detection rate when
we fix n = 2,048 and vary x and y, respectively. A large x or
y implies small similarity among the forged files. Thus, the
detection rates of all FeatureSpy instances gradually decrease,
since a small number of similar chunks can be found. Compared
to the other two instances, the detection rate of S = 3 decreases
more significantly. On the other hand, even the forged files have
64 bytes×4 positions

8 KiB = 3.1% different contents (Figure 4(c)), the
instance S = 3 can detect attacks with at least the probability
of 73%.

We further let FeatureSpy process the other type of synthetic
snapshots (§VI-A), each of which replaces the chunks in the
base snapshot by a fraction r of (similar) chunks. Similarly, we
configure the replacement chunks with x differed positions in
chunk contents and y different bytes in each differed position,
in order to characterize different similarities. We randomly
generate 100 such snapshots, and measure the false positive

 0
 25
 50
 75
100

1 4 7 10
Threshold (%)

D
e
te

c
tio

n
 (

%
) Linux GCC Couch Gitlab

Fig. 5: (Exp#2) Case study of attack detection. We show the detection
rate of FeatureSpy, and its default configuration does not introduce
any false positives in the case.

rate, defined as the ratio between the number of snapshots
that FeatureSpy misjudges and the total number (i.e., 100) of
snapshots.

Figure 4(d) presents the results, when we fix x = 4 and y = 32,
and vary r from 0.01 to 0.02 (informed by the characteristics
of real-world snapshots; see Figure 2). The false positive rate
increases, since a large r implies more legitimate similar chunks
in snapshots. However, the S = 3 instance keeps a low false
positive rate (below 2%), since it only detects highly similar
chunks. Similarly, in Figure 4(e) (where r = 0.015 and y =
32, and x varies) and Figure 4(f) (where r = 0.015 and x =
4, and y varies), when we reduce the similarity among the
replacement chunks (by increasing x or y), the false positive
rate decreases. To sum up, compared with the other instances,
the S = 3 instance effectively balances the detection rate (at
least 73% even 3.1% contents are modified among the forged
chunks) and false positive rate (up to 11%).

Exp#2 (Case study of attack detection). We extend the case
study in §II-B to study how FeatureSpy detects the learning-
content attacks of inferring salaries and sign-on bonuses. Recall
that the adversary forges 101 × 31 = 3131 employment letters,
where the annual salary and sign-on bonus have 101 and 31
possible values, respectively (§II-B). To make detection more
challenging, we evenly insert the forged letters into each real-
world snapshot, perform chunking on each individual file of
the mixed snapshot (that mixes both forged employment letters
and legitimate chunks), and further apply SPE on the chunks.
Informed by Exp#1, we only focus on S = 3 here.

Figure 5 shows the detection rate for the mixed snapshots,
when we vary the threshold T from 1% to 10%. The detection
rate generally decreases, since FeatureSpy needs to find more
similar chunks to report the existence of attacks. Even so, our
default configuration of T = 1% can detect all mixed snapshots.
We also let FeatureSpy process each raw snapshot without
forged letters, and evaluate the false positive rate. We find that
FeatureSpy does not have any false positives even though we
configure a small T (e.g., 1%). The reason is that the similar
chunks in raw snapshots are too few to trigger the detection
of the attack.

C. Performance Evaluation

Setup. We deploy FeatureSpy in a LAN testbed that includes
multiple machines to run the cloud, key manager, and clients.
Each machine is equipped with an eight-core 2.9 GHz Intel Core
i7-10700 CPU, a 4 TB 7200 RPM Seagate Exos SATA HDD and

Procedure/Step FeatureSpy SGXDedup
Chunking 2.12 ± 0.006

Feature extraction 9.85 ± 0.02 -
Fingerprinting 1.81 ± 0.002
Key generation 0.73 ± 0.02 (0.49 ± 0.01)

Encryption 1.22 ± 0.001

In Enclave Detection 0.04 ± 0.005 -
PoW 1.86 ± 0.004

Deduplication 0.55 ± 0.02
Transfer 1.16 ± 0.03 (0.04 ± 0.001)

TABLE III: (Exp#3) Time breakdown per 1 MiB of synthetic file data
processed in a single thread (unit: ms). We average the results over
10 runs and include the 95% confidence intervals from Student’s t-
Distribution. Except explicitly specified in parentheses, the consumed
time in the second upload is identical with that in the first upload.

32 GB RAM. All machines are connected via a 10 Gbps switch
and run Ubuntu 20.04.3. In addition to the default configuration
(§VI-B), we configure three threads in FeatureSpy prototype
to extract the features of plaintext chunks in parallel (except
Exp#3 in which we first conduct microbenchmarks on the
performance of each step in a single thread), and a 1 GiB
container cache to improve the download performance (§V).
Our goal is to show that FeatureSpy incurs small performance
overhead over SGXDedup [45], which cannot defend against
learning-content attacks (§V).

Exp#3 (Microbenchmarks). We conduct microbenchmarks
by deploying a client, a key manager, and a cloud in distinct
machines. We generate a 2 GiB file of synthetic data with
random contents (i.e., no duplicate or similar chunks), and load
the file into the client’s memory before each test. We configure
the client with a single thread to upload the same 2 GiB file
twice, and further download the file. We evaluate the processing
time of different upload steps, including: (i) chunking, which
partitions the input file into variable-size plaintext chunks; (ii)
feature extraction, which extracts the features of each plaintext
chunk; (iii) fingerprinting, which computes the fingerprint of
each plaintext chunk; (iv) key generation, which generates both
feature keys and MLE keys; (v) encryption, which encrypts
each plaintext chunk; (vi) detection, which detects learning-
content attacks; (vii) PoW, which proves the ownership of each
ciphertext chunk; (viii) deduplication, in which the cloud detects
duplicate chunks; (ix) transfer, which transmits non-duplicate
ciphertext chunks and the file recipe.

Table III compares the processing times (per 1 MiB file
data) of FeatureSpy and SGXDedup [45]. The detection step
is efficient, and takes up to 0.2% of the overall time in
uploads. The feature extraction step is expensive due to the
computational overhead of the similarity detection scheme
[47]; it takes 50.9% and 54.8% of the overall time in the first
and second uploads, respectively. However, we can accelerate
feature extraction via multi-threading.

Figures 6(a) and 6(b) further present the speeds of the
first and second uploads, respectively, by varying the num-
ber of threads to extract features (§V). SGXDedup keeps
at 297.1 MiB/s in the first upload and 304.3 MiB/s in the
second upload, since it does not extract features. The first

SGXDedup FeatureSpy

 0

100

200

300

1 2 3 4
Thread

S
p
e
e
d
 (

M
iB

/s
)

 0

100

200

300

1 2 3 4
Thread

S
p
e
e
d
 (

M
iB

/s
)

446 440

 0

250

500

DownloadS
p
e
e
d
 (

M
iB

/s
)

(a) 1st upload (b) 2nd upload (c) Download

Fig. 6: (Exp#3) Microbenchmarks of multi-threading in upload and
download.

SGXDedup Upload FeatureSpy Upload

SGXDedup Download FeatureSpy Download

 0

100

200

300

1 2 3 4 5 6 7 8 9 10
Snapshot

S
p
e
e
d
 (

M
iB

/s
)

 0

125

250

1 2 3 4 5 6 7 8 9 10
Snapshot

S
p
e
e
d
 (

M
iB

/s
)

(a) FSL (b) MS

Fig. 7: (Exp#4) Trace-driven performance.

(second) upload speed of FeatureSpy increases to 262.6 MiB/s
(281.6 MiB/s) with three threads due to parallel feature ex-
traction, and decreases to 218.1 MiB/s (223.4 MiB/s) with four
threads due to resource contention among threads. By exploiting
multi-threading, it incurs a speed drop over SGXDedup with
11.6% in the first upload and 7.5% in the second upload.
Figure 6(c) compares the download speed. FeatureSpy incurs
1.3% speed drop, since it decrypts each chunk with both the
MLE key and feature key.

Exp#4 (Trace-driven performance). We compare the per-
formance of FeatureSpy and SGXDedup using the real-world
FSL and MS snapshots. Since our snapshots only contain
chunk fingerprints and sizes without chunk content (§VI-A),
we reconstruct each plaintext chunk by repeatedly writing its
fingerprint into a spare chunk with the specified size. We first
upload the snapshots one by one, and then download them in the
same order of upload. Note that the original SGXDedup [45]
does not have the container cache (§V). For fair comparison,
we implement an in-memory cache for SGXDedup to buffer
the most recently restored containers, and configure the cache
with the same size (1 GiB) as in FeatureSpy.

Figure 7 presents the results. After the first FSL snapshot
(224.8 MiB/s for SGXDedup and 216.9 MiB/s for FeatureSpy),
both SGXDedup and FeatureSpy achieve high speeds (at least
298.9 MiB/s for SGXDedup and 250.1 MiB/s for FeatureSpy),
since they do not need to transfer the cross-snapshot redun-
dancies that take a large fraction in FSL. The download
speed is generally steady (88.7-102.6 MiB/s for SGXDedup and
88.0-100.2 MiB/s for FeatureSpy). On average, compared to
SGXDedup, FeatureSpy decreases the upload speed by 15.0%
and the download speed by 0.8%.

Compared to FSL, the upload speeds of both systems in
MS drop by about 21.0%, since MS contains many unique
chunks and generates a large fingerprint index (implemented

via LevelDB [6] in both SGXDedup and FeatureSpy). This
aggravates the overhead of index queries. Also, the download
speeds of both systems in MS fluctuate across snapshots, since
some snapshots have more non-duplicate chunks and may be
stored in the consecutive regions (i.e., less fragmented [35])
that can be quickly accessed via sequential reads.

VII. RELATED WORK

Secure deduplication approaches. In §II-A, we review the
basic primitives for secure deduplication. MLE preserves data
confidentiality and is extensively studied from the security [10],
[17], [31] and system [12], [18], [32], [33], [42], [45], [46]
perspectives. FeatureSpy proposes SPE to augment MLE with
similarity preservation, so as to support similarity detection
on ciphertext chunks. PoW prevents a malicious client from
compromising data ownerships, but it cannot address learning-
content attacks (§II-B). FeatureSpy complements PoW by
proactively detecting attacks. Previous studies [26], [33] prevent
learning-content attacks by allowing to transfer duplicate
chunks. FeatureSpy performs pure source-based deduplication
without transferring duplicate chunks.

SGX-based secure storage. SGX has been widely used to
strengthen the security of storage systems, such as file systems
[11], [48], outsourced databases [24], [41], [49], and key-value
stores [15], [16], [30], [38]. This paper focuses on secure
deduplicated storage. S2Dedup [37] and DEBE [54] manage
a cloud-side enclave to perform target-based deduplication,
while FeatureSpy focuses on addressing a malicious client in
source-based deduplication. SGXDedup [45] leverages SGX
to improve the performance of PoW. FeatureSpy extends
SGXDedup with the capability of detecting learning-content
attacks.

VIII. CONCLUSION

This paper presents FeatureSpy, a secure deduplicated storage
system that can effectively detect learning-content attacks.
It builds on the insight that a malicious client generates
many similar chunks for attacks, and proposes SPE to support
similarity detection on ciphertext chunks, as well as shielded
attack detection to prevent the malicious client from evading
detection. FeatureSpy not only effectively detects learning-
content attacks, but also incurs small performance overhead
compared to SGXDedup [45].

ACKNOWLEDGEMENTS

This work was supported in part by the National Key
R&D Program of China (2022YFB3103500), National Nat-
ural Science Foundation of China (61972073, 62002049,
61872057, U19A2066), Natural Science Foundation of Sichuan
(2023NSFSC0472), Key Research Funds of Sichuan Province
(2021YFG0167, 2020YFG0298), Sichuan Science and Tech-
nology Program (2020JDTD0007, 2022YFG0037), Funda-
mental Research Funds for Chinese Central Universities
(ZYGX2020ZB027, ZYGX2021J018, ZYGX2020J017), Inno-
vation and Technology Fund (GHX/076/20), and Research
Matching Grant Scheme.

REFERENCES

[1] Alibaba cloud. https://www.alibabacloud.com/.
[2] CouchDB. https://couchdb.apache.org.
[3] GCC. https://github.com/gcc-mirror/gcc.
[4] Gitlab docker images. https://hub.docker.com/r/gitlab/gitlab-ce.
[5] Intel(R) software guard extensions. https://www.intel.com/content/www/

us/en/developer/tools/software-guard-extensions/overview.html.
[6] LevelDB. https://github.com/google/leveldb.
[7] The linux kernel archives. https://www.kernel.org/.
[8] Offer letter between Google and Patrick Pichette dated June

6, 2008. https://www.sec.gov/Archives/edgar/data/1288776/
000119312508140342/dex101.htm.

[9] FSL traces and snapshots public archive. http://tracer.filesystems.org/,
2014.

[10] M. Abadi, D. Boneh, I. Mironov, A. Raghunathan, and G. Segev. Message-
locked encryption for lock-dependent messages. In Proc. of CRYPTO,
2013.

[11] A. Ahmad, K. Kim, M. I. Sarfaraz, and B. Lee. OBLIVIATE: A data
oblivious filesystem for Intel SGX. In Proc. of NDSS, 2018.

[12] F. Armknecht, J.-M. Bohli, G. O. Karame, and F. Youssef. Transparent
data deduplication in the cloud. In Proc. of ACM CCS, 2015.

[13] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind,
D. Muthukumaran, D. O’keeffe, M. L. Stillwell, et al. SCONE: Secure
linux containers with Intel SGX. In Proc. of USENIX OSDI, 2016.

[14] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,
and D. Song. Provable data possession at untrusted stores. In Proc. of
ACM CCS, 2007.

[15] M. Bailleu, D. Giantsidi, V. Gavrielatos, D. L. Quoc, V. Nagarajan, and
P. Bhatotia. Avocado: A secure in-memory distributed storage system.
In Proc. of USENIX ATC, 2021.

[16] M. Bailleu, J. Thalheim, P. Bhatotia, C. Fetzer, M. Honda, and K. Vaswani.
SPEICHER: Securing LSM-based key-value stores using shielded
execution. In Proc. of USENIX FAST, 2019.

[17] M. Bellare and S. Keelveedhi. Interactive message-locked encryption
and secure deduplication. In Proc. of PKC, 2015.

[18] M. Bellare, S. Keelveedhi, and T. Ristenpart. DupLESS: Server-aided
encryption for deduplicated storage. In Proc. of USENIX Security, 2013.

[19] M. Bellare, S. Keelveedhi, and T. Ristenpart. Message-locked encryption
and secure deduplication. In Proc. of EuroCrypto, 2013.

[20] J. Black. Compare-by-hash: A reasoned analysis. In Proc. of USENIX
FAST, 2006.

[21] A. Broder. On the resemblance and containment of documents. In Proc.
of Compression and Complexity of Sequences, 1997.

[22] T. Dinh Ngoc, B. Bui, S. Bitchebe, A. Tchana, V. Schiavoni, P. Felber, and
D. Hagimont. Everything you should know about Intel SGX performance
on virtualized systems. In Proc. of ACM SIGMETRICS, 2019.

[23] J. R. Douceur, A. Adya, W. J. Bolosky, P. Simon, and M. Theimer.
Reclaiming space from duplicate files in a serverless distributed file
system. In Proc. of IEEE ICDCS, 2002.

[24] S. Eskandarian and M. Zaharia. ObliDB: Oblivious query processing
for secure databases. In Proc. of VLDB, 2017.

[25] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg. Proofs of
ownership in remote storage systems. In Proc. of ACM CCS, 2011.

[26] D. Harnik, B. Pinkas, and A. Shulman-Peleg. Side channels in cloud
services: Deduplication in cloud storage. IEEE Security & Privacy,
8(6):40–47, 2010.

[27] D. Harnik, E. Tsfadia, D. Chen, and R. Kat. Securing the storage data
path with SGX enclaves. https://arxiv.org/abs/1806.10883, 2018.

[28] K. Jin and E. L. Miller. The effectiveness of deduplication on virtual
machine disk images. In Proc. of ACM SYSTOR, 2009.

[29] A. Juels and B. S. Kaliski, Jr. PORs: Proofs of retrievability for large
files. In Proc. of ACM CCS, 2007.

[30] T. Kim, J. Park, J. Woo, S. Jeon, and J. Huh. ShieldStore: Shielded
in-memory key-value storage with SGX. In Proc. of ACM EuroSys, 2019.

[31] J. Li, G. Wei, J. Liang, Y. Ren, P. P. C. Lee, and X. Zhang. Revis-
iting frequency analysis against encrypted deduplication via statistical
distribution. In Proc. of IEEE INFOCOM, 2022.

[32] J. Li, Z. Yang, Y. Ren, P. Lee, and X. Zhang. Balancing storage efficiency
and data confidentiality with tunable encrypted deduplication. In Proc.
of ACM Eurosys, 2020.

[33] M. Li, C. Qin, and P. Lee. CDStore: Toward reliable, secure, and cost-
efficient cloud storage via convergent dispersal. In Proc. of USENIX
ATC, 2015.

[34] D. Lie. Minimizing the TCB. In Proc. of USENIX Security, July 2005.
[35] M. Lillibridge, K. Eshghi, and D. Bhagwat. Improving restore speed for

backup systems that use inline chunk-based deduplication. In Proc. of
USENIX FAST, 2013.

[36] D. T. Meyer and W. J. Bolosky. A study of practical deduplication. In
Proc. of USENIX FAST, 2011.

[37] M. Miranda, T. Esteves, B. Portela, and J. Paulo. S2Dedup: SGX-enabled
secure deduplication. In Proc. of ACM SYSTOR, 2021.

[38] P. Mishra, R. Poddar, J. Chen, A. Chiesa, and R. A. Popa. Oblix: An
efficient oblivious search index. In Proc. of IEEE S&P, 2018.

[39] M. Mulazzani, S. Schrittwieser, M. Leithner, M. Huber, and E. Weippl.
Dark clouds on the horizon: Using cloud storage as attack vector and
online slack space. In Proc. of USENIX Security, 2011.

[40] S. Pinto and N. Santos. Demystifying ARM TrustZone: A comprehensive
survey. ACM Computing Surveys, 51(6):130:1–130:36, 2019.

[41] C. Priebe, K. Vaswani, and M. Costa. Enclavedb: A secure database
using sgx. In Proc. of IEEE S&P, 2018.

[42] C. Qin, J. Li, and P. Lee. The design and implementation of a rekeying-
aware encrypted deduplication storage system. ACM Transactions on
Storage, 13(1):9:1–9:30, 2017.

[43] M. C. Rabin. Fingerprint by random polynomials. Technical report,
Center for Research in Computing Technology, Harvard University, 1981.

[44] A. Rao. Rising to the challenge—data security
with intel confidential computing. https://community.
intel.com/t5/Blogs/Products-and-Solutions/Security/
Rising-to-the-Challenge-Data-Security-with-Intel-Confidential/
post/1353141, 2022.

[45] Y. Ren, J. Li, Z. Yang, P. Lee, and X. Zhang. Accelerating encrypted
deduplication via SGX. In Proc. of USENIX ATC, 2021.

[46] P. Shah and W. So. Lamassu: Storage-efficient host-side encryption. In
Proc. of USENIX ATC, 2015.

[47] P. Shilane, M. Huang, G. Wallace, and W. Hsu. WAN optimized replication
of backup datasets using stream-informed delta compression. In Proc.
of USENIX FAST, 2012.

[48] S. Shinde, S. Wang, P. Yuan, A. Hobor, A. Roychoudhury, and P. Saxena.
BesFS: A POSIX filesystem for enclaves with a mechanized safety proof.
In Proc. of USENIX Security, 2020.

[49] Y. Sun, S. Wang, H. Li, and F. Li. Building enclave-native storage
engines for practical encrypted databases. In Proc. of VLDB, 2021.

[50] Z. Sun, G. Kuenning, S. Mandal, P. Shilane, V. Tarasov, N. Xiao, et al.
A long-term user-centric analysis of deduplication patterns. In Proc. of
IEEE MSST, 2016.

[51] B. Toulas. New intel chips won’t play blu-ray disks due to
SGX deprecation. https://www.bleepingcomputer.com/news/security/
new-intel-chips-wont-play-blu-ray-disks-due-to-sgx-deprecation/.

[52] G. Wallace, F. Douglis, H. Qian, P. Shilane, S. Smaldone, M. Chamness,
and W. Hsu. Characteristics of backup workloads in production systems.
In Proc. of USENIX FAST, 2012.

[53] S. Wu, Z. Tu, Z. Wang, Z. Shen, and B. Mao. When delta sync
meets message-locked encryption: A feature-based delta sync scheme
for encrypted cloud storage. In Proc. of IEEE ICDCS, 2021.

[54] Z. Yang, J. Li, and P. Lee. Secure and lightweight deduplicated storage
via shielded deduplication-before-encryption. In Proc. of USENIX ATC,
2022.

[55] Y. Zhang, W. Xia, D. Feng, H. Jiang, Y. Hua, and Q. Wang. Finesse:
Fine-grained feature locality based fast resemblance detection for post-
deduplication delta compression. In Proc. of USENIX FAST, 2019.

[56] N. Zhao, H. Albahar, S. Abraham, K. Chen, V. Tarasov, D. Skourtis,
L. Rupprecht, A. Anwar, and A. R. Butt. DupHunter: Flexible high-
performance deduplication for docker registries. In Proc. of USENIX
ATC, 2020.

[57] P. Zuo, Y. Hua, C. Wang, W. Xia, S. Cao, Y. Zhou, and Y. Sun. Mitigating
traffic-based side channel attacks in bandwidth-efficient cloud storage.
In Proc. of IEEE IPDPS, 2018.

