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Abstract—Erasure coding provides high fault-tolerant storage
with significantly low redundancy overhead, at the expense of
high repair bandwidth. While there exist access-optimal codes
that theoretically minimize both the repair bandwidth and the
amount of disk reads, they also incur a high sub-packetization
level, thereby leading to non-sequential I/Os and degrading repair
performance. We propose elastic transformation, a framework
that transforms any base code into a new code with smaller
repair bandwidth for all or a subset of nodes, such that it
can be configured with a wide range of sub-packetization levels
to limit the non-sequential I/O overhead. We prove the fault
tolerance of elastic transformation and model numerically the
repair performance with respect to a sub-packetization level. We
further prototype and evaluate elastic transformation atop HDFS,
and show how it reduces the single-block repair time of the base
codes and access-optimal codes in a real network setting.

I. INTRODUCTION

Modern distributed storage systems adopt erasure coding as
a low-cost storage redundancy technique to protect data against
failures; in particular, Reed-Solomon (RS) codes [32] are the
most popular erasure codes adopted in production (e.g., at
Google [10], Facebook [25], Backblaze [7], CERN [27], etc.). At
a high level, we can construct an RS code, denoted by RS(n,k),
with two input parameters n and k (where k < n). RS(n,k)
encodes data in fixed-size units called packets. It encodes
every k data packets into n−k parity packets of the same size,
such that any k out of n packets suffice to reconstruct the k
data packets. Compared with traditional replication, erasure
coding achieves multiple orders of magnitude higher reliability
(in mean-time-to-failure) with the same redundancy [37].

Erasure coding achieves high storage efficiency at the
expense of high repair bandwidth (i.e., the amount of data
transferred from the non-failed nodes) when repairing the lost
data in node failures. For example, to repair any lost packet,
RS(n,k) reads and transfers k packets from k non-failed nodes,
leading to k× bandwidth of the packet size. New erasure
codes have been proposed in the literature to reduce the repair
bandwidth, among which minimum-storage regenerating (MSR)
codes [9] are the first proven erasure codes that minimize the
repair bandwidth (with significantly less than k packets in
repair), with the same redundancy as RS codes. However, the
early constructions of MSR codes [9] incur high I/O access,
as they require non-failed nodes to read and encode all their
locally stored data and send the encoded data for repair.

Some studies extend MSR codes with access-optimal MSR
codes (e.g., [8], [26], [28], [36]), which minimize both repair
bandwidth and I/O access by eliminating the need of encoding

in non-failed nodes during repair, such that each non-failed node
directly transfers the data being read from its local storage. The
core idea of access-optimal MSR codes is sub-packetization,
which partitions each packet into smaller sub-packets and
performs encoding and repair at the sub-packet granularity.
During repair, a non-failed node only reads and transfers a
subset of sub-packets.

Despite the theoretical guarantees of access-optimal MSR
codes, the practical repair performance gain is often limited.
The major drawback is that under sub-packetization, access-
optimal MSR codes need to read a subset of sub-packets that are
not sequentially placed. Thus, accessing sub-packets incurs non-
sequential I/Os, which incur non-negligible disk seek overhead
(albeit less amount of data being read) compared with sequential
I/Os [5, Ch. 37]. For example, in SATA hard disks, a non-
sequential I/O to a 4 KB disk block takes milliseconds (or hun-
dreds of KB/s in throughput), while sequential I/Os can reach
over 100 MB/s. Such performance asymmetry is also found in
solid-state drives [5, Ch. 44]. To amortize non-sequential I/O
overhead, some studies exploit a larger packet size in system
implementation [15], [22], [31], [34]. Unfortunately, the sub-
packetization level (i.e., the number of sub-packets per packet)
is provably exponential for access-optimal MSR codes [6] and
inevitably aggravates non-sequential I/O overhead.

Our insight is that there exists a trade-off between repair
bandwidth (i.e., network transmissions) and sub-packetization
(i.e., non-sequential I/Os) in erasure coding deployment. To
this end, we propose an elastic transformation framework that
transforms any base erasure code into another erasure code
with smaller repair bandwidth, subject to a configurable sub-
packetization level. By elastic, we mean that the framework can
be (i) configured with a wide range of sub-packetization levels
(starting from two) to limit non-sequential I/O overhead; (ii)
applied to all or a subset of nodes; and (iii) applied to a variety
of erasure codes. Our framework is more flexible than the
prior transformation framework [20] that always increases the
sub-packetization level by n− k times in each transformation.
To summarize, we make the following contributions.
• We design a building block, called the transformation array,

for the elastic transformation framework to transform an array
of sub-packets to reduce their repair bandwidth, while limiting
the non-sequential I/O overhead. The transformation array
can be configured in any size (based on the sub-packetization
level and the number of packets), and its main idea is to
overlap two square transformation arrays into a non-square
transformation array.



• We show how our elastic transformation reduces the repair
bandwidth of various erasure codes, including RS codes [32],
Azure’s LRC [13], Hitchhiker [31], and HashTag [18].

• On the theoretical side, we prove the fault tolerance of elastic
transformation, model the lower bound of repair bandwidth
for a given sub-packetization level, and model the repair time
subject to the bandwidth and I/O conditions.

• Existing code transformation solutions [11], [12], [19], [20]
only focus on theoretical analysis, but do not consider
empirical evaluation. To fill this void, we prototype elastic
transformation based on OpenEC [23] and evaluate it atop
Hadoop 3.0.0 HDFS [1]. Experiments on our prototype,
called OpenEC-ET, show that it reduces the repair time of
the base RS codes (without transformation) by up to 56.3%
in low-bandwidth settings and reduces the repair time of
the access-optimal MSR codes by up to 51.4% in high-
bandwidth settings. The source code of OpenEC-ET is at:
http://adslab.cse.cuhk.edu.hk/software/openec-et.

II. BACKGROUND AND RELATED WORK

A. Basics of Erasure Coding

We consider RS(n,k), which performs encoding on fixed-size
packets. It encodes a set of k original (uncoded) data packets
into n−k (coded) parity packets, and the n data/parity packets
collectively form a stripe. RS encoding ensures that any k out
of the n packets in a stripe suffice to decode the original k data
packets. To mitigate the I/O overhead in read/write operations,
practical distributed storage systems (e.g., HDFS [35]) store
data in fixed-size units called blocks that have much larger sizes
than packets; for example, the default packet and block sizes
are 1 MiB and 128 MiB in Hadoop 3.0.0 HDFS [1], respectively.
Each set of n blocks contains multiple stripes of packets (where
the packets of each stripe reside at the same block offset) that
are encoded/decoded independently and identically, and the n
blocks are distributed across n nodes of a distributed storage
system to provide fault tolerance against n− k node failures.

RS codes are popularly deployed (§I) by addressing three
key properties: (i) generality, meaning that RS(n,k) supports
general parameters n and k < n; (ii) maximum distance
separable (MDS), meaning that the redundancy (i.e., n/k times
the original data size) is the minimum among all erasure codes
for tolerating any n − k node failures; and (iii) systematic,
meaning that the original k data packets are preserved in a
stripe after encoding. Our work preserves the three properties
when transforming RS codes into repair-friendly codes.

We consider sub-packetization to mitigate the repair band-
width. Sub-packetization divides a packet into α sub-packets,
where α is called the sub-packetization level. Each set of n
sub-packets at the same offset of a packet is called a sub-stripe
(i.e., there are α sub-stripes in a stripe). Repairing a packet
can be done by retrieving a subset of sub-packets from each
available packet in a stripe.

We define the following notations. Consider a stripe of n
packets that are stored in n nodes, denoted by N1,N2, · · · ,Nn.
Let di = (di,1,di,2, · · · ,di,k) be the vector of k data sub-packets
in the i-th sub-stripe, where 1 ≤ i ≤ α; let f j be the parity
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Figure 1: RS(9,6) with α = 2.

function for encoding di into the j-th parity sub-packet in the
i-th sub-stripe, where 1 ≤ j ≤ n− k. Figure 1 shows RS(9,6)
with α = 2 sub-stripes. Note that in RS(n,k), each sub-stripe
remains independently and identically encoded. Since each
node stores one packet, in this paper, the terms “nodes” and
“packets” are interchangeably used.

B. Related Work on Erasure-Coded Repair

Repair-friendly codes. Access-optimal MSR codes extend the
classical MSR codes [9] to minimize both repair bandwidth
and I/O access (i.e., the minimum repair bandwidth is the
same as the amount of I/Os accessed from storage), while
maintaining storage optimality (i.e., the MDS property). FMSR
codes [8] are non-systematic codes for n− k = 2. PM-RBT
[28], Butterfly codes [26], and Clay codes [36] are systematic
codes for n ≥ 2k−1, n−k = 2, and general (n,k), respectively.
Access-optimal MSR codes theoretically incur an exponential
sub-packetization level α ≥ (n − k)⌈n/(n−k)⌉ [6], leading to
significant non-sequential I/Os. Our work can transform a base
code into an access-optimal MSR code for general (n,k).

Locally repairable codes [13], [16], [33] reduce the number
of packets to retrieve in repair and hence the repair bandwidth.
In this work, we focus on Azure’s Local Reconstruction Codes
(or LRC in short) [13]. LRC is configured by three parameters,
n, k < n, and ℓ, and is denoted by LRC(n,k, ℓ). It divides k
data packets into ℓ groups with k

ℓ data packets each (assuming
k is divisible by ℓ). It adds a local parity packet to each group,
and encodes all k data packets to form n− k− ℓ global parity
packets. Repairing a data packet or a local parity packet can
locally retrieve the k

ℓ available packets within the same group,
so as to reduce the repair bandwidth. Note that LRC still
retrieves the k available data packets to repair a global parity
packet. LRC keeps α = 1, but is non-MDS and incurs higher
storage overhead than RS and MSR codes.

Piggybacking codes [30], [31] construct a stripe from
multiple sub-stripes of an RS code, and add the data of a
sub-stripe into the parities of another sub-stripe through some
piggybacking functions. Repairing a data packet of a stripe
can retrieve the sub-packets across sub-stripes. In this work,
we focus on Hitchhiker [31], which has 25-50% savings of
repair bandwidth compared with RS codes. Hitchhiker is MDS,
and supports α ≥ 2 [30], albeit higher repair bandwidth than
access-optimal MSR codes. However, it improves the repair
for data packets only, while parity packets are still repaired by
retrieving k available packets as in RS codes.

In this work, we also consider HashTag [18], a repair-friendly
code that supports general (n,k) and any α ≥ 2 with the same
motivation as ours to mitigate non-sequential I/O overhead.
However, like Hitchhiker, HashTag supports efficient repair for



data packets only. HashTag+ [17] extends HashTag to support
efficient repair for parity packets as well by applying code
transformation [20]. However, the sub-packetization level α ,
after code transformation, needs to be a multiple of n− k (see
details below). In contrast, elastic transformation maintains a
small α ≥ 2 for both data and parity packets. Also, we show
how elastic transformation can be applied to RS codes, LRC,
Hitchhiker, and HashTag, while keeping a small α .
Code transformation. Li et al. [20] propose a generic trans-
formation framework that converts a non-binary MDS code
into a new MDS code that minimizes the repair bandwidth
for n− k nodes, while the sub-packetization level α of the
new code increases by n−k times. By repeatedly applying the
transformation to ⌈n/(n− k)⌉ groups of n− k nodes, the final
code becomes an access-optimal MSR code, while α meets the
lower bound (n−k)⌈n/(n−k)⌉. Follow-up studies extend generic
transformation for binary MDS codes [11], [12], [19]. However,
generic transformation [20] poses a stringent requirement on the
sub-packetization level α , which always increases by n−k times
in each transformation (e.g., when RS(14,10) is transformed
into an access-optimal MSR code, α becomes 4, 16, 64, and
256 only). In contrast, we consider a much wider range of α

(e.g., for any small α where 2 ≤ α ≤ n− k, and for various
values of large α where n− k < α ≤ (n− k)⌈n/(n−k)⌉).
Repair-efficient algorithms. Recent studies propose repair-
efficient algorithms that apply to general erasure-coded storage
(e.g., via parallelization [21], [24]). To mitigate non-sequential
I/O overhead, Hitchhiker [31] proposes a hop-and-couple
method to keep a large sub-packet size, while Geometric
partitioning [34] parallelizes the repair for access-optimal
MSR codes (e.g., Clay codes [36]) with geometric sub-packet
sizes. Repair-efficient algorithms focus on system-level repair
optimization, while our work focuses on code transformation.

C. Motivating Examples

We show via examples how elastic transformation balances
the trade-off between repair bandwidth and sub-packetization.
Examples for MDS codes. We first consider MDS codes.
Suppose that we store a file of size 36 MiB with RS(9,6),
where k = 6 data blocks (of size 6 MiB each) are stored in
nodes N1 to N6, while n− k = 3 parity blocks (of size 6 MiB
each) are stored in nodes N7 to N9. Suppose that N1 fails.
Figure 2(a) shows the repair of N1 in RS(9,6) (where α = 1),
which transfers 6×6 MiB = 36 MiB of data from N2 to N7.
Figure 2(b) shows the repair of N1 in an access-optimal MSR
code Clay(9,6) [36], which transfers 8×2 MiB = 16 MiB of
data from N2 to N9. Clay(9,6) has the same storage redundancy
as RS(9,6), while its repair bandwidth is minimized [36] and is
55.6% less than that of RS(9,6). However, Clay(9,6) also has
a high sub-packetization level α = 27. Figure 2(c) shows the
repair of N1 in the elastic transformation for RS(9,6) (called
RS-ET(9,6)) configured with α = 3. RS-ET(9,6) transfers 2-
6 MiB of data from each of N2 to N9 (note that it retrieves a
different amount of data from each node), with a total of repair
bandwidth of 24 MiB. It incurs 33.3% less repair bandwidth
than RS(9,6), while limiting non-sequential I/Os with α = 3.
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Figure 2: Motivating examples of elastic transformation.

Examples for non-MDS codes. Elastic transformation can also
be applied to non-MDS codes to reduce the repair bandwidth
for a subset of nodes. Consider LRC [13], which reduces the
repair bandwidth for data blocks and local parity blocks only,
but still retrieves k blocks for repairing any global parity block
(§II-B). We show how elastic transformation can reduce the
repair bandwidth for global parity blocks, while the data blocks
and local parity blocks are still locally repairable. Suppose that
we store a file of size 36 MiB with LRC(11,6,2), in which
k = 6 data blocks (of size 6 MiB each) are stored in N1 to
N6, ℓ= 2 local parity blocks are stored in N7 and N8, and the
remaining n− k− ℓ= 3 global parity blocks are stored in N9
to N11. Suppose that N9 fails. Figure 2(d) shows LRC (with
α = 1), in which the repair of N9 (where a global parity block
is stored) retrieves 6×6 MiB = 36 MiB of data as in RS codes.

Figures 2(e) and 2(f) show the elastic transformation on
LRC(11,6,2) (called LRC-ET(11,6,2)) configured with α = 2
and α = 3, respectively, in which the repair of N9 reduces the
repair bandwidth to 21 MiB and 16 MiB (i.e., 41.7% and 55.6%
less than LRC), respectively. Note that the repair bandwidth
of LRC-ET(11,6,2) with α = 3 (Figure 2(f)) is less than RS-
ET(9,6) with α = 3 (Figure 2(c)), since elastic transformation
is applied to reduce the repair bandwidth for a subset of nodes
in LRC-ET (i.e., N9 to N11) instead of for all nodes in RS-ET.

III. ELASTIC TRANSFORMATION

We propose an elastic transformation framework that trans-
forms a base code into a repair-friendly code with a configurable
sub-packetization level α . Our goal is to reduce the repair
bandwidth for repairing a single lost packet as in existing
studies (§II-B), assuming that having a single lost packet in a
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Figure 3: Example of transformation on a square array for α = 3:
(a) rotation and (b) pairwise coupling.

stripe is much more common than having multiple lost packets
concurrently in practice [13], [29].

A. Construction of Transformation Arrays

A key building block of our framework is a transformation
array, which specifies an array of data/parity sub-packets to
which our transformation is applied. Each row of a transfor-
mation array corresponds to a sub-stripe, while each column
represents the sub-packets stored in a node. There are two
types of transformation arrays, as explained below.
Square transformation arrays. We define a square transfor-
mation array (or square array in short) as an α ×α array of
sub-packets in a code, where α is the sub-packetization level of
the transformed code. Without loss of generality, we consider
how the transformation operates on a square array of data
sub-packets [di, j] for 1 ≤ i, j ≤ α ; note that the array may also
contain both data and parity sub-packets. The transformation
on a square array is based on pairwise coupling [20], [36],
which linearly combines the sub-packets within the array. It
contains the following steps:
• Step 1 (Rotation): It cyclically rotates the i-th row to the left

by i−1 sub-packets, where 1 ≤ i ≤ α . Each new sub-packet
d′

i, j after rotation is given by:

d′
i, j = di,(( j+i−2) mod α)+1. (1)

• Step 2 (Pairwise coupling): Given the rotated array, it linearly
combines the sub-packets at the axially symmetric positions
(i.e., d′

i, j and d′
j,i for i ̸= j and are said to be coupled) and

retains the sub-packets in the diagonal positions (i.e., d′
i,i).

Each new sub-packet d′′
i, j after pairwise coupling is:

d′′
i, j =


d′

i, j +d′
j,i for i > j,

d′
i, j for i = j,

ei, j ×d′
i, j +d′

j,i for i < j,
(2)

for some field element ei, j ∈ Fq\{0,1}. In this paper, we set
ei, j = 2, which sufficiently preserves fault tolerance in our
implementation (§III-C). Figure 3 shows an example of the
transformation on a square array for α = 3.

After transformation, the resulting sub-packets {d′′
i, j} are in

non-systematic form. Thus, we apply systematic transformation
[20], [28] to revert each d′′

i, j to the original data sub-packet di, j
and recompute all parity sub-packets accordingly.
• Step 3 (Systematic transformation): From Equations (1) and

(2), we can express di, j as a function of d′′
i, j:

di, j =


ep(i, j),i×d′′i,p(i, j)−d′′p(i, j),i

ep(i, j),i−1 for i > p(i, j),

d′′
i,p(i, j) for i = p(i, j),

d′′i,p(i, j)−d′′p(i, j),i
ei,p(i, j)−1 for i < p(i, j),

(3)
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Figure 4: A 3×3 square array applied to N1 to N3 in the (6,3) code.

where p(i, j) = (( j− i) mod α)+1. To map each data sub-
packet d′′

i, j with the original data sub-packet di, j, we can view
that each d′′

i, j is transformed into di, j via a sequence of arith-
metic operations. Each parity sub-packet is also recomputed
by applying the same sequence of arithmetic operations to its
input data sub-packets. For example, in Figure 4(a), we have
d′′

1,2 = 2d1,2 + d2,2 and d′′
2,1 = d1,2 + d2,2 before systematic

transformation. We can show that d1,2 = d′′
1,2 − d′′

2,1 and
d2,2 = 2d′′

2,1 − d′′
1,2. Thus, we replace d′′

1,2 and d′′
2,2 by d1,2

and d2,2, respectively. Also, we replace the second inputs to
d1 and d2 by d1,2 −d2,1 and 2d2,1 −d1,2, respectively. We
similarly update the inputs to d1, d2, and d3, and finally
obtain the systematic form (Figure 4(b)).
Example. We show how the repair bandwidth is reduced

by applying a square array. Consider Figure 4(b), which
shows the systematic code after we apply a 3×3 square
array to the packets in N1 to N3 in RS(6,3). Suppose that
N1 fails. The repair of N1 only retrieves five sub-packets, i.e.,
d1,2,d1,3, f1(d1), f2(d1), and f3(d1). It first uses f1(d1), f2(d1),
and f3(d1) to solve for d1,1, d1,2 −d2,1, and d1,3 −d3,1. It uses
the results, plus d1,2 and d1,3, to solve for all sub-packets d1,1,
d2,1, and d3,1 in N1. In contrast, the conventional repair of
RS(6,3) reads nine sub-packets (from any k = 3 available
packets), so the repair bandwidth reduces by 44.4%.
Non-square transformation arrays. An (n,k) code in general
cannot be evenly divided into square arrays. Thus, we also
define a non-square transformation array (or non-square array
in short) as an α ×γ array of sub-packets in a code, where α <
γ < 2α . The non-square array is operated by the overlapping
of two square arrays. Without loss of generality, consider the
transformation on a non-square array of data sub-packets [di, j]
for 1 ≤ i ≤ α and 1 ≤ j ≤ γ . It contains the following steps:
• Step 1 (Rotation): As in a square array, it cyclically rotates

the i-th row to the left by i−1 sub-packets.
• Step 2 (Pairwise coupling): Given the rotated non-square

array, it performs the first pairwise coupling on the (square)
array in N1 to Nα , such that each new sub-packet in these
nodes is given by Equation (2). It then performs the second
pairwise coupling on the (square) array in Nγ−α+1 to Nγ ,
where the coupled results in Nγ−α+1 to Nα from the first
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Figure 5: Example of transformation on a non-square array for α = 3
and γ = 4: (a) rotation; (b) pairwise coupling on the first overlapped
square array; and (c) pairwise coupling on the second overlapped
square array.
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Figure 6: Example of transformation on a N1 to N4 through a 3×4
non-square transformation in RS(7,4).

pairwise coupling are used as the inputs to the second
pairwise coupling.
Figure 5 shows an example of the transformation on a non-

square array for α = 3 and γ = 4.
• Step 3 (Systematic transformation): Similar to the square

arrays, it expresses each original data sub-packet di, j as a
function of the non-systematic data sub-packets obtained
after Steps 1 and 2. It then maps each non-systematic data
sub-packet to the original data sub-packet, and replaces the
inputs in the parity sub-packets accordingly.
Example. We show how the repair bandwidth is reduced by

applying a non-square array. Figure 6 shows the systematic
code after we apply a 3×4 non-square array to the packets
in N1 to N4 in RS(7,4). Suppose that N1 fails. The repair
of N1 only retrieves d1,2,d1,3,d1,4,d2,2,d3,2, f1(d1), f2(d1), and
f3(d1) to repair all sub-packets in N1. It first uses d1,4 and d3,2
to compute d1,4 −d3,2. It uses d1,4 −d3,2 as an input to f1(d1),
f2(d1), and f3(d1), and solves them for d1,1, d1,2 −d2,1, and
d1,3−d2,2−d3,1. Finally, it uses d1,2, d1,3, and d2,2 to solve for
all sub-packets d1,1, d2,1, and d3,1 in N1. The repair bandwidth
reduces from 12 (in RS(7,4)) to eight (i.e., 33.3% less).
Discussion. We point out that after we apply a transformation
array to a subset of packets, the repair bandwidth for other
non-transformed packets remains unchanged. We provide the in-
tuitive reasons as follows. With the rotation step (Equation (1)),
we ensure that the coupled sub-packets in fact correspond to
the original sub-packets in the same node (e.g., the coupled
sub-packets 2d1,2 +d2,2 and d1,2 +d2,2 correspond to d1,2 and
d2,2 in N2). When we retrieve sub-packets from some node

(say N) in a transformation array to repair a non-transformed
node, we either (i) retrieve both coupled sub-packets whose
original sub-packets are in N or (ii) retrieve the sub-packet
directly if it has no other coupled sub-packet. Thus, we do not
retrieve extra sub-packets in the repair after transformation.
For example, in Figure 3, we retrieve 2d1,2 +d2,2, d1,2 +d2,2,
and d3,2, which correspond to the sub-packets d1,2, d2,2, and
d3,2 in N2. The formal proof can be based on [20, Theorem 3],
and we omit the details here in the interest of space.

B. Applications of Elastic Transformation

We show how elastic transformation is applied to general
erasure codes. We start with RS(n,k), and show how it is
applied to other codes.
Application to RS. Recall that RS(n,k) always retrieves
k packets to repair a single lost packet. We apply elastic
transformation to all n packets in RS(n,k) into RS-ET(n,k)
with less repair bandwidth. We first consider a small α , where
2 ≤ α ≤ n− k, and later extend our analysis with α > n− k.

Given an α (where 2 ≤ α ≤ n− k), we first generate α

sub-stripes of RS(n,k), where each sub-stripe is independently
encoded. We divide the k data packets into ⌊ k

α
⌋ groups, such

that the first ⌊ k
α
⌋−1 groups are α ×α square arrays, while the

last group is an α ×α square array if k is divisible by α , or an
α × γ non-square array otherwise (where γ = k mod α +α).
Similarly, we divide the n − k parity packets into groups.
Then we perform rotation and pairwise coupling for each
transformation array. We also apply systematic transformation
to the data sub-packets and update the parity sub-packets
accordingly.

To repair a lost packet in RS-ET(n,k), we perform the
following steps:
• Step 1 (Selecting the major sub-stripe): We first select the

s-th sub-stripe (where 1 ≤ s ≤ α) as the major sub-stripe,
which determines the sub-packets to be retrieved for the
repair. Suppose that the lost packet resides in N f (where
1 ≤ f ≤ n). We derive s as:

s =


(( f −1) mod α)+1 for 1 ≤ f ≤ k−α ,
(( f − k+α −1) mod α)+1 for k−α +1 ≤ f ≤ k,
(( f − k−1) mod α)+1 for k+1 ≤ f ≤ n−α ,
(( f −n+α −1) mod α)+1 for n−α +1 ≤ f ≤ n.

(4)

The first and second cases choose the sub-stripe correspond-
ing to the modulo index of f in a square array of the data
packets; if k is not divisible by α , the second case chooses
the sub-stripe based on the last overlapping square array. The
third and fourth cases are for the parity packets.

• Step 2 (Retrieving sub-packets): We retrieve three sets of
sub-packets: (i) S1, which includes any k out of n−α sub-
packets in the major sub-stripe, except the lost sub-packet
and α −1 sub-packets coupled with the lost sub-packets (i.e.,
α sub-packets in total); (ii) S2, which includes the coupled
sub-packets for the k sub-packets in S1; and (iii) S3, which
includes the sub-packets that are coupled with the lost sub-
packets. Note that the repair bandwidth can slightly vary for
different subsets of k sub-packets being retrieved (§IV-A).
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Figure 7: Elastic transformation to RS(14,10) for α = 3.

• Step 3 (Repairing the inputs to the data vector): We use the
retrieved sub-packets in S1 and S2 to repair the k inputs to
the data vector ds.

• Step 4 (Repairing the lost sub-packets): We use the sub-
packets in S3, together with the k inputs resolved from Step 3,
to repair all lost sub-packets.
Figure 7 shows an example of applying elastic transformation

to all packets of RS(14,10) for α = 3 and how the sub-packets
are retrieved for repairing N1.

We can extend elastic transformation for RS codes for α >
n− k, where α is some composite number. Suppose that α =
α1 ·α2, for some 2 ≤ α1,α2 ≤ n− k. We first apply an α1 ×
α1 square array to the packets in N1 to Nα1 . We treat the
transformed code as a base code by aggregating its α1 sub-
stripes as one big sub-stripe, and apply elastic transformation to
the packets in the remaining nodes Nα1+1 to Nn for α2. If the
number of remaining nodes is less than α2 (i.e., n−α1 < α2),
we apply an α2 ×α2 square array to nodes Nn−α2+1 to Nn, in
which nodes Nn−α2+1 to Nα1 have been transformed (similar to
applying an overlapped square array to a non-square array). In
general, we can construct a transformed code for any α =∏i αi,
where 2 ≤ αi ≤ n− k.

Elastic transformation can convert a base code into an
access-optimal MSR code as in [20] when α = (n−k)⌈n/(n−k)⌉.
Specifically, we apply elastic transformation ⌈ n

n−k⌉ times. In
the i-th transformation (where 1 ≤ i ≤ ⌈ n

n−k⌉−1), we apply an
(n−k)× (n−k) square array to nodes N(i−1)(n−k)+1 to Ni(n−k),
while in the last transformation, we apply an (n− k)× (n− k)
square array to nodes Nk+1 to Nn. The transformed code is the
same as the access-optimal MSR code in [20].
Application to other codes. We can apply elastic transforma-
tion to other codes to reduce the repair bandwidth for a subset
of packets. For example, LRC [13] reduces the repair bandwidth
(via local repair) for data and local parity packets, but still
retrieves k packets to repair global parity packets; Hitchhiker
[31] and HashTag [18] only reduce the repair bandwidth for
the data packets, but not the parity packets. We can apply
transformation arrays to cover the global parity packets for
LRC and the parity packets for Hitchhiker and HashTag. Note
that we do not need to apply systematic transformation to parity
packets, which are originally coded.

C. Proof of Fault Tolerance

We prove that elastic transformation preserves fault tolerance.
Specifically, we prove that when elastic transformation is
applied to an MDS base code, there exists a lower bound
of the field size that the transformed code is still MDS. Our
proof is similar to those in prior work [3], [12], [18], yet the
lower bound is different as our problem setting is different.

Theorem 1. If the size q of a finite field Fq is larger than

2
((

n−1
k−1

)
−
(
⌈n/α⌉−1
⌈k/α⌉−1

))
, (5)

then there exist coefficients ei, j’s (see Equation (2)) over Fq
to ensure that the transformed code is MDS.

Proof. Suppose that the base code is an (n,k) MDS code and
the transformed code has a sub-packetization level α . We can
view the transformed code as encoding kα data sub-packets
over Fq into nα encoded sub-packets. Each encoded sub-packet
can be expressed as a linear equation with kα variables, and
there are in total nα equations for all encoded sub-packets (each
of the n nodes is associated with α equations). We require that
the original kα data sub-packets can be reconstructed from a
system of kα equations in any k out of n nodes to solve for
the kα variables. To do so, the system of kα equations needs
to be linearly independent; in other words, the determinant of
the coefficient matrix of the system of equations is non-zero.

There are
(n

k

)
cases for selecting any k out of n nodes.

For each case, the determinant of the coefficient matrix is a
polynomial over ei, j (Equation (2)). For a square array, there
is one choice for each ei, j as shown in Equation (2); for a
non-square array, if we treat it as two overlapped square arrays,
there are up to two choices for each ei, j. Thus, the degree of
each ei, j in the polynomial is at most two. For all

(n
k

)
cases,

we can form a polynomial (as the product of polynomials for
each case). Each ei, j will appear up to

(n−1
k−1

)
times of all cases.

Thus, the degree of each ei, j in the polynomial (denoted by
θi, j) will satisfy θi, j ≤ 2

(n−1
k−1

)
. By [4, Theorem 1.2], if the field

size q is larger than each θi, j, there exists a non-zero solution
for the polynomial. Thus, the original data sub-packets can be
decoded (i.e., the MDS property is achieved).

Note that there exist cases where the encoded sub-packets
for a specific set of k nodes can directly reconstruct all data sub-
packets without using ei, j. From [20, Theorem 1], if we read
the two coupled sub-packets together, we can directly solve for
the two original sub-packets. Thus, when the k nodes include
square or non-square arrays in entirety, the data sub-packets
can be reconstructed without ei, j. For example, for RS-ET(9,6)
with α = 3, if we choose the k nodes as N4 to N9, we have two
complete 3×3 square arrays. Then we can directly decode all
sub-packets in N4 to N9 from their coupled sub-packets without
ei, j, and all data sub-packets in N1 to N6 can be reconstructed.
There are

(⌈n/α⌉−1
⌈k/α⌉−1

)
such special cases. By subtracting them

from the
(n−1

k−1

)
cases, the theorem follows.

Theorem 1 provides a smaller lower bound than reported
in prior studies, such as

(n
k

)
(n−k)α+1 [3],

(n
k

)
α(α−1)

2 ⌊ k
α
⌋ [12],

and
(n

k

)
(n− k)α [18]. For example, for (n,k) = (16,12) and

α = 4, their lower bounds are 1,863,680, 32,760, and 29,120,
respectively, while ours is 2,724.

While Theorem 1 states that elastic transformation maintains
the MDS property for a sufficiently large field size, we find (by
enumerating all

(n
k

)
combinations) that the MDS property is

achievable in GF(28) with ei, j = 2 (for all i and j) for medium



ranges of (n,k) (e.g., up to (n,k) = (16,12)). Thus, elastic
transformation can be feasibly implemented in practice.

IV. NUMERICAL ANALYSIS

We conduct numerical analysis on elastic transformation. We
prove the lower bound of repair bandwidth for a given α under
elastic transformation, for RS(n,k) and LRC(n,k, ℓ). We show
that our elastic transformation implementation, OpenEC-ET,
can match closely to the lower bound. We further show that
when the I/O overhead is also considered, the actual repair
performance can be negated as α increases.

A. Modeling of Single-Packet Repair Bandwidth

RS. Theorem 2 models the lower bound of repair bandwidth for
any single lost packet in RS(n,k). Here, we focus on α ≤ n−k.
We can extend the theorem for α > n− k by expressing α as
∏i αi, where 2 ≤ αi ≤ n− k (§III-B). We obtain the bound for
each αi from Theorem 2 and sum all the bounds.

Theorem 2. Suppose that we apply elastic transformation to
RS(n,k) into RS-ET(n,k) for all n packets, with α ≤ n−k. The
repair bandwidth for a single lost packet (denoted by β ) is
lower bounded by (in number of sub-packets):

β ≥

{
k+α −1 for k < ⌊ n

α
⌋−1,

2k−⌊ n
α
⌋+α for k ≥ ⌊ n

α
⌋−1.

(6)

Proof. We prove the theorem by counting the numbers of
sub-packets in S1, S2, and S3.

For S1, |S1|= k, as we always retrieve k sub-packets.
For S2, we first identify the property that in an α ×α square

array, there exist one non-coupled sub-packet and α−1 coupled
sub-packets in each sub-stripe (Equation (2)). Note that |S2|
depends on the sub-packets in S1 and decreases when there are
more non-coupled sub-packets in S1. If k < ⌊ n

α
⌋−1, we can

select k non-coupled sub-packets from any k out of ⌊ n
α
⌋−1

square arrays, so |S2|= 0. Otherwise, if k ≥ ⌊ n
α
⌋−1, we can

select ⌊ n
α
⌋−1 non-coupled sub-packets from the ⌊ n

α
⌋−1 square

arrays (as shown in the property) and k− (⌊ n
α
⌋−1) coupled

sub-packets in S1 from ⌊ n
α
⌋ − 1 square arrays without the

lost packet. We retrieve the corresponding coupled sub-packet
from each of the k− (⌊ n

α
⌋−1) coupled sub-packets into S2,

so |S2| ≥ k− (⌊ n
α
⌋−1).

For S3, it contains at least α −1 sub-packets coupled with
the α lost sub-packets. Thus, we obtain |S3| ≥ α −1.

By summing up the bounds for |S1|, |S2|, and |S3|, the
theorem follows.

LRC. We next consider LRC, which does not optimize the
repair for global parity packets (§II-B). We apply elastic
transformation to only the global parity packets.

Theorem 3. Suppose that we apply elastic transformation to
the n− k− ℓ global parity packets in LRC(n,k, ℓ) into LRC-
ET(n,k, ℓ), with α ≤ n−k−ℓ. The repair bandwidth for a single
lost global parity packet (denoted by β ′) is lower bounded by
(in number of sub-packets):

β
′ ≥ k+α −1. (7)
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Figure 8: Modeled single-packet repair bandwidth, normalized with
respect to α = 1.

Proof. We count the numbers of sub-packets in S1, S2, and S3.
The bounds of |S1| and |S3| are the same as in Theorem 2. For
S2, as we only apply transformation to global parity packets,
we can select k data sub-packets in the major sub-stripe to
form S1. The k data sub-packets are not transformed, so there
is no coupled sub-packet and |S2| = 0. By summing up the
bounds for |S1|, |S2|, and |S3|, the theorem follows.

The average repair bandwidth of LRC-ET(n,k, ℓ) (in number
of sub-packets) is hence given by ((k+ℓ) kα

ℓ +(n−k−ℓ)β ′)/n.
Analysis. We plot the lower bounds of repair bandwidth for RS-
ET and LRC-ET versus α . We also show the repair bandwidth
achieved by our implementation, OpenEC-ET (§V), in which
we select the k sub-packets with the least coupled sub-packets
in the major sub-stripe into S1, so as to reduce the number of
coupled sub-packets to be retrieved into S2.

Figures 8(a)-8(c) show the lower bound and the repair
bandwidth of OpenEC-ET for RS-ET(n,k), normalized with
respect to RS(n,k) (i.e., α = 1). The repair bandwidth decreases
with α , and reaches the access-optimal MSR point when
α =(n−k)⌈

n
n−k ⌉. OpenEC-ET matches closely the lower bound.

For example, RS-ET(14,10) reduces the repair bandwidth of
RS(14,10) by 25.0-67.5% for 2 ≤ α ≤ 256.

Figure 8(d) shows the repair bandwidth results for LRC-
ET(16,10,2), normalized with respect to LRC(16,10,2) (the
same parameters are also considered in [16]). By reducing the
repair bandwidth for global parity packets, LRC-ET(16,10,2)
reduces the average repair bandwidth for all packets of
LRC(16,10,2) by up to 27% (for α = 4).

B. Modeling of Single-Packet Repair Time

We now model the single-packet repair time by taking into
account both network transmissions and I/Os, and show how
it can be adversely affected by non-sequential I/Os. Let b be
the available network bandwidth, R(α) be the average single-
packet repair bandwidth (in number of sub-packets) (§IV-A),
p be the packet size, φ(α) be the number of alive nodes from
which the repair operation retrieves available packets, and τ(α)
be the time to read a sub-packet of size p

α
. Our model assumes
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Figure 9: Modeled single-packet repair time versus α .

that coding computations have negligible overhead compared
with network transmissions and I/Os.
RS. We first consider RS(n,k). We derive R(α) based on
OpenEC-ET (which is close to the lower-bound repair band-
width) from §IV-A, and set φ(α) = min(n−1,k+α −1) based
on the repair steps in §III-B. For τ(α), since it depends on
the network bandwidth and the sub-packet size p

α
, we measure

the read time for a sub-packet for different α’s on HDFS in
our testbed (see §V for testbed details). For example, when
the network bandwidth is 1 Gb/s and the packet size is 1 MiB,
we have τ(α) = 2.2, 1.5, 1.1, 0.7, and 0.4 (in ms) for α = 1,
4, 16, 64, and 256, respectively. Thus, the single-packet repair
time T is modeled as:

T = R(α)p
bα

+ R(α)
φ(α)τ(α), (8)

where the first term represents the network transmission time,
and the second term represents the I/O time. For the second
term, we assume that we issue reads to R(α)

φ(α) sub-packets evenly
from each of the φ(α) alive nodes to simplify our analysis,
although the numbers of sub-packets read from alive nodes are
generally different (e.g., see Figure 7).

OpenEC-ET enhances read performance by issuing a read
to multiple sub-packets that are sequentially placed instead of
reading sub-packets individually, so as to issue fewer reads.
Also, it issues reads to multiple packets within a block in
parallel via multi-threading. Thus, our model overestimates the
I/O time in OpenEC-ET, yet it still effectively captures the
trend of repair time versus α , as shown in our evaluation (§V).
LRC. We also model the average single-packet repair time of
LRC(n,k, ℓ) based on Equation (8). To repair a data packet
or a local parity packet, the repair time (denoted by T1) is
T1 =

kp
ℓb + τ(1) (as we read a single packet from each of the

k
ℓ alive nodes). To repair a global parity packet, we derive its
repair time (denoted by T2) by substituting R(α) in Equation (8)
with the repair bandwidth for a global parity packet in OpenEC-
ET (§IV-A). Thus, the average single-packet repair time of LRC
is ((k+ ℓ)T1 +(n− k− ℓ)T2)/n.
Analysis. Figure 9 shows the single-packet repair time versus
α , where b= 1 Gb/s and p= 1 MiB; it also shows a breakdown

for the network and I/O times. Elastic transformation initially
reduces the repair time as α increases from α = 1 by reducing
the repair bandwidth, but the repair time starts to increase for
large α due to I/O overhead, especially for RS-ET(14,10) and
RS-ET(16,12) at the access-optimal MSR point α = 256. For
example, RS-ET(14,10) reduces the repair time by up to 51.8%
for α = 32 compared with RS(14,10), but the reduction drops
to 39.0% for α = 256. LRC-ET(16,10,2) reduces the repair
time by up to 26.2% for α = 4, as α remains small.

V. TESTBED EVALUATION

We conduct experiments for elastic transformation in a real
local cluster. We aim to address two questions: (i) Does the
practical repair performance match the numerical analysis
results? (ii) How do sub-packetization, network bandwidth,
and packet size affect the practical repair performance?
Implementation. We implemented elastic transformation with
OpenEC [23], a middleware system realizing erasure coding in
the form of direct acyclic graphs atop HDFS (on Hadoop 3.0.0
[1]). Our implementation, OpenEC-ET, supports RS codes [32],
LRC [13], Hitchhiker [31], and HashTag [18]. OpenEC-ET
is written in C++ and uses ISA-L [2] to implement erasure
coding operations. It adds 4.8 K LoC to OpenEC.

HDFS comprises a single NameNode for storage manage-
ment and multiple DataNodes for data storage. Recall that
HDFS organizes data in blocks, each of which contains multiple
packets (§II-A). Suppose that we repair a single lost block and
store the repaired block in a DataNode. The DataNode first
queries the NameNode for the DataNodes that contain the
available blocks. It then retrieves the sub-packets from the
DataNodes and decodes the lost block.
Methodology. We conduct experiments in a local cluster with
17 machines, each of which has a quad-core 3.4 GHz Intel
Core i5 CPU, 32 GiB RAM, and a 7200 RPM 1 TB SATA
hard disk. All machines are connected via a 10 Gb/s Ethernet
switch. We assign one machine as the NameNode and the
remaining machines as DataNodes. We use Wondershaper [14]
to configure the network bandwidth in each machine. By default,
we set the HDFS block size and packet sizes as 64 MiB and
1 MiB, respectively, and the network bandwidth as 1 Gb/s as in
prior work [23], [33]. We also evaluate the impact of network
bandwidth (Experiment 2) and packet size (Experiment 3).

We evaluate the repair performance based on the single-block
repair time, defined as the time from issuing a repair request
until a failed block is repaired. Specifically, we first write n
stripes to HDFS. We erase one block in each stripe and ensure
that each of the n nodes has exactly one erased block, so that
the repair operation includes both data and parity blocks. We
measure the single-block repair time by averaging the time
to repair each of the n blocks. We obtain the average results
over 10 runs, with an error bar showing the 95% confidence
interval based on the student’s t-distribution; most error bars
are invisible due to negligible deviations.
Experiment 1 (Overall repair performance). We study how
elastic transformation affects the single-block repair time of
different codes. We focus on MDS codes, including RS codes,
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Figure 10: Experiment 1: Overall repair performance. The number next to each code represents the sub-packetization level (‘ET’ means with
elastic transformation; ‘HH’ means Hitchhiker; ‘HTEC’ means HashTag).
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Figure 11: Experiment 2: Impact of sub-packetization and network bandwidth.
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Figure 12: Experiment 3: Impact of packet size.

Hitchhiker, and HashTag, so that they are compared with the
same storage overhead for a given (n,k). We configure the
base codes of RS codes, Hitchhiker, and HashTag with sub-
packetization levels as one, two, and two, respectively, and apply
elastic transformation that increases their sub-packetization
levels by at most n− k times.

Figure 10 shows the single-block repair time for different
(n,k)’s. Elastic transformation reduces the repair time of the
base codes by reducing the repair bandwidth while limiting the
sub-packetization overhead. For example, for (14,10), elastic
transformation reduces the repair times of RS codes, Hitchhiker,
and HashTag by 26.2-39.8%, 13.9-21.6%, and 11.3-18.6%,
respectively.
Experiment 2 (Impact of sub-packetization and network
bandwidth). We apply elastic transformation to all packets
in RS codes and global parity packets in LRC. We study the
impact of sub-packetization and network bandwidth.

Figure 11 shows the single-block repair time results of
RS(9,6), RS(14,10), RS(16,12), and LRC(16,10,2). We first
examine the impact of α . The repair time trend in the empirical
results under 1 Gb/s matches our numerical analysis (§IV-B);
that is, elastic transformation reduces the repair time of RS
codes and LRC for a small α , but the repair time increases
for a large α . For example, when the network bandwidth is
1 Gb/s, RS-ET(14,10) with α = 64 reduces the repair times of
RS(14,10) (i.e., α = 1) and the access-optimal MSR point (i.e.,
α = 256) by 56.3% and 18.3%, respectively.

We also examine the impact of network bandwidth. As the

network bandwidth increases, the access-optimal MSR point
suffers from non-sequential I/O overhead. For example, when
the network bandwidth is 10 Gb/s, RS-ET(14,10) with α = 64
reduces the repair times of RS(14,10) and the access-optimal
MSR point by 13.4% and 51.4%, respectively.
Experiment 3 (Impact of packet size). We study the impact
of packet size on the single-block repair time, where the packet
size varies from 256 KiB to 2 MiB. Figure 12 shows the repair
time results. A small packet size (e.g., 256 KiB) aggravates the
non-sequential I/O overhead. For example, RS-ET(14,10) with
α = 64 reduces the repair time of the access-optimal MSR
point by 40.1% when the packet size is 256 KiB.

VI. CONCLUSIONS

We propose an elastic transformation framework to transform
a base code into a code with less repair bandwidth subject
to a configurable sub-packetization level, so as to limit non-
sequential I/Os. We study the problem from both theoretical
and applied perspectives. We present a fault tolerance proof and
the modeling of repair performance. We also prototype elastic
transformation on HDFS. Both numerical analysis and testbed
experiments demonstrate the benefits of elastic transformation.
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