
Optimal Data Placement for Stripe Merging in
Locally Repairable Codes

Si Wu†, Qingpeng Du†, Patrick P. C. Lee‡, Yongkun Li†, Yinlong Xu†

†University of Science and Technology of China ‡The Chinese University of Hong Kong

Abstract—Erasure coding is a storage-efficient redundancy
scheme for modern clustered storage systems by storing stripes
of data and parity blocks across the nodes of multiple clusters;
in particular, locally repairable codes (LRC) continue to be one
popular family of practical erasure codes that achieve high repair
efficiency. To efficiently adapt to the dynamic requirements of
access efficiency and reliability, storage systems often perform
redundancy transitioning by tuning erasure coding parameters.
In this paper, we apply a stripe merging approach for redundancy
transitioning of LRC in clustered storage systems, by merging
multiple LRC stripes to form a large LRC stripe with low
storage redundancy. We show that the random placement of
multiple LRC stripes that are being merged can lead to high
cross-cluster transitioning bandwidth. To this end, we design
an optimal data placement scheme that provably minimizes the
cross-cluster traffic for stripe merging, by judiciously placing
the blocks to be merged in the same cluster while maintaining
the repair efficiency of LRC. We prototype and implement our
optimal data placement scheme on a local cluster. Our evaluation
shows that it significantly reduces the transitioning time by up
to 43.2% compared to the baseline.

I. INTRODUCTION

Due to the exponential growth of data volume [3], modern
storage systems continue to grow in size and scale [14], [24],
[26]. The large scale of storage systems leads to prevalent
failures [9]. To reliably store the tremendous amount of data
in a storage-efficient way, modern storage systems increasingly
adopt erasure coding to provide data redundancy [1], [2],
[9], [14], [24], [29], [43]. Compared to replication, erasure
coding greatly saves the amount of redundancy to achieve the
same degree of data reliability [36]. At a high level, erasure
coding encodes several original uncoded data blocks to produce
additional redundant coded blocks, called parity blocks, such
that all original data blocks can be successfully reconstructed
by a sufficient number of data and parity blocks.

Among numerous erasure coding constructions, locally
repairable codes (LRC) [14], [18] are one popular family
of repair-friendly erasure codes. An LRC can be configured
by three parameters (k, l,g). It partitions k data blocks into
l small-size groups, and generates a local parity block for
each group, such that the repair can be performed within each
small-size group. It further generates g global parity blocks for
high fault tolerance. The k+ l +g data and parity blocks that
are encoded together are called a stripe. Large-scale storage
systems usually store a number of stripes, which are encoded
independently. Due to its repair efficiency and high reliability,
LRC is widely deployed in enterprise data centers [14], [29].

In response to the varying access characteristics [12],
[43], [44] and dynamic reliability requirements [16], [34],
modern storage systems often perform frequent redundancy
transitioning operations on erasure-coded data. By redundancy
transitioning, we mean the change of coding parameters k, l,
and g. We motivate that redundancy transitioning is crucial in
the following scenarios.

• Adaptation to skewed and dynamic workloads. Work-
loads in real storage systems are very skewed and dynamic
[43]. The skewness means that a small portion of hot data is
frequently accessed and the majority of cold data is rarely
accessed, while the dynamic property means that the data
hotness is time-varying. To achieve both high access perfor-
mance and high storage efficiency, practical storage systems
can store hot data with high-redundancy erasure coding
for high performance, while storing cold data with low-
redundancy erasure coding for low-cost persistence. When
data hotness varies, we perform redundancy transitioning to
update coding parameters [41], [43].

• Adaptation to varying reliability. Data in different lifetime
period requires different degrees of reliability [34], so storage
systems need to dynamically tune coding parameters to meet
different reliability demands. Also, disk reliability varies as
the disks age [17]. To provide an efficient trade-off between
storage overhead and fault tolerance, large-scale data centers
should elastically adjust coding parameters [16], [17].

• Generation of wide stripes. Recent work explores wide
stripes for erasure-coded storage to suppress the fraction of
parity blocks in a stripe to achieve extreme storage savings
[12]. To efficiently support wide stripes, storage systems can
deploy narrow stripes with modestly low redundancy for
newly-written data, and later transition the aged data into
wide stripes with extremely low redundancy [44].

In this work, we explore a stripe merging approach [43],
[44] for redundancy transitioning of LRC in clustered storage
systems, which organize storage nodes hierarchically into
multiple clusters, such that the cross-cluster network bandwidth
is much more scarce than the inner-cluster bandwidth [5], [7],
[35]. By stripe merging, we refer to the transitioning from
multiple small-size LRC stripes to a larger-size LRC stripe. We
show that stripe merging is critical for LRC as it can improve
the storage efficiency or fault tolerance ability of the system
without compromising other performance (Section II-B).

Efficient stripe merging for LRC is a challenging issue,
as its performance heavily depends on how the stripes are

Network Core

Cluster

Node

D0 D1 D3 D4 L0 L1 G0 G1

Block

D2 D5

Figure 1. Clustered storage architecture under LRC(6,2,2) with c = 3 clusters;
a red rectangle indicates a cluster.

distributed across the clusters. As we show, the uncoordinated
random data placement of small-size LRC stripes can amplify
the cross-cluster transitioning traffic (Section III). To this end,
we design an optimal data placement scheme that coordinates
the placement of multiple small-size LRC stripes in different
clusters, so as to minimize the cross-cluster traffic for stripe
merging in LRC. Our contributions include:
• We formally analyze the impact of the uncoordinated random

data placement of multiple LRC stripes on the cross-cluster
transitioning traffic (Section IV-A). We design an optimal
data placement scheme that judiciously controls the number
of blocks that need to be merged in the same cluster, while
maintaining the repair efficiency of LRC. We formally prove
that our optimal data placement scheme minimizes the cross-
cluster transitioning traffic (Section IV-B).

• We implement two extreme points of our data placement
scheme: the dispersed placement that completely distributes
the blocks to be merged over distinct clusters and the
aggregated placement that places the blocks to be merged
in the same cluster. Experiments on a local cluster show
that the dispersed placement reduces the transitioning time
of the baseline by up to 43.2% for one setting, while the
aggregated placement reduces the transitioning time of the
baseline by up to 35.3% for another setting (Section V).

II. BACKGROUND AND PROBLEM

A. Clustered Storage under LRC

Clustered storage architecture. Modern clustered storage
systems typically have a two-layer hierarchical architecture
[7], [12], under which a system organizes storage nodes (or
nodes in short) into c clusters (where c > 1) and connects the
c clusters via the network core. Figure 1 shows a clustered
storage system with c = 3 clusters. In clustered storage, the
inner-cluster network bandwidth is sufficient, while the cross-
cluster bandwidth is scarce [5], [7], [35]. Thus, we assume
that the cross-cluster transfer is the performance bottleneck.
Locally repairable codes (LRC). We denote an LRC con-
struction by LRC(k, l,g), which encodes k data blocks (de-
noted by D0,D1, · · · ,Dk−1) into l local parity blocks (denoted
by L0,L1, · · · ,Ll−1) and g global parity blocks (denoted by
G0,G1, · · · ,Gg−1), such that the set of k + l + g data/parity
blocks (collectively called a stripe) are distributed over k+ l+g
nodes. Practical storage systems typically comprise multiple
stripes that are encoded independently.

An LRC can be constructed in a variety of ways [14], [18],
[29]. In this work, we consider Azure’s LRC construction called

the Local Reconstruction Code [14]. Azure’s LRC assumes
that k is divisible by l. It divides k data blocks evenly into
l equal-size groups, and computes a bitwise-XOR of each
group of k

l data blocks to form a local parity block. It further
computes g global parity blocks based on all k data blocks as
in Reed-Solomon codes [28]. Let b = k

l . We call the collection
of b data blocks and their corresponding local parity block a
local group. For example, Figure 1 shows an LRC stripe with
(k, l,g) = (6,2,2), where D0-D2 and L0 form one local group,
while D3-D5 and L1 form another local group.

LRC is proposed to mitigate the bandwidth and I/O for a
single-data-block repair by limiting the repair within a local
group [14], [18], [41]. For example, in Figure 1, repairing D0
only needs to access the remaining blocks in the same local
group (i.e., D1, D2, and L0). We define the repair cost of LRC
as the average amount (in units of blocks) of cross-cluster
network transfer to repair all data blocks. For example, in
Figure 1, repairing any data block always incurs a cross-cluster
transfer of one block, so the repair cost is one block.
Cluster-aware fault tolerance of LRC. By storing each stripe
of k+ l+g data/parity blocks across k+ l+g nodes, the storage
system provides multi-node fault tolerance. We further store
multiple blocks of an LRC stripe in a single cluster, such that
the system provides single-cluster fault tolerance [41]. Note
that cluster failures are more rare events than node failures in
real systems [24]. Under single-cluster fault tolerance, we can
place no more than g+ i blocks (of an LRC stripe) that span i
local groups into a single cluster, where 1≤ i≤ l, as shown
in [41]. The main reason is that the number of parity blocks
that can be used to decode these blocks is g+ i. For example,
in Figure 1, we can place D0-D2 in one cluster and D3-D5 in
another cluster, subject to single-cluster fault tolerance.

B. Stripe Merging for Redundancy Transitioning of LRC
In this paper, we exploit a stripe merging approach for

redundancy transitioning of LRC. Specifically, we merge x
(x ≥ 2) small-size LRC stripes into a larger-size stripe with
all the data blocks in the small-size stripes being maintained.
Prior studies [43], [44] have also studied stripe merging for
Product Codes [11], [19] and Reed-Solomon Codes [28], but
they address limited settings (see Section VI for details).
Problem definition. We consider merging x LRC(k, l,g) stripes
to an LRC(xk, l′,g′) stripe for some special cases of l′ and
g′. Note that the parameters of LRC exhibit a certain trade-
off among repair locality (denoted by r), storage overhead
(denoted by s), and minimum hamming distance (denoted by d)
[10], [18]. Specifically, we have: (i) r = b = k

l , which indicates
the bandwidth cost for single-data block repair; (ii) s = k+l+g

k ,
which specifies the redundancy overhead; and (iii) d = g+2,
which indicates the fault tolerance ability of LRC. Our idea
is to fix two trade-off dimensions of LRC, while varying the
third dimension. To this end, we consider two specific stripe
merging problems:
• Problem (1): fixing r and d, i.e., merging x LRC(k, l,g)

into LRC(xk,xl,g). By doing so, we decrease the storage
overhead s from k+l+g

k to k+l
k + g

xk .

• Problem (2): fixing r and s, i.e., merging x LRC(k, l,g)
into LRC(xk,xl,xg). By doing so, we increase the minimum
hamming distance d from g+2 to xg+2.
We do not consider stripe merging that fixes s and d,

i.e., merging x LRC(k, l,g) into LRC(xk,xl+(x−1)g,g). The
reason is that xk may not be divisible by xl+(x−1)g and there
may not exist an LRC with parameters (xk,xl +(x−1)g,g).

Significance. The redundancy transitioning in Problem (1)
can improve the overall storage efficiency with the repair
performance and fault tolerance ability being maintained, so it
is useful for wide stripe generation [12], [44]. The redundancy
transitioning in Problem (2) can improve the fault tolerance
ability without changing the repair performance and storage
efficiency, so it can efficiently adapt to the varying reliability
demands [16], [17], [34].

Goals. Our primary goal is to minimize the cross-cluster
network traffic for stripe merging, while preserving both the
minimized repair cost for LRC(k, l,g) under single-cluster fault
tolerance and the minimized repair cost for LRC(xk, l′,g′) under
single-cluster fault tolerance. This maintains access efficiency
before and after stripe merging.

III. CHALLENGES AND MOTIVATIONS

A. Bandwidth-Intensive Operations in Stripe Merging

Stripe merging inevitably incurs data transfers when merging
multiple small-size stripes into a large-size stripe. In the
following, we identify two bandwidth-intensive operations in
stripe merging.

First, to merge x LRC(k, l,g) stripes into an LRC(xk, l′,g′)
stripe, the number of data blocks of a stripe increases from k to
xk. Thus, we need to recalculate the g′ new global parity blocks
from all xk data blocks; we call this operation recalculation.
Note that we do not need to recalculate the local parity blocks,
since each local parity block is still calculated from the same
b = k

l =
xk
l′ =

xk
xl data blocks before and after stripe merging.

Second, while we guarantee single-cluster fault tolerance
for each LRC(k, l,g) stripe, the data and local parity blocks of
different LRC(k, l,g) stripes may aggregate in the same cluster,
causing the violation of single-cluster fault tolerance for the
resulting LRC(xk, l′,g′) stripe. Thus, we need to migrate some
data and local parity blocks of some LRC(k, l,g) stripes to
maintain fault tolerance for the resulting LRC(xk, l′,g′) stripe;
we call this operation migration.

Both recalculation and migration can incur substantial cross-
cluster traffic. Accordingly, we define the recalculation cost
and migration cost as the amounts of cross-cluster traffic (in
units of blocks) for recalculation and migration, respectively.

B. Challenges

We argue that simple data placement of LRC stripes can
lead to substantial recalculation and migration costs. Here, we
study random data placement, in which we place the blocks
of each LRC(k, l,g) stripe into distinct nodes residing in a
number of clusters (both the nodes and clusters are randomly
selected), such that the single-cluster fault tolerance and the

D0 D1 D2 D3 D4 D5 G0 G1

L0 L1

G2 G3

L2 L3

G'0 G'1

D6 D7 D8

D9 D10 D11 D9 D10 D11

(a) Problem (1), recalculation cost: 6, migration cost: 3

D0 D1 D2 D3 D4 D5 G0 G1

L0 L1

G2 G3

L2 L3

D6 D7 D8

D9 D10 D11

G'2 G'3

G'0 G'1

(b) Problem (2), recalculation cost: 10, migration cost: 0

Figure 2. Random data placement: (a) Problem (1): x = 2 LRC(6,2,2) to
LRC(12,4,2); and (b) Problem (2): x = 2 LRC(6,2,2) to LRC(12,4,4).

minimum repair cost are achieved. To minimize the repair cost,
we determine the number of clusters by the prior work [41]
(we will formally analyze the choice of the number of clusters
in Section IV-B). Note that prior studies on stripe merging
[43], [44] also consider random data placement to distribute
the blocks to distinct nodes (while they are not cluster-aware).

To illustrate, we use an example that applies stripe merging
to x = 2 LRC(6,2,2) stripes over a system with c = 6 clusters.
For each LRC(6,2,2) stripe, we place the blocks into c = 3
randomly selected clusters to achieve both single-cluster fault
tolerance and minimum repair cost. Specifically, the data blocks
of two local groups are placed in two separate clusters, while
all local and global parity blocks are placed in another cluster,
as shown in Figure 2.
Challenge in Problem (1). Figure 2(a) shows the random
data placement for Problem (1), in which we merge x = 2
LRC(6,2,2) stripes into an LRC(12,4,2) stripe. For recalcula-
tion , we apply encoding-and-transferring [13], [21], [41] to the
three clusters that store data blocks. Specifically, each cluster
generates and transfers two partial blocks corresponding to
the two new global parity blocks from its resident data blocks.
Thus, the recalculation cost is six.

However, D3-D5 of the first LRC(6,2,2) stripe and D9-D11
of the second LRC(6,2,2) stripe happen to be stored in the
same cluster. After stripe merging into an LRC(12,4,4) stripe,
single-cluster fault tolerance is violated. The reason is that
D3-D5 and D9-D11 span two local groups, while the number
of data blocks (i.e., 6) is larger than g′+2 = 4 (Section II-A).
Thus, we need to migrate D9-D11 to another cluster, and the
migration cost is three.

Problem (1) shows that if the blocks to be merged are
aggregated in a limited number of clusters, the migration traffic
can be significant.
Challenge in Problem (2). Figure 2(b) shows the same
random data placement for Problem (2), in which we merge
x = 2 LRC(6,2,2) stripes into an LRC(12,4,4) stripe. For
recalculation, the second cluster encodes and transfers four
partial blocks, while for each of the first and fifth clusters,
we adopt encoding-and-transferring and transfer four partial
blocks. To reduce the traffic, we directly transfer the three data

D0 D1 D2 D3 D4 D5 G0 G1

L0 L1

G2 G3

L2 L3

G'0 G'1

D6 D7 D8 D9 D10 D11

(a) Problem (1), recalculation cost: 8, migration cost: 0

D0 D1 D2 D3 D4 D5 G0 G1

L0 L1D6 D7 D8 D9 D10 D11

G2 G3

L2 L3

G'2 G'3

G'0 G'1

(b) Problem (2), recalculation cost: 8, migration cost: 0

Figure 3. Optimal data placement: (a) Problem (1): 2 LRC(6,2,2) to
LRC(12,4,2); and (b) Problem (2): 2 LRC(6,2,2) to LRC(12,4,4).

blocks in each of the first and fifth clusters to the cluster that
recalculates the new global parity blocks. Thus, the dispersion
of D0-D2 and D6-D8 needs to transfer across-cluster six blocks.
In total, the recalculation cost is 10. For LRC(12,4,4) after
merging, we can guarantee single-cluster fault tolerance with
no block migration, so the migration cost is zero.

Problem (2) shows that if the blocks to be merged are
dispersed across different clusters, the recalculation traffic can
be significant.

C. Motivations

Our idea is that by coordinating the data placement of
x LRC(k, l,g) stripes, we can minimize the transitioning
bandwidth incurred in stripe merging.
Our motivation for Problem (1). Figure 3(a) shows another
data placement for Problem (1), in which the blocks of the two
stripes are dispersed across different clusters. For recalculation,
each of the four clusters that store data blocks encodes and
transfers two partial blocks to the cluster that recalculates
the new global parity blocks, so the recalculation cost is
eight. After merging, the block distribution of LRC(12,4,2)
still satisfies single-cluster fault tolerance without any block
migration, so the migration cost is zero. Note that the data
placement of LRC(12,4,2) still maintains the minimum repair
cost. Figure 3(a) shows that we can disperse the blocks to be
merged over distinct clusters to eliminate the migration cost
and hence save the overall transitioning bandwidth.
Our motivation for Problem (2). Figure 3(b) shows another
data placement for Problem (2), in which the data blocks of the
two stripes are aggregated in two clusters. For recalculation,
each of the two clusters that store data blocks encodes and
transfers four partial blocks, so the recalculation cost is eight.
The migration cost remains zero. Also, the block distribution of
LRC(12,4,4) guarantees the minimum repair cost under single-
cluster fault tolerance. Figure 3(b) shows that by aggregating
the blocks to be merged in the same cluster, we can mitigate the
recalculation cost and hence the overall transitioning bandwidth.

IV. ANALYSIS AND DESIGN

We first analyze how the random data placement of the x
LRC(k, l,g) stripes affects the recalculation and migration costs.

We then design a data placement scheme that is guaranteed to
achieve the minimum bandwidth costs for the transitionings
in both Problem (1), i.e., x LRC(k, l,g) to LRC(xk,xl,g), and
Problem (2), i.e., x LRC(k, l,g) to LRC(xk,xl,xg).

A. Impact of Random Data Placement

Main findings. Propositions 1-3 show that if the blocks to be
merged are aggregated into a limited number of clusters, then
the migration cost will be significantly increased in Problem (1)
(e.g., Figure 2(a)). Propositions 4-5 show that if the blocks to
be merged are dispersed across a large number of clusters, then
the recalculation cost will be enlarged in Problem (2) (e.g.,
Figure 2(b)).

Proposition 1. If g+ i data and local parity blocks of one
LRC(k, l,g) stripe that span i (1 ≤ i ≤ l) local groups, and
g+ j data and local parity blocks of a second stripe that
span j (1≤ j ≤ l) local groups, are aggregated in one cluster,
then single-cluster fault tolerance is violated for LRC(xk,xl,g)
without block migration.

Proof. For LRC(xk,xl,g), the blocks span i+ j local groups,
but the number of blocks (i.e., 2g+ i+ j) is larger than g′+
i+ j = g+ i+ j. Thus, single-cluster fault tolerance is violated
without any block migration [41].

Proposition 2. To restore fault tolerance, as well as guarantee
the minimum repair cost after merging, we need to migrate all
g+ j data and local parity blocks of the second stripe.

Proof. By Proposition 1, to restore fault tolerance, we need
to perform block migration. We try to migrate blocks of the
second stripe. From [41], to guarantee the minimum repair
cost for LRC(xk,xl,g), we need to guarantee that the g+ j
data and local parity blocks of the second stripe still reside in
the same cluster. Hence, we need to migrate all g+ j data and
local parity blocks of the second stripe.

Proposition 3. By pre-distributing the g+ j data and local
parity blocks of the second stripe in a different cluster, we can
save the total transitioning bandwidth.

Proof. If we pre-distribute the g+ j data and local parity blocks
of the second stripe in a different cluster, then this part of block
migration is eliminated (i.e., the migration cost is reduced by
g+ j). However, for recalculation, we need to generate g′ = g
partial blocks from the pre-distributed data blocks, and transfer
these g partial blocks. Thus, the recalculation cost is increased
by g. That is, we trade increased recalculation cost for decreased
migration cost. Overall, the total bandwidth cost is reduced by
j (j ≥ 1).

Proposition 3 implies that if the blocks to be merged are
aggregated into a small number of clusters, then the total
bandwidth cost is amplified in Problem (1).

Proposition 4. Even if the blocks from x small-size stripes
(including g+ in data and local parity blocks from the n-th
stripe that span in (1≤ in ≤ l) local groups, where 0≤ n≤ x−

1) are aggregated in one cluster, single-cluster fault tolerance
is guaranteed for LRC(xk,xl,xg) without block migration.

Proof. For LRC(xk,xl,xg), the blocks span ∑
x−1
n=0 in local

groups, and the number of blocks (i.e., xg+∑
x−1
n=0 in) equals

g′+∑
x−1
n=0 in. Thus, single-cluster fault tolerance is guaranteed

without any block migration [41].

Despite that the blocks to be merged can be aggregated into
a single cluster, the random data placement inevitably causes
dispersion of the blocks. For example, in Figure 2(b), D0-D2
of the first LRC(6,2,2) stripe and D6-D8 of the second stripe
are dispersed over two clusters.

Proposition 5. By pre-aggregating the blocks from x small-size
stripes (including g+ in data and local parity blocks from the
n-th stripe, where 0≤ n≤ x−1) into a single cluster, we can
save the total transitioning bandwidth.

Proof. (i) As these blocks span ∑
x−1
n=0 in local groups, there are

at most ∑
x−1
n=0 in local parity blocks (or equivalently, at least xg

data blocks)
(ii) For a cluster that stores data blocks, if the number of

data blocks is no less than g′ = xg, then this cluster transfers xg
partial blocks for recalculation; otherwise, this cluster directly
transfers all its data blocks for recalculation.

(iii) Suppose that these blocks are dispersed across two or
more clusters. If there exists one cluster that stores no less
than xg data blocks, then the recalculation cost caused by this
cluster alone is xg (from (ii)); otherwise, we directly transfer
all original data blocks of all clusters for recalculation (from
(ii)). From (i), the number of data blocks is at least xg, so the
recalculation cost is at least xg.

(iv) Suppose that we pre-aggregate these blocks into a single
cluster. From (i), the number of data blocks is no less than xg.
Then from (ii), the recalculation cost is exactly xg. Compared
to (iii), we save the overall transitioning bandwidth.

Proposition 5 implies that if the blocks to be merged are
dispersed over different clusters, the total bandwidth cost is
enlarged in Problem (2).

B. Design

Overall idea. Section IV-A shows that we can reduce the
transitioning bandwidth costs for Problem (1) and Problem (2),
by controlling the number of blocks to be merged in the
same cluster. Based on this insight, we design an optimal
data placement scheme for the x LRC(k, l,g) small-size stripes.
We derive two extreme points of our data placement scheme:
the dispersed data placement (called DIS) that disperses the
blocks to be merged over distinct clusters, and the aggregated
data placement (called AGG) that aggregates the blocks to be
merged in the same cluster. We prove that DIS achieves the
minimum transitioning cost (i.e., the sum of the migration and
recalculation costs) for Problem (1), while AGG achieves the
minimum transitioning cost for Problem (2).

Preliminaries. We first derive the placement subject to both
minimum repair cost and single-cluster fault tolerance. To

achieve the minimum repair cost, we should place a local
group (i.e., b = k

l data blocks and one local parity block) into
the minimum number of clusters. Under single-cluster fault
tolerance, we can place at most g+1 data blocks of a local
group into one cluster. Thus, we place every g+1 data blocks
of each local group into one separate cluster. By doing so, we
minimize the number of clusters each local group spans to
b b

g+1c+1, and the repair cost to b b
g+1c.

After this, there remain (m= b mod (g+1))≤ g data blocks
in each local group. We call the remaining m data blocks and
the corresponding local parity block a remaining local group.
Let θ be the maximum number of remaining local groups that
can be collocated together. By the fault tolerance constraint,
the number of blocks (i.e., θ×m+θ) that span θ local groups,
cannot exceed g+θ , meaning that θ = b g

mc. Thus, we collocate
every θ remaining local groups into one separate cluster to
minimize the number of clusters a single LRC(k, l,g) stripe
spans. We place all global parity blocks in a different cluster.

To facilitate our analysis, we assume that g is divisible by
m, such that every θ remaining local groups contain g data
blocks and θ local parity blocks.

If (m= b mod (g+1))= 0, then each remaining local group
contains only one local parity block. We then simply collocate
all local and global parity blocks into a separate cluster.

For example in Figure 2, for a single LRC(6,2,2) stripe,
we put every three data blocks into a separate cluster, and all
local and global parity blocks into a third cluster.

Let α be the number of clusters a single LRC(k, l,g) stripe
spans subject to both minimum repair cost and single-cluster
fault tolerance. According to the above analysis, α can be
readily calculated as follows (assuming that l mod θ = 0).

α =

{
l×b b

g+1c+
l
θ
+1, if (m = b mod (g+1)) 6= 0;

l×b b
g+1c+1, if (m = b mod (g+1)) = 0.

(1)
For example in Figure 2, we can easily compute that α = 3.

We define aggregation degree of the x LRC(k, l,g) stripes
(denoted by β) as the number of clusters that aggregate the
data blocks from x LRC(k, l,g) stripes. Since we can aggregate
the data blocks from x stripes in at most α−1 clusters (recall
that the last one cluster stores the global parity blocks), β

ranges from 0 to α−1.
Data placement design. Algorithm 1 takes several essential
parameters as input (e.g., x, (k, l,g), β), and generates a data
placement for the x LRC(k, l,g) stripes as output.

First, we initialize x block sets B0,B1, · · · ,Bx−1 as /0, and a
cluster ID (denoted as d) as -1 (Lines 1-2).

For the i-th (0 ≤ i ≤ l− 1) local groups of the x stripes,
we try to aggregate or disperse every x(g+ 1) data blocks
from the x stripes. Thus, for x(g+1) data blocks from the x
stripes, we allocate a new cluster randomly from the c clusters
(Lines 6-7). Then, according to the aggregation degree (i.e., β),
we aggregate the x(g+1) data blocks into the allocated cluster,
or disperse these blocks across x separate clusters (Lines 8-9).
We also derive the i-th remaining local groups for the x stripes
(Line 11).

Algorithm 1 Multi-stripe data placement scheme
Input: x, (k, l,g), c (#clusters), β (aggregation degree)
Output: Data placement for multiple LRC(k, l,g) stripes

1: Initialize x block sets B0,B1, · · · ,Bx−1 as /0
2: Initialize cluster ID d as -1
3: for the i-th (0≤ i≤ l−1) local groups of x stripes do
4: // Place every x(g+1) data blocks
5: for every x(g+1) data blocks from x stripes do
6: Randomly select a new cluster
7: Cluster ID d← d +1
8: Bn← g+1 data blocks from the n-th stripe, where 0≤

n≤ x−1
9: AGGORDIS(d, β , B0,B1, · · · ,Bx−1, the cluster with ID d)

10: end for
11: Derive the i-th remaining local groups for the x stripes
12: end for
13: // Place every xθ remaining local groups
14: for every xθ remaining local groups from x stripes do
15: Randomly select a new cluster
16: Cluster ID d← d +1
17: Bn← θ remaining local groups from the n-th stripe, where

0≤ n≤ x−1
18: AGGORDIS(d, β , B0,B1, · · · ,Bx−1, the cluster with ID d)
19: end for
20: // Place global parity blocks of x stripes
21: Randomly select x new clusters
22: Distribute the global parity blocks of x stripes to the x clusters
23: procedure AGGORDIS(d, β , B0,B1, · · · ,Bx−1, the cluster with

ID d)
24: if d < β then
25: Aggregate B0,B1, · · · ,Bx−1 in the cluster with ID d
26: else
27: Disperse B0,B1, · · · ,Bx−1 across x different clusters
28: end if
29: end procedure

We now try to aggregate or disperse every xθ remaining
local groups from the x stripes. For xθ remaining local groups
from the x stripes, we randomly choose a new cluster from the
c clusters (Lines 15-16). Next, we disperse the xθ remaining
local groups from the x stripes over x different clusters, or
collocate these blocks into the chosen cluster, by comparing the
current cluster ID with the aggregation degree (Lines 17-18).

The global parity blocks of the x stripes are dispersed over
x dedicated clusters as they do not affect the recalculation
and migration costs (Lines 21-22). Procedure aggOrDis is to
completely aggregate or disperse the x block sets according to
the aggregation degree (Lines 23-29).

If (m = b mod (g+1)) = 0, then we simply place all local
and global parity blocks of each stripe into a separate cluster.
Examples. By inputting β = 0, we get the DIS placement. For
example, in Figure 3(a), we distribute the first LRC(6,2,2)
stripe and the second stripe to the first three clusters and the
next three clusters, respectively.

Alternatively, by inputting β = α − 1, we get the AGG
placement. For example, in Figure 3(b), we collocate D0-D2
of the first stripe and D6-D8 of the second stripe in the first
cluster, and D3-D5 of the first stripe and D9-D11 of the second
stripe in the second cluster. The parity blocks of the two stripes
are placed onto the third and fourth clusters, respectively.

D0 D1 D2 D4 D5 D6 D3 L0 G0 G1 D12 D13 D14

D7 L1

D8 D9 D10

D11 L2

D15 L3

G2 G3

Figure 4. Converting random placement to our data placement for 2
LRC(8,2,2) with less cost. The random placement has bandwidth 14 and 13,
while our data placement has bandwidth 14 and 12 for Problems (1) and (2).

Cost analysis for Problem (1). For a data placement with
aggregation degree β , there are β clusters that aggregate
the data blocks from x LRC(k, l,g) stripes. According to
Proposition 2, we need to migrate the data and local parity
blocks of x− 1 stripes for each of the β clusters. Recall
that a single stripe spans α clusters, where each of the first
l×b b

g+1c ones stores g+1 data blocks, and each of the next
l
θ

ones stores g+θ data and local parity blocks (Equation (1)).
Thus, if β <= l×b b

g+1c, then we migrate (x− 1)× (g+ 1)
data blocks for each of the β clusters; otherwise, we migrate
(x−1)× (g+1) data blocks for each of the l×b b

g+1c clusters,
and (x−1)× (g+θ) data and local parity blocks for each of
the β − l×b b

g+1c clusters.

migration cost=


β × (x−1)× (g+1), if β <= l×b b

g+1c;
(β − l×b b

g+1c)× (x−1)× (g+θ)+

l×b b
g+1c× (x−1)× (g+1), otherwise.

(2)
For recalculation, as the data blocks of the x stripes span

β +(α − 1−β)× x clusters and the number of data blocks
in each cluster is no less than g′ = g (each of the first β

clusters has at least xg data blocks, while each of the next
(α−1−β)×x clusters has at least g data blocks), we encode
and transfer g partial blocks from each cluster.

recalculation cost = (β +(α−1−β)× x)×g. (3)

Trade-off between recalculation cost and migration cost
in Problem (1). From Equations (2) and (3), a large β (e.g.,
AGG) results in small recalculation cost but large migration
cost, while a small β (e.g., DIS) brings small migration cost
but large recalculation cost. There exists a trade-off between
the recalculation cost and the migration cost.

For example, for x = 2 LRC(6,2,2), the placement with β =
α−1 = 2 (i.e., AGG) has recalculation cost (4) and migration
cost (6); the placement with β = 1 has recalculation cost (6)
and migration cost (3); and the placement with β = 0 (i.e., DIS)
has recalculation cost (8) and migration cost (0). We gradually
trade increased recalculation cost for decreased migration cost.

By Proposition 3, the data placement with a smaller β

has smaller total bandwidth cost, so DIS has the smallest
transitioning cost among all data placements with varied β .
Cost analysis for Problem (2). From Proposition 4, block
migration is eliminated in Problem (2), so we solely focus on
the recalculation process. Note that the data blocks of the x
stripes reside in β +(α−1−β)×x clusters. Since each of the
first β clusters has at least xg data blocks, we transfer g′ = xg

partial blocks for each such cluster for recalculation. Each
of the next (α−1−β)× x clusters stores at most g+1 data
blocks. Therefore, for each such cluster, we directly transfer the
original data blocks. If β <= l×b b

g+1c, then we transfer g+1
data blocks for each of (l×b b

g+1c−β)×x clusters and g data
blocks for each of (α−1− l×b b

g+1c)× x clusters; otherwise,
we transfer g data blocks for each of (α−1−β)× x clusters.

recalculation cost =


(α−1)× x×g−β × x+
l×b b

g+1c× x, if β <= l×b b
g+1c;

(α−1)× x×g, otherwise.
(4)

By Proposition 5, the data placement with a larger β (β ≤
l×b b

g+1c) has smaller total bandwidth cost, and AGG shows the
smallest cost. For example, for 2 LRC(6,2,2) stripes, the data
placements with β = 0,1,2 have costs 12, 10, 8, respectively.

Optimality guarantee. We first show that we can convert any
random placement of the x LRC(k, l,g) stripes to our data
placement derived in Algorithm 1 with saved bandwidth cost.
If x sets of g+ 1 data blocks (or x sets of g+ θ data and
local parity blocks) from the x stripes are partially aggregated,
then from Proposition 3 and Proposition 5, we can completely
aggregate or disperse them to save the bandwidth cost. If one
set of g+1 data blocks from one stripe are collocated with
one set of g+ θ data and local parity blocks from another
stripe, we then switch the placements of these two block sets.
By doing this, we save the bandwidth cost for Problem (2).
Finally, if one set of g+1 data blocks (or one set of g+θ data
and local parity blocks) are collocated with the global parity
blocks, we then simply choose a different cluster to recalculate
the new global parity blocks to avoid any block migration.

For example, in Figure 4, for 2 LRC(8,2,2) stripes, we
show a random placement, where D4-D6 of the first stripe
are aggregated with D11, L2, D15, L3 of the second stripe. By
switching the placements of D11, L2, D15, L3, and D12-D14, we
get a designed data placement with β = 2, which has smaller
bandwidth cost than the random placement for Problem (2).

Theorem 1. For any data placement of the x LRC(k, l,g)
stripes that preserves both minimum repair cost and single-
cluster fault tolerance, the minimum transitioning bandwidth
cost is x×g× (α−1) for both Problem (1) and Problem (2).

Proof. From the above analysis, we can transform any random
placement into a designed data placement with reduced
bandwidth cost. From the cost analysis, DIS has the smallest
bandwidth cost in Problem (1), while AGG has the smallest
cost in Problem (2), among all data placements with varied β .
From Equations (2)-(4), the minimum transitioning bandwidth
cost is x×g× (α−1) for Problem (1) and Problem (2).

From Theorem 1, DIS achieves the minimum transitioning
bandwidth cost (i.e., the sum of the migration and recalculation
costs) for Problem (1), while AGG achieves the minimum
transitioning cost for Problem (2).

Minimum repair cost for LRC(xk,xl,g′). After merging, the
data placement of LRC(xk,xl,g′) also achieves the minimum

repair cost (i.e., b b
g+1c) in both Problem (1) and Problem (2).

V. EVALUATION

We compare via numerical analysis and testbed experiments
our optimal data placement (Section IV-B) with the random
data placement (Section III-B). For the random data placement,
we have two implementation approaches. The first approach
(denoted by Ran) is to recalculate the new global parity blocks
by directly accessing all original data blocks as in [43], [44],
while the second approach (denoted by Ran-P) is to apply
encoding-and-transferring to the recalculation process (e.g., the
method in Figure 2) as in [41].

We summarize the overall results below. First, from nu-
merical analysis, for Problem (1) (i.e., x LRC(k, l,g) to
LRC(xk,xl,g)), DIS saves the cross-cluster traffic by up
to 46.2%, while for Problem (2) (i.e., x LRC(k, l,g) to
LRC(xk,xl,xg)), AGG saves the cross-cluster traffic by up
to 34.1% (Section V-A). Second, from testbed experiments,
for Problem (1), DIS reduces the transitioning time by up to
43.2%, while for Problem (2), AGG reduces the transitioning
time by up to 35.3% (Section V-B).

A. Numerical Analysis

We analyze the total transitioning bandwidth costs during
stripe merging for both Problem (1) and Problem (2).

Ran and Ran-P. For Ran, we directly access all original
data blocks for recalculation, so the recalculation cost is
xk. We further apply encoding-and-transferring to obtain the
recalculation cost of Ran-P. The migration cost is determined
by the aggregation degree of the x stripes. We can refer to
Proposition 2 to calculate the migration cost.

DIS for Problem (1) and AGG for Problem (2). From
Theorem 1, the bandwidth costs of both DIS for Problem (1)
and AGG for Problem (2) are x×g× (α−1).

Setting. We consider different x and different parameters
(k, l,g). We set the number of stripes as 100, and the number
of clusters (i.e., c) as xα , i.e., the number of clusters the DIS
placement spans. We calculate the average transitioning cost
for merging every x small-size stripes.

Results for different coding parameters. Figure 5 shows the
transitioning cost results for x = 2 under 12 sets of coding
parameters. We summarize the following observations.
• From Figure 5(a), DIS has the minimum transitioning cost

for Problem (1). DIS reduces the transitioning cost of Ran
significantly, and also shows notable improvement over Ran-P.
For example, for (k, l,g) = (20,2,2), DIS saves the cross-
cluster transitioning traffic of Ran and Ran-P by 43.7% and
10.5%, respectively.

• From Figure 5(b), AGG achieves the minimum transitioning
cost for Problem (2). AGG can reduce the transitioning
costs of Ran and Ran-P notably. For example, for (k, l,g) =
(6,2,2), AGG saves the cross-cluster traffic of Ran and Ran-P
by 33.3% and 27.3%, respectively.

• In Figure 5(b), Ran, Ran-P, and AGG have the same costs
for the case (4,2,2). The reason is that the total number of

10.28.7 8

14.2
8.7 8

19.8

13.412

25.2

17.716

28

17.316

28.2

19.118

40

26.7
24

38.8

25.724

49.7

31.3
28

48.6

33.732

49.9

35.8
32

46.5

33.332

0
10
20
30
40
50

(4
,2

,2
)

(6
,2

,2
)

(8
,2

,2
)

(1
0,

2,
2)

(1
2,

2,
2)

(1
2,

3,
3)

(1
6,

2,
2)

(1
6,

2,
3)

(2
0,

2,
2)

(2
0,

2,
4)

(2
0,

4,
2)

(2
0,

4,
4)

Coding Parameter

T
ra

ns
iti

on
in

g
C

os
t

Ran Ran-P DIS

(a) Problem (1), x LRC(k, l,g) to LRC(xk,xl,g)

8 8 8
12 11

8

1614.3
12

2018.5
16

24
21

16

24 22
18

32
28.7

24

32
28.5

24

40
34.8

28

40
36.9

32

40
36.5

32

40
36.6

32

0

10

20

30

40

50

(4
,2

,2
)

(6
,2

,2
)

(8
,2

,2
)

(1
0,

2,
2)

(1
2,

2,
2)

(1
2,

3,
3)

(1
6,

2,
2)

(1
6,

2,
3)

(2
0,

2,
2)

(2
0,

2,
4)

(2
0,

4,
2)

(2
0,

4,
4)

Coding Parameter

T
ra

ns
iti

on
in

g
C

os
t

Ran Ran-P AGG

(b) Problem (2), x LRC(k, l,g) to LRC(xk,xl,xg)

Figure 5. Numerical results of the transitioning bandwidth costs.

14.2
8.7 8

22.3

13.512

29.5

17.816

28

17.316

44.9

27.1
24

60.7

36.2
32

0

20

40

60

2
(6

,2
,2

)

3
(6

,2
,2

)

4
(6

,2
,2

)

2
(1

2,
2,

2)

3
(1

2,
2,

2)

4
(1

2,
2,

2)

Different x, (k,l,g)

T
ra

ns
iti

on
in

g
C

os
t

Ran Ran-P DIS

12 11
8

18.217.8

12

24 23.8

16

24
21

16

36.435.5

24

48 47.3

32

0

10

20

30

40

50

2
(6

,2
,2

)

3
(6

,2
,2

)

4
(6

,2
,2

)

2
(1

2,
2,

2)

3
(1

2,
2,

2)

4
(1

2,
2,

2)

Different x, (k,l,g)

T
ra

ns
iti

on
in

g
C

os
t

Ran Ran-P AGG

(a) Problem (1) (b) Problem (2)

Figure 6. Numerical results under different values of x.

data blocks is 8 = lxg = lg′, and the recalculation cost is
always 8 regardless of the aggregation degree.

Results for different x. Figure 6 shows the transitioning cost
results for different x. DIS constantly outperforms Ran and Ran-
P under different x and different (k, l,g) in Problem (1), while
AGG also shows stable improvements over Ran and Ran-P in
Problem (2). For example, for LRC(6,2,2), DIS reduces the
cross-cluster transitioning traffic of Ran and Ran-P by 43.7%-
46.2% and 8.0%-11.1% in Problem (1), and AGG reduces the
cross-cluster traffic of Ran and Ran-P by 33.3%-34.1% and
27.3%-32.8%, across all values of x.

B. Testbed Experiments

We implement the placement schemes in a clustered stor-
age system prototype, and conduct testbed experiments to
understand their real transitioning performance. Our prototype
is composed of a client, a coordinator (CN), and multiple
datanodes (DNs) that are partitioned into clusters. The client
interacts with the CN for metadata, and uploads data to the
DNs. The CN sends commands to the DNs for redundancy
transitioning. The DNs receive commands, and execute the
actual data I/Os and transfer in parallel. Our prototype is
implemented in C++ with about 4000 lines of code (LoC) and
is open-sourced (Section I).

0

500

1000

1500

2000

2500

x=2 LRC(4,2,2) x=2 LRC(6,2,2)
Coding Parameter

T
ra

ns
iti

on
in

g
T

im
e

(s
) Ran Ran-P DIS

0

500

1000

1500

2000

2500

x=2 LRC(4,2,2) x=2 LRC(6,2,2)
Coding Parameter

T
ra

ns
iti

on
in

g
T

im
e

(s
) Ran Ran-P AGG

(a) Problem (1) (b) Problem (2)

Figure 7. Exp#1: Transitioning time under different coding parameters.

Setup. We deploy our prototype on a Kubernetes cluster with
9 physical nodes, each of which runs Ubuntu 16.04.7 LTS
with a 40-core 2.40 GHz Intel(R) Xeon(R) Gold 5115, 128 GB
RAM, a 1 TB SSD, and 1 Gbps bandwidth. Each node achieves
2000 MBps of disk read bandwidth and 350 MBps of write
bandwidth. We deploy the client and CN on one node, and the
DNs on 8 nodes. We use each node to emulate one cluster,
so we can deploy multiple DNs on one node. We use the
Wonder Shaper tool [4] to control the network bandwidth of
each node, such that the ratio of the inner-node transfer speed
to the cross-node transfer speed is around 8:1.

Methodology. We assume the following default configurations.
We adopt the transitioning parameters x = 2 LRC(6,2,2). We
set the block size as 64 MB, and the packet size for network
transfer as 1 MB. We upload 100 stripes of data and parity
blocks, so the total data volume is around 60 GB. We set the
number of clusters as 6. We vary different parameters in our
experiments. We measure the time for transitioning all stripes.
The results of each experiment are averaged over five runs.

Experiment 1 (Performance for different parameters). We
first evaluate the performance under different coding parameters.
We adopt two sets of parameters, x = 2 LRC(4,2,2), and x = 2
LRC(6,2,2). All other settings are the same as the defaults.
Figure 7 shows the results.

From Figure 7(a), in Problem (1), DIS reduces the transition-
ing time of Ran and Ran-P by 43.2% and 10.5% under x = 2
LRC(6,2,2), respectively, and by 19.0% and 6.0% under x = 2
LRC(4,2,2), respectively. DIS greatly outperforms Ran as it
exploits encoding-and-transferring to save the recalculation
traffic. DIS also notably improves Ran-P since it disperses the
two small-size stripes to eliminate the migration traffic.

From Figure 7(b), in Problem (2), AGG reduces the tran-
sitioning time of Ran and Ran-P by 31.3% and 24.5% under
x= 2 LRC(6,2,2), respectively, since AGG efficiently saves the
recalculation traffic via fully aggregating the data blocks. For 2
LRC(4,2,2), Ran, Ran-P, and AGG have similar transitioning
time, which confirms to our theoretical results (Section V-A).

Experiment 2 (Impact of block size). We now evaluate the
impact of the block size, varied from 16 MB to 64 MB. We
adopt x = 2 LRC(6,2,2). Figure 8 shows the results. The
transitioning time increases with a larger block size, while DIS
constantly outperforms Ran and Ran-P in Problem (1), and
AGG constantly outperforms Ran and Ran-P in Problem (2).
Overall, DIS reduces the transitioning time of Ran and Ran-P
by 42.0%-43.2% and 10.4%-10.8% in Problem (1), respectively,

0

500

1000

1500

2000

2500

16 32 64
Block Size (MB)

T
ra

ns
iti

on
in

g
T

im
e

(s
)

Ran
Ran-P
DIS

0

500

1000

1500

2000

2500

16 32 64
Block Size (MB)

T
ra

ns
iti

on
in

g
T

im
e

(s
)

Ran
Ran-P
AGG

(a) Problem (1) (b) Problem (2)

Figure 8. Exp#2: Transitioning time under different block sizes.

0

500

1000

1500

2000

2500

80 100 120
Stripe Number

T
ra

ns
iti

on
in

g
T

im
e

(s
) Ran

Ran-P
DIS

0

500

1000

1500

2000

2500

80 100 120
Stripe Number

T
ra

ns
iti

on
in

g
T

im
e

(s
) Ran

Ran-P
AGG

(a) Problem (1) (b) Problem (2)

Figure 9. Exp#3: Transitioning time under different number of stripes.

0

500

1000

1500

2000

2500

6 7 8
Cluster Number

T
ra

ns
iti

on
in

g
T

im
e

(s
) Ran Ran-P DIS

0

500

1000

1500

2000

2500

6 7 8
Cluster Number

T
ra

ns
iti

on
in

g
T

im
e

(s
) Ran Ran-P AGG

(a) Problem (1) (b) Problem (2)

Figure 10. Exp#4: Transitioning time under different number of clusters.

while AGG reduces the transitioning time of Ran and Ran-P by
30.4%-35.3% and 21.5%-25.8% in Problem (2), respectively,
across all block sizes.

Experiment 3 (Impact of number of stripes). We evaluate the
impact of the number of stripes. We adopt x = 2 LRC(6,2,2),
fix the block size as 64 MB, and change the number of
stripes from 80 to 120. Figure 9 shows the results. As the
number of stripes increases, the transitioning time increases.
In Problem (1), DIS outperforms Ran and Ran-P in the
transitioning time by 40.7%-43.2% and 10.0%-11.0% under
different number of stripes, respectively. In Problem (2), AGG
outperforms Ran and Ran-P in the transitioning time by 30.2%-
31.6% and 24.5%-25.5%, respectively.

Experiment 4 (Impact of number of clusters). We now study
the impact of the number of clusters (i.e., c). We adopt x = 2
LRC(6,2,2), fix the block size as 64 MB and the stripe number
as 100, and vary c from 6 to 8. Figure 10 shows the results.

From Figure 10(a), in Problem (1), DIS reduces the transi-
tioning time of Ran and Ran-P by 43.2% and 10.5%, 39.7%
and 8.7%, and 37.3% and 5.4%, when the number of clusters
is 6, 7, and 8, respectively. This indicates that DIS has larger
performance gains over Ran and Ran-P with a smaller cluster
number. From Figure 10(b), in Problem (2), AGG reduces the
transitioning time of Ran and Ran-P by 31.3% and 24.5%,
31.7% and 24.6%, and 32.6% and 26.0%, when the number
of clusters is 6, 7, and 8, respectively.

VI. RELATED WORK

LRC designs. Several studies analyze the theoretical properties
of LRC, such as minimum repair I/O [10], [27] and minimum
hamming distances [31]–[33]. On the applied side, LRC is
also implemented and evaluated in Azure [14], Facebook
[29], and Ceph [18]. Recent study [41] analyzes the optimal
trade-off between the repair performance and the redundancy
transitioning between the parameters (k, l,g) and (k, l′,g) in
LRC, and further designs data placement that attains the
optimal trade-off for a single stripe. Our work extends [41]
and designs an optimal data placement scheme in the context
of stripe merging, in which multiple stripes are merged with
the minimum transitioning cost.

Redundancy transitioning. Several studies address redun-
dancy transitioning in distributed storage, such as from repli-
cation to erasure coding [8], [20], [37], [38], efficient data
redistribution for RAID arrays [39], [45], [47], erasure-coded
storage [15]–[17], [42], [46], and in-memory erasure-coded
KV stores [6], [34], [40]. Unlike the prior studies, we focus on
applying stripe merging for bandwidth-efficient transitioning.

Prior studies [43], [44] also apply stripe merging in redun-
dancy transitioning. HACFS [43] focuses on a limited setting
that merges three small-size stripes into one large-size stripe
for Product Codes [11], [19]. StripeMerge [44] also considers a
specific setting that merges two stripes of Reed-Solomon Codes
[28]. In contrast, our work considers the merge of an arbitrary
number of LRC stripes. In addition, both studies [43], [44]
consider flat storage systems without considering cross-cluster
bandwidth, while we consider hierarchical clustered storage
systems where the cross-cluster transfer is the bottleneck.
The studies [22], [23] propose Convertible Codes to realize
bandwidth-efficient stripe merging. Our work focuses on LRC
and the optimal data placement for stripe merging.

Erasure coding in clustered storage. Recent studies focus on
the deployment of erasure coding in clustered storage systems
with hierarchical topologies. Some studies minimize the cross-
cluster bandwidth for repair in erasure coding [12], [13], [21],
[25], [30], while the study [41] minimizes the cross-cluster
bandwidth for transitioning a single stripe. In contrast, our work
addresses the stripe merging problem in clustered storage.

VII. CONCLUSION

We analyze the stripe merging problems for transitioning
LRC in clustered storage systems. We prove that the placement
of the multiple LRC stripes has a great impact on the cross-
cluster transitioning traffic. We design a data placement scheme
for the multiple stripes that is guaranteed to be optimal for
two stripe merging problems. Both numerical studies and
testbed experiments validate the effectiveness of our placement
scheme. The authors have provided public access to their code
at https://zenodo.org/record/5797775.

Acknowledgements: This work is supported by NSFC
(61832011), Research Grants Council of HKSAR (AoE/P-
404/18). The corresponding author is Patrick P. C. Lee.

REFERENCES

[1] Apache Hadoop 3.0.0. https://hadoop.apache.org/docs/r3.0.0/hadoop-
project-dist/hadoop-hdfs/HDFSErasureCoding.html,2017.

[2] Erasure coding in Ceph. https://ceph.com/planet/erasure-coding-in-ceph/
,2014.

[3] IDC. Data age 2025. https://www.seagate.com/our-story/data-age-2025/.
[4] The Wonder Shaper 1.4. https://github.com/magnific0/wondershaper.
[5] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. Vijaykumar.

ShuffleWatcher: Shuffle-aware scheduling in multi-tenant Mapreduce
clusters. In Proc. of USENIX ATC, 2014.

[6] L. Cheng, Y. Hu, and P. P. Lee. Coupling decentralized key-value stores
with erasure coding. In Proc. of ACM SoCC, 2019.

[7] M. Chowdhury, S. Kandula, and I. Stoica. Leveraging endpoint flexibility
in data-intensive clusters. In Proc. of ACM SIGCOMM, 2013.

[8] B. Fan, W. Tantisiriroj, L. Xiao, and G. Gibson. DiskReduce: RAID for
data-intensive scalable computing. In Proc. of ACM PDSW, 2009.

[9] D. Ford, F. Labelle, F. Popovici, M. Stokely, V.-A. Truong, L. Barroso,
C. Grimes, and S. Quinlan. Availability in globally distributed storage
systems. In Proc. of USENIX OSDI, 2010.

[10] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin. On the locality of
codeword symbols. IEEE Trans. on Information Theory, 58(11):6925–
6934, 2012.

[11] J. Hafner. HoVer erasure codes for disk arrays. In Proc. of IEEE/IFIP
DSN, 2006.

[12] Y. Hu, L. Cheng, Q. Yao, P. P. Lee, W. Wang, and W. Chen. Exploiting
combined locality for wide-stripe erasure coding in distributed storage.
In Proc. of USENIX FAST, 2021.

[13] Y. Hu, X. Li, M. Zhang, P. P. Lee, X. Zhang, P. Zhou, and D. Feng.
Optimal repair layering for erasure-coded data centers: From theory to
practice. ACM Trans. on Storage, 13(4):33, 2017.

[14] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and
S. Yekhanin. Erasure coding in Windows Azure Storage. In Proc. of
USENIX ATC, 2012.

[15] J. Huang, X. Liang, X. Qin, P. Xie, and C. Xie. Scale-RS: An efficient
scaling scheme for RS-coded storage clusters. IEEE Trans. on Parallel
and Distributed Systems, 26(6):1704–1717, 2014.

[16] S. Kadekodi, F. Maturana, S. J. Subramanya, J. Yang, K. Rashmi, and
G. R. Ganger. PACEMAKER: Avoiding HeART attacks in storage
clusters with disk-adaptive redundancy. In Proc. of USENIX OSDI, 2020.

[17] S. Kadekodi, K. Rashmi, and G. R. Ganger. Cluster storage systems gotta
have HeART: Improving storage efficiency by exploiting disk-reliability
heterogeneity. In Proc. of USENIX FAST, 2019.

[18] O. Kolosov, G. Yadgar, M. Liram, I. Tamo, and A. Barg. On fault
tolerance, locality, and optimality in Locally Repairable Codes. In Proc.
of USENIX ATC, 2018.

[19] M. Li, J. Shu, and W. Zheng. GRID codes: Strip-based erasure codes
with high fault tolerance for storage systems. ACM Trans. on Storage,
4(4):1–22, 2009.

[20] R. Li, Y. Hu, and P. P. Lee. Enabling efficient and reliable transition
from replication to erasure coding for clustered file systems. IEEE Trans.
on Parallel and Distributed Systems, 28(9):2500–2513, 2017.

[21] X. Li, R. Li, P. P. Lee, and Y. Hu. OpenEC: Toward unified and
configurable erasure coding management in distributed storage systems.
In Proc. of USENIX FAST, 2019.

[22] F. Maturana, C. Mukka, and K. Rashmi. Access-optimal linear MDS
Convertible Codes for all parameters. In Proc. of IEEE ISIT, 2020.

[23] F. Maturana and K. Rashmi. Convertible Codes: New class of codes for
efficient conversion of coded data in distributed storage. In Innovations
in Theoretical Computer Science (ITCS), 2020.

[24] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu, S. Pan,
S. Shankar, V. Sivakumar, L. Tang, et al. f4: Facebook’s warm BLOB
storage system. In Proc. of USENIX OSDI, 2014.

[25] N. Prakash, V. Abdrashitov, and M. Médard. The storage versus repair-
bandwidth trade-off for clustered storage systems. IEEE Trans.on
Information Theory, 64(8):5783–5805, Aug 2018.

[26] K. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and K. Ram-
chandran. A solution to the network challenges of data recovery in
erasure-coded distributed storage systems: A study on the Facebook
warehouse cluster. In Proc. of USENIX HotStorage, 2013.

[27] A. S. Rawat, D. S. Papailiopoulos, A. G. Dimakis, and S. Vishwanath.
Locality and availability in distributed storage. IEEE Trans. on
Information Theory, 62(8):4481–4493, 2016.

[28] I. Reed and G. Solomon. Polynomial codes over certain finite fields.
Journal of the Society for Industrial and Applied Mathematics, 8(2):300–
304, 1960.

[29] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur. XORing Elephants: Novel erasure
codes for big data. In Proc. of VLDB Endowment, pages 325–336, 2013.

[30] Z. Shen, J. Shu, and P. P. Lee. Reconsidering single failure recovery in
clustered file systems. In Proc. of IEEE/IFIP DSN, 2016.

[31] N. Silberstein, A. S. Rawat, O. O. Koyluoglu, and S. Vishwanath. Optimal
Locally Repairable Codes via Rank-Metric Codes. In Proc. of IEEE
International Symposium on Information Theory, 2013.

[32] I. Tamo and A. Barg. A family of optimal Locally Recoverable Codes.
IEEE Trans. on Information Theory, 60(8):4661–4676, 2014.

[33] I. Tamo, D. S. Papailiopoulos, and A. G. Dimakis. Optimal Locally
Repairable Codes and connections to Matroid theory. IEEE Trans. on
Information Theory, 62(12):6661–6671, 2016.

[34] K. Taranov, G. Alonso, and T. Hoefler. Fast and strongly-consistent
per-item resilience in key-value stores. In Proc. of ACM EuroSys, 2018.

[35] A. Vulimiri, C. Curino, P. B. Godfrey, T. Jungblut, J. Padhye, and
G. Varghese. Global analytics in the face of bandwidth and regulatory
constraints. In Proc. of USENIX NSDI, 2015.

[36] H. Weatherspoon and J. D. Kubiatowicz. Erasure coding vs. replication:
A quantitative comparison. In Proc. of IPTPS, 2002.

[37] S. Wei, Y. Li, Y. Xu, and S. Wu. DSC: Dynamic stripe construction
for synchronous encoding in clustered file system. In Proc. of IEEE
INFOCOM, 2017.

[38] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The HP AutoRAID
hierarchical storage system. ACM Trans. on Computer Systems, 14(1):108–
136, 1996.

[39] C. Wu and X. He. GSR: A global stripe-based redistribution approach
to accelerate RAID-5 scaling. In Proc. of IEEE ICPP, 2012.

[40] S. Wu, Z. Shen, and P. P. Lee. Enabling I/O-efficient redundancy
transitioning in erasure-coded KV stores via Elastic Reed-Solomon Codes.
In Proc. of IEEE SRDS, 2020.

[41] S. Wu, Z. Shen, and P. P. Lee. On the optimal repair-scaling trade-off
in Locally Repairable Codes. In Proc. of IEEE INFOCOM, 2020.

[42] S. Wu, Y. Xu, Y. Li, and Z. Yang. I/O-Efficient scaling schemes for
distributed storage systems with CRS codes. IEEE Trans. on Parallel
and Distributed Systems, 27(9):2639–2652, 2016.

[43] M. Xia, M. Saxena, M. Blaum, and D. A. Pease. A tale of two erasure
codes in HDFS. In Proc. of USENIX FAST, 2015.

[44] Q. Yao, Y. Hu, L. Cheng, P. P. Lee, D. Feng, W. Wang, and W. Chen.
Stripemerge: Efficient wide-stripe generation for large-scale erasure-coded
storage. In Proc. of IEEE ICDCS, 2021.

[45] G. Zhang, K. Li, J. Wang, and W. Zheng. Accelerate RDP RAID-6
scaling by reducing disk I/Os and XOR operations. IEEE Trans. on
Computers, 64(1):32–44, 2015.

[46] X. Zhang, Y. Hu, P. P. Lee, and P. Zhou. Toward optimal storage
scaling via network coding: From theory to practice. In Proc. of IEEE
INFOCOM, 2018.

[47] W. Zheng and G. Zhang. FastScale: Accelerate RAID scaling by
minimizing data migration. In Proc. of USENIX FAST, 2011.

