Revisiting Frequency Analysis against
Encrypted Deduplication via Statistical Distribution

Jingwei Lif, Guoli Wei', Jiacheng Liang', Yanjing Renf, Patrick P. C. Lee!, and Xiaosong Zhang'*

YUniversity of Electronic Science and Technology of China

YThe Chinese University of Hong Kong

*Blockchain Research Lab of UESTC, Chengdu Jiaozi Financial Holding Group Company Ltd

Abstract—Encrypted deduplication addresses both security
and storage efficiency in large-scale storage systems: it ensures
that each plaintext is encrypted to a ciphertext by a symmetric
key derived from the content of the plaintext, so as to allow dedu-
plication on the ciphertexts derived from duplicate plaintexts.
However, the deterministic nature of encrypted deduplication
leaks the frequencies of plaintexts, thereby allowing adversaries
to launch frequency analysis against encrypted deduplication and
infer the ciphertext-plaintext pairs in storage. In this paper, we
revisit the security vulnerability of encrypted deduplication due
to frequency analysis, and show that encrypted deduplication
can be even more vulnerable to the sophisticated frequency
analysis attack that exploits the underlying storage workload
characteristics. We propose the distribution-based attack, which
builds on a statistical approach to model the relative frequency
distributions of plaintexts and ciphertexts, and improves the
inference precision (i.e., have high confidence on the correctness
of inferred ciphertext-plaintext pairs) of the previous attack. We
evaluate the new attack against real-world storage workloads and
provide insights into its actual damage.

I. INTRODUCTION

Modern large-scale storage systems reduce storage space by
removing content redundancy via deduplication, which stores
only the data copies with unique content among already stored
data copies. Field studies show that deduplication reduces
substantial fractions of storage space under real-world storage
workloads, such as backups [35], file system snapshots [27],
and virtual disk images [18]. Cloud storage services (e.g.,
Dropbox and Google Drive) also use deduplication to save
storage costs [16]. To ensure data confidentiality, clients should
encrypt their own data before uploading the data to the cloud.
It is critical that the encryption approach preserves the original
content redundancy pattern, so that duplicate data copies can
still be deduplicated even after encryption.

We study encrypted deduplication, which combines encryp-
tion and deduplication in a way that each plaintext (data copy)
is symmetrically encrypted and decrypted by a secret key that
is derived from the content of the plaintext itself; should the
plaintexts be duplicates, their resulting ciphertexts are also
duplicates and can be deduplicated. Encrypted deduplication
can be achieved via the formal cryptographic primitive called
message-locked encryption (MLE) [8], whose instantiations
have been extensively studied and realized in the literature (see
Section VI). MLE builds on deterministic encryption, which
deterministically maps a plaintext to the same ciphertext to
preserve the identical content pattern after encryption.

Corresponding author: Patrick P. C. Lee (pclee@cse.cuhk.edu.hk)

However, the deterministic nature of encrypted deduplica-
tion causes information leakage, such that the adversaries can
analyze the ciphertexts and infer the corresponding original
plaintexts. Specifically, an adversary can perform frequency
analysis [3] on both the ciphertexts that are observed and
the plaintexts that are known as priori. Then the adversary
can infer the ciphertext-plaintext pairs, in which both the
ciphertext and plaintext in each pair have correlated frequency
patterns. Such inference attacks have been shown effective
against database records [29] and searchable keywords [11],
[17] that are protected by deterministic encryption. Recently,
frequency analysis is also shown effective against encrypted
deduplication [21].

In this paper, we revisit the information leakage in encrypted
deduplication. We show that encrypted deduplication can ac-
tually be even more vulnerable to the sophisticated frequency
analysis attack that exploits the workload characteristics of
real-world storage patterns. In addition to inferring a signifi-
cant fraction of ciphertext-plaintext pairs, such a sophisticated
attack can reduce the false positives of inference (i.e., an
inferred plaintext is correctly mapped to a target ciphertext
with a high probability).

We propose a new frequency analysis attack, namely the
distribution-based attack, which targets backup workloads [35]
in encrypted deduplication. We build on the locality property
[25], [36], which states that the ordering of data is likely
to be preserved across various backups. We extend locality
from the statistics perspective, and propose a new workload
characteristics measurement, namely the relative frequency
distribution, which characterizes the likelihood of the co-
occurrence of data in the logical order. We find that the relative
frequency distributions of identical data are stable in different
backups. Thus, the distribution-based attack aims to ensure
high confidence on the (inferred) ciphertext-plaintext pairs, by
examining the relative frequency distributions of the ciphertext
and plaintext in each pair to filter falsely inferred ciphertext-
plaintext pairs.

We evaluate the distribution-based attack with real-world
datasets. On average, it ensures that 83.6% (higher than the
previous attack [21] that achieves only 19.2%) of inferred
ciphertext-plaintext pairs are correct, while the correctly in-
ferred ones take 48.7% (also higher than the previous attack
[21] that achieves 12.6%) of all the ciphertext-plaintext pairs
in total (including both inferred and non-inferred ones). In
addition, we find that the distribution-based attack preserves

TABLE I
MAJOR NOTATIONS USED IN THIS PAPER.

Eavesdropped by Cloud Storage System
adversary

[G]E].5]

Multiple Clients

Deduplication| -
by Tags - tr

Backu i
[Notation [Description P Logical Chunks
Defined in Section II I:(>|j|j .. D

C (M) Unique ciphertext (plaintext)
C®@ (M@) |The 4-th logical ciphertext (plaintext)
C (M) Sequence of logical ciphertexts (plaintexts)
A Auxiliary information represented by sequence of logical

plaintexts
Lc Re) Associative array that maps each unique ciphertext to co-

occurrence frequencies with its left (right) neighbors in C
La (Ra) Associative array that maps each unique plaintext to co-

occurrence frequencies with its left (right) neighbors in A

U Number of ciphertext-plaintext pairs returned by the first

iteration of frequency analysis in locality-based attack
Defined in Section III

X Random variable that describes left neighboring chunk
Y Random variable that describes right neighboring chunk
L [M] Set of left neighbors of M in M

Set of right neighbors of M in M
Co-occurrence frequency of M and its left neighbor M’
R [M][M']|Co-occurrence frequency of M and its right neighbor M’

C; (M;) i-th frequent ciphertext (plaintext)
r Range of frequency ranks to be examined for each ciphertext
t Euclidean distance threshold

high attack severity, even when the priori knowledge is loosely
correlated with the target contents. This highlights the attack
severity, and should be taken into consideration when devel-
oping countermeasures.

II. BACKGROUND AND PROBLEM

In this section, we present the basics of encrypted dedu-
plication. We elaborate the threat model and review previous
frequency analysis attacks and their weaknesses. Table I sum-
marizes the major notations used in this paper.

A. Basics

We focus on chunk-based deduplication that operates at the
granularity of small-size data units called chunks. Specifically,
a storage system partitions a file (e.g., backup) into a list of
fixed-size or variable-size (e.g., via Rabin fingerprinting [31])
logical chunks (a.k.a. logical plaintexts), denoted by M =
(MM M®@). Each logical chunk is uniquely identified
by the cryptographic hash of its content called a tag (a.k.a.
fingerprint). Two logical chunks are said to be identical if they
have the same tag, while the likelihood that distinct logical
chunks have the same tag is assumed to be negligible [10].
Since identical logical chunks may appear multiple times in
M, the storage system stores each unique chunk (a.k.a. unique
plaintext) M that has the content matching one or many logical
chunks, and refers the corresponding logical chunks to the
stored unique chunk via small-size references.

Encrypted deduplication maps each logical plaintext M®
into the corresponding ciphertext C® via symmetric encryp-
tion, so as to address chunk confidentiality in an outsourcing
environment (e.g., cloud storage, see Figure 1). Specifically,
multiple clients encrypt logical chunks in the client sides, and
outsource the storage of the ciphertexts in a cloud. The cloud

N Physical Chunks,

Fig. 1. Architecture of encrypted deduplication: an adversary can eavesdrop
the sequence of logical ciphertexts before deduplication.

storage system performs deduplication by tags (see above) and
only stores the physical chunks that have unique contents.

To realize encrypted deduplication, traditional symmetric
encryption requires that multiple clients encrypt their plain-
texts by their (distinct) secret keys, thereby converting iden-
tical plaintexts into distinct ciphertexts that can no longer be
deduplicated. Message-locked encryption (MLE) [8] derives a
symmetric key (called the MLE key) from the content of each
logical plaintext, and encrypts the plaintext using the MLE key
to form a logical ciphertext (e.g., an encrypted logical chunk).
MLE ensures that identical plaintexts are always encrypted to
identical ciphertexts, and hence the storage system can derive
the tag from each ciphertext to perform deduplication.

Note that MLE builds on deterministic encryption to ensure
that the ciphertexts (or the tags) are deterministically derived
from the plaintexts, so as to preserve deduplication effective-
ness as opposed to traditional symmetric encryption. While
deterministic encryption provides confidentiality guarantees,
we show how an adversary can exploit the deterministic nature
to infer the original plaintext from a given ciphertext in the
context of encrypted deduplication.

B. Threat Model

We target periodic backups that are created as the complete
copies of primary data (e.g., file system snapshots) on a daily
or weekly basis. We consider a passive adversary that monitors
the stream of logical ciphertexts C = (C), '),) being
written to the cloud storage system (see Figure 1). For ex-
ample, the adversary compromises the deduplication process,
identifies the characteristics of logical ciphertexts, and aims
to learn the information about the corresponding plaintexts.
Specifically, suppose that M is the sequence of logical plain-
texts corresponding to C. We focus on two leakage channels
that can be exploited by the adversary:

« Frequency. Due to the deterministic nature of MLE-based
encrypted deduplication, the frequency (i.e., the number of
duplicate copies) of each unique ciphertext in C reflects the
frequency of its corresponding plaintext in M.

e Order. Many storage systems (e.g., [36]) apply deduplica-
tion to the chunks in the same order as they appear in the
original file. Thus, the order of the logical ciphertexts in C
reflects the order of the logical plaintexts in M.

We assume that the adversary knows some auxiliary infor-
mation that presents the ground truth about the characteristics
correlated with M. The availability of the auxiliary infor-
mation is necessary for any inference attack (e.g., [9], [14],
[20], [29]), and this paper considers the auxiliary information
as an ordered list of previously known plaintexts (e.g., old

backups), denoted by A. Note that the attack severity (e.g.,
high inference rate and inference precision, see below) de-
pends on the correlation between A (i.e., the previously known
plaintexts) and M (i.e., the plaintexts that are to be inferred).
Our focus is not to address how an adversary can obtain
auxiliary information (e.g., due to careless data release [1]).
Instead, we focus on how the available auxiliary information,
when combined with the leakage channels, brings information
leakage to encrypted deduplication. Our evaluation (Exp#3)
also shows that even when A is loosely correlated with M,
the information leakage is still significant.

Given the stream of ciphertexts in C and the available
auxiliary information in A, the adversary infers the ciphertext-
plaintext pairs, denoted by {(C, M)}, with two goals:

« High inference rate. A large fraction of correct ciphertext-
plaintext pairs are inferred, among all ciphertext-plaintext
pairs (i.e., high recall or low false negative rates in statistical
terms).

« High inference precision. A large fraction of ciphertext-
plaintext pairs are correct, among all the inferred ciphertext-
plaintext pairs (i.e., high precision or low false positive rates
in statistical terms).

Our threat model does not rely on other adversarial ca-
pabilities that can be prevented by existing approaches. For
example, we assume that the adversary does not have access
to any metadata that contains the information about how
chunks are operated and stored, as we typically do not apply
deduplication to the metadata and it can be protected by
traditional symmetric encryption. Also, we assume that the
adversary does not have any active capability (e.g., tampering
stored chunks), which can be prevented by remote integrity
checking [5], [19].

C. Previous Attacks

Frequency analysis is a classical attack methodology to infer
ciphertext-plaintext pairs against deterministic encryption. It
[3] sorts the unique ciphertexts in C and the unique plaintexts
in A by frequency. It relates each unique ciphertext C' in
C with the unique plaintext M in A, such that both M
and C have the same frequency rank. However, the classical
frequency analysis brings negligible severity to encrypted
deduplication, since many updates may occur from A (i.e.,
a previous backup) to C (i.e., the recent backup) and disturb
the frequency ranks of identical chunks [21].

The locality-based attack [21] augments frequency analysis
with locality, which is commonly found in backup workloads
[25], [36]. Locality states that the neighboring chunks tend to
co-occur in the same order across different versions of backups
prior to deduplication. The rationale is that the updates to each
backup are often clustered in small regions of chunks, while
the remaining large stretch of chunks stay intact and preserve
the same order across different versions of backups.

Based on locality, the locality-based attack exploits the order
leakage to discover the neighboring information of ciphertexts
and plaintexts. Specifically, for a given unique ciphertext C,
the attack first identifies the set of all corresponding duplicate

copies {C'D}. For each C'¥), it examines the left and right
neighbors of C (i.e., C=1 and C+1) respectively), and
extracts the sets of left and right neighbors into the associative
arrays Lc and R, respectively. The associative arrays store
the mappings from each unique ciphertext C' and any of
its left and right neighbor (e.g., C=Y and CUtD) to the
corresponding co-occurrence frequency. Similarly, the attack
also constructs the associative arrays Lo and Ra based on
the order information of A.

The locality-based attack then iterates frequency analysis
through the neighbors of each inferred ciphertext-plaintext
pair. It first applies frequency analysis to infer a number
(parameterized by u) of top-frequent ciphertext-plaintext pairs
{(C,M)} from C and A. The inferred results are likely to
be correct (i.e., the target ciphertext is indeed mapped from
the inferred plaintext), based on the observation that the ranks
of highly frequent chunks are stable across different versions
of backups. For each inferred pair (C, M), the attack finds
their left and right neighbors that have the most co-occurrence
frequencies with C' and M, respectively. Due to locality, the
left and right neighbors of M are likely to be the original
plaintexts of the corresponding left and right neighbors of C,
respectively. Thus, the attack also includes the top-frequent
left (right) neighbors of C' and M into the set of the resulting
inferred ciphertext-plaintext pairs. Finally, the attack procedure
iterates until the neighbors of each inferred ciphertext-plaintext
pair are examined.

Motivation. The locality-based attack has a major weakness
that it introduces a high number of false positives (i.e.,
incorrectly inferred ciphertext-plaintext pairs) in the inference
results. Since the main idea of frequency analysis is to map
ciphertexts to the plaintexts with the same frequency ranks,
any disturbance to frequency ranking (e.g., the updates across
backups) can lead to incorrectly inferred ciphertext-plaintext
pairs and in turn compromise the inference of their neighbors.
Specifically, although the locality-based attack can infer many
ciphertext-plaintext pairs that collectively cover a significant
fraction of all correct ciphertext-plaintext pairs (i.e., high
inference rate) [21], the adversary has low confidence to tell
whether each inferred ciphertext-plaintext pair is correct or
in fact a false positive (i.e., low inference precision). In this
paper, we extend locality via statistical distribution and design
a more severe frequency analysis attack against encrypted
deduplication, with high inference rate and high inference
precision.

III. DISTRIBUTION-BASED ATTACK

In this section, we propose to explore the relative frequency
distributions of each chunk, and then present the distribution-
based attack, which examines the relative frequency distribu-
tions to improve inference precision.

A. Relative Frequency Distributions

Definitions. Recall that a unique plaintext M/ may repeat in a
stream of plaintexts M, and hence has multiple left and right
neighbors. We define the relative frequency distributions of

.0 02
CDF of Chunks (Sorted by Frequency)

(a) FSL dataset

04 06 08 1.0 0 02 04 06 08 1.0

CDF‘of Chunks (Sorted by Frequency)
(b) VM dataset

Fig. 2. Entropy (i.e., e(Lpni[M])) of each chunk based on its left neighbors
in backup workloads FSL and VM: all chunks are sorted by frequency and
each point corresponds to the entropy of a unique chunk.

M based on two random variables, X and Y, which describe
the co-occurrences of M with its left and right neighbors,
respectively. Specifically, the event “X = M’ denotes the
case that M’ is the left neighbor of M, while the event
“Y = M’ denotes the case that M’ is the right neighbor
of M. Suppose that Lyg[M] and Ryg[M] store the left and
right neighbors of M, respectively. We define the probability
dense functions of the relative frequency distributions of M
as follows:

X = A — L [M][M']
=M = e by

D mreRra) R [M][M7]

where Ly [M][M’] and Ry [M][M'] store the number of co-
occurrences, in which M’ is the left and right neighbors of M
in M, respectively. We treat the relative frequency distributions
as generalized notions of locality. Specifically, they extend
locality to characterize the co-occurrence likelihood of each
chunk with its neighbors.

Trace-driven analysis. We now analyze the relative frequency
distributions of the chunks in the real-world backup datasets,
namely FSL and VM (see Section IV-A for the dataset details).
To compare the relative frequency distributions of different
chunks, we characterize the relative frequency distributions by
entropies, which quantify the randomness of the variables X
and Y that describe the co-occurrences of neighboring chunks.
Specifically, corresponding to the Equations (1) and (2), we
define the entropies of the relative frequency distributions of
M as:

1
e(Lm[M]) = Z Pr[X = M']log, Pr[X = M|’ (3)
M'’eLnm([M]
1
e®m[M])= Y Pr[Y = M]log, Py = 3]’ “
M’ €RMm[M]

where Lyg[M] and Ryg[M] store all left and right neighbors
of M, respectively, and Pr[X = M’'] and Pr[Y = M’]
are the probability dense functions of the relative frequency
distributions of M.

We first compare the entropies of different chunks. We
merge all FSL (e.g., 16 FSL backups) and VM (e.g., 13 VM
backups) backups, respectively, and compute the entropies of
each unique chunk based on its relative frequency distributions
(i.e., via Equations (3) and (4)). Figure 2 shows the entropies

S 080 FsL 8 & 08{o FsL
S 06 WM T 06lo WM °
>
8 04 2 04
5 02 5 02
? 00 ® 09
00 02 04 06 08 1.0 00 02 04 06 08 10
CDF of Chunks CDF of Chunks

(a) Left neighbors (b) Right neighbors

Fig. 3. Standard deviations of each chunk’s entropies in different backups.

based on the left neighbors of the chunks (that are sorted by
frequency), and the results for right neighbors are similar and
we omit them here. We observe that the entropies of different
frequent chunks are varying, significantly. For example, the
entropy values of the top-100 frequent chunks vary from 0.002
to 12.3 in FSL and from 0.005 to 12.2 in VM. On the other
hand, since the in-frequent chunks have a limited number of
neighbors, their entropies only have a few possible values. In
the extreme case, the entropy of the chunks that appear only
once (taking 14.0% of all unique chunks in FSL and 55.8%
of all unique chunks in VM) is always zero.

Then, we focus on the chunks that exist in all backups, and
compare the entropies of identical chunks in different backups.
Specifically, we compute each unique chunk’s entropies (based
on the corresponding left and right neighbors via Equations (3)
and (4), respectively) in every backup, and derive the standard
deviations among its entropies in all backups. Clearly, a
small standard deviation implies that the probabilities that a
chunk co-occurs with other chunks are stable across different
backups. Figure 3 shows the distributions of the standard
deviations of all chunks. The results based on the left and
right neighbors are similar. Specifically, a large fraction (e.g.,
for FSL, 94.7% based on both left and right neighbors; for
VM, 78.3% and 79.4% based on left and right neighbors,
respectively) of chunks only have a low standard deviation
(e.g., zero).

In summary, our analysis finds that different frequent chunks
generally have varying relative frequency distributions (Fig-
ure 2), while the relative frequency distributions of identical
chunks are stable across distinct backups (Figure 3). The new
findings inspire us to use the relative frequency distribution as
a necessary condition to filter unreasonable inference results,
so as to improve the inference precision of frequency analysis.

B. Attack Description

The distribution-based attack extends the locality-based
attack [22] to remove false positives. In addition to leveraging
locality as in the locality-based attack, it measures the relative
frequency distributions of each unique ciphertext C' in C, as
well as those of each unique plaintext M in A. It filters the
(possibly incorrect) inferred ciphertext-plaintext pairs (C, M)
if the relative frequency distributions of C' and M are signifi-
cantly distinct. The rationale is that C' and M are now likely
to correspond to different chunks.

Figure 4 presents the workflow of the distribution-based
attack. It first sorts the unique ciphertexts and plaintexts
by their frequencies in C and A, respectively. As in the

|Q

Lc[C]

o] Cicy [Ci [-] Cigr [-]
/N Infer (C;, M), if:
\\ -d(

>

. M;) is minimized
e d(Cy, M) <t

Compare by
b Entropies {

Examined Plaintexts

N AR

Frequency Analysis

Frequency Analysis

Iterate Inference through

Frequency Analysis Neighbors

Fig. 4. Workflow of distribution-based attack.

locality-based attack, it configures the parameter u (e.g., 64
by default), so the underlying frequency analysis returns at
most u ciphertext-plaintext pairs. For each unique ciphertext
C; of rank 7 (1 < ¢ < w), it examines a number of unique
plaintexts M;_,.,..., M;, ..., M;, ranking from ¢—r to ¢+,
where 7 is a configurable parameter (e.g., 12 by default)
that describes the range of plaintexts to be examined for
each unique ciphertext. Specifically, the parameter r provides
robustness against the disturbance of frequency rankings of the
ciphertexts and plaintexts (a major weakness in the locality-
based attack as stated in Section II-C), since the attack now
matches each unique ciphertext with the plaintext in the r-
range (see below).

For C; (1 < i < wu) and each of the corresponding M
(t—r < j < i+7), the distribution-based attack compares their
relative frequency distributions by entropies. Specifically, it
computes the entropies of C; in C: e(L¢[C;]) and e(R¢[C]),
as well as those of each M in A: e(Ls [M;]) and e(Ra[M;])
(via Equations (1)-(4)). It compares the entropies of C; and
M; by the Euclidean distance, denoted by d(C;, M;):

d(Ci, M;) = {le(Lc[Ci]) — e(La[M;)])]?

+ [e(Ra[Ci]) — e(Ra[M;])]2H2

®)
C; and M; have similar relative frequency distributions if
the Euclidean distance d(C;, M;) of their entropies is small.
Thus, the attack identifies (C;, M) as an inferred ciphertext-
plaintext pair if it satisfies the following requirements:

o R1: d(C;, M;) is the smallest for all i —r < j <i+r.
o R2: d(C;, Mj;) is at most a pre-defined parameter ¢ (e.g., 1
by default).

Through R1, the attack infers the ciphertext-plaintext pair
(Ci, M;), when their relative frequency distributions are the
most similar. Note that the original plaintext of C; may fall
outside the examined plaintexts M;_,.,..., M;,, in some
extreme cases. Then, R1 is still satisfied by some M; (i —r <
7 < i+), and we expect to filter the incorrectly inferred
ciphertext-plaintext pairs by R2.

The distribution-based attack follows the iteration paradigm
in the locality-based attack (see Section II-C) to increase the
coverage of inferred ciphertext-plaintext pairs. Specifically, for
each inferred (C;, M), it applies the above frequency analysis
approach to infer more ciphertext-plaintext pairs through the

neighbors of C; and M, and iterates on those newly inferred
pairs until no more ciphertext-plaintext pairs can be inferred.

Summary. The distribution-based attack provides a general-
ized notion of locality by considering the relative frequency
distributions during frequency analysis. It is configured by
three parameters (i) u, which specifies the maximum num-
ber of ciphertext-plaintext pairs returned by the underlying
frequency analysis, (ii) r, which specifies the range of rank
disturbance to be addressed, and (iii) ¢, which specifies the
Euclidean distance threshold to filter possibly incorrect infer-
ence results. The previous locality-based attack [21] can be
viewed as a special case of the distribution-based attack under
the parameter configuration of r = 0 (i.e., without addressing
the disturbance to frequency ranking) and ¢ — oo (i.e., without
filtering any incorrect inference results).

IV. ATTACK EVALUATION

We evaluate the distribution-based attack based on backup
workloads. We also study its security damage on different files.

A. Setup

We drive our evaluation based on two real-world datasets.

o FSL. This dataset [34] is collected based on the snapshots of
nine students’ home directories in a shared network file sys-
tem. Each snapshot includes many files and is represented as
the metadata of each file, as well as an ordered list of the 48-
bit hashes of corresponding chunks that are obtained from
variable-size chunking. We consider the snapshots, whose
chunks have an average chunk size of 8§ KiB. We pick all
nine students’ snapshots from January 22 to May 21 in 2013,
aggregate them on a weekly basis and obtain 16 weekly-full
backups. In summary, each FSL backup includes about 28-
32 million unique chunks, and the deduplication ratio of all
backups is 22.4x.

« VM. This dataset is collected based on the virtual machine
(VM) image snapshots for the students enrolled in a univer-
sity programming course. Each snapshot is represented as
an ordered list of SHA-1 hashes of 4 KiB fixed-size chunks.
Like the previous work [21], we extract 13 VM backups in a
weekly basis, and remove the zero chunks that are known to
dominate the storage of VM images [18]. Specifically, each
VM backup includes about 3-13 million unique chunks, and
the overall deduplication ratio is 69.2x.

Note that our datasets do not contain actual content, so
we mimic the adversarial knowledge based on chunk hashes.
Specifically, we select the original snapshots as either the
auxiliary information A or the ground truth M. To simulate
deterministic MLE, we apply an additional hash function
over each original chunk hash (representing a plaintext) in
M to form a ciphertext in C. For each inferred ciphertext-
plaintext pair (C, M), we verify its correctness by applying
the same simulated MLE on M and comparing the result
with C. By default, we configure u = 64, r = 12 and ¢ =
1 for the distribution-based attack, and evaluate the attack
severity by the inference rate and inference precision (defined
in Section II-B).

=&~ Distribution(0, infinity) Q Distribution(12, infinity) =l = Distribution

g 5
= B
2 <
e 5
3 Kz
1 3
£ 0 3 =2
- 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Target Backup Target Backup
(a) FSL dataset

Precision (%)

Inference Rate (%)

0
234567 8910111213
Target Backup

0
234567 8910111213
Target Backup

(b) VM dataset
Fig. 5. Varying target backups (Exp#1).

B. Attack Severity

We evaluate the attack severity of the distribution-based
attack, in order to justify the necessities of the parameters
r (that is used to address disturbance to frequency ranking)
and t (that is used to filter unreasonable inference results).
Specifically, we fix u at 64 and consider three instances:
(i) Distribution(0,00), which does not use r or ¢; (ii)
Distribution(12,00), which fixes r at 12 and does not use
t; and (iii) Distribution, which applies our default config-
uration. Note that the first instance Distribution(0,00) is
equivalent to the previous locality-based attack [21].

Exp#1: Varying target backups (Figure 5). We first fix the
auxiliary information as the first backup, and vary the target
backup for attack. Figure 5 shows the inference rate and pre-
cision for FSL and VM datasets, respectively. Obviously, the
attack effectiveness of all instances is generally higher when
the auxiliary and target backups are closer, since the auxiliary
backup now is more correlated with the target backup.

In addition, we observe that Distribution is more severe
than the other two instances. In FSL, it achieves the average
inference rate of 48.7% with the precision of 83.6%, sig-
nificantly higher than those of Distribution(0,c0) (whose
inference rate and precision are 12.6% and 19.2%, respec-
tively) and Distribution(12,00) (whose inference rate and
precision are 21.7% and 31.1%, respectively). The reason is
in two-fold. On the one hand, it finds more correct pairs, in
which the ciphertext and plaintext are under different ranks
(i.e., by addressing ranking disturbances). On the other hand,
it ensures high confidence on inferred pairs (i.e., by filtering
false positives), and in turn helps iteratively infer more correct
pairs from corresponding neighbors.

We have similar observations for VM (Figure 5(b)). When
we vary the target backup beyond the eighth VM backup,
the attack effectiveness decreases significantly, since a huge
update occurs between the eighth and the ninth backups. Even
so, Distribution is more severe than Distribution(0, o)
and Distribution(12, co) for all target VM backups.

Exp#2: Varying auxiliary backups (Figure 6). Next, we
fix the target backup as the last backup, and vary the aux-

-©~ Distribution(0, infinity) << Distribution(12, infinity) =l = Distribution

& 3 100 -
2 < 80|m-m w8 m-mm N -0 -0
:: s
g Q
= a
- 1 83 5 7 9 11 13 15 1 83 5 7 9 11 13 15
Auxiliary Backup Auxiliary Backup
(a) FSL dataset
< 40 L, S 80
g 30 a5 Z 60 /.‘ -
o 20) S 40
§ 10 20 § 20 i, 00%
€ 0 a0

1234567 89101112
Auxiliary Backup
(b) VM dataset

123456789101112
Auxiliary Backup

Fig. 6. Varying auxiliary backups (Exp#2).

iliary backup for attack. Figure 6 shows the results for FSL
and VM datasets, respectively. Distribution again out-
performs Distribution(0,00) and Distribution(12,00).
For example, the average inference rate and precision for
Distribution are 39.1% and 80.7% in FSL, respectively,
while those are 6.7% and 9.2% for Distribution(0, c0), as
well as 11.6% and 15.6% for Distribution(12, c0).

In VM, due to the huge update after the eighth backup,

we only have significant attack effectiveness starting from
using the ninth backup as auxiliary information. Specifically,
when we use the ninth backup as the auxiliary information,
the inference rate of Distribution is 18.7%, about 49.4 x
of Distribution(0, c0) and 4.0 of Distribution(12, c0).
Also, the corresponding inference precision of Distribution
is 56.0%, about 89.2x of Distribution(0,00) and 7.1x of
Distribution(12,00).
Exp#3: Attacks using a sliding window (Figure 7). We
launch the considered attacks based on a sliding window
approach. We choose the ¢-th backup as the auxiliary informa-
tion, and infer the original plaintexts in the (i 4+ g)-th backup,
while we vary ¢ and g in our evaluation (the smaller g is, the
more correlated the auxiliary and the target backups are).

Figure 7 shows the results for g = 1, 2, and 4. Intuitively,
a large sliding window size should decrease attack severity,
significantly. However, in FSL, when we increase g from 1
to 4, the average inference rate of Distribution (relatively)
slightly decreases from 65.4% to 51.9% (i.e., by the percent-
age of 20.6%), while Distribution always preserves high
inference precision (e.g., 87.0-89.1%). On the other hand, the
average inference rate of Distribution(0,cc0) drops from
26.6% to 12.7% (i.e., by the percentage of 52.3%) and that
of Distribution(12,00) drops from 37.5% to 22.3% (i.e.,
by the percentage of 40.1%). Also, both Distribution(0, c0)
and Distribution(12, co) have low inference precision (e.g.,
less than 32%) when g = 4.

Summary. We summarize our observations about the severity

of the distribution-based attack as follows.

o On average, it improves the inference rate and precision
of the previous attack [21] (i.e., Distribution(0, c0)) by
3.9x and 4.4, respectively.

=~ Distribution(0, infinity) <€ Distribution(12, infinity) il = Distribution

£ 80 5
2 60 I-I-'-..J...‘.-I.H <

c
S 40{02 g
s S
) 8
£ 0 a 0

1 83 5 7 9 11 13 15 1 8 5 7 9 11 13 15
Auxiliary Backup Auxiliary Backup
(a) FSL dataset: g = 1
< 80 3 100
2 60| g™ By By EE-E g-% go| = FHm -l N ey
< . s 60
g 40 200K 2 40 \a-2ad
g 20 3 20
€ 0 o 0
- 1 3 5 7 9 11 13 1 83 5 7 9 11 13
Auxiliary Backup Aucxiliary Backup
(a) FSL dataset: g = 2

[o
£ o

1 3 5 7 9 11 1 3 5 7 9 N
Auxiliary Backup Aucxiliary Backup

(a) FSL dataset: g = 4

Inference Rate (%)
Precision (%)

0
1234567 89101112
Auxiliary Backup

123456789101112
Auxiliary Backup

(b) VM dataset: g = 1

Inference Rate (%)

Precision (%)

0
1234567891011
Auxiliary Backup

0
1234567891011

Auxiliary Backup
(b) VM dataset: g = 2

9 —
& | S
g 30 /.\\. <
s 20 s
51010/0\\ 3
2 o0 a0
123 4567829 1234567809

Auxiliary Backup
(b) VM dataset: g = 4

Auxiliary Backup

Fig. 7. Attack using a sliding window (Exp#3).

-~ FSL

35
20] O—e-ew

5

-&- M

70

40' G—e—ew

10

0. 1.

2S00 00 B iflove 609060
2 8

32 128 512 2 8 32 128 512
u u

(%)

Precision

Inference Rate (%)

40
30
20
10

Inference Rate (%)

%

Precision (%)

4ogzpeeeeeeeeee
0 4 8 12 16 20 24 0O 4 8 12

(a) Impact of
20
r r

60
0
(b) Impact of r

16 20 24

80
60| G 9-0-0-0-6-0-00
40
20

OO0 0 o
02 0.6 1 14 1.8
t t
(c) Impact of ¢

Inference Rate (%)
Precision (%)

Fig. 8. Impact of u, r and ¢ (Exp#4).

It preserves high severity (e.g., the inference rate is above
50% with the precision above 85%), even when the auxiliary
backup and the target backup are loosely correlated.

C. Impact of Parameters

Since the distribution-based attack is parameterized, we now
study how the parameters affect the attack severity. For both
FSL and VM, we fix the auxiliary information as the first
backup, and aim to infer the plaintexts in the fifth backup.

Exp#4: Impact of u, » and ¢ (Figure 8). We configure ¢ —
oo and r = 0 to evaluate the impact of w (in this case, the

distribution-based attack reduces to the locality-based attack
[22]). Figure 8(a) shows the impact of u, varied from 2 to
512. We have the same observation as in the locality-based
attack [21] that the inference rate generally decreases, since
more false positives are likely to be included in the inference
results when u is large. Note that the prior work [21] does
not report the inference precision, while we observe that the
inference precision is fairly low (e.g., less than 45% for FSL
and 0.6% for VM) and generally decreases with w.

Then, we fix v = 128 and ¢ — oo, and evaluate the
impact of r. Figure 8(b) shows the results when we vary r
from O to 24. We observe that the inference rate generally
increases with r from 21.0% to 32.2% for FSL and from
0.2% to 3.1% for VM, since the distribution-based attack now
addresses disturbances to frequency ranking and infers more
correct ciphertext-plaintext pairs. On the other hand, increasing
r sometimes affects inference precision, since a large range
of plaintexts are examined, thereby raising the possibility of
introducing false positives. For example, when 7 is from 4 to
10 for FSL, the inference precision slightly drops from 45.7%
to 42.4%.

Furthermore, we fix u = 128 and r = 16, and evaluate the
impact of ¢. Figure 8(c) shows the results. When ¢ is small, the
attack misjudges and filters a number of inferred ciphertext-
plaintext pairs, even they are correct. This introduces false
negatives, thereby reducing the inference rate. For example,
when ¢ first increases (e.g., from 0.2 to 0.4 for FSL and to
1 for VM), the inference rate slightly increases (e.g., from
64.1% to 64.9% in FSL and from 12.5% to 12.9% in VM)
for reducing false negatives. When ¢ further increases to 2, the
inference rate drops to 49.9% for FSL and 6.9% for VM, since
a larger ¢ cannot filter false positives effectively. For the same

TABLE II
SECURITY DAMAGE ON FILES (EXP#5): INFERENCE RATE AND PRECISION.

[Ext. Name| Size [Common Rate[Unique Rate|Infer. Rate|Precision|
.c 17.4KB 97.9% 23.9% 73.6% 85.0%
.h 6.0KB 94.9% 25.8% 73.5% 84.5%

.csv 13.6KB 95.5% 64.3% 83.3% 94.2%

.py 8.8KB 39.8% 53.6% 15.8% 64.8%
.Ccpp 6.7KB 98.3% 79.4% 76.7% 85.3%
.pdf |436.2KB 94.2% 46.9% 70.3% 89.1%
9pg |4505KB| 97.6% 84.0% 28% | 782%
.log 644.1KB 44.3% 39.6% 9.7% 83.7%
.vmmdk |269.9MB 80.6% 42.4% 67.3% 90.9%

.so 878.7KB 47.6% 54.2% 40.5% 97.7%

.gz 54.4MB 99.7% 95.4% 6.5% 99.6%
.doc 76.1KB 99.2% 52.4% 58.6% 85.4%
.ppt 734.2KB 99.9% 52.2% 78.9% 88.7%
.pptx | 1.27MB 91.5% 42.7% 77.2% 89.6%
.docx | 73.9KB 99.1% 26.8% 77.1% 82.4%
.tgz 24.1MB 100.0% 98.9% 6.2% 99.8%

reason, the inference precision always decreases with ¢. Even
so, filtering false positives ensures that both the inference rate
(55.9% for FSL on average) and inference precision (84.2%
for FSL on average) are significantly high.

Summary. We summarize our observations about the param-

eters’ impact on the severity of the distribution-based attack.

They can be used to guide the configuration of the distribution-

based attack in practice.

o A relatively larger u helps increase the coverage of inferred
ciphertext-plaintext pairs, yet decreasing both inference rate
and precision.

o A relatively larger r provides more opportunities of iden-
tifying correct ciphertext-plaintext pairs, yet increasing the
probability of having false positives.

o A smaller ¢ filters a large fraction of false positives, yet
introducing more false negatives.

D. File-level Damage

While previous experiments focus on inferring chunk-level
plaintexts, we now study how the inferred chunks damage the
security of files.

Exp#5: Security damage on files (Table II and Figure 9).
We use the first FSL backup to infer the plaintexts in the
fifth FSL backup, and evaluate the inference rate and precision
against different files. Specifically, we now define the inference
rate for a file type (i.e., the files that have the same extension
name) as the number of correctly inferred plaintexts belonging
to corresponding files divided by that of total unique plaintexts
for these files. Similarly, the inference precision is the ratio
of the number of correctly inferred plaintexts corresponding
to a file type by that of all inferred plaintexts for the same
type. Note that we focus on FSL, since only the FSL dataset
includes the metadata (e.g., the extension name of each file).

Table II shows the attack results for some of the popular
files [34] in FSL snapshots, and we also include the factors
that potentially impact the attack severity. Specifically, for each
extension name, we consider three factors: (i) size, which is the
average size of corresponding files; (ii) common rate, which

-_IE go.s . B s B bl
= doc % 0.6 //:"., ———————
docx ‘ 4, -
ppt 3 04 Lot
) c ,.‘_’.’ ,I
SP‘X § 02 R
—Z —— - ”’—" e -
-tgz = oolemEiT o i
0.0 0.2 0.4 0.6 0.8 1.0

CDF of Iteration Loops

Fig. 9. Security damage on files (Exp#5): How different files are inferred in
iterative inferences.

is the fraction of the common (unique) chunks of these files
in the auxiliary and target backups; (iii) unique rate, which is
the fraction of the unique chunks for corresponding files in the
target backup. If an extension name has a high common rate,
the corresponding files in the target backup incur only a few
updates from the auxiliary backup. Also, if an extension name
has a high unique rate, the chunks in the corresponding files in
the target backup are more likely to be unique. Clearly, a high
common rate and/or a low unique rate imply a more severe
attack on the files. For example, about 78.9% of unique chunks
in .ppt can be successfully inferred, while the compressed
file format .tgz, whose unique rate is 98.9% only achieves
the inference rate of 6.2%. Even so, we observe that the attack
among all file types achieves high precision (e.g., 64.8-99.8%).

Figure 9 further shows the inference rates of some selected
file types after each iteration of the distribution-based attack.
The curves for .c and .h form similar shapes with the
increase of the iteration loops, since corresponding files are
likely to locate in identical programming directories and are
inferred together. Also, the curves for . docx and doc, as well
as for .pptx and .ppt increase in similar tendencies with
the iteration loops. The possible reason is that the physical
chunks of these files are organized in similar ways.

Summary. We present our observations about the file-level

attack severity of the distribution-based attack.

« In addition to the correlation of the auxiliary files, the attack
severity depends on how many unique chunks in the target
files. The files with a low fraction of unique chunks are
more vulnerable to be attacked.

o The files with similar file structures are likely to have similar
inference patterns.

V. LIMITATIONS AND MITIGATIONS

Like the previous work [21], our distribution-based attack
depends on the locality of chunks, and its severity should be
degraded if the locality property is not preserved. However,
our experiments show that the locality is generally prevalent
in real-world backup workloads, while proactively breaking
locality introduces additional metadata access overhead [21]
and affects restore performance [37]. Another limitation is
that any inference attack (e.g., [11], [17], [29]), including
ours, depends on the quality of the auxiliary information.
In Section IV-B, we show that the distribution-based attack
preserves high severity even when the auxiliary backup is
loosely correlated with the target backup (Exp#3).

In addition to breaking locality (that adds additional over-
head [21], [37]), a natural way for defense is to protect the
frequency distribution of plaintexts. Following this direction,
MinHash encryption [21] and TED [23] break the one-to-
one mapping of MLE and encrypt identical plaintexts into
multiple distinct ciphertexts, in order to prevent an adversary
from inferring the original frequencies of plaintexts. The cost
of both approaches is the degradation of storage efficiency,
since the storage system cannot remove all duplicate chunks
by deduplication. Another paradigm for defense [2], [6] is to
perform probabilistic encryption on each plaintext, and detect
if the corresponding underlying plaintexts are identical via
powerful cryptographic primitives (e.g., non-interactive zero
knowledge [2] or fully homomorphic encryption [6]), which
are not readily implemented in practice.

VI. RELATED WORK

MLE instantiations. Recall from Section II that MLE [8]
formalizes the cryptographic foundation of encrypted dedu-
plication. The first published MLE instantiation is convergent
encryption (CE) [12], which uses the cryptographic hash of
a plaintext and its corresponding ciphertext as the MLE key
and the tag, respectively. Other CE variants include: (i) hash
convergent encryption (HCE) [8], which derives the tag from
the plaintext while still using the hash of the plaintext as
the MLE key; (ii) random convergent encryption (RCE) [8],
which encrypts a plaintext with a fresh random key to form a
non-deterministic ciphertext, protects the random key by the
MLE key derived from the hash of the plaintext, and attaches
a deterministic tag derived from the plaintext for duplicate
check; and (iii) convergent dispersal (CD) [24], which extends
CE to secret sharing by using the cryptographic hash of a
plaintext as the random seed of a secret sharing algorithm.
Since all the above instantiations derive MLE keys and/or tags
from the plaintexts only, they are vulnerable to the offline
brute-force attack [7] if the plaintext is predictable (i.e., the
number of all possible plaintexts is limited), as an adversary
can exhaustively derive the MLE keys and tags from all
possible plaintexts and check if any plaintext is encrypted to a
target ciphertext (in CE, HCE, and CD) or mapped to a target
tag (in RCE).

To protect against the offline brute-force attack, DupLESS
[7] implements server-aided MLE by managing MLE keys
in a standalone key server, which ensures that each MLE
key cannot be derived from a plaintext offline. Other studies
extend server-aided MLE to address various aspects, such as
reliable key management [13], transparent pricing [4], peer-
to-peer key management [26], rekeying [30] and performance
improvement [32]. However, server-aided MLE still builds on
deterministic encryption and is vulnerable to the frequency
analysis attack studied in this paper. Recently, S2Dedup [28]
improves the security of MLE by computing the tags of
chunks via trusted hardware. However, S2Dedup needs to
detect duplicates by querying the index (based on the tags)
maintained in unprotected memory, and still incurs the leakage
channels exploited (see Section II-B) by our attack.

Attacks on encrypted deduplication and defenses. In addi-
tion to the offline brute-force attack, previous studies consider
various attacks against deduplicated storage, and such attacks
generally apply to encrypted deduplication as well. For ex-
ample, the side-channel attack [15], [16] enables adversaries
to exploit the deduplication pattern to infer the content of
uploaded files from target users or gain unauthorized access
in client-side deduplication. The duplicate-faking attack [8]
compromises message integrity via inconsistent tags. Ritzdorf
et al. [33] exploit the leakage of chunk size to infer the
existence of files. The locality-based attack [22] exploits
frequency analysis to infer ciphertext-plaintext pairs. Our work
follows the line of work on inference attacks [22], [33], yet
provides a more in-depth study of inference attacks against
encrypted deduplication with high inference precision.

Section V discusses the possible countermeasures against
frequency analysis, yet they either degrade the storage sav-
ing of deduplication [21], [23] or incur high computational
overhead [2], [6]. As mentioned before, server-aided MLE
[7] defends against the offline brute-force attack. Server-side
deduplication [16], [24] and proof-of-ownership [15] defend
against the side-channel attack. Guarded decryption [8] de-
fends against the duplicate-faking attack.

Other inference attacks. Several inference attacks have been
proposed against encrypted databases (e.g., [29]) and key-
word search (e.g., [11], [17]). Previous attacks focus on the
plaintexts in just a small space that only includes hundreds
or thousands of unique plaintexts, while we target the large-
size space (e.g., on million level) in encrypted deduplication
storage, and improve the inference precision.

VII. CONCLUSION

Encrypted deduplication applies deterministic encryption,
and leaks the frequencies of plaintexts. This paper revisits the
security vulnerability, and demonstrates that encrypted dedu-
plication is even more vulnerable towards frequency analysis.
We propose the distribution-based attack that simultaneously
achieves high inference rate and inference precision. We
empirically evaluate the attack with two real-world datasets,
and present a variety of new observations about its natures. The
source code of our attack implementations is now available at
http://adslab.cse.cuhk.edu.hk/software/freqanalysis.

ACKNOWLEDGEMENTS

This work was supported in part by grants by National
Natural Science Foundation of China (61972073), Key Re-
search Funds of Sichuan Province (2021YFGO0167), Sichuan
Science and Technology Program (2020JDTD0007), Fun-
damental Research Funds for Chinese Central Universi-
ties (ZYGX2020ZB027, ZYGX2021J018), and CUHK Direct
Grant 2020/21 (4055148).

REFERENCES
[1] “Aol: Proudly releases massive amounts of private

https://techcrunch.com/2006/08/06/aol-proudly-releases-massive-
amounts-of-user-search-data/.

data,”

[2]

[3]
[4]

[6]
[7]
[8]

[10]
(11]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
(28]
[29]

[30]

M. Abadi, D. Boneh, I. Mironov, A. Raghunathan, and G. Segev,
“Message-locked encryption for lock-dependent messages,” in Proc. of
CRYPTO, 2013.

I. A. Al-Kadit, “Origins of Cryptology: The Arab Contributions,”
Cryptologia, vol. 16, no. 2, pp. 97-126, 1992.

F. Armknecht, J.-M. Bohli, G. O. Karame, and F. Youssef, “Transparent
data deduplication in the cloud,” in Proc. of ACM CCS, 2015.

G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,
and D. Song, “Provable data possession at untrusted stores,” in Proc. of
ACM CCS, 2007.

M. Bellare and S. Keelveedhi, “Interactive message-locked encryption
and secure deduplication,” in Proc. of PKC, 2015.

M. Bellare, S. Keelveedhi, and T. Ristenpart, “DupLESS: Server-aided
encryption for deduplicated storage,” in Proc. of USENIX Security, 2013.
——, “Message-locked encryption and secure deduplication,” in Proc.
of EUROCRYPT, 2013.

V. Bindschaedler, P. Grubbs, D. Cash, T. Ristenpart, and V. Shmatikov,
“The tao of inference in privacy-protected databases,” in Proc. of VLDB,
2017.

J. Black, “Compare-by-hash: A reasoned analysis,” in Proc. of USENIX
ATC, 2006.

D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-abuse attacks
against searchable encryption,” in Proc. of ACM CCS, 2015.

J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and M. Theimer,
“Reclaiming space from duplicate files in a serverless distributed file
system,” in Proc. of IEEE ICDCS, 2002.

Y. Duan, “Distributed key generation for encrypted deduplication:
Achieving the strongest privacy,” in Proc. of ACM CCSW, 2014.

P. Grubbs, K. Sekniqi, V. Bindschaedler, M. Naveed, and T. Ristenpart,
“Leakage-abuse attacks against order-revealing encryption,” in Proc. of
IEEE S&P, 2017.

S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Proofs of
ownership in remote storage systems,” in Proc. of ACM CCS, 2011.

D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Side channels in cloud
services: Deduplication in cloud storage,” IEEE Security & Privacy,
vol. 8, no. 6, pp. 4047, 2010.

M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern disclosure
on searchable encryption: Ramification, attack and mitigation,” in Proc.
of NDSS, 2012.

K. Jin and E. L. Miller, “The effectiveness of deduplication on virtual
machine disk images,” in Proc. of ACM SYSTOR, 2009.

A. Juels and B. S. Kaliski, Jr., “Pors: Proofs of retrievability for large
files,” in Proc. of ACM CCS, 2007.

M.-S. Lacharité and K. G. Paterson, “Frequency-smoothing encryption:
Preventing snapshot attacks on deterministically encrypted data,” JACR
Transactions on Symmetric Cryptology, vol. 2018, no. 1, pp. 277-313,
2018.

J.Li, P. P. C. Lee, C. Tan, C. Qin, and X. Zhang, “Information leakage in
encrypted deduplication via frequency analysis: Attacks and defenses,”
ACM Transactions on Storage, vol. 16, no. 1, pp. 1-30, 2020.

J. Li, C. Qin, P. P. C. Lee, and X. Zhang, “Information leakage in
encrypted deduplication via frequency analysis,” in Proc. of IEEE/IFIP
DSN, 2017.

J. Li, Z. Yang, Y. Ren, P. P. C. Lee, and X. Zhang, “Balancing storage
efficiency and data confidentialitywith tunable encrypted deduplication,”
in Proc. of ACM Eurosys, 2020.

M. Li, C. Qin, and P. P. C. Lee, “CDStore: Toward reliable, secure,
and cost-efficient cloud storage via convergent dispersal,” in Proc. of
USENIX ATC, 2015.

M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezise, and
P. Camble, “Sparse indexing: Large scale, inline deduplication using
sampling and locality,” in Proc. of USENIX FAST, 2009.

J. Liu, N. Asokan, and B. Pinkas, “Secure deduplication of encrypted
data without additional independent servers,” in Proc. of ACM CCS,
2015.

D. T. Meyer and W. J. Bolosky, “A study of practical deduplication,” in
Proc. of USENIX FAST, 2011.

M. Miranda, T. Esteves, B. Portela, and J. Paulo, “S2dedup: SGX-
enabled secure deduplication,” in Proc. of ACM SYSTOR, 2021.

M. Naveed, S. Kamara, and C. V. Wright, “Inference attacks on property-
preserving encrypted databases,” in Proc. of ACM CCS, 2015.

C. Qin, J. Li, and P. P. C. Lee, “The design and implementation
of a rekeying-aware encrypted deduplication storage system,” ACM
Transactions on Storage, vol. 13, no. 1, pp. 9:1-9:30, 2017.

(31]

(32]
(33]

[34]

[35]

[36]

(37]

M. O. Rabin, “Fingerprinting by random polynomials,” Center for
Research in Computing Technology, Harvard University. Tech. Report
TR-CSE-03-01, 1981.

Y. Ren, J. Li, Z. Yang, P. P. C. Lee, and X. Zhang, “Accelerating
encrypted deduplication via SGX,” in Proc. of USENIX ATC, 2021.

H. Ritzdorf, G. O. Karame, C. Soriente, and S. apkun, “On information
leakage in deduplicated storage systems,” in Proc. of ACM CCSW, 2016.
Z. Sun, G. Kuenning, S. Mandal, P. Shilane, V. Tarasov, N. Xiao, and
E. Zadok, “A long-term user-centric analysis of deduplication patterns,”
in Proc. of IEEE MSST, 2016.

G. Wallace, F. Douglis, H. Qian, P. Shilane, S. Smaldone, M. Cham-
ness, and W. Hsu, “Characteristics of backup workloads in production
systems,” in Proc. of USENIX FAST, 2012.

B. Zhu, K. Li, and R. H. Patterson, “Avoiding the disk bottleneck in
the data domain deduplication file system,” in Proc. of USENIX FAST,
2008.

X. Zou, J. Yuan, P. Shilane, W. Xia, H. Zhang, and X. Wang, “The
dilemma between deduplication and locality: Can both be achieved?” in
Proc. of USENIX FAST, 2021.

