
Optimal Rack-Coordinated Updates in
Erasure-Coded Data Centers

Guowen Gong∗, Zhirong Shen∗, Suzhen Wu∗, Xiaolu Li†, Patrick P. C. Lee†

∗Xiamen University, †The Chinese University of Hong Kong
23020201153743@stu.xmu.edu.cn, {shenzr,suzhen}@xmu.edu.cn, {lixl,pclee}@cse.cuhk.edu.hk

Abstract—Erasure coding has been extensively deployed in
today’s data centers to tackle prevalent failures, yet it is prone
to give rise to substantial cross-rack traffic for parity update. In
this paper, we propose a new rack-coordinated update mechanism
to suppress the cross-rack update traffic, which comprises two
successive phases: a delta-collecting phase that collects data delta
chunks, and another selective parity update phase that renews
the parity chunks based on the update pattern and parity layout.
We further design RackCU, an optimal rack-coordinated update
solution that achieves the theoretical lower bound of the cross-
rack update traffic. We finally conduct extensive evaluations,
in terms of large-scale simulation and real-world data center
experiments, showing that RackCU can reduce 22.1%-75.1% of
the cross-rack update traffic and hence improve 34.2%-292.6%
of the update throughput.

I. INTRODUCTION

Data centers are often built atop of numerous storage nodes
(also called nodes) to support a large number of services,
including data storage, information retrieval, and MapReduce
computation [10]. The large scale of data centers makes
failures, which are originally accidental, become the norm [8],
[9]. To tackle prevalent unexpected failures, production storage
systems [3], [12], [22] often resort to maintaining additional
data redundancy through replication [21] and erasure coding
[12], such that the systems can leverage the pre-stored data
redundancy to restore the lost data. Compared to replication,
erasure coding can assuredly retain the same degree of fault
tolerance with much less storage overhead [34], and hence
is preferable in practical storage systems [2], [3], [6], [19].
In principle, erasure coding encodes a group of data chunks
to generate a small number of redundant chunks (also called
parity chunks), such that a subset of data and parity chunks
still suffices to rebuild the original data chunks.

While being more storage-efficient, erasure coding incurs
substantial update traffic (i.e., data transmitted over the net-
work in update operations), making update performance un-
satisfactory. The rationale is that to maintain encoding consis-
tency, any update to the data chunks triggers additional updates
to the corresponding parity chunks, thereby amplifying the
storage and network I/O operations.

Corresponding author: Zhirong Shen (shenzr@xmu.edu.cn). This work is
supported by NSFC (No. 62072381, U1705261, 61972325, 61872305), CCF-
Tencent Open Fund WeBank Special Fund, the Natural Science Foundation
of Fujian Province of China (2020J01002), Xiamen Youth Innovation Fund
(3502Z20206052), and Research Grants Council of HKSAR (AoE/P-404/18),
and Innovation and Technology Fund (ITS/315/18FX).

Enabling efficient updates of erasure coding in data centers
is a challenging issue. Data centers usually organize nodes
hierarchically, where a bunch of nodes are first organized
into a rack and the racks are further interconnected via the
network core – an abstraction of aggregation switches and
core routers [10]. Such a hierarchical organization naturally
results in the bandwidth diversity phenomenon, where the
cross-rack bandwidth is often much more scarce than the intra-
rack bandwidth [4], [7], [10] and further fiercely consumed by
various workloads (e.g., replication writes [7] and MapReduce
shuffling [4]). Hence, when deploying erasure coding in data
centers to mitigate failures, suppressing the cross-rack update
traffic (i.e., data transferred across racks for update operations)
is clearly a crucial issue to be addressed.

Existing studies of erasure-coded updates mainly focus on
lessening disk seeks [5], [13], decreasing number of parity
chunks being updated [27], [29], [30], and reducing update
traffic [24], [32]. While CAU [28] can mitigate cross-rack
update traffic, it degrades system reliability (by postponing
parity update) and falls short on achieving the theoretically
minimum cross-rack update traffic. How to minimize the
cross-rack update traffic without compromising system reli-
ability is unfortunately largely overlooked by existing studies.

We propose rack-coordinated update, a new parity up-
date mechanism that comprises a delta-collecting phase and
another selective parity update phase to renew the parity
chunks immediately after data update, with the objective of
minimizing the cross-rack update traffic with system reliability
guaranteed. The main idea of the rack-coordinated update is to
collect data delta (i.e., the difference between the old and new
data chunks) in some dedicated racks (called collector racks),
and update the parity chunks by selecting an appropriate up-
date approach. We further design RackCU, the optimal Rack-
Coordinated Update solution that reaches the lower bound
of the cross-rack update traffic with linear computational
complexity, by carefully selecting the collector racks based
on the update pattern and parity layout. To summarize, our
contributions include:
• We propose a new rack-coordinated update mechanism

that aims to significantly mitigates the cross-rack update
traffic.

• We design RackCU, an optimal rack-coordinated update
solution that reaches the lower bound of the cross-rack
update traffic. We also show that RackCU is a general
design for different representative erasure codes.

• We implement a RackCU prototype and conduct ex-
tensive evaluation via both large-scale simulation and
Alibaba Cloud Elastic Compute Service (ECS) [1] ex-
periments, and show that RackCU reduces 22.1%-75.1%
of cross-rack update traffic and hence increases 34.2%-
292.6% of update throughput.

Our RackCU prototype can be reached via
https://github.com/ggw5/RackCU-code.

II. BACKGROUND

We introduce the architecture of data center (Section II-A)
and elaborate erasure coding (Section II-B). We also describe
the parity update in erasure coding (Section II-C) and erasure-
coded data centers (Section II-D).

A. Data Center

We focus on a data center with a two-layer hierarchical
architecture, in which a bunch of nodes are first organized
into a rack and multiple racks are further interconnected by
the network core (i.e., aggregation and core switches). Such
an architecture has been applied in modern data centers [8],
[19] and assumed in previous work [7], [11], [28], [31], [32].
Figure 1 depicts a data center with four racks and each rack
comprises four nodes. The hierarchical architecture results in
the bandwidth diversity phenomenon. That is, as being shared
and fiercely competed among the nodes within the same rack,
the cross-rack bandwidth is often a small fraction of the intra-
rack bandwidth [4], [7], [10]. Even worse, the cross-rack
communication continues to grow dramatically, as the large
analytics prevalently requires jobs across multiple racks [17].

B. Erasure Coding

Erasure codes are often configured by two parameters
(namely k and m) to balance storage overhead and fault toler-
ance capability. At a high level, erasure codes operate using an
encoding operation (to generate additional redundancy on the
data) and another decoding operation (to recover the original
data). In the encoding stage, erasure codes encode k data
chunks to generate additional m parity chunks via arithmetics
over Galois finite field [26]. These k + m chunks that are
encoded together collectively constitute a stripe, promising
that any k out of the k+m chunks within a stripe suffice to
reproduce the original k data chunks. In other words, erasure
codes can tolerate any m chunk failures within each stripe.
Hence, by distributing the k+m chunks of each stripe across
k+m nodes (one chunk per node), erasure codes can tolerate
any m node failures. Further, we can tolerate any single rack
failure by storing at most m chunks of any stripe in a rack, as
we can always fetch at least k surviving chunks of the same
stripe from other available racks (aside from the failed one).

In this paper, to facilitate the understanding, we mainly use
Reed-Solomon codes (RS codes) [26] as an instance, as they
are popularly deployed in production systems [2], [3], [6],
[19], [22]. Nevertheless, we also show that our approach can
be readily extended to other codes like locally-repairable codes
(LRCs) [12], [23] (see Section III-D). We use RS(k,m) to

Network Core

Rack Rack RackRack

Node

Data Chunks Parity Chunks

k=6 m=3
Encode

Storage

Stripe

Fig. 1: Example of a data center deployed with RS(6,3).

denote the RS codes configured by the parameters k and m
throughout the paper. Figure 1 shows the placement of a stripe
encoded by RS(6,3) (i.e., k = 6 and m = 3) in a data center,
which can tolerate any single rack failure, as at most three
chunks (i.e., m chunks) of the same stripe are stored in a rack.

C. Parity Update in Erasure Coding

In this paper, we mainly consider the delta-based update in
erasure coding [5], [13], [28]. Suppose that {D1,D2, · · · ,Dk}
and {P1,P2, · · · ,Pm} represent the k data chunks and the m
parity chunks of a stripe, respectively. Each parity chunk Pj
(1≤ j ≤ m) can be calculated as a linear combination of the
k data chunks via the Galois Field arithmetic [25], given by

Pj =
k

∑
i=1

γi, jDi, (1)

where γi, j (1≤ i≤ k and 1≤ j≤m) is the encoding coefficient
used by the data chunk Di to calculate the parity chunk Pj.

Suppose that a data chunk Dh is updated to D′h (1≤ h≤ k).
To promise the encoding consistency between the data and
parity chunks, each parity chunk Pj (where 1≤ j≤m) should
be accordingly updated based on Equation (1) as below:

P′j = Pj + γh, j(D′h−Dh). (2)

Equation (2) indicates that the new parity chunk P′j can be
obtained by leveraging the old parity chunk Pj and the data
delta chunk (i.e., D′h−Dh, the difference between the old and
new data chunks) or the parity delta chunk (i.e., γh, j(D′h−Dh),
the difference between the old and new parity chunks), without
having to access the unchanged data chunks [28]. Besides, as
the encoding coefficients {γi, j}1≤i≤k,1≤ j≤m can be derived once
the parameters k and m are established, they are public to all
the nodes without having to be re-transmitted.

D. Parity Update in Erasure-Coded Data Centers

We elaborate the parity update in erasure-coded data
centers. Without loss of generality, suppose that the data
chunks {D1,D2, · · · ,Dux} in the rack Rx are updated to
{D′1,D′2, · · · ,D′ux}, where ux denotes the number of updated
data chunks in Rx. Based on Equation (2), we can generalize
the calculation of P′j (1≤ j ≤ m) as:

P′j = Pj +
ux

∑
h=1

γh, j∆Dh = Pj +∆Pj (3)

Data-delta-based update

Rx Ry

Parity-delta-based update

Rx Ry

Data Delta Chunk Parity Chunk

(a) Data-delta-based update. (b) Parity-delta-based update.

Fig. 2: Examples of the data-delta-based update and parity-delta-
based update: (a) ux = 2 and ty = 3; (b) ux = 3 and ty = 2.

where ∆Dh = D′h−Dh denotes the data delta chunk of Dh and
∆Pj = ∑

ux
h=1 γh, j∆Dh represents the parity delta chunk of Pj.

Let us consider another rack Ry (Ry 6=Rx) that stores ty parity
chunks, denoted by {P1,P2, · · · ,Pty}. Based on Equation (3),
there are two options to update the parity chunks in Ry, namely
data-delta-based update and parity-delta-based update [28].

Data-delta-based update: It updates the parity chunks of a
rack in batch via transmitting data delta chunks directly. It
first calculates ux data delta chunks of the ux data chunks
updated in Rx (i.e., {∆Dh}1≤h≤ux) and sends them to a relay
node in Ry, which will then forward the ux data delta chunks to
the corresponding ty nodes of Ry that store the parity chunks.
For the node that keeps the parity chunk Pj (1 ≤ j ≤ ty), it
will read the old parity chunk (i.e., Pj) from local storage and
calculate the new parity chunk (i.e., P′j) based on Equation (3).
Figure 2(a) shows an example of the data-delta-based update
approach (where ux = 2 and ty = 3), which transmits ux (i.e.,
2) data delta chunks from Rx to update the ty parity chunks in
Ry (Ry 6= Rx).

Parity-delta-based update: It updates each parity chunk in
another rack individually via transmitting the corresponding
parity delta chunk. In particular, to update a parity chunk Pj
in Ry (1≤ j≤ ty), the parity-delta-based update approach first
calculates a parity delta chunk ∆Pj = ∑

ux
h=1 γh, j∆Dh in Rx, and

then sends it to the corresponding node in Ry. Finally, the new
parity chunk P′j can be generated based on the old parity chunk
Pj and the received ∆Pj based on Equation (3). Figure 2(b)
shows an example of the parity-delta-based update approach
(where ux = 3 and ty = 2), which needs to send ty (i.e., 2)
parity delta chunks from Rx to update the ty parity chunks in
Ry (Ry 6= Rx).

Difference: The two update approaches differ in which delta
chunk is delivered across racks and hence induce different
amounts of the cross-rack update traffic. To summarize, if there
are ux data chunks updated in the rack Rx, the data-delta-based
update (resp. parity-delta-based update) transmits ux data delta
chunks (resp. ty parity delta chunks) to renew the ty parity
chunks in another rack Ry (Ry 6= Rx).

III. RACK-COORDINATED UPDATES

We elaborate the design overview of the rack-coordinated
update (Section III-A) and present a rigorous formulation
(Section III-B). We also perform in-depth theoretical analysis
(Section III-C) and finally design RackCU that touches the
lower bound of the cross-rack update traffic (Section III-D).

A. Design Overview

In principle, the rack-coordinated update is a synthesis
of the data-delta-based update and parity-delta-based update
approaches. The main idea is to allow racks to coordinate
in parity update immediately after data chunks are updated,
to reduce the cross-rack update traffic with system reliability
guaranteed. It breaks the whole parity update procedure into
a delta-collecting phase and another selective parity update
phase that are performed successively. Specifically, in the
delta-collecting phase, the rack-coordinated update mechanism
will elect several collector racks that are responsible for
collecting data delta chunks from other racks. On the other
hand, the selective parity update phase will choose either
the data-delta-based update or the parity-delta-based update
to renew the parity chunks based on the update pattern and
parity layout of the data center, with the primary objective of
suppressing the cross-rack update traffic. In particular, suppose
that a rack Rx has ux updated data chunks and another rack Ry
(Ry 6= Rx) stores ty parity chunks. The selective parity update
performs the following actions: if ux ≤ ty, it uses the data-
delta-based update by sending ux data delta chunks from Rx
to Ry for updating the ty parity chunks in batch (Figure 2(a),
where ux = 2 ≤ ty = 3); otherwise, it resorts to the parity-
delta-based update by transmitting the corresponding ty parity
delta chunks (Figure 2(b), where ux = 3 > ty = 2). Hence, the
selective parity update needs to transmit min{ux, ty} chunks
across racks for renewing the ty parity chunks of Ry based on
the ux updated data chunks in Rx.

Guiding example: We show a guiding example via Fig-
ure 3 to elaborate the rack-coordinated update mechanism.
Suppose that a data center consists of five racks, namely
{R1,R2, · · · ,R5}, and each of the first three racks {R1,R2,R3}
has two data chunks updated (marked in blue). The rack-
coordinated update performs the following two phases to
renew the corresponding parity chunks of the same stripe
(marked in green) in the racks R4 and R5.

In the delta-collecting phase (Figure 3(a)), it selects two
collector racks (R2 and R4), which fetch data delta chunks
from R1 and R3, respectively. This phase transmits four chunks
across racks.

In the selective parity update phase (Figure 3(b)), it updates
the parity chunks in R4 and R5 using the data delta chunks
in the collector racks (i.e., R2 and R4). For R2, as its data
delta chunks is more than the parity chunks in either R4 or
R5, it employs the parity-delta-based update by sending four
corresponding parity delta chunks. On the other hand, R4 has
two data-delta chunks whose number is equal to the number
of parity chunks in R5, it uses the data-delta-based update by
sending two data delta chunks to R5 for updating P3 and P4.
Notice that R4 will update P1 and P2 (also in R4) through intra-
rack transmission, which is not our concern in this paper. So
this phase delivers six chunks across racks for parity update.

Finally, the rack-coordinated update in this example needs
to transmit 10 chunks in total across racks for parity update. As
a comparison, the delta-based update approach sends all data

R2 R3 R4 R5

2

∆D5 ∆D6 P1 P2 P3 P4∆D3 ∆D4

R1

∆D1 ∆D2

2

Data Delta Chunk Parity Chunk

(L1) (L2)

(a) Delta-collecting phase: sending four chunks across racks.

∆D5 ∆D6 P1 P2 P3 P4∆D3 ∆D4∆D1 ∆D2

∆D1 ∆D2 ∆D5 ∆D6

2

2

2

R2 R3 R4 R5R1 (L1) (L2)

(b) Selective parity update phase: sending six chunks across racks.

Fig. 3: Guiding example of the rack-coordinated update mechanism:
select R2 and R4 as collector racks, and transmit 10 chunks in total
for parity update.

delta chunks directly to every parity chunk (Section II-C), and
hence needs to transmit 24 chunks across racks (calculated by
multiplying 6 (i.e., number of data delta chunks) with 4 (i.e.,
number of parity chunks)). So our rack-coordinated update
mechanism can vastly reduce the cross-rack update traffic.

B. Formulation

Assumptions: Our formulation is based on the following
assumptions. First, we assume that a rack can only store
either data chunks or parity chunks of a stripe (rather than a
combination of them). Second, a rack can send the data deltas
of a stripe to only one collector rack (rather than multiple
racks) for renewing the parity chunks of the same stripe. Third,
the placement of each stripe should ensure the rack-level fault
tolerance [11], [32] (Section II-B).
Preliminary: Suppose that the k data chunks of a stripe are
stored in d racks (denoted by {R1,R2, · · · ,Rd}) and the corre-
sponding m parity chunks within the same stripe are distributed
in another p racks (denoted by {Rd+1,Rd+2, · · · ,Rd+p}). For
example, in Figure 3, d = 3 and p = 2. For clarity, we call the
d racks (storing data chunks) and the p racks (storing parity
chunks) data racks and parity racks of this stripe, respectively.
Consequently, each rack can serve as either the data rack or
the parity rack for different stripes, just depending on the data
and parity placement. In Figure 3, R1, R2, and R3 are data
racks of this stripe, while R4 and R5 are both parity racks. In
the rest of this paper, we mainly discuss the parity update of a
single stripe. We emphasize that the parity update of multiple
stripes can be manipulated independently.
Formulation: We now formalize the rack-coordinated up-
date problem. We first analyze the cross-rack traffic in-
curred in the delta-collecting phase. We define a rack-
coordinated update solution S = {L1,L2, · · · ,Ldc+pc}, which
comprises dc data racks (dc ≤ d) and another pc par-
ity racks (pc ≤ p) to act as the collector racks. We use
{L1,L2, · · · ,Ldc} to denote the dc selected collector racks that
are data racks (i.e., Li ∈ {R1,R2, · · · ,Rd} for 1 ≤ i ≤ dc),
and employ {Ldc+1,Ldc+2, · · · ,Ldc+pc} to represent the pc
collector racks that are actually parity racks (i.e., Ldc+ j ∈

{Rd+1,Rd+2, · · · ,Rd+p} for 1 ≤ j ≤ pc). For example, in
Figure 3, we select two collector racks, including one data rack
(i.e., dc = 1 and L1 = R2) and another parity rack (i.e., pc = 1
and L2 = R4), and hence the solution S= {L1 = R2,L2 = R4}.

Each collector rack retrieves data delta chunks from the
specified data racks in the delta-collecting phase. Let li and
l′i (where li < l′i) be the number of data delta chunks that the
collector rack Li possesses before and after the delta-collecting
phase, respectively. Therefore, a collector rack Li will receive
l′i − li data delta chunks from other data racks in total (where
1≤ i≤ dc + pc). In the motivating example (Figure 3(a)), we
can identify that the collector rack L1 (i.e., R2) receives two
chunks across racks, as l′1 = 4 (see Figure 3(b)) and l1 = 2 (see
Figure 3(a)). Besides, we can deduce that ldc+ j = 0 (1≤ j ≤
pc), as any parity rack solely stores parity chunks before the
delta-collecting phase (see assumptions of Section III-B). For
example, for the collector rack L2 (i.e., R4) in Figure 3(a), it is
a parity rack that does not store any data delta chunk before,
so l2 = 0. Consequently, the number of data delta chunks that
the dc + pc collector racks receive across racks in the delta-
collecting phase is

Tcollect =
dc+pc

∑
i=1

(l′i − li) =
dc+pc

∑
i=1

l′i −
dc

∑
i=1

li.

We then calculate the cross-rack traffic in the selective parity
update phase. For the first dc collector racks {Li}1≤i≤dc , it
can update the corresponding td+ j parity chunks for each
parity rack Rd+ j (1≤ j ≤ p) using the selective parity update
approach, and hence the cross-rack traffic of the first dc
collector racks is ∑

dc
i=1 ∑

p
j=1 min{l′i , td+ j}. In Figure 3(b), p= 2

and td+ j = 2 for 1 ≤ j ≤ 2, so the cross-rack traffic of
L1 is ∑

1
i=1 ∑

2
j=1 min{4,2} = 4. For each of the pc collector

racks Ldc+i (1 ≤ i ≤ pc) that is also a parity rack (e.g.,
L2 = R4 in Figure 3(b)), it will perform the selective parity
update approach to renew the parity chunks of the other
p− 1 parity racks (aside from Ldc+i itself). Therefore, the
cross-rack traffic caused by the last pc collector racks is
∑

pc
i=1 ∑

p
j=1,Rd+ j 6=Ldc+i

min{l′dc+i, td+ j}. Consequently, the num-
ber of delta chunks to be transmitted across racks in the
selective parity update phase is

Tupdate =
dc

∑
i=1

p

∑
j=1

min{l′i , td+ j}+
pc

∑
i=1

p

∑
j=1

Rd+ j 6=Ldc+i

min{l′dc+i, td+ j}

Finally, the total number of chunks transmitted across racks
of the rack-coordinated update solution S is

TS = Tcollect +Tupdate (4)

Objective: Our objective is to seek the optimal rack-
coordinated update solution that minimizes the amount of the
cross-rack update traffic (i.e., minimizing TS).

C. Theoretical Analysis

Given a stripe, suppose that the numbers of the updated
data chunks in the d data racks are {u1,u2, · · · ,ud} (where

ui ≤ m for rack-level fault tolerance, see Section II-B) and
the numbers of the corresponding m parity chunks in the p
parity racks are {td+1, td+2, · · · , td+p} (where ∑

p
j=1 td+ j = m).

We use Rd∗ and Rp∗ to denote the data rack and the parity rack
that have the most updated data chunks and parity chunks,
respectively. We determine a rack L based on the following
rule: if the updated data chunks in Rd∗ is no less than the parity
chunks in Rp∗ , then we set L = Rd∗ ; otherwise, we set L = Rp∗ .
We first have Theorem 1 about the efficacy of selecting L as
a collector rack.

Theorem 1. For any rack-coordinated update solution S that
does not select L as a collector rack, we can always find
another solution S′ that chooses L as a collector rack and
introduces no more cross-rack update traffic than S.

Proof. The proof sketch is that we can always find S′ by
opportunistically replacing a collector rack in S by L. The
detailed proof is shown in the appendix.

Theorem 1 implies that even for an optimal rack-coordinated
update solution Sopt, we can also construct another optimal one
S′opt that includes L to serve as a collector rack. Therefore, we
can have the following corollary.

Corollary 1. We can always find an optimal rack-coordinated
update solution that includes L as a collector rack.

Given any rack-coordinated update solution S′ that selects
L as a collector rack, we further deduce that selecting L as the
sole collector rack will introduce no more cross-rack update
traffic than S′. Therefore, we have Theorem 2.

Theorem 2. For any rack-coordinated update solution S′ that
comprises L as a collector rack, we can find another solution
S∗ that selects L as the sole collector rack and incurs no more
cross-rack update traffic than S′.

Proof. The detailed proof is presented in the appendix.

Based on Corollary 1 and Theorem 2, we can readily deduce
the following corollary.

Corollary 2. The solution S∗ minimizes the cross-rack update
traffic for the rack-coordinated update mechanism.

D. Design of RackCU

Based on Corollary 2, we design RackCU, an optimal rack-
coordinated update solution that touches the lower bound of
the cross-rack update traffic. Algorithm 1 elaborates the main
procedure to find the collector rack L (Lines 1-8) and update
the parity chunks (Lines 9-21).

Algorithm details: We first find the data rack Rd∗ with the
most updated data chunks and the parity rack Rp∗ with the
most parity chunks (Lines 1-2). If the number of updated data
chunks in Rd∗ is no smaller than that of parity chunks in Rp∗ ,
we select Rd∗ as the sole collector rack L; otherwise, we choose
Rp∗ to be L (Lines 4-8). In the delta-collecting phase, each
data rack first calculates the data delta chunk for each updated
data chunk and sends it to the collector rack (Lines 9-12). In

Algorithm 1 Procedure of RackCU
Input: {R1,R2, · · · ,Rd} (data racks)

{u1,u2, · · · ,ud} (distribution of updated data chunks)
{Rd+1,Rd+2, · · · ,Rd+p} (parity racks)
{td+1, td+2, · · · , td+p} (distribution of parity chunks)

Output: The new n− k parity chunks of the same stripe
1: Find the data rack Rd∗ , where ud∗ = max{ui|1≤ i≤ d}
2: Find the parity rack Rp∗ , where tp∗ = max{td+ j|1≤ j ≤ p}
3: // Determine the sole collector rack
4: if ud∗ ≥ tp∗ then
5: L = Rd∗
6: else
7: L = Rp∗

8: end if
9: // Delta-collecting phase

10: for 1≤ i≤ d do
11: Send the ui data delta chunks from Ri to L
12: end for
13: // Selective parity update phase
14: for 1≤ j ≤ p do
15: if l′ > td+ j then
16: Send the td+ j parity delta chunks to Rd+ j
17: else
18: Send the l′ data delta chunks to Rd+ j
19: end if
20: Update the td+ j parity chunks
21: end for

R2 R3 R4 R5

2

∆D5 ∆D6 P1 P2 P3 P4∆D3 ∆D4

R1 (��)

∆D1 ∆D2

2

Data Delta Chunk Parity Chunk

(a) Delta-collecting phase: sending four chunks to R1.

∆D5 ∆D6 P1 P2 P3 P4∆D3 ∆D4∆D1 ∆D2

∆D3 ∆D4

∆D5 ∆D6

22

R2 R3 R4 R5R1 (��)

(b) Selective parity update phase: sending four chunks across racks.

Fig. 4: Example of RackCU, which only needs to transmit eight
chunks for parity update.

the selective parity update phase, for each parity rack Rd+ j
(where 1≤ j≤ p), if the parity chunks that Rd+ j stores is fewer
than the data delta chunks (the number is l

′
) that the collector

rack possesses now, then RackCU generates the parity delta
chunks for parity update (Lines 14-16). Otherwise, RackCU
sends the data delta chunks for parity update (Lines 17-19).
RackCU finally generates the td+ j new parity chunks for Rd+ j
(Line 20).

Example: We show an example via Figure 4 to clarify the
workflow of Algorithm 1. In this example, there are three data
racks (i.e., {R1,R2,R3}) storing updated data chunks (i.e., d =
3) and two parity racks (i.e., {R4,R5} and p= 2). All the three
data racks have the same number of updated data chunks (i.e.,
u1 = u2 = u3 = 2), so ud∗ = 2; similarly, we can get tp∗ = 2, as

Data Rack

Agent Agent Agent Agent Agent Agent

Data Rack Parity Rack

Metadata Server

Coordinator

Proxy Proxy Proxy

Command Intra-rack traffic Cross-rack traffic

❶ ❶

❶ ❶
❷

❷

❸
❸

Node Node Node Node Node Node

Fig. 5: System architecture of RackCU.

t4 = t5 = 2. We select L=R1 to serve as the sole collector rack.
In the delta-collecting phase, R1 collects four data delta chunks
from R2 and R3 (Figure 4(a)). In the selective parity update
phase, as R1 possesses six data delta chunks (which is more
than the parity chunks in any parity rack), it simply performs
the parity-delta-based update by sending four corresponding
parity delta chunks (Figure 4(b)). Hence, RackCU transmits
eight chunks in total across racks, which is fewer than the
example (shown in Figure 3) that selects two collector racks
and sends 10 chunks across racks for parity update.
Extension: Though RackCU mainly focuses on RS codes,
we show that it can be effortlessly extended for other rep-
resentative codes like LRCs [12], [23]. LRCs keep a local
parity chunk in each rack and maintain a number of global
parity chunks in other racks. Therefore, when a data chunk is
updated, its corresponding local parity chunk can be renewed
via intra-rack traffic. To minimize the cross-rack traffic in
updating global parity chunks, we can also employ RackCU
to select the sole collector rack based on the footprints of the
updated data chunks and the layout of global parity chunks.
Complexity analysis: To find the sole collector rack, Algo-
rithm 1 needs to scan the corresponding d+ p racks of a stripe
and the computation complexity is O(d + p). In the selective
parity update phase, Algorithm 1 scans each parity rack for
parity update and the computation complexity is O(p). So the
overall computation complexity of Algorithm 1 is O(d + p).

IV. IMPLEMENTATION

We implement a RackCU prototype in C with around 2,800
lines of codes (LoC), and realize the encoding functionality
via Jerasure v1.2 [25].
System architecture: Figure 5 presents the architecture of
our RackCU prototype, which comprises three components:
a coordinator sitting on the metadata server, a proxy in each
rack, and an agent on every node. The coordinator manages
each chunk’s metadata, including the stripe identity to which
the chunk belongs and the node where a chunk resides. The
proxy is responsible for receiving the data delta chunks once
the rack it resides serves as a collector rack, while the agent
is in charge of interacting with the coordinator, sending the
data delta chunks, and calculating the new parity chunks.
Operating flow: To update data chunks, the client first sends
an update request with the corresponding chunk ID to the
coordinator. The coordinator then seals the stripe identity and
the node associated to this chunk into an access token, and
returns it to the client. Instructed by the access token, the

0

20

40

60

sr
c1

_0
sr

c2
_2

pr
oj

_2
pr

oj
_0

sr
c1

_2
pr

oj
_3

w
eb

_2
w

eb
_3

hm
_1

us
r_

1
sr

c1
_1

us
r_

2
m

ds
_1

sr
c2

_1
pr

xy
_1

rs
rc

h_
1

pr
n_

1
pr

oj
_4

pr
oj

_1
us

r_
0

pr
n_

0
w

eb
_1

st
g_

0
rs

rc
h_

0
w

eb
_0

hm
_0

w
de

v_
0

w
de

v_
2

ts
_0

st
g_

1
m

ds
_0

sr
c2

_0
w

de
v_

1
pr

xy
_0

w
de

v_
3

rs
rc

h_
2

Traces

U
pd

at
e

S
iz

e
(K

B
)

Fig. 6: Update sizes of MSR Cambridge Traces [20].

client writes new data chunks to the target nodes and returns
an ACK to imply the completeness of the update operation.

Figure 5 then illustrates the parity update procedure. The
coordinator first determines the collector rack based on the
footprints of the updated data chunks and the associated parity
chunks, and launches commands to the agents of the involved
nodes as well as the proxy of the collector rack for instructing
the parity update (step ¶). Upon receiving the command, the
agent calculates the data delta chunk and sends it to the proxy
of the collector rack (step ·). After collecting enough data
delta chunks, the proxy then performs the selective parity
update to update the parity chunks. Once generating the new
parity chunk, the agent of the parity node (i.e., the node
storing parity chunks) commits an ACK to the coordinator.
The coordinator understands the completeness of the parity
update of a stripe once successfully collecting ACKs from all
the m parity nodes of this stripe.

V. PERFORMANCE EVALUATION

We conduct extensive performance evaluation via both
of large-scale simulation and real-world cloud data center
experiments to study the real performance of RackCU. We
summarize our major findings below: compared to the state-
of-the-art algorithms, (1) RackCU saves 22.1%-75.1% of
cross-rack update traffic (Section V-B); (2) RackCU increases
34.2%-292.6% of update throughput (Section V-C).

A. Preliminaries

Traces: We assess the update performance via trace-driven
evaluation. We employ MSR Cambridge Traces (MSR) [20],
which record the I/O patterns from 13 core servers of a data
center. Every trace consists of successive read/write requests,
each of which records the request type (read or write), the
start position of the requested data, and the request size, etc.
We first classify the 36 traces based on the update size by
averaging the operating sizes of all the update requests in a
trace. Figure 6 shows that the update sizes dramatically vary
across different traces, ranging from 4.3 KB to 52.0 KB.

Counterparts: We compare RackCU to another three state-
of-the-art approaches: (i) cross-rack-aware update (CAU) [28],
(ii) the baseline delta-based update approach, and (iii) Parix
[13]. We summarize these three approaches as below.
• CAU [28]: CAU updates parity chunks simply through

the selective parity update 1: if the updated data chunks

1We remove the data grouping and interim replication from CAU [28]
and let CAU merely perform the selective parity update. We emphasize that
RackCU can achieve higher reliability than the original CAU [28].

of a data rack are more than the parity chunks of a
parity rack, CAU updates those parity chunks via trans-
mitting parity delta chunks; otherwise, CAU updates them
through delivering data delta chunks.

• The baseline: When a data chunk is updated, the baseline
will send the m corresponding parity delta chunks to
generate the new parity chunks based on Equation (2).

• Parix [13]: Parix updates parity chunks via two phases:
(1) for a data chunk that is updated for the first time,
Parix sends both the old and the new data chunks to all
the m parity nodes and keeps them in an append-only log;
(2) for the data chunk that has been updated before, Parix
solely transmits the new data chunk to all the m parity
nodes. To update a parity chunk, each parity node reads
the old and the newest data chunks from local storage to
derive the new parity chunk based on Equation (2).

We summarize that Parix incurs additional network traffic (for
transmitting the old data chunk updated for the first time),
but avoids frequent storage I/O operations (for reading the old
parity chunk) to generate the new parity chunk.

B. Large-Scale Simulation
We first carry out large-scale simulation. We remove the

storage and network operations of the RackCU prototype, and
keep eyes on the amount of induced cross-rack traffic.
Experimental setup: We use the following default configura-
tions in this simulation. We deploy RS(12,4) (also considered
in Windows Azure Storge [12]) in a data center, which is built
atop of 200 nodes with 10 racks (i.e., 20 nodes per rack). If
the number of racks is greater than k +m (i.e., number of
chunks of a stripe), we place a stripe across k+m racks for
maximizing rack-level fault tolerance. We then partition the
address space of each trace into units of chunks and set the
chunk size as 4 KB. When replaying a trace, we extract the
start address and the operating size in each update request, and
identify the chunk IDs to be updated. We then update the data
chunks as well as the corresponding parity chunks by using
the four parity update approaches, and measure the introduced
cross-rack update traffic. We repeat each experiment for ten
runs and show the average results as well as the error bars
indicating the maximum and minimum values across the test
(some may be invisible as they are very small).
Experiment A.1 (Impact of update size): We first study the
impact of the update size by selecting 14 traces: seven traces
with larger update sizes, and another seven traces with smaller
update sizes. Figure 7 shows the results, which are normalized
by that of the baseline for clarity. Among all the 14 traces,
RackCU reduces 29.8%, 58.9%, and 64.4% of the cross-rack
update traffic on average compared to CAU, the baseline, and
Parix, respectively. In addition, RackCU is more advantageous
on saving the cross-rack update traffic for the traces with larger
update sizes. Statistically, RackCU saves 38.2%, 67.0%, and
75.1% of the cross-rack update traffic on average compared to
CAU, the baseline, and Parix for the seven traces with larger
update size (Figure 7(a)); the reductions shrink to 22.1%,
50.9%, and 55.1% (Figure 7(b)), respectively.

0

1

2

src1_0 src2_2 proj_2 proj_0 src1_2 proj_3 web_3
Traces

C
ro

ss
-R

ac
k

T
ra

ffi
c RackCU CAU Baseline Parix

(a) Comparison on the traces with larger update sizes.

0

1

2

stg_1 mds_0 src2_0 wdev_1 prxy_0 wdev_3 rsrch_2
Traces

C
ro

ss
-R

ac
k

T
ra

ffi
c RackCU CAU Baseline Parix

(b) Comparison on the traces with smaller update sizes.

Fig. 7: Experiment A.1 (Impact of update size). The smaller value
is better.

0

25

50

75

100

RS(6,3) RS(10,4) RS(12,4)
Erasure Coding

C
ro

ss
-R

ac
k

T
ra

ffi
c

(G
B

)

RackCU CAU Baseline Parix

0

100

200

300

RS(6,3) RS(10,4) RS(12,4)
Erasure Coding

C
ro

ss
-R

ac
k

T
ra

ffi
c

(G
B

)

RackCU CAU Baseline Parix

(a) src1 0 (b) src2 2

0.00

0.01

0.02

0.03

RS(6,3) RS(10,4) RS(12,4)
Erasure Coding

C
ro

ss
-R

ac
k

T
ra

ffi
c

(G
B

)
RackCU CAU Baseline Parix

0

1

2

3

RS(6,3) RS(10,4) RS(12,4)
Erasure Coding

C
ro

ss
-R

ac
k

T
ra

ffi
c

(G
B

)

RackCU CAU Baseline Parix

(c) wdev 3 (d) rsrch 2

Fig. 8: Experiment A.2 (Impact of erasure coding)

Experiment A.2 (Impact of erasure coding): We evaluate
the impact of erasure coding parameters via choosing two
traces (i.e., src1_0 and src2_2) with larger update sizes and
another two traces (i.e., wdev_3 and rsrch_2) with smaller
update sizes. We focus on the following three erasure coding
schemes: RS(6,3) (selected in QFS [22] and Hadoop HDFS
[3]), RS(10,4) (deployed in Facebook f4 [19]), and RS(12,4)
(considered in Windows Azure Storage [12]). Figure 8 implies
that RackCU retains its efficacy across different erasure
coding schemes. In a nutshell, RackCU can reduce 33.3%,
54.1%, and 60.4% of the cross-rack update traffic on average
compared to CAU, the baseline, and Parix, respectively.

Experiment A.3 (Impact of number of racks): We assess the
impact of the number of racks. We organize the 200 nodes into
four racks (i.e., 50 nodes per rack), five racks (i.e., 40 nodes
per rack), and 10 racks (i.e., 20 nodes per rack), respectively.
Figure 9 indicates that the amounts of the cross-rack update
traffic incurred by RackCU and CAU both increase with the
number of racks. The rationale is that when a data center
comprises more racks, each rack is more likely to store fewer
chunks of a stripe, and hence RackCU and CAU have to
access more racks to accomplish parity update. Besides, the
amounts of the cross-rack update traffic caused by the baseline
and Parix stay constant even when the number of racks varies.
The reason is that we separate the storage of data chunks and

0

20

40

60

80

100

4 5 10
of Racks

C
ro

ss
-R

ac
k

T
ra

ffi
c

(G
B

)
RackCU CAU Baseline Parix

0

100

200

300

4 5 10
of Racks

C
ro

ss
-R

ac
k

T
ra

ffi
c

(G
B

)

RackCU CAU Baseline Parix

(a) src1 0 (b) src2 2

0.00

0.01

0.02

0.03

4 5 10
of Racks

C
ro

ss
-R

ac
k

T
ra

ffi
c

(G
B

)

RackCU CAU Baseline Parix

0

1

2

3

4 5 10
of Racks

C
ro

ss
-R

ac
k

T
ra

ffi
c

(G
B

)

RackCU CAU Baseline Parix

(c) wdev 3 (d) rsrch 2

Fig. 9: Experiment A.3 (Impact of number of racks)

0

1

2

3

50 100 200
Bandwidth (Mb/s)

T
hr

ou
gh

pu
t (

M
B

/s
) RackCU CAU Baseline Parix

0

1

2

3

50 100 200
Bandwidth (Mb/s)

T
hr

ou
gh

pu
t (

M
B

/s
) RackCU CAU Baseline Parix

(a) src1 0 (b) src2 2

0

1

2

3

50 100 200
Bandwidth (Mb/s)

T
hr

ou
gh

pu
t (

M
B

/s
) RackCU CAU Baseline Parix

0

1

2

3

50 100 200
Bandwidth (Mb/s)

T
hr

ou
gh

pu
t (

M
B

/s
) RackCU CAU Baseline Parix

(c) wdev 3 (d) rsrch 2

Fig. 10: Experiment B.1 (Impact of cross-rack bandwidth). The larger
value is better.

parity chunks across different racks. As the baseline and Parix
directly update each parity chunk in other racks, the cross-rack
update traffic depends on the number of parity chunks.

C. Testbed Experiments

We further assess RackCU on Alibaba Cloud ECS [1]
to unveil its performance in a real-world cloud data cen-
ter. We set up 18 virtual machine instances with the type
of ecs.g6.large. Each instance is equipped with 2vCPU
(2.5GHz Intel Xeon Platinum 8269CY) and 8 GB memory.
The operating system is Ubuntu 18.04 and the network band-
width is around 3 Gb/s (measured by iperf).
Experimental setup: Among the 18 instances, we deploy the
RackCU coordinator on one instance to serve as the metadata
server, and use anther one to act as the client. We then organize
the remaining 16 instances into eight racks (two instances per
rack) and run both RackCU proxy and agent on each instance.
We choose RS(12,4) (i.e., each rack stores two chunks of a
stripe) and set the chunk size as 4 KB. We use the Linux
tool tc to throttle the cross-rack bandwidth, and evaluate the
update throughput (i.e., the size of data updated per unit time)
by replaying the first 1,000 update requests of each trace.
Experiment B.1 (Impact of cross-rack bandwidth): We
measure the update throughput by varying the cross-rack
bandwidth from 50 Mb/s to 200 Mb/s. Figure 10 indicates

0

1

2

3

4 8 16
Chunk Size (KB)

T
hr

ou
gh

pu
t (

M
B

/s
) RackCU CAU Baseline Parix

0

1

2

3

4 8 16
Chunk Size (KB)

T
hr

ou
gh

pu
t (

M
B

/s
) RackCU CAU Baseline Parix

(a) src1 0 (b) src2 2

0

1

2

3

4 8 16
Chunk Size (KB)

T
hr

ou
gh

pu
t (

M
B

/s
) RackCU CAU Baseline Parix

0

1

2

3

4 8 16
Chunk Size (KB)

T
hr

ou
gh

pu
t (

M
B

/s
) RackCU CAU Baseline Parix

(c) wdev 3 (d) rsrch 2

Fig. 11: Experiment B.2 (Impact of chunk size)

that the update throughput of the four approaches all increase
with the cross-rack bandwidth. The baseline outperforms CAU
when the cross-rack bandwidth is larger than 100 Mb/s as
the storage bandwidth becomes the bottleneck at this time.
Overall, RackCU improves the update throughput by 106.8%,
88.2%, and 262.2% when compared to CAU, the baseline, and
Parix, respectively. In addition, the update throughput is small
(around several MB/s) as it is restricted by both the cross-rack
bandwidth and storage bandwidth of small accesses.
Experiment B.2 (Impact of chunk size): We study the update
throughput under different chunk sizes. Figure 11 shows that
RackCU improves the update throughput by 34.2%, 101.1%,
and 292.6%, compared to CAU, the baseline, and Parix,
respectively. Besides, when the chunk size is 16 KB, the
efficacy of RackCU recedes. The major cause is that the
average chunk sizes of the 1,000 update requests of the four
traces range from 2.9 KB to 10.6 KB. Hence, when the chunk
size is 16 KB, each update request is likely to manipulate only
one chunk, degrading the efficacy of RackCU. Based on this
experiment, we suggest deploying RackCU in the scenario
with multiple chunks updated per update request.

VI. RELATED WORK

Delta-based updates: Erasure-coded systems often manipu-
late parity update via delta-based update approaches. Parity
logging [33] appends parity deltas to a dedicated log device
for avoiding random small writes. CodFS [5] couples in-place
data update and log-based parity update to tailor update perfor-
mance and repair performance. To avoid frequent disk seeks
in parity update, Parix [13] appends the old and latest data
chunks, and only calculates the delta of them in parity update.
UCODR [27] selects the combination of appropriate data and
parity chunks to mitigate the storage I/O in parity update.
T-Update [24] constructs a minimum spanning tree to guide
the prorogation of the parity update. All the above studies
do not consider the reduction of the cross-rack update traffic.
CAU [28] appends new data chunks and defers parity update
to reduce the cross-rack update traffic, at the cost of system
reliability degradation. Compared to CAU, RackCU achieves
higher reliability by immediately updating parity chunks and
theoretically minimizes the cross-rack update traffic.

Data placement: Some studies utilize access characteristics
to mitigate parity update. PDP [30] arranges sequential data
chunks to generate the same parity chunk for reducing parity
update of sequential writes. CASO [29] organizes correlated
data chunks that are likely to be updated together into the
same stripe. CAU [28] relocates updated data chunks within
the same rack to reduce cross-rack traffic in parity update.
RackCU is orthogonal and complementary to these studies
for further mitigating the cross-rack update traffic.
Rack-aware operations: Previous studies also notice the
scarcity of cross-rack bandwidth in some system operations.
LRCs [12], [23] keep a local parity chunk within a rack to
avoid cross-rack data transfers in single chunk’s repair. Some
studies [11], [15], [16], [18], [31], [32] decompose a chunk’s
repair into many sub-stages that are performed within racks in
parallel, such that the cross-rack repair traffic can be reduced.
In addition, some studies [14], [35] consider the rack-aware
transition. As a comparison, our RackCU pays close attention
to the reduction of the cross-rack update traffic in data centers.

VII. CONCLUSION

We study how to reduce cross-rack update traffic in erasure-
coded data centers. We propose a rack-coordinated update
mechanism that comprises two phases: (i) a delta-collecting
phase that carefully chooses collector racks for retrieving data
delta chunks, and (ii) another selective parity update phase
that renews the parity chunks through selecting the appropriate
parity update approach. We then design RackCU, an optimal
rack-coordinated update solution that minimizes the cross-rack
update traffic. Large-scale simulation and extensive testbed
experiments both show that RackCU can vastly reduce the
cross-rack update traffic and improve the update throughput.

APPENDIX

Proof of Theorem 1. Without loss of generality, suppose that
the numbers of updated data chunks in the d data racks are
{u1,u2, · · · ,ud} (where u1 ≥ u2 ≥ ·· · ≥ ud) and those of parity
chunks in the p parity racks are {td+1, td+2, · · · , td+p} (where
td+1 ≥ td+2 ≥ ·· · ≥ td+p). Hence, ud∗ = u1 and tp∗ = tp+1.

We prove that the theorem establishes when L = R1 (i.e.,
u1 ≥ td+1) and the case when L = Rd+1 (i.e., u1 < td+1) is
similar. Suppose that a rack-coordinated update solution S
selects dc+ pc racks (aside from R1) to be the collector racks.
Our main idea is to replace a collector rack in S by R1 and form
another solution S′, such that S′ introduces no more cross-rack
update traffic than S. Suppose that the u1 data delta chunks of
the rack R1 are originally sent to a collector rack Li = Rx in S
(where 1≤ i≤ dc + pc and 1≤ x≤ d+ p). We can let Li = R1
in S′ (i.e., let R1 replace Rx as the collector rack Li) and collect
the data delta chunks from the same data racks as in S. We
now calculate the gains of this replacement. When Li = R1, we
do not need to send the u1 data delta chunks from R1 to Li (i.e.,
avoid sending u1 chunks across racks), but have to retrieve ux
data delta chunks from Rx to Li (i.e., increase additional ux
chunks of cross-rack transmission). For other data racks (i.e.,
aside from R1) that are required to send data delta chunks

to Li = Rx in S, they will submit their data delta chunks to
Li = R1 in S′ and their cross-rack traffic in this phase remains
unchanged. Hence, this replacement can save u1−ux chunks
for cross-rack transmission in the delta-collecting phase.

Let us consider the selective parity update phase. Suppose
that Rx has tx parity chunks (tx = 0 if Rx is a data rack). For
the original solution S that sets Li = Rx, the corresponding tx
parity chunks can be updated within Rx directly; conversely,
setting Li = R1 in S′ should update the tx parity chunks (in
the rack Rx 6= R1) using the selective parity update, resulting
in additional min{l′i , tx} = tx chunks (as l′i ≥ li = u1 ≥ tx) of
cross-rack transmission after replacement.

Finally, we deduce that S′ saves u1 − ux − tx chunks for
cross-rack transfers. If Rx is a data rack (i.e., tx = 0 and 1 ≤
x ≤ d), then u1− ux− tx = u1− ux ≥ 0. On the other hand,
if Rx is a parity rack (i.e., ux = 0 and d + 1 ≤ x ≤ d + p),
then u1−ux− tx = u1− tx ≥ 0 (as u1 ≥ td+1 ≥ tx). Hence, the
conclusion holds.
Proof of Theorem 2. Suppose the numbers of updated data
chunks of the d data racks follow u1 ≥ u2 ≥ ·· · ≥ ud and those
of parity chunks of the p parity racks obey td+1 ≥ td+2 ≥ ·· · ≥
td+p. We have ui≤m (rack-level tolerance) and ∑

p
j=1 td+ j =m.

Without loss of generality, let L1 = R1 in S′ (i.e., u1 = l1).
We first analyze the cross-rack traffic when setting L = R1

(i.e., u1 ≥ td+1) in S∗, and the case when setting L = Rd+1
(i.e., u1 < td+1) is similar. In the delta-collecting phase, R1
collects ∑

d
i=2 ui data delta chunks from other d−1 data racks

and possesses ∑
d
i=1 ui data delta chunks in total. In the selective

parity update phase, as ∑
d
i=1 ui ≥ u1 ≥ td+1 ≥ td+ j for any

parity rack Rd+ j (where 1 ≤ j ≤ p), we use the parity-delta-
based update by sending the corresponding td+ j parity delta
chunks to Rd+ j. The cross-rack update traffic in this phase is
∑

p
j=1 td+ j = m. Hence, the total cross-rack update traffic is

TS∗ =
d

∑
i=2

ui +m

Based on Equation (4), we deduce the following inequation
for TS′ , where S′ selects dc + pc racks as the collector racks.

TS′ = Tcollect +Tselective ≥
d

∑
i=1

ui−
dc

∑
i=1

li +
dc

∑
i=1

p

∑
j=1

min{l′i , td+ j}

Therefore, we have TS′ −TS∗

≥ u1−
dc

∑
i=1

li +
dc

∑
i=1

p

∑
j=1

min{l′i , td+ j}−m

= u1−
dc

∑
i=1

li +
p

∑
j=1

min{l′1, td+ j}+
dc

∑
i=2

p

∑
j=1

min{l′i , td+ j}−m

Since L1 = R1 in S′ and l′1 ≥ l1 = u1 ≥ td+ j for 1 ≤
j ≤ p, we can deduce that ∑

p
j=1 min{l′1, td+ j} = ∑

p
j=1 td+ j =

m. We can also readily have: if l′i ≥ td+ j for 1 ≤ j ≤ p,
then ∑

p
j=1 min{l′i , td+ j} ≥ ∑

p
j=1 td+ j = m ≥ li (for rack-level

fault tolerance); otherwise, ∑
p
j=1 min{l′i , td+ j} ≥ l′i ≥ li. Hence,

∑
dc
i=2 ∑

p
j=1min{l′i , td+ j} ≥ ∑

dc
i=2 li. Finally, we have:

TS′ −TS∗ ≥ u1−
dc

∑
i=1

li +m+
dc

∑
i=2

li−m≥ u1− l1 = 0.

Therefore, the theorem holds.

REFERENCES

[1] Alibaba Cloud Elastic Compute Service.
https://www.alibabacloud.com/product/ecs.

[2] Erasure Coding in Ceph. https://ceph.com/planet/erasure-coding-in-
ceph/, 2014.

[3] Apache Hadoop 3.0.0. https://hadoop.apache.org/docs/r3.0.0/hadoop-
project-dist/hadoop-hdfs/HDFSErasureCoding.html, 2017.

[4] F. Ahmad, S. Chakradhar, A. Raghunathan, and T. Vijaykumar. Shuffle-
watcher: Shuffle-aware Scheduling in Multi-Tenant Mapreduce Clusters.
In Proc. of USENIX ATC, 2014.

[5] J. Chan, Q. Ding, P. Lee, and H. Chan. Parity Logging with Reserved
Space: Towards Efficient Updates and Recovery in Erasure-Coded
Clustered Storage. In Proc. of USENIX FAST, 2014.

[6] H. Chen, H. Zhang, M. Dong, Z. Wang, Y. Xia, H. Guan, and B. Zang.
Efficient and Available In-Memory KV-Store with Hybrid Erasure Cod-
ing and Replication. ACM Transactions on Storage, 13(3):1–30, 2017.

[7] M. Chowdhury, S. Kandula, and I. Stoica. Leveraging Endpoint
Flexibility in Data-Intensive Clusters. In Proc. of ACM SIGCOMM,
2013.

[8] D. Ford, F. Labelle, F. Popovici, M. Stokely, V. Truong, L. Barroso,
C. Grimes, and S. Quinlan. Availability in Globally Distributed Storage
Systems. In Proc. of USENIX OSDI, 2010.

[9] P. Gill, N. Jain, and N. Nagappan. Understanding Network Failures in
Data Centers: Measurement, Analysis, and Implications. In Proc. of
ACM SIGCOMM, 2011.

[10] A. Greenberg, J. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. Maltz, P. Patel, and S. Sengupta. VL2: A Scalable and Flexible
Data Center Network. In Proc. of ACM SIGCOMM, 2009.

[11] Y. Hu, X. Li, M. Zhang, P. P. C. Lee, X. Zhang, P. Zhou, and D. Feng.
Optimal Repair Layering for Erasure-Coded Data Centers: From Theory
to Practice. ACM Transactions on Storage, 13(4):33, 2017.

[12] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and
S. Yekhanin. Erasure Coding in Windows Azure Storage. In Proc. of
USENIX ATC, 2012.

[13] H. Li, Y. Zhang, Z. Zhang, S. Liu, D. Li, X. Liu, and Y. Peng. PARIX:
Speculative Partial Writes in Erasure-Coded Systems. In Proc. of
USENIX ATC, 2017.

[14] R. Li, Y. Hu, and P. P. C. Lee. Enabling Efficient and Reliable Transition
from Replication to Erasure Coding for Clustered File Systems. IEEE
Transactions on Parallel and Distributed Systems, 28(9):2500–2513,
2017.

[15] R. Li, X. Li, P. P. C. Lee, and Q. Huang. Repair Pipelining for Erasure-
Coded Storage. In Proc. of USENIX ATC, 2017.

[16] X. Li, R. Li, P. P. C. Lee, and Y. Hu. OpenEC: Toward Unified
and Configurable Erasure Coding Management in Distributed Storage
Systems. In Proc. of USENIX FAST, 2019.

[17] V. Liu, D. Zhuo, S. Peter, A. Krishnamurthy, and T. Anderson. Subways:
A Case for Redundant, Inexpensive Data Center Edge Links. In Proc.
of ACM CoNEXT, 2015.

[18] S. Mitra, R. Panta, M.-R. Ra, and S. Bagchi. Partial-Parallel-Repair
(PPR): A Distributed Technique for Repairing Erasure Coded Storage.
In Proc. of EuroSys, 2016.

[19] S. Muralidhar, W. Lloyd, S. Roy, et al. f4: Facebook’s Warm Blob
Storage System. In Proc. of USENIX OSDI, 2014.

[20] D. Narayanan, A. Donnelly, and A. Rowstron. Write Off-Loading:
Practical Power Management for Enterprise Storage. ACM Transactions
on Storage, 4(3):1–23, 2008.

[21] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and M. Rosen-
blum. Fast Crash Recovery in RAMCloud. In Proc. of ACM SOSP,
2011.

[22] M. Ovsiannikov, S. Rus, D. Reeves, P. Sutter, S. Rao, and J. Kelly.
The Quantcast File System. Proceedings of the VLDB Endowment,
6(11):1092–1101, 2013.

[23] D. S. Papailiopoulos and A. G. Dimakis. Locally Repairable Codes.
IEEE Transactions on Information Theory, 60(10):5843–5855, 2014.

[24] X. Pei, Y. Wang, X. Ma, and F. Xu. T-Update: A Tree-Structured Update
Scheme with Top-Down Transmission in Erasure-Coded Systems. In
Proc. of IEEE INFOCOM, 2016.

[25] J. S. Plank, S. Simmerman, and C. D. Schuman. Jerasure: A library
in C/C++ Facilitating Erasure Coding for Storage Applications-Version
1.2. University of Tennessee, Tech. Rep. CS-08-627, 23, 2008.

[26] I. Reed and G. Solomon. Polynomial Codes over Certain Finite Fields.
Journal of the society for industrial and applied mathematics, 8(2):300–
304, 1960.

[27] J. Shen, K. Zhang, J. Gu, Y. Zhou, and X. Wang. Efficient Scheduling for
Multi-Block Updates in Erasure Coding based Storage Systems. IEEE
Transactions on Computers, 67(4):573–581, 2017.

[28] Z. Shen and P. Lee. Cross-Rack-Aware Updates in Erasure-Coded Data
Centers. In Proc. of ACM ICPP, 2018.

[29] Z. Shen, P. Lee, J. Shu, and W. Guo. Correlation-Aware Stripe
Organization for Efficient Writes in Erasure-Coded Storage Systems.
In Proc. of IEEE SRDS, 2017.

[30] Z. Shen, J. Shu, and Y. Fu. Parity-Switched Data Placement: Optimizing
Partial Stripe Writes in XOR-Coded Storage Systems. IEEE Transac-
tions on Parallel and Distributed Systems, 27(11):3311–3322, 2016.

[31] Z. Shen, J. Shu, Z. Huang, and Y. Fu. ClusterSR: Cluster-Aware
Scattered Repair in Erasure-Coded Storage. In Proc. of IEEE IPDPS,
2020.

[32] Z. Shen, J. Shu, and P. P. C. Lee. Reconsidering Single Failure Recovery
in Clustered File Systems. In Proc. of IEEE/IFIP DSN, 2016.

[33] D. Stodolsky, G. Gibson, and M. Holland. Parity Logging Overcoming
the Small Write Problem in Redundant Disk Arrays. ACM SIGARCH
Computer Architecture News, 21(2):64–75, 1993.

[34] H. Weatherspoon and J. D. Kubiatowicz. Erasure Coding vs. Replication:
A Quantitative Comparison. In International Workshop on Peer-to-Peer
Systems, 2002.

[35] S. Wei, Y. Li, Y. Xu, and S. Wu. DSC: Dynamic Stripe Construction
for Asynchronous Encoding in Clustered File System. In Proc. of IEEE
INFOCOM, 2017.

