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Abstract—Fast detection of heavy flows (e.g., heavy hitters and
heavy changers) in massive network traffic is challenging due to
the stringent requirements of fast packet processing and limited
resource availability. Invertible sketches are summary data struc-
tures that can recover heavy flows with small memory footprints
and bounded errors, yet existing invertible sketches incur high
memory access overhead that leads to performance degradation.
We present MV-Sketch, a fast and compact invertible sketch
that supports heavy flow detection with small and static memory
allocation. MV-Sketch tracks candidate heavy flows inside the
sketch data structure via the idea of majority voting, such that it
incurs small memory access overhead in both update and query
operations, while achieving high detection accuracy. We present
theoretical analysis on the memory usage, performance, and
accuracy of MV-Sketch. Trace-driven evaluation shows that MV-
Sketch achieves higher accuracy than existing invertible sketches,
with up to 3.38× throughput gain. We also show how to boost
the performance of MV-Sketch with SIMD instructions.

I. INTRODUCTION

Identifying abnormal patterns of flows (e.g., hosts, source-
destination pairs, or 5-tuples) in massive network traffic is
essential for various network management tasks, such as traffic
engineering, load balancing, and intrusion detection. Two types
of abnormal flows are of particular interest: heavy hitters (i.e.,
flows that generate an unexpectedly high volume of traffic) and
heavy changers (i.e., flows that generate an unexpectedly high
change of traffic volume in a short duration). By identifying
both heavy hitters and heavy changers (collectively referred
to as heavy flows), network operators can quickly respond to
performance outliers, mis-behaved usage, and potential DDoS
attacks, so as to maintain network stability and QoS guarantees.

Unfortunately, the stringent requirements of fast packet
processing and limited memory availability pose challenges to
practical heavy flow detection. First, the packet processing rate
of heavy flow detection must keep pace with the ever-increasing
network speed, especially in the worst case when traffic bursts
or attacks happen [17]. For example, a fully utilized 10Gb/s link
with a minimum packet size of 64 bytes implies that the heavy
flow detection algorithm must process at least 14.88M packets
per second. In addition, the available memory footprints are
constrained in practice. While per-flow monitoring with linear
hash tables is arguably feasible in software [1], it requires
tremendous memory space in the worst case. For example,
monitoring all 5-tuple flows requires to track a maximum of
2104 flow entries.

Given the rigid packet processing and memory requirements,
many approaches perform approximate heavy flow detection via

sketches, which are summary data structures that significantly
mitigate memory footprints with bounded detection errors.
Classical sketches [10], [11], [22] are proven effective, yet
they are non-invertible: while we can query a sketch whether
a specific flow is a heavy flow, we cannot readily recover all
heavy flows from only the sketch data structure itself. Instead,
we must query every possible flow to check whether it is a
heavy flow. Such a brute-force approach is computationally
expensive for an extremely large flow key space (e.g., the size
is 2104 for 5-tuple flows).

This motivates us to explore invertible sketches, which
provide provable error bounds as in classical sketches, while
supporting the queries of recovering all heavy flows. Invertible
sketches are well studied in the literature (e.g., [8], [11], [13],
[18], [24], [29]) for heavy flow detection. However, there
remain limitations in existing invertible sketches. In particular,
they either maintain heavy flows in external DRAM-based
data structures [11], [18], or track flow keys in smaller-size
bits or sub-keys [8], [13], [24], [29]. We argue that both
approaches incur substantial memory access overhead that
leads to degraded processing performance (see Section II-B).

In this paper, we present MV-Sketch, a fast and compact
invertible sketch for heavy flow detection. It tracks candidate
heavy flow keys together with the counters in a sketch data
structure, and updates the candidate heavy flow keys based on
the majority vote algorithm [7] in an online streaming fashion.
A key design feature of MV-Sketch is that it maintains a sketch
data structure with small and static memory allocation (i.e., no
dynamic memory allocation is needed). This allows lightweight
memory access in both update and detection operations, and
provides viable opportunities for hardware acceleration. To
summarize, we make the following contributions.

• We design MV-Sketch, an invertible sketch that supports
both heavy hitter and heavy changer detection and can be
generalized for distributed detection. See Section III.

• We present theoretical analysis on MV-Sketch for its memory
space complexity, update/detection time complexity, and
detection accuracy. See Section IV.

• We show via trace-driven evaluation that MV-Sketch achieves
higher detection accuracy for most memory configurations
and up to 3.38× throughput gain compared to state-of-the-
art invertible sketches. Furthermore, we extend MV-Sketch
with Single Instruction, Multiple Data (SIMD) instructions
to boost its update performance. See Section V.



The source code of our MV-Sketch prototype is available
at: http://adslab.cse.cuhk.edu.hk/software/mvsketch.

II. BACKGROUND

A. Heavy Flow Detection

We consider a stream of packets, each of which is denoted by
a key-value pair (x, vx), where x is a key drawn from a domain
[n] = {0, 1, · · · , n− 1} and vx is the value of x. In network
measurement, x is the flow identifier (e.g., source/destination
address pairs or 5-tuples), while vx is either one (for packet
counting) or the packet size (for byte counting). We conduct
measurement at regular time intervals called epochs.

We formally define heavy hitters and heavy changers as
follows. Let φ be a pre-defined fractional threshold (where
0 < φ < 1) that is used to differentiate heavy flows from
network traffic (we use the same φ for both heavy hitter and
heavy changer detection for simplicity). Let S(x) be the sum
(of all vx’s) of flow x in an epoch, and D(x) be the absolute
change of S(x) of flow x across two epochs. Let S be the total
sum of all flows in an epoch (i.e., S =

∑
x∈[n] S(x)), and D

be the total absolute change of all flows across two epochs
(i.e., D =

∑
x∈[n]D(x)). Both S and D can be obtained in

practice: for S, we can maintain an extra counter that counts
the total traffic; for D, we can run an l1-streaming algorithm
and estimate D (equivalent to the l1-distance) in one pass [28].
Finally, flow x is said to be a heavy hitter if S(x) ≥ φS , or a
heavy changer if D(x) ≥ φD.

B. Sketches

Sketches are summary data structures that track values in a
fixed number of entries called buckets. Classical sketches on
heavy flow detection (e.g., Count Sketch [10], K-ary Sketch
[22], and Count-Min Sketch [11]) represent a sketch as a two-
dimensional array of buckets and provide different theoretical
trade-offs across memory usage, performance, and accuracy.

Take Count-Min Sketch [11] as an example. We construct
the sketch as r rows of buckets, with w buckets in each row.
Each bucket is associated with a counter initialized as zero.
For each tuple (x, vx) received in an epoch, we hash x into
a bucket in each of the r rows using r pairwise independent
hash functions. We increment the counter in each of the r
hashed buckets by vx. Since multiple flows can be hashed to
the same bucket, we can only provide an estimate for the sum
of a flow. Count-Min Sketch uses the minimum counter value
of all r hashed buckets as the estimated sum of a flow. We can
check if a flow is a heavy hitter by checking if its estimated
sum exceeds the threshold; similarly, we can check if a flow
is a heavy changer by checking if the absolute change of its
estimated sums in two epochs exceeds the threshold. However,
Count-Min Sketch is non-invertible, as we must check every
flow in the entire flow key space to recover all heavy flows; note
that Count Sketch and K-ary Sketch are also non-invertible.

Invertible sketches (e.g., [8], [11], [13], [18], [24], [29])
allow all heavy flows to be recovered from only the sketch
data structure itself. State-of-the-art invertible sketches can be
classified into three types.

Extra data structures. Count-Min-Heap [11] is an augmented
Count-Min Sketch that uses a heap to track all candidate
heavy flows and their estimated sums. If any incoming flow
whose estimated sum exceeds the threshold, it is added to the
heap. LD-Sketch [18] maintains a two-dimensional array of
buckets and links each bucket with an associative array to
track the candidate heavy flows that are hashed to the bucket.
However, updating a heap or an associative array incurs high
memory access overhead, which increases with the number
of heavy flows. In particular, LD-Sketch occasionally expands
the associative array to hold more candidate heavy flows, yet
dynamic memory allocation is a costly operation and difficult
to implement in hardware [3].

Group testing. Deltoid [13] comprises multiple counter groups
with 1 + L counters each (where L is the number of bits in a
key), in which one counter tracks the total sum of the group,
and the remaining L counters correspond to the bit positions
of a key. It maps each flow key to a subset of groups and
increments the counters whose corresponding bits of the key are
one. To recover heavy flows, Deltoid first identifies all groups
whose total sums exceed the threshold. If each such group has
only one heavy flow, the heavy flow can be recovered: the bit
is one if a counter exceeds the threshold, or zero otherwise.
Fast Sketch [24] is similar to Deltoid except that it maps the
quotient of a flow key to the sketch. However, both Deltoid
and Fast Sketch have high update overhead, as their numbers
of counters increase with the key length.

Enumeration. Reversible Sketch [29] finds heavy flows by
pruning the enumeration space of flow keys. It divides a flow
key into smaller sub-keys that are hashed independently, and
concatenates the hash results to identify the hashed buckets.
To recover heavy flows, it enumerates each sub-key space
and combines the recovered sub-keys to form the heavy flows.
SeqHash [8] follows a similar design, yet it hashes the key
prefixes of different lengths into multiple smaller sketches.
However, the update costs of both Reversible Sketch and
SeqHash increase with the key length.

III. MV-SKETCH DESIGN

MV-Sketch is a novel invertible sketch for heavy flow
detection and aims for the following design goals:
• Invertibility: MV-Sketch is invertible and readily returns all

heavy flows (i.e., heavy hitters or heavy changers) from only
the sketch data structure itself.

• High detection accuracy: MV-Sketch supports accurate
heavy flow detection with provable error bounds.

• Small and static memory: MV-Sketch maintains compact
data structures with small memory footprints. Also, it can be
constructed with static memory allocation, which mitigates
memory management overhead as opposed to dynamic
memory allocation in LD-Sketch [18].

• High processing speed: MV-Sketch processes packets at
high speed by limiting the memory access overhead of per-
packet updates. It also takes advantage of static memory
allocation to allow hardware acceleration.
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Fig. 1. Data structure of MV-Sketch.

• Distributed detection: MV-Sketch can be extended for
distributed detection with multiple MV-Sketch instances.

A. Main Idea

Like Count-Min Sketch [11], MV-Sketch is initialized as a
two-dimensional array of buckets (see Section II-B), in which
each bucket tracks the values of the flows that are hashed to
itself. MV-Sketch augments Count-Min Sketch in a way that
each bucket also tracks a candidate heavy flow that has a high
likelihood of carrying the largest amount of traffic among all
flows that are hashed to the bucket. Our rationale is that in
practice, a small number of large flows dominate in IP traffic
[33]. Thus, the candidate heavy flow is very likely to carry
much more traffic than all other flows that are hashed to the
same bucket. Also, by using a sufficient number of buckets, we
can significantly reduce the probability that two heavy flows
are hashed into the same bucket, and hence accurately track
multiple heavy flows.

To find the candidate heavy flow in each bucket, we apply
the majority vote algorithm (MJRTY) [7], which enables us to
track the candidate heavy flow in an online streaming fashion.
MJRTY processes a stream of votes (corresponding to packets
in our case), each of which has a vote key and a vote count one.
It aims to find the majority vote, defined as the vote key that
has more than half of the total vote counts, from the stream of
votes in one pass with constant memory usage. At any time, it
stores (i) the candidate majority vote that is thus far observed
in a stream and (ii) an indicator counter that tracks whether
the currently stored vote remains the candidate majority vote.
Initially, it stores the first vote and initializes the indicator
counter as one. Each time when a new vote arrives, MJRTY
compares the new vote with the candidate majority vote. If both
votes are the same (i.e., the same vote key), it increments the
indicator counter by one; otherwise, it decrements the indicator
counter by one. If the indicator counter is below zero, MJRTY
replaces the current candidate majority vote with the new vote
and resets the counter to one. MJRTY ensures that the true
majority vote must be the candidate majority vote stored by
MJRTY at the end of the stream [7].

B. Data Structure of MV-Sketch

Figure 1 shows the data structure of MV-Sketch, which is
composed of a two-dimensional array of buckets with r rows
and w columns. Let B(i, j) denote the bucket at the i-th row
and the j-th column, where 1 ≤ i ≤ r and 1 ≤ j ≤ w. Each
bucket B(i, j) consists of three fields: (i) Vi,j , which counts
the total sum of values of all flows hashed to the bucket; (ii)
Ki,j , which tracks the key of the current candidate heavy flow
in the bucket; and (iii) Ci,j , which is the indicator counter that

Algorithm 1 Update
Input:(x, vx)

1: for i = 1 to r do
2: Vi,hi(x) ← Vi,hi(x) + vx
3: if Ki,hi(x) = x then
4: Ci,hi(x) ← Ci,hi(x) + vx
5: else
6: Ci,hi(x) ← Ci,hi(x) − vx
7: if Ci,hi(x) < 0 then
8: Ki,hi(x) ← x
9: Ci,hi(x) ← −Ci,hi(x)

10: end if
11: end if
12: end for

checks if the candidate heavy flow should be kept or replaced
as in MJRTY [7]. In addition, MV-Sketch is associated with
r pairwise-independent hash functions, denoted by h1 . . . hr,
such that each hi (where 1 ≤ i ≤ r) hashes the key x ∈ [n] of
each incoming packet to one of the w buckets in row i. Note
that the data structure has a fixed memory size and can be
pre-allocated in advance.

C. Basic Operations

MV-Sketch supports two basic operations: (i) Update, which
inserts each incoming packet into the sketch; (ii) Query, which
returns the estimated sum of a given flow in an epoch.

Algorithm 1 shows the Update operation. All fields Vi,j , Ki,j ,
and Ci,j are initialized as zero for B(i, j), where 1 ≤ i ≤ r
and 1 ≤ j ≤ w. For each (x, vx), we hash x into B(i, j) in the
i-th row with j = hi(x) for 1 ≤ i ≤ r. We first increment Vi,j
by vx (Line 2). We then check if x is stored in Ki,j based on
the MJRTY algorithm: if Ki,j equals x, we increment Ci,j by
vx (Lines 3-4). Otherwise, we decrement Ci,j by vx (Lines 5-
6); if Ci,j drops below zero, we replace Ki,j by x and reset
Ci,j with its absolute value (Lines 7-10). Note that the Update
operation differs from MJRTY as it supports general value
counts (or the number of bytes) with any non-negative value
vx, while MJRTY considers only vote counts (or the number
of packets) with vx always being one.

Algorithm 2 shows the Query operation. For each hashed
bucket in row i (where 1 ≤ i ≤ r), we calculate a row estimate
Ŝi(x) of flow x (Lines 1-7): if x and Ki,j are the same,
we set Ŝi(x) = (Vi,j + Ci,j)/2; otherwise, we set Ŝi(x) =
(Vi,j − Ci,j)/2. Finally, we return the final estimate Ŝ(x) as
the minimum of all row estimates (Lines 8-9).

D. Heavy Flow Detection

Heavy hitter detection. To detect heavy hitters, we check
every bucket B(i, j) (1 ≤ i ≤ r and 1 ≤ j ≤ w) at the end of
an epoch. For each B(i, j), if Vi,j ≥ φS , we let x = Ki,j and
query Ŝ(x) from Algorithm 2; if Ŝ(x) ≥ φS, we report x as
a heavy hitter.
Heavy changer detection. To detect heavy changers, we
compare two sketches at the ends of two epochs. One possible
detection approach is to exploit the linear property of sketches
as in prior studies [13], [24], [29], in which we compute



Algorithm 2 Query
Input: flow key x
Output: estimate Ŝ(x) of flow x

1: for i = 1 to r do
2: if Ki,hi(x) = x then
3: Ŝi(x)← (Vi,hi(x) + Ci,hi(x))/2
4: else
5: Ŝi(x)← (Vi,hi(x) − Ci,hi(x))/2
6: end if
7: end for
8: Ŝ(x)← min1≤i≤r{Ŝi(x)}
9: return Ŝ(x)

the differences of Vi,j’s of the buckets at the same positions
across the two sketches and recover the flows from the buckets
whose differences exceed the threshold φD (see Section II-A).
However, such an approach can return many false negatives,
since the hash collisions of two heavy changers, one with a
high incremental change and another with a high decremental
change, can cancel out the changes of each other.

To reduce the number of false negatives, we instead use the
estimated maximum change of a flow for heavy changer detec-
tion. Specifically, let U(x) and L(x) be the upper and lower
bounds of S(x), respectively. We set U(x) = Ŝ(x) returned by
Algorithm 2. Also, we set L(x) = max1≤i≤r{Li(x)}, where
Li(x) is set as follows: for each hashed bucket B(i, j) of
x (where 1 ≤ i ≤ r and j = hi(x)), if Ki,j equals x, we
set Li(x) = Ci,j ; otherwise, we set Li(x) = 0. Note that
both U(x) and L(x) are the true upper and lower bounds of
S(x), respectively (see Lemma 2 in Section IV-B). Now, let
U1(x) and L1(x) (resp. U2(x) and L2(x)) be the upper and
lower bounds of S(x) in the previous (resp. current) epoch,
respectively. Then the estimated maximum change of flow x is
given by D̂(x) = max{|U1(x)− L2(x)|, |L1(x)− U2(x)|}.

We now detect heavy changers as follows. We check every
bucket B(i, j), (1 ≤ i ≤ r and 1 ≤ j ≤ w) of two sketches
of the previous and current epochs. For each B(i, j) in each
of the sketches, if Vi,j ≥ φD, we let x = Ki,j and estimate
D̂(x); if D̂(x) ≥ φD, we report x as a heavy changer.

Currently, MV-Sketch is designed to detect heavy hitters
and heavy changers, both of which focus on the values (e.g.,
packet or byte counts) of a flow. We can extend MV-Sketch
to monitor hosts with a high number of distinct connections
in DDoS or superspreader detection by either associating the
buckets with approximate distinct counters [12] or filtering
duplicate connections with a Bloom filter [34]. We pose the
analysis of DDoS and superspreader detection as future work.

E. Distributed Heavy Flow Detection

We extend MV-Sketch for distributed heavy flow detection
based on the distributed architecture [18]. We deploy q ≥ 1
detectors, each of which deploys an MV-Sketch to monitor
packets from multiple streaming sources. Suppose that each
streaming source maps a flow to a subset d out of q detectors,
where d ≤ q, and distributes each packet of the flow uniformly
to one of the d selected detectors. At the end of each epoch,

each detector sends the local detection results to a centralized
controller for final heavy flow detection.

For heavy hitter detection, each detector checks every bucket
B(i, j) in MV-Sketch. Let x = Ki,j , and if Ŝ(x) ≥ φ

dS, the
detector sends the tuple (x, Ŝ(x)) of flow x to the controller.
After collecting all results from q detectors, the controller adds
the estimates of each flow. If the added estimate of a flow
exceeds φS, the flow is reported as a heavy hitter.

For heavy changer detection, each detector checks every
bucket B(i, j) of two sketches of the previous and current
epochs. If Vi,j ≥ φ

dD, it lets x = Ki,j and estimates D̂(x);
if D̂(x) ≥ φ

dD, the detector sends the tuple (x, D̂(x)) of
flow x to the controller. Similar to heavy hitter detection, the
controller adds the estimates of each flow from q detectors. If
the added estimate of a flow exceeds φD, it is reported as a
heavy changer.

IV. THEORETICAL ANALYSIS

We present theoretical analysis on MV-Sketch in heavy flow
detection. We also compare MV-Sketch with several state-of-
the-art invertible sketches.

A. Space and Time Complexities

Our analysis assumes that MV-Sketch is configured with
r = log 1

δ , w = 2
ε , where ε (0 < ε < 1) is the approximation

parameter, δ (0 < δ < 1) is the error probability, and the
logarithm base is 2. Theorem 1 states the space and time
complexities of MV-Sketch.

Theorem 1. The space usage is O( 1
ε log 1

δ log n). The update
time per packet is O(log 1

δ ), while the detection time of
returning all heavy flows is O( 1

ε log2 1
δ ).

Proof. Each bucket of MV-Sketch stores a log n-bit candidate
heavy flow and two counters, so the space usage of MV-Sketch
is O(rw log n) = O( 1

ε log 1
δ log n).

Each per-packet update accesses r buckets and requires
r = log 1

δ hash operations, thereby taking O(log 1
δ ) time.

Returning all heavy flows requires to traverse all rw buckets.
For each bucket whose Vi,j is above the threshold, we check
r buckets to obtain the estimate (either Ŝ(x) or D̂(x)) for
x = Ki,j . This takes O(r2w) = O( 1

ε log2 1
δ ) time.

B. Error Bounds for Heavy Hitter Detection

Suppose that for all flows hashed to a bucket B(i, j), flow
x is said to be a majority flow of B(i, j) if its sum S(x) is
more than half of the total value count Vi,j . Then Lemma 1
states that the majority flow must be tracked; note that it is a
generalization of the main result of MJRTY [7].

Lemma 1. If there exists a majority flow x in B(i, j), then it
must be stored in Ki,j at the end of an epoch.

Proof. We prove by contradiction. By definition, the majority
flow x has S(x) > 1

2Vi,j . Suppose that Ki,j 6= x. Then the
increments (resp. decrements) of Ci,j due to x must be offset
by the decrements (resp. increments) of other flows that are
also hashed to B(i, j). This requires that Vi,j − S(x) ≥ S(x)



(i.e., the total value count of other flows is larger than S(x)).
Thus, Vi,j ≥ 2S(x) > Vi,j , which is a contradiction.

Lemma 2 next bounds the sum S(x) of flow x.

Lemma 2. Consider a bucket B(i, j) that flow x is hashed
to. If Ki,j equals x, then Ci,j ≤ S(x) ≤ Vi,j+Ci,j

2 ; otherwise,
0 ≤ S(x) ≤ Vi,j−Ci,j

2 .

Proof. Suppose that Ki,j equals x. Let ∆ be the offset amount
of x from Ci,j due to other flows. Then we have S(x) =
Ci,j + ∆ ≥ Ci,j . Also, since Vi,j ≥ S(x) + ∆ = Ci,j + 2∆,
we have ∆ ≤ Vi,j−Ci,j

2 . Thus, S(x) = Ci,j + ∆ ≤ Vi,j+Ci,j
2 .

Suppose now that Ki,j 6= x. Then the increments (resp.
decrements) of Ci,j due to x must be offset by the decrements
(resp. increments) made by other flows that are also hashed to
the same bucket (see the proof of Lemma 1). The total value
count of all flows other than x (i.e., Vi,j−S(x)) minus the offset
amount S(x) is at least Ci,j . Thus, we have Vi,j ≥ Ci,j+2S(x),
implying that 0 ≤ S(x) ≤ Vi,j−Ci,j

2 .

We now study the bounds of the estimated sum Ŝ(x) of flow
x returned by Algorithm 2. From Lemma 2 and the definition
of Ŝ(x) in Algorithm 2, we see that Ŝ(x) ≥ S(x). Also,
Lemma 3 states the upper bound of Ŝ(x) in terms of ε and δ.

Lemma 3. Ŝ(x) ≤ S(x)+ εS
2 with a probability at least 1−δ.

Proof. Consider the expectation of the total sum of all flows
except x in each bucket B(i, j). It is given by E[Vi,j−S(x)] =

E[
∑
y 6=x,hi(y)=hi(x) S(y)] ≤ S−S(x)w ≤ εS

2 due to the pairwise
independence of hi and the linearity of expectation. By
Markov’s inequality, we have

Pr[Vi,j − S(x) ≥ εS] ≤ 1
2 . (1)

We now consider the row estimate Ŝi(x) (see Algorithm 2).
If Ki,j equals x, then Ŝi(x) − S(x) =

Vi,j+Ci,j
2 − S(x) ≤

Vi,j−S(x)
2 due to Lemma 2; if Ki,j 6= x, then Ŝi(x)− S(x) =

Vi,j−Ci,j
2 − S(x) ≤ Vi,j

2 − S(x) ≤ Vi,j−S(x)
2 .

Combining both cases, we have Pr[Ŝi(x)− S(x) ≥ εS
2 ] ≤

Pr[
Vi,j−S(x)

2 ≥ εS
2 ] ≤ 1

2 due to Equation (1).
Since Ŝ(x) is the minimum of all row estimates, we have

Pr[Ŝ(x) ≤ S(x) + εS
2 ] = 1 − Pr[Ŝ(x) − S(x) ≥ εS

2 ] =

1− Pr[Ŝi(x)− S(x) ≥ εS
2 ,∀i] ≥ 1− ( 1

2 )r = 1− δ.

Theorem 2 summarizes the error bounds for heavy hitter
detection in MV-Sketch.

Theorem 2. MV-Sketch reports every heavy hitter with a
probability at least 1− δ (provided that φS ≥ εS), and falsely
reports a non-heavy hitter with sum no more than (φ− ε

2 )S
with a probability at most δ.

Proof. We first prove that MV-Sketch reports each heavy hitter
(say x) with a high probability. If flow x is the majority
flow in any one of its hashed buckets, it will be reported
due to Lemma 1. MV-Sketch fails to report x only if x is
not the majority flow of any of its r hashed buckets, i.e.,
S(x) ≤ Vi,j

2 for 1 ≤ i ≤ r and j = hi(x). The probability

that it occurs (denoted by P ) is P = Pr[S(x) ≤ Vi,j
2 ,∀i] =

Pr[Vi,j − S(x) ≥ S(x),∀i]. Since S(x) ≥ φS ≥ εS , we have
P ≤ Pr[Vi,j−S(x) ≥ εS,∀i] ≤ ( 1

2 )r = δ due to Equation (1).
Thus, a heavy hitter is reported with a probability at least 1−δ.

We next prove that MV-Sketch reports a non-heavy hitter
(say y) with S(y) ≤ (φ − ε

2 )S with a small probability. A
necessary condition is that y has its estimate Ŝ(y) ≥ φS . Thus,
Ŝ(y) − S(y) ≥ φS − (φ − ε

2 )S = εS
2 . From Lemma 3, we

have Pr[Ŝ(y)−S(y) ≥ εS
2 ] ≤ δ. In other words, y is reported

as a heavy hitter with a probability at most δ.

C. Error Bounds for Heavy Changer Detection

Recall that heavy changer detection relies on the upper bound
U(x) and the lower bound L(x) of S(x) (see Section III-D).
From Lemma 2, both U(x) and L(x) are the true upper and
lower bounds of S(x), respectively. Lemma 3 has shown that
U(x), which equals Ŝ(x), differs from S(x) by a small range
with a high probability. Now, Lemma 4 shows that L(x) and
S(x) also differ by a small range with a high probability.

Lemma 4. S(x)−L(x) ≤ εS with a probability at least 1−δ.

Proof. Consider the lower bound estimate Li(x) given by the
hashed bucket B(i, j) of flow x (where 1 ≤ i ≤ r) (see
Section III-D). If Ki,j equals x, Li(x) = Ci,j . By Lemma 2,
we have S(x) ≤ Vi,j+Ci,j

2 , implying that S(x) − Li(x) =
S(x)− Ci,j ≤ Vi,j − S(x).

If Ki,j 6= x, Li = 0 and x is not the majority flow for
bucket B(i, j). We have S(x)− Li(x) = S(x) ≤ Vi,j − S(x).

Combining both cases, we have Pr[S(x) − L(x) ≥ εS] =
Pr[S(x) − Li(x) ≥ εS,∀i] ≤ Pr[Vi,j − S(x) ≥ εS,∀i] ≤
( 1
2 )r = δ due to Equation (1).

Lemma 5 provides an upper bound of the estimated maxi-
mum change D̂(x) = max{|U1(x)−L2(x)|, |U2(x)−L1(x)|}
in terms of S1 and S2, which are the total sums of all flows
in the previous and current epochs, respectively.

Lemma 5. D̂(x) ≤ D(x) + ε(S1 + S2) with a probability at
least (1− δ)2.

Proof. Without loss of generality, we consider D̂(x) =
|U1(x)−L2(x)|. Let S1(x) and S2(x) be the sums of x in the
previous and current epochs, respectively. Let e1u(x) = U1(x)−
S1(x) and e2l = S2(x) − L2(x). Then D̂(x) = |S1(x) +
e1u(x) − (S2(x) − e2l (x))| ≤ D(x) + e1u(x) + e2l (x). Since
e1u(x) and e2l (x) are independent, we have Pr[e1u(x)+e2l (x) ≤
ε(S1 +S2)] ≥ Pr[e1u(x) ≤ εS1] ·Pr[e2l (x) ≤ εS2] ≥ (1− δ)2,
where the last inequality is due to Lemmas 3 and 4. Thus,
Pr[D̂(x) − D(x) ≤ ε(S1 + S2)] ≥ Pr[e1u(x) + e2l (x) ≤
ε(S1 + S2)] ≥ (1− δ)2.

Theorem 3 summarizes the error bounds for heavy changer
detection in MV-Sketch.

Theorem 3. MV-Sketch reports every heavy changer with a
probability at least 1− δ (provided that φD

ε ≥ max{S1,S2}),
and falsely reports any non-heavy changer with change no more
than φD− ε(S1 +S2) with a probability at most 1− (1− δ)2.



TABLE I
COMPARISON OF MV-SKETCH WITH STATE-OF-THE-ART INVERTIBLE SKETCHES.

Sketch r w FN Prob. Space Update time Detection time

Count-Min-Heap log 1
δ

2
ε 0 O( 1

ε log 1
δ +H logn) log Hδ O(H)

LD-Sketch log 1
δ

2H
ε 0 O(Hε log 1

δ logn) O(log 1
δ ) O(Hε log 1

δ )

Deltoid log 1
δ

2
ε δ O( 1

ε log 1
δ logn) O(log 1

δ logn) O( 1
ε log2 1

δ logn)

Fast Sketch 4H log 4
δ 1+log n

4H log (4/δ)
δ O(H log 1

δ log n
H log(1/δ)

) O(log 1
δ log n

H log (1/δ)
) O(H log3 1

δ log( n
H log (1/δ)

))

MV-Sketch log 1
δ

2
ε δ O( 1

ε log 1
δ logn) O(log 1

δ ) O( 1
ε log2 1

δ )

Proof. We first prove that MV-Sketch reports each heavy
changer (say x) with a high probability. If flow x is the majority
flow in any one of its hashed buckets, it must be reported, as
its estimate D̂(x) ≥ D(x) ≥ φD. Flow x is not reported only
if it is not stored as a candidate heavy flow in both sketches.
Since there must exist one sketch (either in the previous or
current epoch) with S(x) ≥ φD, by Theorem 2, the probability
that x is not reported in that sketch is at most δ (assuming
that φD

ε ≥ max{S1,S2}). Thus, a heavy changer is reported
with a probability at least 1− δ.

We next prove that MV-Sketch reports a non-heavy changer
(say y) with D(y) ≤ φD−ε(S1 +S2) with a small probability.
Let D̂(y) = D(y)+∆ for some ∆; hence, D̂(y) ≤ φD−ε(S1+
S2) + ∆. If y is reported as a heavy changer, it requires that
∆ ≥ ε(S1 +S2) and such a probability is at most 1− (1− δ)2
due to Lemma 5.

D. Error Bounds for Distributed Heavy Flow Detection

We generalize the analysis for a single detector in The-
orems 2 and 3 for distributed heavy flow detection under
MV-Sketch. Our analysis assumes that the stream of packets
of each flow is uniformly distributed to d ≤ q detectors.

Theorem 4. The controller reports every heavy hitter with a
probability at least (1− δ)d, and falsely reports a non-heavy
hitter with sum no more than d

q (φ− ε
2 )S with a probability at

most 1− (1− δ)d.

Proof. We first study the probability of reporting each heavy
hitter (say x). Recall that the estimate of x at each detector is
at least φ

dS (see Section IV-B). If all d detectors report flow
x to the controller, flow x must be reported as a heavy hitter
since its added estimate is at least d × φ

dS = φS. Such a
probability is at least (1− δ)d by Theorem 2.

We next study the probability of reporting a non-heavy hitter
(say y). It happens if at least one detector reports flow y to
the controller. If S(y) ≤ d

q (φ − ε
2 )S, the sum of flow y at

each detector is at most 1
q (φ − ε

2 )S. From Theorem 2, the
probability that a detector reports flow y is at most δ. Thus, it
is falsely reported as a heavy hitter by the controller with a
probability at most 1− (1− δ)d.

Theorem 5. The controller reports every heavy changer with
a probability at least (1− δ)d, and falsely reports a non-heavy
changer with change no more than d

q (φD − ε(S1 + S2)) with
a probability at most 1− (1− δ)2d.

Proof. It is similar to that in Theorem 4 and omitted.

E. Comparison with State-of-the-art Invertible Sketches

We present a comparative analysis on MV-Sketch and state-
of-the-art invertible sketches, including Count-Min-Heap [11],
LD-Sketch [18], Deltoid [13], and Fast Sketch [24]. Here, we
focus on heavy hitter detection in the interest of space. Table I
shows the false negative probability, and the space and time
complexities, in terms of ε, δ, n, and H (the maximum number
of heavy hitters in an epoch).

We first study the false negative probability (i.e, the max-
imum probability of not reporting a heavy hitter); we study
other accuracy metrics in Section V. Both Count-Min-Heap
and LD-Sketch guarantee zero false negatives as they are
configured to keep all heavy hitters in extra structures, while
MV-Sketch can miss a heavy hitter with a probability at most δ.
Nevertheless, MV-Sketch achieves almost zero false negatives
in our evaluation based on real traces (see Section V).

Regarding the space complexity, all sketches have a log n
term. However, it refers to log n bits (i.e., the key length) in
Count-Min-Heap, LD-Sketch, and MV-Sketch, while it refers
to log n integer counters in Deltoid and Fast Sketch.

Regarding the (per-packet) update time complexity, Count-
Min-Heap updates the sketch (O(log 1

δ ) time) and accesses
its heap if the packet is from a heavy flow (O(logH) time),
and its update time increases with H . Both Deltoid and Fast
Sketch have high time complexities, which increase with the
key length log n. Both MV-Sketch and LD-Sketch have the
same update time complexities, yet LD-Sketch may need to
expand its associative arrays on-the-fly and this decreases the
overall throughput from our evaluation (see Section V).

We also present the detection time complexity. However,
our evaluation shows that the detection time of recovering all
heavy flows is very small (within milliseconds) for all sketches
shown in Table I.

V. TRACE-DRIVEN EVALUATION

We show via trace-driven evaluation that MV-Sketch achieves
(i) high accuracy in heavy flow detection with small and
static memory space, (ii) high processing speed, and (iii) high
accuracy in distributed detection, compared to state-of-the-art
invertible sketches. We also show how SIMD instructions can
further boost the update performance of MV-Sketch.

A. Setup

Testbed. We conduct our evaluation on a server equipped with
an eight-core Intel Xeon E5-1630 3.70GHz CPU and 16GB
RAM. The CPU has 64KB of L1 cache per core, 256KB of L2
cache per core, and 10MB of shared L3 cache. The server runs
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Fig. 2. Experiment 1 (Accuracy for heavy hitter detection).

Ubuntu 14.04.5. To exclude the I/O overhead on performance,
we load all datasets into memory prior to all experiments.

Dataset. We use CAIDA’s anonymized Internet traces [9]
captured on an OC-192 backbone link in April 2016. The
original traces are one hour long, and we focus on the first five
minutes of the traces in our evaluation. We divide the traces
into five one-minute epochs and obtain the average results. We
measure IPv4 packets only. Each epoch contains 29M packets,
1M flows, and 6M unique IPv4 addresses on average.

Methodology. We take the source/destination address pairs as
flow keys (64 bits long). For evaluation purposes, we generate
the ground truths by finding S and D, and hence the true heavy
flows, for different epochs. We implement hash functions using
MurmurHash [2] in all sketches.

We compare MV-Sketch (MV) with state-of-the-art invertible
sketches, including Count-Min-Heap (CMH) [11], LD-Sketch
(LD) [18], Deltoid (DEL) [13], and Fast Sketch (FAST) [24].

We consider various memory sizes for each sketch in our
evaluation. We fix r = 4 and vary w according to the specified
memory size. By default, we choose the threshold that keeps
the number of heavy flows detected in each epoch as 80 on
average. For CMH, we allocate an extra 4KB of memory for
its heap data structure to store heavy flows. For LD, since it
dynamically expands the associative arrays of its buckets (see
Section II-B), we adjust its expansion parameter so that it has
comparable memory size to other sketches.

Metrics. We consider the following metrics.

• Precision: fraction of true heavy flows reported over all
reported flows;

• Recall: fraction of true heavy flows reported over all true
heavy flows;

• F1-score: 2×precision×recall
precision+recall ;

• Relative error: 1
|R|

∑
x,x∈R

|S(x)−Ŝ(x)|
S(x) , where R is the set

of true heavy flows reported; and
• Update throughput: number of packets processed per second

(in units of pkts/s).
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Fig. 3. Experiment 2 (Accuracy for heavy changer detection).

B. Results

Experiment 1 (Accuracy for heavy hitter detection). Fig-
ure 2 compares the accuracy of MV-Sketch with that of other
sketches in heavy hitter detection. Both DEL and FAST have
precision and recall near zero when the amount of memory is
512KB or less, as they need more memory to recover all heavy
hitters. Both CMH and LD have high accuracy, except when
the memory size is only 64KB, as they do not have sufficient
memory to keep all heavy hitters. Overall, MV-Sketch achieves
high accuracy; for example, its relative error is on average
55.8% and 87.2% less than those of LD and CMH, respectively.

Experiment 2 (Accuracy for heavy changer detection).
Figure 3 compares the accuracy of MV-Sketch with that of
other sketches in heavy changer detection. Both DEL and
FAST again have almost zero precision and recall when the
memory size is 512KB or less. We see that CMH has the
highest F1 score and smallest relative error among all sketches,
yet its recall is below one for almost all memory sizes. On
the other hand, MV-Sketch maintains a recall of one except
when the memory size is 64KB, but its precision is low when
the memory size is 256KB or less. The reason is that MV-
Sketch uses the estimated maximum change of a flow for
heavy changer detection, thereby having fewer false negatives
but more false positives; we view this as a design trade-off.
MV-Sketch achieves both higher precision and recall than LD
when the memory size is 128KB or more.

Experiment 3 (Update throughput). We now measure the
update throughput of all sketches in different settings. We
present averaged results over 10 runs. We omit the error bars
in our plots as the variances across runs are negligible.

Figure 4(a) shows the update throughput of various sketches
in heavy hitter detection. MV-Sketch achieves more than
3× throughput over LD, DEL, and FAST, and 24% higher
throughput than CMH when the memory size is 64KB. Note
that MV-Sketch (and other sketches as well) sees a throughput
drop as the memory size increases, since it cannot be entirely
put in cache and the memory access latency increases. The
throughput of CMH is much lower than MV-Sketch, especially
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Fig. 4. Experiment 3 (Update throughput).

when the memory size is 128KB or less, as it sees many false
positives and incurs memory access overhead in its heap.

Figure 4(b) shows the update throughput of various sketches
in heavy changer detection. MV-Sketch has the highest through-
put, which is 1.34–2.05× and 2.98–3.38× over CMH and other
sketches, respectively. Note that CMH has lower throughput
than in Figure 4(a) although we keep the same number (i.e.,
80) of heavy flows in both cases. The reason is that compared
to heavy hitter detection, CMH needs to keep more candidates
in the heap to guarantee that all heavy changers can be found,
thereby incurring higher memory access overhead.

Figure 4(c) shows the impact of the fractional threshold φ on
the update throughput. Here, we focus on heavy hitter detection
and fix the memory size as 64KB. MV-Sketch maintains high
and stable throughput (above 9.8M pkts/s) regardless of the
threshold value. CMH has slower throughput for smaller φ
(i.e., more heavy hitters to be detected). For example, when
φ = 0.0005, the throughput of CMH is 3.7M pkts/s only. The
reason is that the overhead of maintaining the heap increases
with the number of heavy flows being tracked.

Figure 4(d) shows the impact of the key length on the update
throughput, by setting the flow keys as source addresses (32
bits), source/destination address pairs (64 bits), and 5-tuples
(104 bits). We again focus on heavy hitter detection and fix the
memory size as 64KB. As the key length increases from 32
bits to 104 bits, the throughput drops of MV-Sketch, CMH, and
LD are 15-21%, while those of DEL and FAST are 55-80%.
The reason is that the numbers of counters in DEL and FAST
increase with the key length, thereby incurring much higher
memory access overhead.

Experiment 4 (Accuracy for distributed detection). Figure 5
shows the precision and recall for distributed heavy flow
detection, in which we set d = 3 and q = 5. We observe
similar results as in Experiments 1 and 2. Note that we also
conduct experiments with different combinations of different
settings of d and q, and the results show similar trends.

Experiment 5 (Performance optimizations of MV-Sketch).
We make a case that MV-Sketch can leverage SIMD instructions
to process multiple data units in parallel and achieve further
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performance gains. Such performance optimizations enable
MV-Sketch to address the need of fast network measurement
in software packet processing [17], [23], [25].

Here, we optimize the performance of the Update operation
(Algorithm 1). Specifically, we divide a hash value into r
parts (where r = 4 in our case). We use SIMD instructions to
compute the bucket indices of all r rows, load the r candidate
heavy flow keys to a register array, and compare the flow key
with the r candidate heavy flow keys in parallel. Based on the
comparison results, we update the buckets (see Algorithm 1).
For 64-bit keys, we use the AVX2 instruction set to manipulate
256 bits (i.e., four 64-bit keys) in parallel.

Figure 6 compares the original and optimized implemen-
tations of MV-Sketch. The optimized version achieves 75%
higher throughput than the original version on average. Its
throughput is above 14.88M pkts/s in most cases, implying
that it can match the 10Gb/s line rate (see Section I).

VI. RELATED WORK

Invertible sketches. In Section II-B, we review several invert-
ible sketches for heavy flow detection and their limitations.
Another related work extends the Bloom filter [6] with
invertibility [14], [16]. In particular, the Invertible Bloom
Lookup Table (IBLT) [16] tracks three variables in each bucket:
the number of keys, the sum of keys, and the sum of values
for all keys hashed to the bucket. To recover all hashed keys, it
iteratively recovers from the buckets with only one hashed key
and deletes the hashed key of all its associated buckets (so that
some buckets now have one hashed key remaining). FlowRadar
[23] builds on IBLT for heavy flow detection. However, IBLT



is sensitive to hash collisions: if multiple keys are hashed to
the same bucket, it fails to recover the keys in the bucket.

A closely related work to ours is AMON [20], which applies
MJRTY in heavy hitter detection. However, AMON and MV-
Sketch have different designs: AMON splits a packet stream
into multiple sub-streams and tracks the candidate heavy flow
for each sub-stream using MJRTY, while MV-Sketch maps
each packet to the buckets in different rows in a sketch data
structure. MV-Sketch addresses the following issues that are
not considered by AMON: (i) providing theoretical guarantees
on the trade-offs across memory usage, update/detection
performance, and detection accuracy; and (ii) addressing heavy
changer detection and distributed detection.

Sketch-based network-wide measurement. Recent studies
[17], [19], [23], [25], [27], [31], [32] propose sketch-based
network-wide measurement systems for general measurement
tasks, including heavy flow detection. Such systems leverage a
centralized control plane to analyze measurement results from
multiple sketches in the data plane. Our work focuses on a
compact invertible sketch design that targets both heavy hitter
and heavy changer detection.

Counter-based algorithms. Some approaches (e.g., [4], [5],
[15], [21], [26], [30]) track the most frequent flows in counter-
based data structures (e.g., heaps and associative arrays), which
dynamically admit or evict flows based on estimated flow sizes.
They target heavy hitter detection, yet how they work in heavy
changer detection and distributed detection remains unexplored.

VII. CONCLUSION

MV-Sketch is an invertible sketch designed for fast and
accurate heavy flow detection. It builds on the majority vote
algorithm to enhance memory management in two aspects:
(i) small and static memory allocation, and (ii) lightweight
memory access in both update and detection operations. It
can also be generalized for distributed detection. Trace-driven
evaluation demonstrates the throughput and accuracy gains of
MV-Sketch. We finally show how the update performance of
MV-Sketch can be boosted via SIMD instructions.
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