
Analysis and Construction of Functional Regenerating Codes

with Uncoded Repair for Distributed Storage Systems

Yuchong Hu†, Patrick P. C. Lee‡, and Kenneth W. Shum†

†Institute of Network Coding, The Chinese University of Hong Kong
‡Department of Computer Science and Engineering, The Chinese University of Hong Kong

{ychu,wkshum}@inc.cuhk.edu.hk, pclee@cse.cuhk.edu.hk

Abstract—Modern distributed storage systems apply redun-
dancy coding techniques to stored data. One form of redundancy
is based on regenerating codes, which can minimize the repair
bandwidth, i.e., the amount of data transferred when repairing a
failed storage node. Existing regenerating codes mainly require
surviving storage nodes encode data during repair. In this paper,
we study functional minimum storage regenerating (FMSR) codes,
which enable uncoded repair without the encoding requirement in
surviving nodes, while preserving the minimum repair bandwidth
guarantees and also minimizing disk reads. Under double-fault
tolerance settings, we formally prove the existence of FMSR
codes, and provide a deterministic FMSR code construction
that can significantly speed up the repair process. We further
implement and evaluate our deterministic FMSR codes to show
the benefits. Our work is built atop a practical cloud storage
system that implements FMSR codes, and we provide theoretical
validation to justify the practicality of FMSR codes.

I. INTRODUCTION

We have witnessed the wide deployment of storage systems

in Internet-wide distributed settings, such as peer-to-peer stor-

age (e.g., [14], [2], [5], [27]) and cloud storage (e.g., GFS [8]

and Azure [4]), in which data is striped over multiple storage

nodes in a networked environment. For data availability, a

storage system must keep user data for a long period of time

and allow users to access their data on demand. However,

storage nodes are often deployed in commodity machines and

prone to failures [8]. It is thus important for a storage system

to ensure data availability in practical deployment.

One way to ensure data availability is to store redundant

data over multiple storage nodes. Redundancy can be achieved

via maximum distance separable (MDS) codes such as Reed-

Solomon codes [18], whose idea is that even if any subset

of nodes fail, the original data remains accessible from the

remaining surviving nodes. In general, Reed-Solomon codes

have significantly less redundancy overhead than simple repli-

cation of data under the same fault tolerance requirement.

When a storage node fails, it is necessary to recover the

lost data of the failed node to preserve the required level of

fault tolerance. Regenerating codes [7] have been proposed

to minimize the repair bandwidth, which defines the amount

of data traffic transferred in the repair process. Regenerating

codes are built on network coding [1], such that to repair a

failed node, existing surviving nodes encode their own stored

data and send the encoded data to the new node, which then

reconstructs the lost data. It is shown that regenerating codes

use less repair bandwidth than Reed-Solomon codes, given the

same storage overhead and fault tolerance requirements.

However, there are challenges of deploying regenerating

codes in practice. First, most regenerating code constructions

(e.g., [29], [6], [3], [23], [17], [21]) require storage nodes to

encode stored data during repair. This may not be feasible

for some storage devices that merely provide the basic I/O

functionalities without any encoding capabilities. More impor-

tantly, even if storage nodes have encoding capabilities, they

must first read all available data from disk and combine the

data into encoded form before transmitting encoded data for

repair. This leads to high disk reads, which may degrade the

actual repair performance.

On the applied side, a cloud storage system NCCloud [10]

proposes and implements functional minimum storage regen-

erating (FMSR) codes, which have several key properties:

(i) FMSR codes preserve the fault tolerance of MDS codes

and have the same redundancy overhead as MDS codes for a

given fault tolerance; (ii) FMSR codes preserve the benefits of

network coding as they minimize the repair bandwidth (e.g.,

the repair bandwidth saving compared to RAID-6 codes is

up to 50% [10]); and (iii) FMSR codes use uncoded repair

without requiring encoding of surviving nodes during repair,

and this can minimize disk reads as the amount of data read

from disk is the same as that being transferred. FMSR codes

are designed as non-systematic codes as they do not keep

the original uncoded data as their systematic counterparts, but

instead store only linear combinations of original data called

parity chunks. Each round of repair regenerates new parity

chunks for the new node and ensures that the fault tolerance

level is maintained. A trade-off of FMSR codes is that the

whole encoded file must be decoded first if parts of a file are

accessed. Nevertheless, FMSR codes are suited to long-term

archival applications, since data backups are rarely read and

it is common to restore the whole file rather than file parts.

While FMSR codes have been experimented on real-life

cloud testbeds, there remain open issues regarding whether

FMSR codes exist and how they are deterministically con-

structed. In particular, given that new parity chunks are re-

generated in each round of repair, we need to ensure that

such chunks preserve the fault tolerance of MDS codes after

multiple rounds of repair. Thus, the key motivation of this

work is to provide theoretical foundations for the practicality

of FMSR codes.



In this paper, we conduct formal analysis on the existence

of FMSR codes and provide a deterministic construction for

FMSR codes, with an objective of theoretically validating the

practicality of FMSR codes in distributed storage systems.

We focus on the double-fault tolerance setting (i.e., at most

two node failures can be tolerated) as in conventional RAID-6

codes [12]. Note that double-fault tolerance is by default used

in practical cloud storage systems such as GFS [8] and Azure

[4]. Our contributions are three-fold.

• We formally prove the existence of FMSR codes with

uncoded repair, such that the fault tolerance of MDS

codes is preserved after any number of rounds of repair.

• We provide a deterministic FMSR code construction,

such that the repair can deterministically specify (i) the

chunks to be read from surviving nodes and (ii) the

encoding coefficients used to regenerate new chunks. This

significantly speeds up the repair time compared to the

random FMSR code construction used in NCCloud [10].

• We build and evaluate our deterministic FMSR codes, and

show that the chunk selection and regeneration during

repair can be finished within less than one second.

The rest of the paper proceeds as follows. Section II reviews

related work. Section III characterizes the system model of

FMSR codes and formulates the problems. Section IV formally

proves the existence of FMSR codes. Section V provides a

deterministic FMSR code construction. Section VI presents

evaluation results. Section VII concludes the paper.

II. BACKGROUND AND RELATED WORK

Dimakis et al. [7] first propose regenerating codes based

on network coding [1] for distributed storage systems. It

is shown that when repairing a single failed storage node,

regenerating codes use less repair bandwidth than conventional

Reed-Solomon codes [18] by transmitting encoded data from

the surviving nodes to a new node. Also, [7] gives an optimal

tradeoff spectrum between storage cost and repair bandwidth

and identifies two extreme points. One extreme point refers

to the minimum storage regenerating (MSR) codes, in which

each node stores the minimum amount of data as in Reed-

Solomon codes. Another extreme point is the minimum band-

width regenerating (MBR) codes, which allow each node to

store more data than in conventional Reed-Solomon codes to

minimize the repair bandwidth. In this work, we focus on the

MSR codes, so that we can fairly compare with conventional

Reed-Solomon codes under the same storage overhead.

As shown in [7], [28], [11], the MSR point is achievable

under functional-repair, which means that the repaired data

may not be the same as the lost data while still maintaining the

same fault tolerance level. However, the corresponding coding

schemes perform random linear coding in surviving nodes and

do not provide explicit construction. Then there are extensive

studies (e.g., [29], [6], [3], [23], [17], [21]) on the exact-

repair MSR (EMSR) codes, in which the data reconstructed

is identical to the lost data.

Most EMSR codes require storage nodes encode stored

data during repair. Authors in [19], [20] propose regenerating

codes that eliminate encoding of storage nodes during repair.

We call it uncoded repair [19], or repair-by-transfer [20].

However, their constructions belong to MBR codes. EMSR

code constructions based on uncoded repair have been pro-

posed in [24], [26]. The EMSR code in [24] has the uncoded

repair property for systematic nodes that store original data

chunks but not for the parity nodes that store encoded chunks,

while that in [26] has the uncoded repair property for both

systematic and parity nodes. However, the code construction

in [26] requires the total number of data chunks being stored

increase exponentially with the number of systematic nodes.

This increases the number of chunk accesses, and limits its

application in practical storage systems.

Several studies (e.g., [25], [30], [13]) propose uncoded re-

pair schemes that minimize disk reads for XOR-based erasure

codes. Their solutions are built on existing code constructions.

In general, they do not achieve the global minimum point.

A recent applied work [10] builds a network-coding-based

cloud storage system called NCCloud. The authors build and

evaluate functional MSR (FMSR) codes, which minimize the

repair bandwidth using uncoded repair. Later in [22], the

correctness of FMSR codes is analyzed for a special case of

two systematic nodes. In this paper, we generalize the analysis,

and also provide a deterministic code construction, for more

systematic nodes.

III. SYSTEM MODEL FOR FMSR CODES

A. Basics of FMSR Codes

We first describe the basics of FMSR codes, which are

used by NCCloud [10] to store files over multiple independent

storage nodes. Each node could be a disk device, a storage

server, or a cloud storage provider. NCCloud motivates using

FMSR codes to provide fault-tolerant, long-term archival stor-

age using multiple clouds, so as to save the monetary cost in

migrating data between cloud providers during repair. FMSR

codes have three design properties, which we elaborate below.

Property 1: FMSR codes preserve the fault tolerance and

storage efficiency of MDS codes. MDS codes are defined

by two parameters n and k (k < n). An (n, k)-MDS code

divides a file of size M into k pieces of size M/k each, and

encodes them into n pieces such that any k out of n encoded

pieces suffice to recover the original file. By storing the n
encoded pieces over n nodes, a storage system can tolerate

at most n − k node failures. An example of MDS codes is

Reed-Solomon codes [18].

Figure 1 shows the FMSR codes for a special case n = 4
and k = 2. To store a file of size M units, an (n, k)-FMSR

code splits the file evenly into k(n − k) native chunks, say

F1, F2, . . . , Fk(n−k), and encodes them into n(n − k) parity

chunks of size M
k(n−k) each. Each lth parity chunk is formed

by a linear combination of the k(n − k) native chunks, i.e.,
∑k(n−k)

m=1 αl,mFm for some encoding coefficients αl,m. All

encoding coefficients and arithmetic are operated over a finite

field Fq of size q. We store the n(n − k) parity chunks on

n nodes, each keeping n − k parity chunks. Note that native

chunks need not be stored. The original file can be restored



node 1

node 2

node 3

node 4

File of size M

(repaired node)
node 1

NCCloud

native

chunks

P1,1

P1,2

P2,1

P3,1

P4,1

P’1,1

P’1,2

P’1,1

P’1,2

P2,1

P2,2

P3,1

P3,2

P4,1

P4,2

F1

F2

F3

F4

Fig. 1. FMSR codes with n = 4 and k = 2.

by decoding k(n − k) parity chunks of any k nodes, where

decoding can be done by inverting an encoding matrix [16].

Let Pi,j be the jth parity chunk stored on node i, where

i = 1, 2, . . . , n and j = 1, . . . , n− k.

Property 2: FMSR codes minimize the repair bandwidth.

If a node fails, we must reconstruct the lost data of the failed

node to preserve fault tolerance. The conventional repair of

Reed-Solomon codes reads k pieces from any k surviving

nodes to restore the original file (by the design of MDS codes).

Clearly, the amount of data read is the file size M . FMSR

codes seek to read less than M units of data to reconstruct

the lost data. We define repair bandwidth as the amount of

data read from surviving nodes during repair. FMSR codes are

designed to match the minimum storage point of regenerating

codes when repairing a node failure [7], while having each

node store M/k units of data as in Reed-Solomon codes.

To repair a failed node in FMSR codes, each surviving node

transfers data of size M
k(n−k) units as in [7], or equivalently,

a size of one parity chunk. In a special case of n = 4 and

k = 2 (see Figure 1), the repair bandwidth is 0.75M , i.e.,

25% less than that of conventional repair of Reed-Solomon

codes. In general, the repair bandwidth of FMSR codes for

k = n − 2 is
M(n−1)
2(n−2) , and its saving compared to RAID-6

codes [12] (which are also double-fault tolerant) is up to 50%

if n is large [10].

Property 3: FMSR codes use uncoded repair. During

repair, each surviving node under FMSR codes transfers one

parity chunk, without any encoding operations. This also

minimizes the amount of data read from disk. Suppose we

have a failed node l (e.g., l = 1 in Figure 1). Then we read

one parity chunk denoted by Pi,f(i) from each surviving node

i, where 1 ≤ i ≤ n and i 6= l, and f(.) denotes some function

that specifies which chunk to be read from a surviving node.

Then we encode the n − 1 parity chunks into n − k linearly

independent parity chunks P ′
l,1, P

′
l,2, . . . P

′
l,n−k, which will all

be stored in a new node, which becomes the new node l (called

the repaired node). Each new parity chunk is generated by:

P ′
l,j =

n
∑

i=1,i6=l

γi,jPi,f(i), for j = 1, 2, . . . n− k, (1)

where γi,j denotes some coefficient for encoding the collected

parity chunks into new chunks. In Section V, we formally

specify how we choose f(.) and γi,j .

B. Formulation of Repair Problem in FMSR Codes

We formulate the repair problem in FMSR codes based on

[10]. Note that [10] only gives a high-level description, without

formal definitions and theoretical validations. Here, we provide

a theoretical framework that formalizes the idea of [10].

FMSR codes satisfy the MDS property, as described below.

Definition 1: MDS property. For any subset of k out of n
nodes, if the k(n − k) parity chunks from the k nodes can

be decoded to the k(n− k) native chunks of the original file,

then the MDS property is satisfied. �

Definition 2: Decodability. We say that a collection of

k(n−k) parity chunks is decodable if the parity chunks can be

decoded to the original file, which can be verified by checking

if the associated k(n− k) vectors of encoding coefficients are

linearly independent. Note that these k(n−k) chunks may be

scattered among n nodes, and need not reside in k nodes. �

Note that FMSR codes operate on parity chunks. For

simplicity, when we use the term “chunk” in our discussion,

we actually refer to a parity chunk.

Since FMSR codes regenerate different chunks in each

repair, one design challenge of FMSR codes is to preserve the

MDS property after multiple rounds of repairs. We illustrate

with an example in Figure 1. Suppose that node 1 fails, and we

construct new chunks P ′
1,1 and P ′

1,2 using P2,1, P3,1, and P4,1

as in Figure 1. Next, suppose that node 2 fails. If we construct

new chunks P ′
2,1 and P ′

2,2 using P ′
1,1, P3,1, and P4,1, then in

the repaired nodes 1 and 2, the chunks {P ′
1,1, P

′
1,2, P

′
2,1, P

′
2,2}

are the linear combinations of only three chunks P2,1, P3,1,

and P4,1 instead of four. So the chunks in the repaired nodes 1

and 2 are not decodable, and the MDS property is lost.

Thus, to preserve the MDS property over multiple rounds

of repair, NCCloud uses a specific implementation of FMSR

codes based on random chunk selection, which we call

random FMSR codes. NCCloud seeks to completely avoid

linear dependence in chunk regeneration and hence losing the

MDS property. Specifically, NCCloud performs the rth (where

r ≥ 1) round of repair as follows:

(i) It randomly selects a chunk from each surviving node

(i.e., f(.) returns a random value), and generates random

encoding coefficients to encode the selected chunks into

new chunks (i.e., γi,j’s are randomly chosen).

(ii) It then performs two-phase checking. In the first phase,

it checks if the MDS property is satisfied with the new

chunks generated (i.e., the chunks of any k out of n
nodes remain decodable) after the current rth round of

repair. In the second phase, it further checks if the MDS

property is still satisfied after the (r + 1)th round of

repair for any possible node failure, and this property is

called the repair MDS property.

(iii) If both phases are passed, then NCCloud writes the

generated chunks to a new node; otherwise, it repeats (i)

and (ii) with another set of random chunks and random

encoding coefficients.

We now formally define the repair MDS property.

Definition 3: Repair-based collections (RBCs). An RBC of

the rth round of repair is a collection of k(n−k) chunks that



can be obtained after the rth round of repair by the following

procedure. (Step 1) We select any n−1 out of n nodes. (Step

2) We select k−1 out of the n−1 nodes found in Step 1 and

collect n − k chunks from each selected node. (Step 3) We

collect one chunk from each of the non-selected n− k nodes.

Clearly, the number of collected chunks is (k − 1)(n − k) +
(n− k) = k(n− k). �

We can easily verify that there are
(

n
n−1

)(

n−1
k−1

)

(n− k)n−k

different RBCs. Intuitively, an RBC refers to a collection of

chunks of k nodes after the (r+ 1)th round of repair for any

possible node failure. For instance, after repairing node 1 in

Figure 1, one example RBC is R = {P ′
1,1, P3,1, P3,2, P4,1}.

This means that we assume: node 2 is the failed node in the

next round of repair; the failed node 2 will be repaired by

chunks P ′
1,1, P3,1 (or P3,2), and P4,1; and we consider if the

chunks of node 2 (after repair) and node 3 are decodable. Note

that the chunks of node 2 and node 3 are linear combinations

of this RBC R.

We assume that when a file is stored, it is first encoded using

Reed-Solomon codes, such that any k(n− k) out of n(n− k)
(parity) chunks are decodable. Note that these k(n−k) chunks

may reside in more than k nodes (e.g., P1,1, P2,1, P3,1, P4,1

in Figure 1). If no repair is carried out, then we ensure that

every possible RBC is decodable.

However, after repairing a node failure, there exist some

provably non-decodable RBCs. For example, in Figure 1,

the RBCs {P ′
1,1, P

′
1,2, P2,1, P3,1}, {P ′

1,1, P
′
1,2, P2,1, P4,1}, and

{P ′
1,1, P

′
1,2, P3,1, P4,1} are non-decodable, since P ′

1,1 and P ′
1,2

are linear combinations of P2,1, P3,1, P4,1. Note that these

non-decodable RBCs all contain the chunks of the repaired

node 1. Each of these RBCs is a linear combination of chunks

P2,1, P3,1, P4,1 (i.e., less than four chunks) in the repair.

Accordingly, we define the following:

Definition 4: Linear Dependent Collection (LDC). Suppose

an RBC of the rth round of repair contains the n−k chunks of

the repaired node that are collected in Step 2 (see Definition 3).

If and only if every chunk of this RBC is a linear combination

of a set of less than k(n−k) chunks of the rth round of repair,

we call it an LDC of the rth round of repair. �

For example, in Figure 1, the RBCs {P ′
1,1, P

′
1,2, P2,1, P3,1},

{P ′
1,1, P

′
1,2, P2,1, P4,1}, and {P ′

1,1, P
′
1,2, P3,1, P4,1} are the

LDCs of the current round of repair.

Definition 5: Repair MDS (rMDS) property. If all RBCs,

after excluding the LDCs, of the rth round of repair are

decodable, then we say the rMDS property is satisfied. It

means that if every RBC that is a linear combination of exactly

k(n − k) chunks is always decodable, then we say that the

rMDS property is satisfied. �

Definition 6: (n,k)-FMSR codes. An original file is stored

in n nodes in the form of n(n− k) chunks. If these n(n− k)
chunks satisfy both the MDS and rMDS properties, then we

say this file is FMSR-encoded.

Summary. Authors of NCCloud [10] show via simulations

that by checking both the MDS and rMDS properties in each

round of repair, FMSR codes can preserve the MDS property

after hundreds of rounds of repair. Also, if we check only

the MDS property but not the rMDS property, then after some

rounds of repair we cannot regenerate the chunks that preserve

the MDS property within a fixed number of iterations (this

is called the bad repair [10]). On the other hand, there is

no formal theoretical analysis showing the need of two-phase

checking to preserve the MDS property after any number of

rounds of repair. Also, random FSMR codes repeat two-phase

checking until the valid chunks are regenerated. This could

involve many iterations and significantly increase the repair

time overhead (see Section VI). In the following sections,

we formally provide the theoretical validation of existence of

FMSR codes and the design of deterministic FMSR codes.

IV. EXISTENCE

We now prove the existence of FMSR codes. In this work,

we focus on k = n−2, implying that FMSR codes are double-

fault tolerant as conventional RAID-6 codes [12]. Double-fault

tolerance has been assumed in practical cloud storage systems

(e.g., GFS [8] and Azure [4]). Our goal is to show that FMSR

codes always maintain double-fault tolerance (i.e., the MDS

property is always satisfied with k = n− 2) after any number

of rounds of uncoded repair, while the repair bandwidth is

kept at the MSR point.

We first give three lemmas. Lemmas 1 and 2 provide a

guideline of how to choose n−1 chunks from n−1 surviving

nodes (one chunk from each node) to repair a failed node.

Lemma 3 implies that if the finite field size is large enough,

then we can always find a set of encoding coefficients to

regenerate new chunks for a repaired node so as to maintain

the MDS and rMDS properties after each round of repair.

Finally, we prove Theorem 1 for the existence of FMSR codes.

Lemma 1: In repair, let F be the set of n − 1 chunks

selected from n − 1 surviving nodes to regenerate the n − k
chunks of the repaired node. Also, let Q be the set of chunks

collected in Step 3 of RBC construction (see Definition 3). If

an RBC (denoted by R) containing the n − k chunks of the

repaired node is an LDC, then F and Q must have two or

more common chunks.

Proof: Without loss of generality, let node 1 be the failed

node. Let P be the set of chunks collected in Step 2 of

Definition 3 excluding the n−k chunks of the repaired node 1.

Thus, R = {P ′
1,1, . . . , P

′
1,n−k} ∪P ∪Q. As P ′

1,1, . . . , P
′
1,n−k

are obtained by linearly combining the chunks in F , we infer

that R contains linear combinations of chunks in F ∪P ∪Q.

Since F selects one chunk from each of n − 1 surviving

nodes and P has all the chunks from k − 2 surviving nodes,

F and P have k − 2 identical chunks, i.e., |F ∩ P| = k − 2.

According to the given conditions, we can easily have the

following equalities: |F| = n − 1, |P| = (k − 2)(n − k),
|Q| = n − k, |P ∩ Q| = |F ∩ P ∩ Q| = 0. Finally we can

have |F ∪ P ∪Q| = |F|+ |P|+ |Q| − |F ∩ P| − |F ∩ Q| −
|P ∩ Q|+ |F ∩ P ∩ Q| = k(n− k) + 1− |F ∩ Q|. Since R
is an LDC, |F ∪ P ∪ Q| < k(n − k). Hence, |F ∩ Q| ≥ 2.

Lemma 1 holds.

Lemma 2: Suppose that the rMDS property is satisfied after

every rth round of repair. Then for any n− 1 out of n nodes,



we can always select one chunk from these n− 1 nodes (i.e.,

a total of n − 1 chunks) such that any RBC containing the

selected n− 1 chunks is decodable.

Proof: Without loss of generality, suppose that we con-

struct an RBC R by selecting the chunks from nodes 2, . . . , n
(see Step 1 of Definition 3), and that G be the set of n − 1
chunks selected from nodes 2, . . . , n (one chunk from each

nodes). We prove the existence of G such that if R contains

G (i.e., G ⊂ R), then R is decodable.

If node 1 is the repaired node in the rth round of repair,

then R is never an LDC (by Definition 4). Since the rMDS

property is satisfied by our assumption, R is decodable (by

Definition 5).

If node 1 is not the repaired node in the rth round of repair,

then without loss of generality, let node 2 be the repaired

node. By the FMSR design, the chunks of node 2 are linearly

combined by one chunk in each of nodes 1, 3, . . . , n. We

denote these chunks by F = {P1,f(1), P3,f(3), . . . , Pn,f(n)}.

Since each node has n−k > 1 chunks, we can construct G =
P2,g(2), . . . , Pn,g(n)} such that g(i) 6= f(i) for i = 3, . . . , n
(while g(2) can be randomly picked). If R contains G, then

in Step 3 of RBC construction (see Definition 3), at least one

chunk must be selected from G. However, G has no identical

chunk with F . By Lemma 1, R is not an LDC. Since the

rMDS property is satisfied, R is decodable.

Lemma 3: (Schwartz-Zippel Theorem) [15]. Consider a

multivariate non-zero polynomial h(x1, . . . , xt) of total degree

ρ over a finite field F. Let S be a finite subset of F, and

x̃1, . . . , x̃t be the values randomly selected from S. Then the

probability Pr[h(x̃1, . . . , x̃t) = 0] ≤ ρ
|S| .

Theorem 1: Consider a file encoded using FMSR codes

with k = n−2. In the rth (r ≥ 1) round of uncoded repair of

some failed node j, the lost chunks are reconstructed by the

random linear combination of n−1 chunks selected from n−1
surviving nodes (one chunk from each node). Then after the

repair, the reconstructed file still satisfies both the MDS and

rMDS properties with probability that can be driven arbitrarily

to 1 by increasing the field size of Fq .

Proof: We prove by induction on r. Initially, we use Reed-

Solomon codes to encode a file into n(n−k) = 2n chunks that

satisfy both the MDS and rMDS properties. Suppose that after

the rth round of repair, both the MDS and rMDS properties

are satisfied (this is our induction hypothesis).

Let Ur = {P1,1, P1,2; . . . ;Pk+2,1, Pk+2,2} be the current

set of chunks after the rth round of repair. In the (r + 1)th

round of repair, without loss of generality, let node 1 be the

failed node to repair. Since Ur satisfies the rMDS property,

we have the following corollary by Lemma 2.

Corollary. There exists a set of n − 1 chunks, de-

noted by F = {P2,f(2), . . . , Pk+2,f(k+2)}, selected from

nodes 2, . . . , n, such that any RBC containing F is decodable.

We use F to repair node 1. Suppose that the repaired node 1

has the new chunks {P ′
1,1, P

′
1,2}. Then:

P ′
1,j =

k+2
∑

i=2

γi,jPi,f(i), for j = 1, 2. (2)

Next we prove that we can always tune γi,j in Fq in such

a way that the set of chunks in the (r + 1)th round of repair

Ur+1 = {P ′
1,1, P

′
1,2; . . . ;Pk+2,1, Pk+2,2} still satisfies both

MDS and rMDS properties. The proof consists of two parts.

Part I: Ur+1 satisfies the MDS property. Since Ur satisfies

the MDS property, we only need to ensure that for any

k − 1 surviving nodes, say for any subset {s1, . . . , sk−1}
⊆ {2, . . . , n}, all the chunks of nodes s1, . . . , sk−1 and the

repaired node 1 are decodable. Without loss of generality, let

(s1, . . . , sk−1) = (2, . . . , k), and other cases are symmetric.

Let V = {P2,1, P2,2;. . . ;Pk,1, Pk,2;P
′
1,1, P

′
1,2} be the set

of chunks of nodes 1 to k. By Equation (2), each chunk

of V is a linear combination of a certain RBC, denoted by

R = {P2,1, P2,2; . . . ;Pk,1, Pk,2;Pk+1,f(k+1), Pk+2,f(k+2)}.

Mathematically, we express as:




















P2,1

P2,2

. . .
Pk,1

Pk,2

P ′
1,1

P ′
1,2





















= A×





















P2,1

P2,2

. . .
Pk,1

Pk,2

Pk+1,f(k+1)

Pk+2,f(k+2)





















,

where A is a k(n − k) × k(n − k) (i.e., 2k × 2k) encoding

matrix given by A =






















1, 0, · · · , 0, 0, 0, 0
0, 1, · · · , 0, 0, 0, 0

...
. . .

...
...

0, 0, · · · , 1, 0, 0, 0
0, 0, · · · , 0, 1, 0, 0

δ2,1γ2,1, δ2,2γ2,1, · · · , δk,1γk,1, δk,2γk,1, γk+1,1, γk+2,1

δ2,1γ2,2, δ2,2γ2,2, · · · , δk,1γk,2, δk,2γk,2, γk+1,2, γk+2,2























where δi,1 = 1 and δi,2 = 0 when f(i) = 1, and δi,1 = 0 and

δi,2 = 1 when f(i) = 2. Since R is an RBC containing F ,

it is decodable due to Lemma 2. In addition, the determinant

det(A) is a multivariate polynomial in terms of variables γi,j .

By Lemma 3, the value of det(A) is non-zero, with probability

driven to 1 if we increase the finite field size. Now since R is

decodable and A has a full rank, V is decodable. This implies

that Ur+1 satisfies the MDS property.

Part II: Ur+1 satisfies the rMDS property. By Defini-

tion 5, we need to prove that all the RBCs of Ur+1 except

the LDCs are decodable. By Definition 3, we consider two

cases of RBCs. Without loss of generality, we let node 1 be

the repaired node.

Case 1: The repaired node 1 is selected in Step 2. Suppose

in Step 1, an RBC selects any n− 2 = k surviving nodes, say

{s1, . . . , sk} ⊆ {2, . . . , n}. Then in Step 2, the RBC further

selects any subset of k − 2 nodes, say nodes s1, . . . , sk−2.

The RBC now contains all the chunks of node s1, . . . , sk−2

and the repaired node 1. Finally, in Step 3, the RBC collects

two chunks, denoted by Psk−1,g(sk−1) and Psk,g(sk) from

the remaining two nodes sk−1 and sk, respectively. Without

loss of generality, let (s1, . . . , sk−2) = (2, . . . , k − 1) and

(sk−1, sk) = (k, k + 1).



Denote the RBC by R1 = {P2,1, P2,2; . . . ;Pk−1,1, Pk−1,2;
P ′
1,1, P

′
1,2;Pk,g(k), Pk+1,g(k+1)}. In addition, by Equation (2),

the chunks of R1 are linear combinations of a set of

chunks denoted by X = {P2,1, P2,2; . . . ;Pk−1,1, Pk−1,2;
Pk,g(k), Pk,f(k);Pk+1,g(k+1), Pk+1,f(k+1);Pk+2,f(k+2)}.

Our goal is to show that if R1 is not an LDC, then it is

decodable. By Lemma 1, we know that if R1 is an LDC, then

there are at least two chunks selected in Step 3 that belong

to F = {P2,f(2), . . . , Pn,f(n)} (which are used to regenerate

chunks for node 1), or equivalently, g(k) = f(k) and g(k +
1) = f(k+1). Therefore, to prove that R1 except the LDCs is

decodable, it is equivalent to prove that R1 is decodable when

(a) g(k) 6= f(k) and g(k + 1) = f(k + 1), (b) g(k) = f(k)
and g(k+ 1) 6= f(k+ 1), or (c) g(k) 6= f(k) and g(k+ 1) 6=
f(k + 1).

First consider (a). We can reduce X to {P2,1, P2,2; . . . ;
Pk−1,1, Pk−1,2;Pk,1, Pk,2;Pk+1,f(k+1), Pk+2,f(k+2)}. The

above collection is an RBC containing F . By our corollary, the

collection is decodable. Therefore, R1 is linear combination

of a decodable collection. Then we can use the similar method

in Part I to prove that there always exists an assignment of

γi,j in a sufficiently large field such that R1 is decodable (by

Lemma 3). The proof of (b) is similar to that of (a) and is

thus omitted.

Lastly, let us consider (c). Now, X can be written

as {P2,1, P2,2; . . . ;Pk−1,1, Pk−1,2;Pk,1, Pk,2;Pk+1,1, Pk+1,2;
Pk+2,f(k+2)}. Define X = X − {Pk+2,fk+2

}. Note that the

MDS property of X is satisfied by induction hypothesis. Thus,

X is decodable, implying that Pk+2,f(k+2) can be seen as a

linear combination of X . Obviously, we can also say that X
is formed by linear combinations of X . Therefore, R1 is also

formed by linear combinations of the decodable collection X .

Based on the above argument, R1 is decodable.

Case 2: The repaired node 1 is selected in Step 3. Suppose

in Step 1, the RBC selects any n − 2 = k surviving nodes,

say {s1, . . . , sk} ⊆ {2, . . . , n}. Then in Step 2, the RBC

further selects any subset of k − 1 nodes, say s1, . . . , sk−1

to collects all the chunks of nodes s1, . . . , sk−1. Finally, in

Step 3, the RBC collects two chunks P ′
1,g(1) and Psk,g(sk) from

the repaired node 1 and the last selected node sk, respectively.

Without loss of generality, let (s1, . . . , sk−1) = (2, . . . , k) and

sk = k + 1.

Denote the RBC by R2 = {P2,1, P2,2; . . . ;Pk,1, Pk,2;
P ′
1,g(1), Pk+1,g(k+1)}. We need to show that if R2 is not an

LDC, it is decodable. Based on Lemma 1, there is no more

than one identical chunk between F and the RBC’s chunks

collected in Step 3, so R2 is never an LDC. We only need to

prove that every possible R2 is decodable.

By Equation (2), the chunks of R2 are linear combinations

of a set of chunks denoted by Y = {P2,1, P2,2; . . . ;Pk,1, Pk,2;
Pk+1,g(k+1), Pk+1,f(k+1);Pk+2,f(k+2)}. Suppose g(k + 1) 6=
f(k + 1). Define Y = Y − {Pk+1,g(k+1)}. Since Y is

an RBC containing F , by our corollary, Y is decodable.

Therefore, Pk+1,g(k+1) can be seen as a linear combination

of Y . Obviously, we can also say Y is a linear combination of

Y . Therefore, R2 is also linear combination of the decodable

collection Y . Similar to the above arguments, R2 is decodable.

If g(k+1) = f(k+1), the proof is similar and is thus omitted.

Combining Case 1 and Case 2, we deduce that all RBCs

excluding the LDCs are decodable. So Ur+1 satisfies the rMDS

property. Therefore, Theorem 1 concludes.

V. DETERMINISTIC FMSR CODES

In NCCloud [10], the repair operation under FMSR codes

is accomplished based on two random processes: (i) using

random chunk selection to read chunks from the surviving

nodes and (ii) applying random linear combinations of the

selected chunks to generate new chunks for the repaired node.

Section IV has proved the correctness of the random-based

repair operation by virtue of existence of FMSR codes. On

the other hand, a drawback of the random approach is that it

may need to try many iterations to generate the correct set of

chunks that satisfies both the MDS and rMDS properties.

In this section, we propose a deterministic repair scheme

under FMSR codes (k = n − 2), such that both the chunk

selection and linear combination operations are deterministic.

This enables us to significantly speed up the repair operation.

In our deterministic scheme, we specify which particular

chunk should be read from each surviving node in each

round of repair. We also derive the sufficient conditions on

which the encoding coefficients should satisfy. To design the

deterministic scheme, we first introduce an evolved repair

MDS property.

Definition 7: Evolved Repair MDS (erMDS) property. Let

k = n−2. For any k+1 out of n nodes, if we can always select

one specific chunk from each of the k+1 nodes such that any

RBC containing these selected k+1 chunks is decodable, then

we say the code scheme has the erMDS property. �

From Lemma 2, we can see that if the rMDS property is

satisfied, then the erMDS property is also satisfied. Thus, any

RBCs satisfying the rMDS property is a subset of the RBCs

satisfying the erMDS property. We use the erMDS property

to construct a deterministic FMSR code.

To construct deterministic FMSR codes for k = n − 2,

we describe how we store a file and how we trigger the rth

(r ≥ 1) round of repair for a node failure. The correctness of

our deterministic FMSR codes is proved in Appendix.

Storing a file. We divide a file into k(n − k) = 2k
equal-size native chunks, and encode them into n(n −
k) = 2(k + 2) parity chunks denoted by P1,1, P1,2; . . . ;
Pk+2,1, Pk+2,2 using Reed-Solomon codes, such that any 2k
out of 2(k + 2) chunks are decodable to the original file.

Each node i (where i = 1, 2, . . . , k + 2) stores two chunks

Pi,1 and Pi,2. Clearly, the generated parity chunks satisfy the

MDS property (see Definition 1), i.e., for any k out of n
nodes {s1, . . . , sk} ⊂ {1, . . . , k + 2}, the 2k parity chunks

{Ps1,1, Ps1,2; . . . ;Psk,1, Psk,2} are decodable. In addition, the

generated parity chunks also satisfy the erMDS property (see

Definition 7), i.e., for any k+1 nodes s1, . . . , sk+1, we can al-

ways select some specific chunks Ps1,f(s1), . . . , Psk+1,f(sk+1)

such that any RBC containing them is decodable. Here, we

need to find and record such k+1 specific chunks for any k+1



nodes. For illustrative purposes, we let f(si) = 1, where i =
1, 2, . . . , k+1, so we record the chunks {Ps1,1, . . . , Psk+1,1}.

The first round of repair. Suppose without loss of gener-

ality that node 1 fails and is then repaired by two steps.

Step 1: (Chunk selection). We select k+1 chunks P2,1, . . . ,
Pk+2,1 that are recorded when the file is stored.

Step 2: (Coefficient construction). For each selected chunk

Pi′,1 (i′ = 2, . . . , k + 2), we compute 2k coefficients λ
(i′)
i,j

(i = 2, . . . , k + 2, i 6= i′, j = 1, 2) which satisfy

Pi′,1 =

k+2
∑

i=2,i6=i′

2
∑

j=1

λ
(i′)
i,j Pi,j . (3)

Each parity chunk is a linear combination of k(n−k) = 2k
native chunks (see Section III). By equating the coefficients

that are multiplied with the 2k native chunks on both left and

right sides of Equation (3), we obtain 2k equations, which

allow us to solve for λ
(i′)
i,j .

Next we need to construct the coefficients γi,1 and γi,2
which satisfy the following inequalities (4), (5), and (6):

γi,1γj,2 6= γi,2γj,1, (4)

where i 6= j and i, j = 2, 3, . . . , k + 2;

γi,2 + γi′,2λ
(i′)
i,1 6= 0, (5)

where i 6= i′ and i, i′ ∈ {2, . . . , k + 2}; and

(γi,1 + γi′′,1λ
(i′′)
i,1 )(γi′,2 + γi′′,2λ

(i′′)
i′,1 ) 6=

(γi′,1 + γi′′,1λ
(i′′)
i′,1 )(γi,2 + γi′′,2λ

(i′′)
i,1 ),

(6)

where i, i′ and i′′ are distinct, i, i′, i′′ ∈ {2, . . . , k+2}. We can

then construct the coefficients γi,1 and γi,2, and by Lemma 3

the solution exists if the finite field size is large enough. Lastly,

we regenerate new chunks P ′
1,1 and P ′

1,2 as follows:

P ′
1,1 = γ2,1P2,1 + γ3,1P3,1 + . . .+ γk+2,1Pk+2,1, (7)

P ′
1,2 = γ2,2P2,1 + γ3,2P3,1 + . . .+ γk+2,2Pk+2,1. (8)

The rth round of repair (r > 1). If the failed node in the

rth round of repair is the repaired node in the (r−1)th round

of repair, then we just repeat the (r − 1)th repair. Otherwise,

we select the k+1 chunks that are different from those selected

in the (r−1)th round of repair. For example, in Figure 1, if in

the next round of repair the failed node remains node 1, then

P2,1, P3,1, and P4,1, which have been selected in Figure 1, are

selected for the next repair. If the failed node is node 2, then

we should select P1,1 (or P1,2), P3,2, and P4,2. Then similar

to the first round of repair, we generate the coefficients that

satisfy inequalities likewise in (4), (5), and (6). Finally, we

regenerate the new chunks accordingly as (7) and (8).

VI. EVALUATION

In this section, we evaluate the repair performance of two

implementations of FMSR codes: (i) random FMSR codes,

which use random chunk selection in repair and is used in

NCCloud [10] and (ii) deterministic FMSR codes, which use

deterministic chunk selection proposed in Section V. We show

 0.01

 0.1

 1

 10

 100

 1000

 4  5  6  7  8  9  10

A
g
g
re

g
at

e 
ch

ec
k
in

g
 t

im
e 

(i
n
 s

ec
)

Number of nodes (n)

random
deterministic

Fig. 2. Aggregate checking time of 50 rounds of repair (y-axis is in log
scale).

that our proposed deterministic FMSR codes can significantly

reduce the time required to regenerate parity chunks in repair.

We implement both versions of FMSR codes in C. We

implement finite-field arithmetic operations over a Galois Field

GF(28) based on the standard table lookup approach [9]. We

conduct our evaluation on a server running on an Intel CPU

at 2.4GHz. We consider different values of n (i.e., the number

of nodes). For each n, we first apply Reed-Solomon codes to

generate the encoding coefficients that will be used to encode

a file into parity chunks before uploading. In each round of

repair, we randomly pick a node to fail. We then repair the

failed node using two-phase checking, based on either random

or deterministic FMSR code implementations. The failed node

that we choose is different from that of the previous round of

repair, so as to ensure a different chunk selection in each round

of repair. We conduct 50 rounds of repair in each evaluation

run. We conduct a total of 30 runs over different seeds for

each n.

The metric we are interested in is the checking time spent

on determining if the chunks selected from surviving nodes

can be used to regenerate the lost chunks. We do not measure

the times of reading or writing chunks, as they are the same

for both random and deterministic FMSR codes. Instead, we

focus on measuring the processing time of two-phase checking

in each round of repair. It is important to note that two-

phase checking only operates on encoding coefficients, and

is independent of the size of the file being encoded. Note

that we do not specifically optimize our encoding operations,

but we believe our results provide fair comparison of both

random and deterministic FMSR codes using our baseline

implementations.

Figure 2 first depicts the aggregate checking times for a

total of 50 rounds of repair versus the number of nodes when

using random and deterministic FMSR codes. The aggregate

checking time of random FMSR codes is small when n is small

(e.g., less than 1 second for n ≤ 6), but exponentially increases

as n is large. On the other hand, the aggregate checking time of

deterministic FMSR codes is significantly small (e.g., within

0.2 seconds for n ≤ 10).

Our investigation finds that the checking time of random

FMSR codes increases dramatically as the value of n in-

creases. For example, when n = 12 (not shown in our

figures), we find that the repair operation of our random



 0

 100

 200

 300

 400

 500

 600

 0  5  10  15  20  25  30  35  40  45  50C
u

m
u

la
ti

v
e 

ch
ec

k
in

g
 t

im
e 

(i
n

 s
ec

)

Number of repairs (r)

n=8
n=9

n=10

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  5  10  15  20  25  30  35  40  45  50C
u

m
u

la
ti

v
e 

ch
ec

k
in

g
 t

im
e 

(i
n

 s
ec

)

Number of repairs (r)

n=8
n=9

n=10

(a) random FMSR codes (b) deterministic FMSR codes

Fig. 3. Cumulative checking time of r rounds of repair.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0  5  10  15  20  25  30  35  40  45  50

C
u

m
u

la
ti

v
e 

#
 o

f 
ch

ec
k

in
g

s

Number of repairs (r)

n=8
n=9

n=10

 0

 20

 40

 60

 80

 100

 120

 0  5  10  15  20  25  30  35  40  45  50

C
u

m
u

la
ti

v
e 

#
 o

f 
ch

ec
k

in
g

s

Number of repairs (r)

n=8
n=9

n=10

(a) random FMSR codes (b) deterministic FMSR codes

Fig. 4. Cumulative number of two-phase checkings of r rounds of repair.

FMSR code implementation still cannot return a right set of

regenerated chunks after running for two hours. In contrast,

our deterministic FMSR codes can return a solution within

0.5 seconds.

To further examine the significant performance overhead of

random FMSR codes, Figures 3 and 4 show the cumulative

checking time and number of two-phase checkings performed

for r rounds of repair, respectively, for n = 8, 9, 10. We note

that random FMSR codes incur a fairly large but constant

number of two-phase checkings in each round of repair. For

example, for n = 10, each round of repair takes around 100

iterations of two-phase checkings (see Figure 4(a)). On the

other hand, deterministic FMSR codes significantly reduce the

number of iterations of two-phase checking (e.g., less than 2.5

on average for n = 10). In summary, our evaluation results

show that deterministic FMSR codes significantly reduce the

two-phase checking overhead of ensuring that the MDS prop-

erty is preserved during repair.

VII. CONCLUSIONS

This paper formulates an uncoded repair problem based on

functional minimum storage regenerating (FMSR) codes. We

formally prove the existence of FMSR codes and provide a

deterministic FMSR code construction. We also show via our

evaluation that our deterministic FMSR codes significantly

reduce the repair time overhead of random FMSR codes. Our

theoretical results validate the correctness of existing practical

FMSR code implementation [10]. We also demonstrate the

feasibility of preserving the benefits of network coding in

minimizing the repair bandwidth with uncoded repair.

ACKNOWLEDGMENTS

This work is supported by grants AoE/E-02/08 and ECS

CUHK419212 from the University Grants Committee of Hong

Kong.

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung. Network Information
Flow. IEEE Trans. on Info. Theory, 46(4):1204–1216, Jul 2000.

[2] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and G. Voelker. Total Recall:
System Support for Automated Availability Management. In Proc. of

NSDI, 2004.
[3] V. R. Cadambe, S. A. Jafar, and H. Maleki. Distributed data storage

with minimum storage regenerating codes - exact and functional repair
are asymptotically equally efficient. arXiv:1004.4299 [cs.IT], 2010.

[4] B. Calder et al. Windows Azure Storage: A Highly Available Cloud
Storage Service with Strong Consistency. In Proc. of ACM SOSP, 2011.

[5] B. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weatherspoon, M. F.
Kaashoek, J. Kubiatowicz, and R. Morris. Efficient Replica Maintenance
for Distributed Storage Systems. In Proc. of NSDI, 2006.

[6] D. Cullina, A. G. Dimakis, and T. Ho. Searching for minimum storage
regenerating codes. In Proc. of Allerton, 2009.

[7] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright, and K. Ramchan-
dran. Network Coding for Distributed Storage Systems. IEEE Trans.

on Info. Theory, 56(9):4539–4551, Sep 2010.
[8] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File System.

In Proc. of ACM SOSP, 2003.
[9] K. M. Greenan, E. L. Miller, and T. J. E. Schwarz. Optimizing Galois

Field Arithmetic for Diverse Processor Architectures and Applications.
In Proc. of IEEE MASCOTS, 2008.

[10] Y. Hu, H. C. H. Chen, P. P. C. Lee, and Y. Tang. NCCloud: Applying
Network Coding for the Storage Repair in a Cloud-of-Clouds. In Proc.

of FAST, 2012.
[11] Y. Hu, Y. Xu, X. Wang, C. Zhan, and P. Li. Cooperative Recovery

of Distributed Storage Systems from Multiple Losses with Network
Coding. IEEE JSAC, 28(2):268–276, Feb 2010.

[12] Intel. Intelligent RAID6 Theory Overview and Implementation, 2005.
[13] O. Khan, R. Burns, J. S. Plank, W. Pierce, and C. Huang. Rethinking

Erasure Codes for Cloud File Systems: Minimizing I/O for Recovery
and Degraded Reads. In Proc. of USENIX FAST, 2012.

[14] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and
B. Zhao. OceanStore: an architecture for global-scale persistent storage.
In Proc. of ASPLOS, 2000.

[15] R. Motwani and P. Raghavan. Randomized algorithms. In Cambridge

University Press, 1995.
[16] J. S. Plank. A Tutorial on Reed-Solomon Coding for Fault-Tolerance in

RAID-like Systems. Software - Practice & Experience, 27(9):995–1012,
Sep 1997.

[17] K. V. Rashmi, N. B. Shah, and P. V. Kumar. Optimal exact-regenerating
codes for distributed storage at the MSR and MBR points via a product-
matrix construction. IEEE Trans. on Info. Theory, 57(8):5227–5239,
Aug. 2011.

[18] I. Reed and G. Solomon. Polynomial Codes over Certain Finite Fields.
Journal of the Society for Industrial and Applied Mathematics, 8(2):300–
304, 1960.

[19] S. E. Rouayheb and K. Ramchandran. Fractional Repetition Codes for
Repair in Distributed Storage Systems. In Proc. of Allerton, 2010.

[20] N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran. Dis-
tributed storage codes with Repair-by-Transfer and Non-Achievability
of Interior Points on the Storage-Bandwidth Tradeoff. IEEE Trans. on

Info. Theory, 58(3):1837–1852, Mar. 2012.
[21] N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran. Interfer-

ence alignment in regenerating codes for distributed storage: Necessity
and code constructions. IEEE Trans. on Info. Theory, 58(4):2134–2158,
Sept. 2012.

[22] K. W. Shum and Y. Hu. Functional-repair-by-transfer regenerating code.
In Proc. of ISIT, 2012.

[23] C. Suh and K. Ramchandran. Exact-Repair MDS Code Construction
Using Interference Alignment. IEEE Trans. on Info. Theory, 57(3):1425–
1442, Mar. 2011.

[24] I. Tamo, Z. Wang, and J. Bruck. MDS Array Codes with Optimal
Rebuilding. In Proc. of ISIT, 2011.

[25] Z. Wang, A. Dimakis, and J. Bruck. Rebuilding for Array Codes in
Distributed Storage Systems. In IEEE GLOBECOM Workshops, 2010.

[26] Z. Wang, I. Tamo, and J. Bruck. On Codes for Optimal Rebuilding
Access. In Proc. of Allerton, 2011.

[27] H. Weatherspoon, P. Eaton, B. Chun, and J. Kubiatowicz. Antiquity:
Exploiting a Secure log for Wide-Area Distributed Storage. In Proc. of

ACM SIGOPS/EuroSys, 2007.



[28] Y. Wu. Existence and Construction of Capacity-Achieving Network
Codes for Distributed Storage. IEEE JSAC, 28(2), Feb. 2010.

[29] Y. Wu and A. G. Dimakis. Reducing repair traffic for erasure coding-
based storage via interference alignment. In Proc. of ISIT, 2009.

[30] L. Xiang, Y. Xu, J. Lui, Q. Chang, Y. Pan, and R. Li. A Hybrid
Approach to Failed Disk Recovery Using RAID-6 Codes: Algorithms
and Performance Evaluation. ACM Trans. on Storage, 7(3):11, 2011.

APPENDIX

We now prove the correctness of the deterministic FMSR

codes in Section V. Initiaially, the file is stored with Reed-

Solomon codes, such that any 2k out of 2(k + 2) (parity)

chunks are decodable to the original file. Therefore, the set of

chunks being stored before any repair satisfies the MDS and

erMDS properties. Now, we show that the MDS and erMDS

properties are always satisfied after each round of repair, based

on our chunk selection and coefficient construction.

The first round of repair. Let U1 = {P ′
1,1, P

′
1,2; P2,1, P2,2;

. . . ; Pn,1, Pn,2} be the set of all chunks after the first round of

repair (for failed node 1). Next we prove that U1 still satisfies

both the MDS and erMDS properties.

(U1 satisfies the MDS property) Since the file is stored

with Reed-Solomon Codes, all the chunks of any k out of

nodes 2, . . . , k+ 2 before the repair are obviously decodable.

Thus, we only need to check whether the chunks of the

repaired node 1 and any k − 1 of nodes 2, . . . , k + 2 are

decodable. Take the repaired node 1 and nodes 2, . . . , k for

instance. Denote the 2k chunks of them by V = {P ′
1,1, P

′
1,2;

P2,1, P2,2; . . . ; Pk,1, Pk,2}. Consider the linear span of V
(i.e., the set of all linear combinations of V). Due to Equa-

tions (7) and (8), the linear span of V can be expressed as

span(V) = span(γk+1,1Pk+1,1+γk+2,1Pk+2,1, γk+1,2Pk+1,1+
γk+2,2Pk+2,1;P2,1, P2,2; . . . ; Pk,1, Pk,2). Note that the co-

efficients are chosen in a way such that γk+1,1γk+2,2 6=
γk+1,2γk+2,1 is satisfied, based on inequality (4). So span(V)

= span(Pk+1,1, Pk+2,1;P2,1, P2,2; . . . ;Pk,1, Pk,2). Based on

the erMDS property, V is decodable because its linear span

contains P2,1, P3,1, . . . , Pk+2,1 from nodes 2, . . . , k + 2, re-

spectively.

(U1 satisfies the erMDS property) Since the file is initially

stored with Reed-Solomon Codes, the erMDS property is

satisfied before the repair. Hence there already exist k + 1
chunks, say P2,1, . . . , Pk+2,1, such that any RBC containing

them is decodable. Thus, we only need to check whether for

the repaired node 1 and any k of nodes 2, . . . , k + 2, there

always exist k + 1 chunks such that by collecting one chunk

from each such node, any RBC containing them is decodable.

Without loss of generality, we just consider the case for the

repaired node 1 and nodes 2, . . . , k + 1 for simplicity.

Here, we select the k + 1 chunks in the way that they are

distinct from those selected for the first round of repair. In this

case, we collect F1 = {P ′
1,2, P2,2, . . . , Pk+1,2} (note: either

P ′
1,1 or P ′

1,2 is fine). Next we show that the constructed γi,j can

make any RBC containing F1 decodable. Since the repaired

node 1 may offer one or two chunks to an RBC, we consider

two cases.

Case 1: The repaired node 1 only offers one chunk. Then the

RBC needs another k− 1 nodes (e.g., nodes 2, . . . , k) to offer

all their chunks and another one node (e.g., node k+1) to offer

one chunk. To make the RBC include F1, we have the repaired

node 1 offer P ′
1,2 and node k + 1 offer Pk+1,2. Then the

RBC is R1 = {P ′
1,2;P2,1, P2,2; . . . ;Pk,1, Pk,2;Pk+1,2}. By

Equation (8), span(R1) = span(γk+1,2Pk+1,1+γk+2,2Pk+2,1;
P2,1, P2,2; . . . ;Pk,1, Pk,2;Pk+1,2).

Based on the MDS property, we consider a decodable

collection Z = {P2,1, P2,2; . . . ;Pk+1,1, Pk+1,2}. Then Pk+2,1

is a linear combination of Z , and can be expressed as

Pk+2,1 =

k+1
∑

i=2

2
∑

j=1

λ
(k+2)
i,j Pi,j , (9)

where λ
(k+2)
i,j is an encoding coefficient for i =

2, . . . , k + 1 and j = 1, 2. Thus, the linear span of

R1 is span(R1) = span((γk+1,2 + γk+2,2λ
(k+2)
k+1,1)Pk+1,1;

P2,1, P2,2; . . . ;Pk,1, Pk,2;Pk+1,2}). Note that the coeffi-

cients are chosen such that γk+1,2 + γk+2,2λ
(k+2)
k+1,1 6= 0

is satisfied, based on inequality (5). Thus, span(R1) =
span(P2,1, P2,2; . . . ;Pk,1, Pk,2). The linear span of R1 is a

decodable collection due to the MDS property. Thus, R1 is

decodable.

Case 2: The repaired node 1 offers two chunks. So the

RBC contains both P ′
1,1 and P ′

1,2. The RBC needs another

k − 2 nodes (e.g., nodes 2, . . . , k − 1) to offer all their

chunks and another two nodes (e.g., nodes k and k + 1)

to offer one chunk. To make the RBC contain F1, we

have nodes k and k + 1 offer Pk,2 and Pk+1,2, respec-

tively. Then the RBC is R2 = {P ′
1,1, P

′
1,2; P2,1, P2,2; . . . ;

Pk−1,1, Pk−1,2;Pk,2;Pk+1,2}. Similar to the proof of Case 1,

by Equations (7), (8), and (9), the linear span of R2 can be

expressed as

span(R2) = span((γk,1 + γk+2,1λ
(k+2)
k,1 )Pk,1+

(γk+1,1 + γk+2,1λ
(k+2)
k+1,1)Pk+1,1,

(γk,2 + γk+2,2λ
(k+2)
k,1 )Pk,1+

(γk+1,2 + γk+2,2λ
(k+2)
k+1,1)Pk+1,1,

P2,1, P2,2; . . . ;Pk−1,1, Pk−1,2;Pk,2;Pk+1,2).

Note that the coefficients are chosen in a way such

that (γk,1 + γk+2,1λ
(k+2)
k,1 )(γk+1,2 + γk+2,2λ

(k+2)
k+1,1) 6=

(γk+1,1 + γk+2,1λ
(k+2)
k+1,1)(γk,2 + γk+2,2λ

(k+2)
k,1 ) is

satisfied, based on inequality (6). Thus, span(R2) =
span({P2,1, P2,2; . . . ;Pk+1,1, Pk+1,2}). The linear span of

R2 is decodable due to the MDS property. Thus, R2 is

decodable.

The rth repair (r > 1) Take r = 2 for instance. Suppose

without loss of generality that node k+2 fails. Then we select

{P ′
1,2, P2,2, . . . , Pk+1,2} which are distinct from those in the

first round of repair. We can observe that in fact this set is

F1 in the first round of repair. As mentioned above, any RBC

containing F1 is decodable. So F1 can be used for the second

round of repair. Then we can generate the coefficients that

satisfy the similar inequalities as (4), (5), and (6). The proof

of correctness is similar as r = 1 and thus omitted.


