
A Simulation Analysis of Reliability

in Primary Storage Deduplication

Min Fu†, Patrick P. C. Lee‡, Dan Feng†, Zuoning Chen*, Yu Xiao†

†Wuhan National Lab for Optoelectronics

School of Computer, Huazhong University of Science and Technology, Wuhan, China
‡Dept. of Computer Science and Engineering, The Chinese University of Hong Kong, HK

*National Engineering Research Center for Parallel Computer, Beijing, China

Abstract—Deduplication has been widely used to improve
storage efficiency in modern primary and secondary storage
systems, yet how deduplication fundamentally affects storage
system reliability remains debatable. This paper aims to ana-
lyze and compare storage system reliability with and without
deduplication in primary workloads using real-world file system
snapshots. Specifically, we propose a trace-driven, deduplication-
aware simulation framework that analyzes data loss in both
chunk and file levels due to sector errors and whole-disk failures.
Compared to without deduplication, our analysis shows that
deduplication consistently reduces the damage of sector errors
due to intra-file redundancy elimination, but potentially increases
the damages of whole-disk failures if the highly referenced chunks
are not carefully placed on disk. To improve reliability, we
examine a deliberate copy technique that stores and repairs
first the most referenced chunks in a small dedicated physical
area (e.g., 1% of the physical capacity), and demonstrate its
effectiveness through our simulation framework.

I. INTRODUCTION

Modern storage systems adopt deduplication to achieve

storage savings, by referencing data copies with identical

content to the same physical copy in order to eliminate

storage redundancy. Deduplication has been widely adopted in

secondary storage (e.g., backup and archival) [6], [18], [38];

recently, it has also been increasingly studied and deployed

in primary storage (e.g., file systems) [5], [7], [26], [34],

[37]. Despite the wide adoption, how deduplication affects

storage system reliability remains debatable when compared to

without deduplication. On one hand, deduplication mitigates

the possibility of data loss by reducing storage footprints

(assuming that data loss events equally occur across the entire

disk space); on the other hand, it amplifies the severity of

each data loss event, which may corrupt multiple chunks or

files that share the same lost data.

A number of studies in the literature have addressed dedupli-

cation storage reliability in different ways. For example, some

studies (e.g., [3], [6], [20]) add redundancy via replication or

erasure coding to post-deduplication data for fault tolerance.

Other studies (e.g., [15], [30], [31]) propose quantitative

methods to evaluate deduplication storage reliability. However,

there remain two key open reliability issues, which are further

complicated by the data sharing nature of deduplication.

Min Fu is now with Sangfor Technologies Co., Ltd.

• Loss variations: Storage systems are susceptible to both

device failures and latent sector errors, yet they incur

different amounts of data loss. Also, the impact of data

loss depends on how we define the granularities of storage

(e.g., a chunk or a file with multiple chunks). Thus, the

actual impact of data loss can vary substantially.

• Repair strategies: The importance of data in deduplica-

tion varies, as each data copy may be shared by a different

number of other copies. When a storage system expe-

riences failures, its repair strategies determines whether

important data copies are repaired first, and hence affects

reliability in different ways.

Our work is motivated by the importance of analyzing

and comparing storage system reliability with and without

deduplication. Traditional reliability analysis often uses the

Mean Time to Data Loss (MTTDL) metric to characterize

storage system reliability. MTTDL assumes independent ex-

ponential distributions of failure and repair events, and its

closed-form solution can be obtained from Markov modeling.

However, some studies [8], [9], [12] have shown that MTTDL

is inaccurate for reliability analysis, due to its over-simplistic

assumptions in modeling the actual failure nature of real-

world storage systems. In deduplication storage, we expect

that MTTDL is even more inappropriate, due to the varying

severity of data loss. Thus, we advocate simulation for accurate

reliability analysis, at the expense of intensive computations

[8]. To this end, this paper makes the following contributions.

First, we propose a trace-driven, deduplication-aware sim-

ulation framework to analyze and compare storage system

reliability with and without deduplication, so as to identify any

possible solution to improve storage system reliability should

deduplication be deployed. Specifically, we start with a RAID

disk array setting, and extend the notion of NOrmalized Mag-

nitude of Data Loss (NOMDL) [12] to define new reliability

metrics for deduplication storage. Our simulation framework

takes file system snapshots as inputs, and performs Monte

Carlo simulation to analyze the loss impact in both chunk and

file levels due to uncorrectable sector errors and unrecoverable

disk failures.

Second, we apply our simulation framework to conduct

reliability analysis on primary storage deduplication, which

is less explored than secondary storage deduplication but has



received increasing attention. Specifically, we examine 18 real-

life file system snapshots derived from two user groups. Our

simulation results show the following key findings:

• Compared to without deduplication, deduplication does

not change the expected amounts of corrupted chunks

caused by uncorrectable sector errors, and it consistently

reduces the expected amounts of corrupted files due to

intra-file redundancy elimination. Thus, individual chunk

corruptions caused by uncorrectable sector errors do not

pose extra vulnerability concerns under deduplication.

• On the other hand, the impact of unrecoverable disk

failures is highly related to chunk fragmentation caused

by deduplication [17] and disk repair operations. If the

highly referenced chunks are neither carefully placed nor

preferentially repaired, the amounts of corrupted chunks

and files can significantly increase under deduplication.

• We observe that highly referenced chunks occupy a large

fraction of logical capacity, but only a small fraction

of physical capacity after deduplication. To reduce the

significance of unrecoverable disk failures, we explore a

deliberate copy technique that allocates a small dedicated

physical area (with only 1% of physical capacity) for the

most referenced chunks and first repairs the physical area

during RAID reconstruction. Our simulation results show

that the technique can significantly reduce the expected

amounts of corrupted chunks and files, while incurring

only limited storage overhead.

The rest of the paper proceeds as follow. Section II presents

the background and related work. Section III presents the

design of our simulation framework. Section IV describes

the datasets for our simulation study. Section V presents our

simulation results. Finally, Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Deduplication Basics

Deduplication is a technique that reduces storage space

by eliminating content redundancy. Practical deduplication

often operates at the granularity of non-overlapping data units

called chunks, each of which is identified by a fingerprint

formed by the cryptographic hash (e.g., SHA-1) of the chunk

content. Deduplication treats two chunks with the same (resp.

different) fingerprint as duplicate (resp. unique) chunks, and

the probability of having two unique chunks with the same

fingerprint is practically negligible [28]. It keeps only one copy

of the chunk in storage, and refers other duplicate chunks to

the copy via small-size references.

Deduplication performs chunking to divide data into fixed-

size chunks or variable-size content-defined chunks. Fixed-size

chunking is mostly used for high computational performance.

On the other hand, variable-size chunking defines chunk

boundaries by content so as to be robust against content

shifts, and generally achieve higher deduplication efficiency

than fixed-size chunking. Variable-size chunking can be im-

plemented by Rabin Fingerprinting [29], which computes a

rolling hash over a sliding window of file data and identifies

boundaries whose rolling hashes match some target pattern.

Logical view

Physical view

File 1 File 2 File 3

Fig. 1. Logical and physical views of a deduplication system.

To effective remove duplicate chunks, the average chunk size

is typically on the order of kilobytes (e.g., 8KB [38]).

A deduplication system keeps fingerprints of all stored

chunks in a key-value store called the fingerprint index.

For each input chunk, the system checks by fingerprint if

a duplicate chunk has been stored, and stores only unique

chunks. For each file, the system also stores a file recipe, which

lists the references to all chunks of the file for reconstruction.

In deduplication storage, we need to differentiate the logical

and physical views, which describe the storage organizations

with and without deduplication, respectively. For example,

referring to Figure 1, the logical view shows three files with

a total of 12 chunks, while the physical view shows only nine

chunks that are actually stored. From a reliability perspective,

the logical and physical views of a deduplication system have

different implications of data loss, which we aim to analyze

in this work.

B. Related Work

Many measurement studies focus on characterizing the stor-

age efficiency of deduplication for both primary and secondary

storage environments. For example, Jin et al. [14] and Jayaram

et al. [13] show that deduplication effectively reduces the

storage of virtual machine disk images, even with fixed-size

chunking. Meyer et al. [25] analyze 857 Windows file system

snapshots at Microsoft, and show that file-level deduplication

can eliminate content redundancy as effectively as chunk-

level deduplication. Lu et al. [21] propose different techniques

on improving deduplication effectiveness in primary storage.

Wallace et al. [36] analyze over 10,000 EMC Data Domain

backup systems, and observe that deduplication is essential for

achieving high write throughput and scalability. Meister et al.

[24] analyze four HPC centers and observe that deduplication

can achieve 20-30% of storage savings. Sun et al. [35] focus

on individual user data over 2.5 years and analyze their

deduplication patterns.

In terms of storage system reliability, some measurement

studies investigate the failure patterns of disk-based storage

systems in production environments, such as whole-disk fail-

ures [27], [33] and latent sector errors [2], [32]. On the other

hand, only few studies analyze the reliability of deduplica-

tion systems. Most studies propose to improve reliability of

deduplication systems through controlled redundancy, either

by replication [3] or erasure coding [6], [15], [20], but they do

not analyze the reliability affected by deduplication. Li et al.

[15] propose combinatorial analysis to evaluate the probability

of data loss of deduplication systems. Rozier et al. [30], [31]

propose automata-based frameworks to quantitatively evaluate

the reliability of deduplication systems under disk failures and



Disk Model
Deduplication 

Model

RAID

…
Event Queue

Failure Repair

Event 
Injection

Data Loss 
Events

Fig. 2. Architecture of our simulation framework.

sector errors. Our work complements the above studies by:

(i) adopting more robust reliability metrics, (ii) focusing on

primary storage workloads, and (iii) comparing the impact

of loss variations and repair strategies on storage system

reliability with and without deduplication.

III. SIMULATION FRAMEWORK

In this section, we design a simulation framework that ana-

lyzes and compares storage system reliability with and without

deduplication. Our simulation framework builds on the High-

Fidelity Reliability Simulator (HFRS) [11] and specifically

addresses deduplication.

A. Architectural Overview

Figure 2 shows the architecture of our simulation frame-

work. The framework targets primary storage deduplication for

individual file system snapshots under a disk-based RAID set-

ting. Specifically, it takes a file system snapshot (Section IV),

failure and repair distributions, and a system mission time

(e.g., 10 years) as inputs. The disk model injects both failure

events (including whole-disk failures and latent sector errors)

and repair events to the simulated RAID array. Then the event

queue sorts the failure and repair events in chronological order,

and keeps only the events that stay within the system mission

time. If a failure event incurs any data loss, it will trigger

a data loss event to the deduplication model, which performs

sequential Monte Carlo simulation as in HFRS to calculate and

output a set of reliability metrics based on the chunk-level and

file-level data layouts of the input file system snapshot.

B. Design Assumptions

We make the following design assumptions in our simula-

tion framework.

Failure patterns: Due to lack of field data, we make two

assumptions in the failure patterns. First, we simulate only

independent failures, although recent work also reveals that

disk failures in the same RAID group are actually correlated

[22]. Also, we assume constant failure rates, although failure

rates actually change over age [8], [27], [33]. Nevertheless,

we focus on relative analysis that compares reliability with

and without deduplication, instead of quantifying absolute

reliability values. We expect that our assumptions suffice for

our purpose.

Metadata: Our analysis focuses on file data only, but

excludes metadata, including file metadata (e.g., superblock,

inodes, namespace, etc.) and deduplication metadata (e.g.,

file recipes, fingerprint index, etc.). File metadata changes

frequently and is unlikely to be deduplicated [19], so we

expect that the same amount of file metadata is stored after

deduplication. Thus, it makes no impact on our reliability

comparisons with and without deduplication.

On the other hand, deduplication metadata is critical for the

reliability of the whole system (e.g., the loss of file recipes

can compromise file reconstruction). Given the critical nature,

we assume that we apply extra protection for deduplication

metadata, such as increasing its redundancy protection via

replication or erasure coding, and exclude its impact from our

analysis. Nevertheless, we argue that deduplication metadata

incurs limited storage overhead based on the analysis in [36],

especially for primary storage deduplication. Let f be the

metadata size divided by average chunk size, and D be the raw

deduplication ratio of logical to physical size (excluding meta-

data). Then the storage overhead of deduplication metadata

after deduplication is f(1 +D). Suppose that f = 0.4% [36]

and D ≤ 2 [34] (the latter is derived in primary workloads).

The storage overhead is no more than 1.2%, which remains

small and has limited impact on our reliability comparisons.

Data layout: The data layout determines the loss and

repair patterns in our simulation. In this paper, we assume

a log-structured data layout, in which unique chunks after

deduplication are sequentially appended to the end of the last

write position. Note that log-structured data layout is also used

in deduplication for primary (e.g., [34]) and secondary (e.g.,

[28]) storage. For the case without deduplication, the log-

structured data layout implies that all chunks (either unique or

duplicate) are sequentially stored, and hence both logical and

physical views are identical. In addition, we do not consider

file-level fragmentation, which is not prevalent [25].

C. Reliability Metrics

Given the limitations of traditional MTTDL (Section I),

we consider new reliability metrics for accurate characteri-

zation. We start with the reliability metric called NOrmalized

Magnitude of Data Loss (NOMDL) [12], which denotes the

expected amount of data loss in bytes normalized to the storage

capacity within the system mission time. NOMDL is shown

to be comparable [12], allowing us to compare reliability with

and without deduplication. In this work, we extend NOMDL

for deduplication.

Note that the different logical and physical views in dedupli-

cation (Section II-A) imply different magnitudes of data loss

and hence reliability interpretations. For example, losing an

8KB chunk that is referenced 10 times implies 80KB loss in

the logical view as opposed to 8KB in the physical view. In

this work, our reliability analysis focuses on the logical view,

in which we measure the magnitude of data loss in the logical

view normalized to the logical storage capacity. We believe

that this reflects a more accurate reliability characterization to

user applications, which perceive the logical view rather than

the physical view.

Based on NOMDL, we define four normalized reliability

metrics: (1) expected number of corrupted chunks per TB, (2)

expected number of corrupted files per TB, (3) expected size

(in bytes) of corrupted chunks per TB, and (4) expected size



TABLE I
PARAMETERS OF OUR DISK MODEL.

η (in hours) β

Time-to-Failure 302,016 1.13

Time-to-Repair 22.7 1.65

Time-to-Scrub 186 1

Time-to-LSE 12,325 1

(in bytes) of corrupted files per TB. We say that a chunk or

file is corrupted if any of its byte is corrupted. The first two

metrics are called non-weighted metrics, while the last two

metrics are called weighted metrics to indicate the varying

impact of a lost chunk or file, depending on its size.

D. Disk Model

The disk model generates the failure and repair events

according to some specified distributions. We consider two

types of failures: whole-disk failures [27], [33] and latent

sector errors (LSE) [2], [32]. A whole-disk failure triggers a

repair operation, which uses the remaining operational disks to

reconstruct the data of the failed disk into a new disk. On the

other hand, an LSE indicates a corrupted sector that cannot

be recovered by the internal error correction codes (ECC).

It will not be detected until the affected sector is accessed.

Since modern disks employ periodic scrubbing operations to

proactively detect and correct LSEs [32], the disk model is

designed to generate scrubbing events as well.

In this paper, we choose the parameters based on the near-

line 1TB SATA Disk A model in [9], while the parameters of

other disk models in [9] are also applicable and only change

the absolute output numbers. Table I shows the parameters,

all of which follow a Weibull distribution, where η denotes

the characteristic life and β denotes the shape parameter (if

β = 1, the distribution is exponential).

Our disk model generates two types of data loss events

due to failures: unrecoverable disk failures (UDFs) and un-

correctable sector errors (USEs). A UDF occurs when the

number of failed disks exceeds the repair capability (e.g., a

double-disk failure in RAID-5). Since multiple disks unlikely

fail at the same time, the amount of lost data depends on

how much data has been repaired in any earlier failed disk.

For example, in RAID-5, if another whole-disk failure occurs

while only 40% of the earlier failed disk has been repaired,

then 60% of its sectors are lost. In this case, we assume that

all the stripes (i.e., 60% of data in the disk array) associated

with the lost sectors are corrupted. On the other hand, a USE

occurs when the disk array is no longer fault-tolerant (e.g., a

single-disk failure in RAID-5) and an LSE appears in a stripe

(in any remaining operational disk) that has not been repaired.

For example, in RAID-5, if only 40% of the earlier failed

disk has been repaired, then an LSE becomes a USE with a

60% probability. Here, we ignore the data loss due to multiple

simultaneous LSEs in the same stripe, since the probability of

its occurrence is very small [11].

We use RAID-6 (with double-disk fault tolerance) as an

example to explain the workflow of the disk model. Initially,

the disk model calculates the lifespan of each disk in RAID,

and pushes a whole-disk failure event of each disk to the event

queue (based on the Time-to-Failure distribution). When the

event queue pops a whole-disk failure event, the disk model

calculates the repair time needed to reconstruct the failed disk

(based on the Time-to-Repair distribution) and pushes a repair

event at the end of the repair time to the event queue. Once the

event queue pops a repair event, the disk model calculates the

lifespan of the new disk and pushes a new whole-disk failure

event to the event queue. If a popped event exceeds the system

mission time, the simulation stops.

When a whole-disk failure event is popped up, the RAID-6

disk array is in one of the three cases: (1) all other disks are

operational, (2) there is an earlier failed disk under repair, and

(3) there are two earlier failed disks under repair. For the first

case, the disk array remains operational, and no data is lost.

For the second case, the disk array is no longer fault tolerant,

and any LSE would lead to data loss. To derive the LSE rate,

we first compute the duration of the current scrubbing period

(based on the Time-to-Scrub distribution), and then calculate

the number of LSEs within this period (based on the Time-

to-LSE distribution). If we quantify the repair progress of the

earlier failed disk Pr as (tc − ts)/(te − ts), where tc is the

current time, ts is the start time of the repair operation (i.e.,

the time when the whole-disk failure of the earlier failed disk

occurs), and te is the expected end time of the repair operation,

then an LSE becomes uncorrectable (i.e., a USE is triggered)

with probability 1−Pr. Finally, for the third case, we trigger

a UDF, and a fraction of 1 − Pr stripes are lost (where Pr

is calculated as above). Due to the severity of a UDF, we

ignore the already observed USEs in the current iteration, and

proceed to the next iteration immediately.

E. Deduplication Model

The deduplication model computes the reliability metrics

in the logical view (Section III-C) based on the failure and

repair patterns in the disk model that are actually defined in

the physical view (Section III-D). We consider two levels of

reliability metrics: chunk level and file level.

For a UDF, the magnitude of data loss depends on the

logical repair progress, which we quantify as the fraction of

repaired chunks or files in the logical view:

RL =
∑

i

|ci| × ri
CL

, (1)

where |ci| is the number (resp. size) of the i-th repaired

physical chunk or file, ri is the reference count for chunk

ci, and CL is the total number (resp. size) of chunks (or

files) in storage for the non-weighted (resp. weighted) case.

Since the RAID layer is generally unaware of deduplication

and cannot determine how data is shared and which chunks

(or files) should be repaired first to minimize the impact of

data loss. Thus, we consider two baseline repair strategies:

forward and backward, in which the RAID layer repairs a

failed disk from the beginning to the end of the log and from

the end to the beginning of the log, respectively. Since the

highly referenced chunks are more likely to appear near the



TABLE II
STATISTICS OF EACH FILE SYSTEM SNAPSHOT IN OUR DATASETS.

Snapshot OS Date Raw Size (GB) # Files # Chunks Dedup (%)

Mac OS X 01/01/2013 224.55 1,486,819 28,162,208 33.8%

U11 Linux 01/12/2011 289.86 2,457,630 33,726,865 36.0%

U12 Linux 21/05/2013 251.01 44,129 26,407,044 64.6%

U14 Linux 19/04/2012 161.19 1,339,088 16,707,076 61.1%

U15 Linux 17/04/2013 202.10 310,282 23,280,718 49.6%

U20 Linux 15/12/2011 592.73 836,974 47,884,281 79.8%

U21 Linux 29/03/2012 140.50 63,451 14,291,544 56.7%

U24 Linux 20/12/2011 168.70 212,939 20,657,959 24.4%

U26 Linux 31/03/2014 154.24 88,050 16,435,825 33.3%

S1 OS X Yosemite

Collected in July
and August 2015

143.20 1,392,222 17,828,066 29.0%
S2 Linux Mint 15 263.47 282,934 27,780,340 43.1%
S3 Linux Mint 17 127.97 117,488 14,335,275 31.8%
S4 Windows 7 123.60 255,285 12,830,663 53.5%
S5 Ubuntu 14.04 185.47 416,971 22,505,162 12.7%
S6 Ubuntu 14.04 151.37 166,112 17,947,291 18.6%
S7 Linux Mint 13 83.33 348,356 9,931,882 22.0%
S8 Windows 7 274.43 693,620 31,328,634 34.4%
S9 Ubuntu 12.04 219.15 409,453 26,544,008 15.2%

beginning of the log, we expect that forward repair restores

logical chunks at a faster rate than backward repair, and hence

return better reliability metrics in both chunk and file levels.

The two strategies hence serve as a better case and a worse

case, respectively. Note that when there is no deduplication,

both forward and backward repairs always restore logical data

at the same rate.

For a USE, we assume that it corrupts a single physical

sector that is uniformly selected from the entire disk space,

and hence the associated physical chunk (or file). The number

of corrupted logical chunks (or files) is the corresponding

reference count. We expect that a larger chunk (or file) is

more likely to be corrupted as it occupies more sectors.

IV. DATASETS

Our reliability analysis focuses on primary storage dedu-

plication, in which we consider the real-world static file

system snapshots of two user groups. Table II summarizes the

statistics of each snapshot, including the snapshot name, OS,

collection date, raw data size before deduplication, number

of files, number of chunks, and percentage of reduction of

storage size after deduplication (a larger percentage implies

deduplication is more effective in terms of storage saving).

The first dataset, namely FSL, consists of nine file system

snapshots collected by the File system and Storage Lab (FSL)

at Stony Brook University [1]. The original repository has

hundreds of file system snapshots that span three years, but our

analysis focuses on the ones whose sizes are sufficiently large

for generating meaningful statistical distributions. Specifically,

we pick nine random snapshots with raw size at least 100GB

each. One of the snapshots, denoted by Mac, is taken from a

Mac OS X server that hosts server applications (e.g., SMTP,

Mailman, HTTP, MySQL, etc.); the other eight snapshots,

denoted by U11–U26, are taken from different users’ home

directories with various types of files (e.g., documents, source

code, binaries, virtual disk images, etc.). Here, U11 refers

to a snapshot of user 011 in the FSL repository, and the

same meanings hold for other users’ snapshots. Each selected

snapshot lists the 48-bit truncated MD5 fingerprints and the

chunk sizes of all chunks, obtained from Rabin fingerprint-

ing with the average, minimum, and maximum chunk sizes

configured as 8KB, 2KB, and 16KB, respectively. While the

short fingerprint length implies a high collision rate that is

inadequate for real deployment, the collision rate remains

small and suffices for analysis, as pointed out by the dataset

owners [35].

The second dataset, namely SELF, contains nine file system

snapshots from our own research group, and serves for the

cross-validation purpose. We scan the file system snapshots,

denoted by S1–S9, during July and August in year 2015.

The snapshots S1–S8 are taken from the home directories

of different users’ desktops, while S9 is taken from the

repository of a file server. We chunk each snapshot using Rabin

Fingerprinting with the same setting as in the FSL dataset.

Our current datasets are limited by scale. Nevertheless,

our position is to provide preliminary insights based on our

available datasets and guide the design of our simulation

framework (Section III) for our reliability comparisons. Our

methodology is general and applicable to any larger-scale

dataset of file system snapshots.

V. RESULTS

We now conduct reliability analysis via our simulation

framework to the datasets. Our analysis focuses on the most

prevalent RAID-6 configuration, with 16 1TB disks and a 10-

year system mission time [9]. We run 1,025 billion simulation

iterations to obtain enough loss events. Each iteration returns

either the magnitudes of data loss should UDFs or USEs

happen, or zero otherwise. We plot the average results over

all iterations and the relative errors with 95% confidence

(some results may have very small confidence intervals that

are invisible in the plots). In all iterations, we observe a total

of 1,389,250 UDFs and 332,993,652 USEs, or equivalently,

the probabilities that a system suffers from a UDF or a USE

are 1.36 × 10−6 and 3.25 × 10−4, respectively. Then we

compute the corresponding reliability metrics. To this end, we



0.0e+00

5.0e-06

1.0e-05

1.5e-05

2.0e-05

2.5e-05

3.0e-05

3.5e-05

M
ac

U
1
1

U
1
2

U
1
4

U
1
5

U
2
0

U
2
1

U
2
4

U
2
6

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

E
x
p
ec

te
d
 #

 o
f 

C
o
rr

u
p
te

d
 C

h
u
n
k
s 

p
er

 T
B

Dedup
NoDedup

(a) Non-Weighted Chunk Level

0.0e+00

5.0e-02

1.0e-01

1.5e-01

2.0e-01

2.5e-01

3.0e-01

3.5e-01

4.0e-01

M
ac

U
1
1

U
1
2

U
1
4

U
1
5

U
2
0

U
2
1

U
2
4

U
2
6

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9E

x
p
ec

te
d
 B

y
te

s 
o
f 

C
o
rr

u
p
te

d
 C

h
u
n
k
s 

p
er

 T
B

NoDedup
Dedup

(b) Weighted Chunk Level

0.0e+00

5.0e-06

1.0e-05

1.5e-05

2.0e-05

2.5e-05

3.0e-05

M
ac

U
1
1

U
1
2

U
1
4

U
1
5

U
2
0

U
2
1

U
2
4

U
2
6

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

E
x
p
ec

te
d
 #

 o
f 

C
o
rr

u
p
te

d
 F

il
es

 p
er

 T
B

Dedup
NoDedup

(c) Non-Weighted File Level

0.0e+00

1.0e+05

2.0e+05

3.0e+05

4.0e+05

5.0e+05

6.0e+05

M
ac

U
1
1

U
1
2

U
1
4

U
1
5

U
2
0

U
2
1

U
2
4

U
2
6

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9E

x
p
ec

te
d
 B

y
te

s 
o
f 

C
o
rr

u
p
te

d
 F

il
es

 p
er

 T
B

1.0e+06

2.0e+06

3.0e+06

4.0e+06

5.0e+06
NoDedup

Dedup

(d) Weighted File Level

Fig. 3. Reliability metrics due to uncorrectable sector errors.

make key observations from our analysis. We also consider a

deduplication strategy that improves reliability at the expense

of (slight) storage overhead.

A. Uncorrectable Sector Errors

As expected, USEs occur more frequently than UDFs. We

now study the reliability due to USEs with deduplication

(denoted by Dedup) and without deduplication (denoted by

NoDedup). Figure 3 shows different reliability metrics.

Figure 3(a) first shows the non-weighted chunk-level relia-

bility. We observe no notable difference between Dedup and

NoDedup, conforming to the conjecture in [15]. An intuitive

explanation is that while deduplication reduces the probability

of losing a physical chunk by some factor due to space

reduction, it also increases the number of lost logical chunks

by the same factor should a physical chunk be lost. Most cases

have small relative errors, except U20. Our investigation is that

a chunk in U20 is referenced by over 28 million times, so each

loss of the chunk implies a high magnitude of loss and leads

to a high deviation.

Figure 3(b) shows the weighted chunk-level reliability. We

again observe that the reliability results are similar in both

Dedup and NoDedup.

Observation (1) – Deduplication will not significantly alter

the expected amounts of corrupted chunks by USEs when

compared to without deduplication.

Figure 3(c) shows the non-weighted file-level reliability. We

observe that Dedup reduces the expected number of corrupted

files per TB by up to 74.4% when compared to NoDedup.

Our investigation is that intra-file redundancy is prevalent in

most snapshots, such that the references of a shared chunk

mostly come from a single file. In particular, the virtual disk

images and package files are major contributors to intra-file

redundancy. Thus, if a highly referenced chunk is corrupted,

it may only corrupt a single file rather than multiple files.

We also observe that few snapshots have similar numbers of

corrupted files in both Dedup and NoDedup, mainly due to

very limited intra-file redundancy (e.g., Mac and S1) or low

deduplication efficiency (e.g., S5 and S9).

Figure 3(d) shows the weighted file-level reliability. Dedup

again reduces the expected size of corrupted files per TB by

up to 99.7% when compared to NoDedup. Compared to non-

weighted metrics, Dedup is more effective in mitigating data

loss in weighted metrics, mainly because intra-file redundancy

mostly comes from large files. To understand the intuition

behind, we consider a toy example. Suppose that we have two

files, one with 10 chunks and another with 90 chunks in the

logical views, and there are five duplicate chunks within one of

the files. Now we encounter a USE. If the five duplicate chunks

appear within the small file, the expected size of corrupted

files is 5/95 × 10 + 90/95 × 90 = 85.79 chunks; if the five

duplicate chunks appear within the large file, the expected size

of corrupted files is only 10/95 × 10 + 85/95 × 90 = 81.58
chunks. Thus, if intra-file redundancy is more likely to occur in

large files, the expected size of corrupted files also decreases.



-100

-50

 0

 50

 100

 0  20  40  60  80  100

R
el

at
iv

e 
L

o
g

ic
al

 R
ep

ai
r 

P
ro

g
re

ss
 (

%
)

Physical Repair Progress (%)

Mac
U11

U12
U14

U15
U20

U21
U24

U26

(a) Weighted Chunk Level

-100

-50

 0

 50

 100

 0  20  40  60  80  100

R
el

at
iv

e 
L

o
g

ic
al

 R
ep

ai
r 

P
ro

g
re

ss
 (

%
)

Physical Repair Progress (%)

Mac
U11

U12
U14

U15
U20

U21
U24

U26

(b) Non-Weighted File Level

-100

-50

 0

 50

 100

 0  20  40  60  80  100

R
el

at
iv

e 
L

o
g

ic
al

 R
ep

ai
r 

P
ro

g
re

ss
 (

%
)

Physical Repair Progress (%)

Mac
U11

U12
U14

U15
U20

U21
U24

U26

(c) Weighted File Level

-100

-50

 0

 50

 100

 0  20  40  60  80  100

R
el

at
iv

e 
L

o
g

ic
al

 R
ep

ai
r 

P
ro

g
re

ss
 (

%
)

Physical Repair Progress (%)

(d) Weighted Chunk Level

-100

-50

 0

 50

 100

 0  20  40  60  80  100

R
el

at
iv

e 
L

o
g

ic
al

 R
ep

ai
r 

P
ro

g
re

ss
 (

%
)

Physical Repair Progress (%)

(e) Non-Weighted File Level

-100

-50

 0

 50

 100

 0  20  40  60  80  100

R
el

at
iv

e 
L

o
g

ic
al

 R
ep

ai
r 

P
ro

g
re

ss
 (

%
)

Physical Repair Progress (%)

(f) Weighted File Level

Fig. 4. The relative logical repair progress versus the physical repair progress under deduplication for two repair strategies: forward repair (figures (a)-(c))
and backward repair (figures (d)-(f)).

Observation (2) – In the presence of individual chunk

corruptions caused by USEs, deduplication decreases the

expected amounts of corrupted files, mainly because of the

intra-file redundancy found in individual snapshots.

Note that some existing work [20] applies additional repli-

cas or more reliable erasure codes to highly referenced chunks

to protect against individual chunk corruptions. Our findings

suggest that this kind of failures is not a major threat to

reliability in primary storage deduplication.

B. Unrecoverable Disk Failures

We now study the impact of UDFs. We first show how the

logical repair progress is related to the physical repair progress,

and identify potential problems. We further compare storage

system reliability with and without deduplication under UDFs

(i.e., Dedup and NoDedup, respectively).

1) Logical Repair Progress: Figure 4 shows the forward

and backward repair strategies (Section III-E). Here, we only

show the snapshots in the FSL dataset in the interest of

space. The X-axis represents the physical repair progress in

1% granularity, while the Y-axis represents the relative logical

repair progress. Given a physical repair progress, we apply

Equation (1) to calculate the logical repair progress for both

NoDedup and Dedup, denoted by Ln and Ld, respectively.

We then calculate the relative logical repair progress defined

as Ld −Ln, which specifies the amounts of logical chunks or

files that have been repaired under Dedup relative to those

under NoDedup. If it is positive (resp. negative), it means

that Dedup improves (resp. degrades) the repair speed when

compared to NoDedup. Note that if we have repaired 0% or

100% of physical chunks, the relative logical repair progress

is zero.

Figures 4(a) and 4(d) show the weighted chunk-level re-

liability for the forward and backward repair strategies, re-

spectively; the non-weighted results are similar and hence

omitted. In forward repair, we observe positive results in most

snapshots except U15, which shows slightly negative results.

On the other hand, backward repair is exactly opposite, in

which deduplication degrades the logical repair progress in

most snapshots. The results are expected, since the highly

referenced chunks are mainly appear at the log beginning,

and repairing them first in forward repair can help the logical

repair progress. We expect that deduplication can exacerbate

UDFs in the chunk level if the highly referenced chunks are

not carefully placed and preferentially repaired.

Figures 4(b) and 4(e) show the non-weighted file-level

reliability for the forward and backward repair strategies, re-

spectively. The results are similar to the chunk-level ones, such

that forward repair shows positive results in most snapshots

while backward repair shows the opposite. Since the non-

weighted metric is only related to the number of repaired

files rather than the file size and the majority of files have

small sizes in each snapshot (as confirmed by [35]), the

non-weighted metric actually reflects the repair progress of

small files. We observe that small files tend to be completely

deduplicated with other files rather than partially deduplicated.

Hence, the results are related to the locations of duplicate

small files. For example, forward repair makes positive logical



0.0e+00

2.0e+05

4.0e+05

6.0e+05

8.0e+05

1.0e+06

1.2e+06

1.4e+06

M
ac

U
1

1

U
1

2

U
1

4

U
1

5

U
2

0

U
2

1

U
2

4

U
2

6

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9E

x
p

ec
te

d
 B

y
te

s 
o

f 
C

o
rr

u
p

te
d

 C
h

u
n

k
s 

p
er

 T
B

Dedup (Forward)
Dedup (Backward)

DCTDedup (Forward)
DCTDedup (Backward)

NoDedup

Fig. 5. Chunk-level comparisons of UDFs with and without deduplication.

repair progress in U11 and U14, mainly because a small file

is copied by 561 times in U11 and a number of small files are

copied by 8 times in U14, both of which happen near the log

beginning. On the other hand, forward repair makes negative

logical repair progress in U15 and U21 (around the middle

of the physical repair progress), mainly because there are a

number of duplicate small files that appear closer to the log

end than the log beginning.

Figures 4(c) and 4(f) show the weighted file-level relia-

bility for the forward and repair strategies, respectively. We

see that in backward repair, all snapshots show significantly

negative results. The reason is that large files are dominant

in the weighted metric, and large files tend to be partially

deduplicated with other files rather than completely duplicated.

Sharing chunks among large files lead to significant chunk

fragmentation [17], meaning that the chunks of individual files

are scattered across storage rather than sequentially stored.

Thus, restoring more chunks does not necessarily imply that

the large files are completely restored (i.e., a large size of data

is still considered to be corrupted), since some chunks may

be deduplicated with the chunks of other files that are not

yet restored. We expect that chunk fragmentation caused by

deduplication can significantly exacerbate UDFs in weighted

file-level metric.

Observation (3) – The logical repair progress is affected

by the placement of highly referenced chunks and the severity

of chunk fragmentation.

2) Chunk-Level Comparisons: We now compare the impact

of UDFs with and without deduplication. Figure 5 shows

the simulation results of UDFs in the chunk level (note that

DCTDedup shows the results of the deliberate copy technique,

which will be discussed in Section V-C). We again only

show the weighted results since the non-weighted ones are

very similar. In NoDedup, we observe no difference between

the forward and backward repair strategies, and UDFs will

corrupt 495880 bytes of chunks in the 10-year mission time.

In forward repair, Dedup reduces the expected amounts of

corrupted chunks caused by UDFs in most snapshots. The

exceptions are U15, S1, S2, and S5, in which Dedup in-

creases the expected bytes of corrupted chunks by 4.2%–

22.3%. Figure 4(a) explains the reasons. For example, in U15,

Dedup degrades the logical repair progresses because some

highly referenced chunks unfortunately appear closer to the

log end (as confirmed by Figures 4(b) and 4(e)) In backward

repair, deduplication degrades reliability in most snapshots. On

average, we observe a 38.1% increase in the expected bytes of

corrupted chunks. As expected, backward repair is worse than

forward repair because highly referenced chunks are likely to

appear in the log beginning.

We point out that while the log-structured layout is an ideal

assumption, the highly referenced chunks can actually appear

in any physical location in practice, especially when involving

chunk migration in garbage collection [4]. Since RAID is

unaware of deduplication semantic, there is no guarantee that

the highly referenced chunks would be repaired preferentially

in the presence of a UDF. As a consequence, deduplication

potentially exacerbates UDFs.

Observation (4) – If we do not carefully place highly ref-

erenced chunks and repair them preferentially, deduplication

can lead to more corrupted chunks in the presence of UDFs.

3) File-Level Comparisons: We now compare the impact of

UDFs in the file level. Figure 6(a) first shows the non-weighted

file-level reliability. In NoDedup, the expected number of

corrupted files caused by UDFs varies in different snapshots,

due to the varying distributions of the numbers of files and

their sizes. On average, UDFs corrupt 1.4 files in forward

repair and 1.7 in backward repair. Similar to chunk-level

results, Dedup on average reduces the expected number of

corrupted files by 24.2% in forward repair but increases the

number by 32% in backward repair. This is related to the

locations of popular duplicate small files, which more possibly

appear at the beginning of the log. For example, some popular

duplicate small files appear at the beginning of the logs of U11

and U14, and hence we observe significantly positive results

in the forward case but negative results in the backward case.

Figure 6(b) shows the weighted file-level reliability. Dedup

generally achieves reliability comparable to NoDedup in for-

ward repair, but significantly degrades reliability in backward

repair (102.8% more bytes in corrupted files). Figure 4(f) ex-

plains the reason. Due to deduplication, the log end generally

has a higher degree of chunk fragmentation than the log begin-

ning. The repaired fragmented chunks cannot help completely

restore large files, making the logical repair progress slow

based on the weighted metric.

Deduplication systems are naturally more fragmented than

non-deduplication systems, how to reduce the chunk fragmen-



0.0e+00

1.0e+00

2.0e+00

3.0e+00

4.0e+00

5.0e+00

6.0e+00

7.0e+00

8.0e+00

9.0e+00

1.0e+01

M
ac

U
1

1

U
1

2

U
1

4

U
1

5

U
2

0

U
2

1

U
2

4

U
2

6

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9E

x
p

ec
te

d
 #

 o
f 

C
o

rr
u

p
te

d
 F

il
es

 p
er

 T
B

NoDedup (Forward)
NoDedup (Backward)

Dedup (Forward)
Dedup (Backward)

DCTDedup (Forward)
DCTDedup (Backward)

(a) Non-Weighted File-Level Metric

0.0e+00

2.0e+05

4.0e+05

6.0e+05

8.0e+05

1.0e+06

1.2e+06

1.4e+06

1.6e+06

M
ac

U
1

1

U
1

2

U
1

4

U
1

5

U
2

0

U
2

1

U
2

4

U
2

6

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

E
x

p
ec

te
d

 B
y

te
s 

o
f 

C
o

rr
u

p
te

d
 F

il
es

 p
er

 T
B

(b) Weighted File-Level Metric

Fig. 6. The consequences of UDFs in terms of file-level non-weighted/weighted metric.

tation to improve read performance has been a hot topic [10],

[16], [17]. Our observation shows that the chunk fragmentation

also potentially exacerbates UDFs in terms of the file-level

weighted metric. To improve reliability, a defragmentation

algorithm to aggregate similar files (the files sharing many

chunks) into continuous physical addresses is required, such

as the inline defragmentation algorithms proposed by previ-

ous work [10], [17] and offline defragmentation tools (e.g.,

e4defrag in ext4 file system [23]). We would like to take these

as our future work.

Observation (5) – Deduplication is significantly more

vulnerable to UDFs in terms of the file-level metrics if popular

small files and chunk fragmentation are not carefully handled.

C. Deliberate Copy Technique

In order to reduce the negative impacts of UDFs, we

propose the deliberate copy technique (DCT). Our observation

is that the highly referenced chunks only account for a small

fraction of physical capacity after deduplication, and the chunk

reference counts show a long-tailed distribution based on

our investigation. Hence, it is possible to allocate a small

dedicated physical area in RAID for storing extra copies of

highly referenced chunks, and always preferentially repair the

physical area during RAID reconstruction.

We implement DCT in our simulator framework to show its

effectiveness. Specifically, we allocate the first 1% of physical

sectors for the highly referenced chunks. In each snapshot,

we sort the chunks by their reference counts, and fill the

dedicated sectors with the top-1% most highly referenced

chunks. While these chunks only occupy 1% of physical

capacity, they account for 6%–50% of logical capacity and

incur moderate storage overhead. Since the deliberate copies

can be made offline, no change is required to the regular

read/write path.

We revisit Figure 5 for the simulation results of DCT

(denoted by (DCTDedup) in the chunk level. In forward repair,

DCT reduces the expected bytes of corrupted chunks by 9%

on average, while in backward repair, we observe a 35.8%

decrease on average. Compared with NoDedup, DCTDedup is

less vulnerable to UDFs in general. Thus, we believe that DCT

can maintain the chunk-level reliability in deduplication.

Observation (6) – By allocating a small dedicated physical

area for storing highly referenced chunks, we can reduce the

expected amounts of corrupted chunks by UDFs.

We now study the effectiveness of DCT in file-level metrics.

Figure 6(a) shows the non-weighted file-level metric. DCT

on average reduces the expected number of corrupted files

by 6.1% in forward repair and by 33.4% in backward repair

in Dedup. As a result, DCT helps Dedup achieve 28.8%

and 12.2% higher reliability than NoDedup in forward and

backward repair strategies, respectively.

Figure 6(b) shows the weighted file-level metric. In forward

repair, DCT on average has 3.9% less bytes in corrupted

files than NoDedup. On the other hand, in backward repair,

DCT on average reduces 21.4% of bytes in corrupted files

in Dedup, but still achieves (59.1%) worse reliability than

NoDedup because DCT cannot completely solve the chunk

fragmentation problem.

Observation (7) – DCT reduces the expected amounts of

corrupted files remarkably, but a defragmentation algorithm



is necessary to further improve reliability in the weighted file-

level metric.

VI. CONCLUSIONS

This paper revisits the problem of storage system relia-

bility in deduplication. We propose a simulation framework

and appropriate reliability metrics to compare storage system

reliability with and without deduplication in the face of

Uncorrectable Sector Errors (USE) and Unrecoverable Disk

Failures (UDF), and examine real-life file system snapshots

that represent the workloads for primary storage deduplication.

Regarding to USEs that cause individual chunk corruptions,

we observe that deduplication does not alter the expected

amounts of corrupted chunks, and remarkably reduces the

expected amounts of corrupted files due to intra-file redun-

dancy elimination. Regarding to UDFs that corrupt large areas

of continuous physical chunks, deduplication leads to more

corrupted chunks and files due to unguarded chunk placement

and chunk fragmentation. We propose a deliberate copy tech-

nique to allocate a small dedicated physical area in RAID

for highly referenced chunks and preferentially repair the

area during RAID reconstruction. We show that the deliberate

copy technique significantly reduces the expected amounts of

corrupted chunks and files.

ACKNOWLEDGMENTS

This work was supported in part by NSFC No. 61502190;

Fundamental Research Funds for the Central Universities,

HUST, under Grant No. 2015MS073; and GRF CUHK413813

from HKRGC.

REFERENCES

[1] Fsl traces and snapshots public archive. http://tracer.filesystems.org,
2015.

[2] L. N. Bairavasundaram, G. R. Goodson, S. Pasupathy, and J. Schindler.
An analysis of latent sector errors in disk drives. In Proc. ACM

SIGMETRICS, 2007.
[3] D. Bhagwat, K. Pollack, D. D. Long, T. Schwarz, E. L. Miller, and J.-

F. o. Paris. Providing high reliability in a minimum redundancy archival
storage system. In Proc. IEEE MASCOTS, 2006.

[4] F. C. Botelho, P. Shilane, N. Garg, and W. Hsu. Memory efficient
sanitization of a deduplicated storage system. In Proc. USENIX FAST,

2013.
[5] A. T. Clements, I. Ahmad, M. Vilayannur, and J. Li. Decentralized

deduplication in san cluster file systems. In Proc. USENIX ATC, 2009.
[6] C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk, W. Kilian, P. Strzel-

czak, J. Szczepkowski, C. Ungureanu, and M. Welnicki. Hydrastor: A
scalable secondary storage. In Proc. USENIX FAST, 2009.

[7] A. El-Shimi, R. Kalach, A. Kumar, A. Ottean, J. Li, and S. Sengupta.
Primary data deduplication-large scale study and system design. In Proc.

USENIX ATC, 2012.
[8] J. G. Elerath and M. Pecht. A highly accurate method for assessing

reliability of redundant arrays of inexpensive disks (raid). Computers,

IEEE Transactions on, 58(3):289–299, 2009.
[9] J. G. Elerath and J. Schindler. Beyond mttdl: A closed-form raid 6

reliability equation. ACM Trans. on Storage, 10(2):7, 2014.
[10] M. Fu, D. Feng, Y. Hua, X. He, Z. Chen, W. Xia, F. Huang, and

Q. Liu. Accelerating restore and garbage collection in deduplication-
based backup systems via exploiting historical information. In Proc.

USENIX ATC, 2014.
[11] K. M. Greenan. Reliability and power-efficiency in erasure-coded

storage systems. PhD thesis, University of California, Santa Cruz, 2009.
[12] K. M. Greenan, J. S. Plank, and J. J. Wylie. Mean time to meaningless:

Mttdl, markov models, and storage system reliability. In Proc. USENIX

HotStorage, 2010.

[13] K. Jayaram, C. Peng, Z. Zhang, M. Kim, H. Chen, and H. Lei. An
empirical analysis of similarity in virtual machine images. In Proc.

Middleware, 2011.
[14] K. Jin and E. L. Miller. The effectiveness of deduplication on virtual

machine disk images. In Proc. ACM SYSTOR, 2009.
[15] X. Li, M. Lillibridge, and M. Uysal. Reliability analysis of deduplicated

and erasure-coded storage. ACM SIGMETRICS Performance Evaluation

Review, 38(3):4–9, 2011.
[16] Y.-K. Li, M. Xu, C.-H. Ng, and P. P. Lee. Efficient hybrid inline and

out-of-line deduplication for backup storage. ACM Trans. on Storage,
11(1):2, 2015.

[17] M. Lillibridge, K. Eshghi, and D. Bhagwat. Improving restore speed
for backup systems that use inline chunk-based deduplication. In Proc.

USENIX FAST, 2013.
[18] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezise, and

P. Camble. Sparse indexing: large scale, inline deduplication using
sampling and locality. In Proc. USENIX FAST, 2009.

[19] X. Lin, F. Douglis, J. Li, X. Li, R. Ricci, S. Smaldone, and G. Wallace.
Metadata considered harmful ... to deduplication. In Proc. USENIX

HotStorage, 2015.
[20] C. Liu, Y. Gu, L. Sun, B. Yan, and D. Wang. R-admad: High reliability

provision for large-scale de-duplication archival storage systems. In
Proc. ACM ICS, 2009.

[21] M. Lu, D. Chambliss, J. Glider, and C. Constantinescu. Insights for
data reduction in primary storage: a practical analysis. In Proc. ACM

SYSTOR, 2012.
[22] A. Ma, F. Douglis, G. Lu, D. Sawyer, S. Chandra, and W. Hsu. Raid-

shield: characterizing, monitoring, and proactively protecting against
disk failures. In Proc. USENIX FAST, 2015.

[23] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas, and L. Vivier.
The new ext4 filesystem: current status and future plans. In Proceedings

of the Linux Symposium, volume 2, pages 21–33. Citeseer, 2007.
[24] D. Meister, J. Kaiser, A. Brinkmann, T. Cortes, M. Kuhn, and J. Kunkel.

A study on data deduplication in hpc storage systems. In Proc. IEEE

SC, 2012.
[25] D. T. Meyer and W. J. Bolosky. A study of practical deduplication. In

Proc. USENIX FAST, 2011.
[26] C.-H. Ng, M. Ma, T.-Y. Wong, P. P. C. Lee, and J. C. S. Lui. Live

deduplication storage of virtual machine images in an open-source cloud.
In Proc. Middleware, 2011.

[27] E. Pinheiro, W.-D. Weber, and L. A. Barroso. Failure trends in a large
disk drive population. In Proc. USENIX FAST, 2007.

[28] S. Quinlan and S. Dorward. Venti: a new approach to archival storage.
In Proc. USENIX FAST, 2002.

[29] M. O. Rabin. Fingerprinting by random polynomials. Center for
Research in Computing Techn., Aiken Computation Laboratory, Univ.,
1981.

[30] E. W. Rozier, W. H. Sanders, P. Zhou, N. Mandagere, S. M. Uttamchan-
dani, and M. L. Yakushev. Modeling the fault tolerance consequences
of deduplication. In Proc. IEEE SRDS, 2011.

[31] E. W. D. Rozier and W. H. Sanders. A framework for efficient
evaluation of the fault tolerance of deduplicated storage systems. In
Proc. IEEE/IFIP DSN, 2012.

[32] B. Schroeder, S. Damouras, and P. Gill. Understanding latent sector
errors and how to protect against them. ACM Trans. on Storage, 6(3):9,
2010.

[33] B. Schroeder and G. A. Gibson. Disk failures in the real world: What
does an mttf of 1, 000, 000 hours mean to you? In Proc. USENIX FAST,

2007.
[34] K. Srinivasan, T. Bisson, G. Goodson, and K. Voruganti. iDedup:

Latency-aware, inline data deduplication for primary storage. In Proc.

USENIX FAST, 2012.
[35] Z. Sun, G. Kuenning, S. Mandal, P. Shilane, V. Tarasov, N. Xiao, and

E. Zadok. A long-term user-centric analysis of deduplication patterns.
In Proc. IEEE MSST, 2016.

[36] G. Wallace, F. Douglis, H. Qian, P. Shilane, S. Smaldone, M. Chamness,
and W. Hsu. Characteristics of backup workloads in production systems.
In Proc. USENIX FAST, 2012.

[37] A. Wildani, E. L. Miller, and O. Rodeh. Hands: A heuristically arranged
non-backup in-line deduplication system. In Proc. IEEE ICDE, 2013.

[38] B. Zhu, K. Li, and H. Patterson. Avoiding the disk bottleneck in the
data domain deduplication file system. In Proc. USENIX FAST, 2008.


