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ABSTRACT
The update performance in erasure-coded data centers is often bot-
tlenecked by the constrained cross-rack bandwidth. We propose
CAU, a cross-rack-aware update mechanism that aims to mitigate
the cross-rack update traffic in erasure-coded data centers. CAU
builds on three design elements: (i) selective parity updates, which
select the appropriate parity update approach based on the update
pattern and the data layout to reduce the cross-rack update traffic;
(ii) data grouping, which relocates and groups updated data chunks
in the same rack to further reduce the cross-rack update traffic; and
(iii) interim replication, which stores a temporary replica for each
newly updated data chunk. We evaluate CAU via trace-driven anal-
ysis, local cluster experiments, and Amazon EC2 experiments. We
show that CAU enhances state-of-the-arts by mitigating the cross-
rack update traffic as well as maintaining high update performance
in both local cluster and geo-distributed environments.
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• Information systems → Distributed storage; • Computer
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1 INTRODUCTION
Modern data centers (DCs) (e.g., [5, 11, 21]) deploy thousands of
storage nodes (or servers) in one or multiple geographic regions
to provide large-scale storage services. It is critical for DCs to pro-
vide data reliability guarantees in the face of failures, which can be
caused by unexpected factors from hardware (e.g., disk malfunc-
tions) to software (e.g., file system errors). A common solution to
addressing data reliability is to keep data with redundancy, in which
replication and erasure coding are two most widely deployed ap-
proaches. Compared to replication, which creates multiple identical
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copies of data, erasure coding provably achieves the same degree
of fault tolerance while incurring much less redundancy [38], and
has been widely deployed in enterprise DCs [11, 15, 21]. At a high
level, erasure coding takes a number of data chunks as input and
produces additional redundant chunks called parity chunks, such
that even if some data or parity chunks are lost due to failures, the
lost chunks can still be reconstructed from the remaining available
data and parity chunks.

Although erasure coding is storage-efficient, maintaining the
consistency between data and parity chunks incurs high perfor-
mance overhead under update-intensive workloads, since any up-
date of a data chunk triggers parity updates for all other dependent
parity chunks. We argue that updates become more common in
today’s DC storage workloads. For example, the proportion of up-
dates in low-latency workloads in Yahoo!’s DCs reaches nearly 50%
and continues to increase [31]; also, deletes, which can be viewed
as a special case of updates, are common operations in Microsoft’s
erasure-coded DCs [7]. Furthermore, updates are mostly of small
sizes (e.g., in online transactional processing [30] and enterprise
server workloads [6]), and frequent small-size updates in turn lead
to intensive parity updates in erasure-coded storage. How to miti-
gate the update overhead in erasure-coded DCs is clearly a critical
deployment issue.

The hierarchical topological nature of DCs further complicates
the design of efficient updates in erasure-coded storage. Modern
DCs organize nodes in racks, in which the cross-rack bandwidth is
often oversubscribed [4] and much more scarce than the inner-rack
bandwidth (typically 5-20× lower [3, 8]), yet it is heavily consumed
by various types of workloads, such as replica writes [8], failure
recovery [27], and data analytics [3, 16]. The same phenomenon is
also found in geo-distributed DCs, in which nodes are located in
multiple geographical regions and the cross-region bandwidth is
much more scarce than the inner-region bandwidth [37]. Thus, en-
abling efficient updates with cross-rack (or cross-region) awareness
is necessary, but is unfortunately largely unexplored by previous
work on erasure-coded updates in the literature (see §6).

In this paper, we propose CAU, a novel cross-rack-aware update
mechanism that mitigates the cross-rack update traffic (i.e., the cross-
rack traffic triggered for maintaining the consistency of data and
parity chunks in update operations) in erasure-coded DCs; note that
CAU is also applicable for mitigating the cross-region update traffic
in geo-distributed DCs. CAU builds on three design elements. First,
CAU adopts selective parity updates, which selectively perform the
appropriate parity update approach based on the update pattern and
the data layout in a DC. Second, CAU can be extended to support
data grouping, which relocates and groups updated data chunks into
the same rack, so as to allow aggregate updates in the same rack
and further reduce the cross-rack update traffic. Furthermore, CAU
performs interim replication, which creates a short-lived replica
to maintain high data reliability, while limiting the addition of
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cross-rack traffic. Note that CAU is generic and can be applied to
any practical erasure code that performs encoding based on linear
combinations (see §2.3). Our contributions are summarized below:

• We present CAU, a novel cross-rack-aware update mechanism
that mitigates the cross-rack update traffic through selective
parity updates and data grouping.

• We show via reliability analysis that CAU maintains reliability
guarantees through interim replication, as compared to tradi-
tional erasure coding that performs parity updates immediately
for each updated data chunk.

• We implement a CAU prototype that is deployable in distributed
environments, and evaluate CAU under real-world workloads
from three perspectives: (i) trace-driven analysis, (ii) local cluster
experiments, and (iii) Amazon EC2 experiments. Our trace-driven
analysis shows that for some configurations, CAU can save at
least 60% of cross-rack update traffic over the baseline approach
and the recently proposed erasure-coded update scheme PARIX
[18]. Also, our CAU prototype can improve the update perfor-
mance by at least 40% and 20% in local cluster and Amazon EC2
experiments, respectively.

The source code of our CAU prototype is available for download
at http://adslab.cse.cuhk.edu.hk/software/cau.

2 BACKGROUND
2.1 DC Architecture
We consider erasure-coded storage in a DC with a two-level hier-
archical architecture. Specifically, a DC comprises multiple nodes
(or servers) that provide storage space. It partitions nodes into dif-
ferent racks, such that multiple nodes within the same rack are
connected via a top-of-rack (ToR) switch, while multiple racks are
connected by the aggregation and core switches that collectively
form the network core. Figure 1 depicts the DC architecture. Such a
two-level hierarchical architecture is also employed in modern DC
deployment [11, 21] and assumed by previous work [8, 14, 19, 34].

Our goal is to mitigate the cross-rack update traffic triggered
by update operations in erasure-coded storage. We assume that
the performance bottleneck of a DC lies in the cross-rack data
transfer over the network core as in prior work [8, 14, 19, 34],
as modern DCs are often oversubscribed and have constrained
cross-rack bandwidth (see §1). Also, each node can be attached
with multiple disks to achieve high I/O throughput [8], thereby
further pushing the bottleneck to the network core. While our work
focuses on rack-based DCs, we can also generalize our analysis to
geo-distributed DCs, in which cross-region data transfer over the
wide-area network is the performance bottleneck and the cross-
region update traffic should be mitigated.

2.2 Erasure Coding
In this paper, we focus on a well-known family of erasure codes
called Reed-Solomon (RS) codes [28], which are deployed in today’s
productionDCs [11, 21, 23]. Specifically, we construct RS codes with
two configurable integersn andk (where 0 < k < n), and denote the
code construction by RS(n,k). Suppose that the data is organized in
fixed-size units called chunks. For every k (uncoded) chunks called
data chunks, RS codes encode them into n − k additional (coded)

Node

Data Chunk
Parity ChunkNetwork CoreNetwork Core

Rack

Figure 1: A DC that comprises four racks with four nodes
each. Suppose that theDCemploysRS(14,10) for erasure cod-
ing. It may distribute the data and parity chunks of a stripe
across 14 different nodes that reside in the four racks.

chunks called parity chunks via linear combinations (see §2.3 for
details), such that any k out of the n data and parity chunks can
reconstruct the original k data chunks. We call the set of the n data
and parity chunks a stripe, which is distributed across n nodes to
tolerate any n − k node failures. In our discussion, we refer to the
nodes that store data chunks and parity chunks as data nodes and
parity nodes, respectively. In practice, a DC stores many stripes that
are independently encoded and distributed across n different nodes,
so each node can act as a data node or a parity node for different
stripes. In this paper, we focus on the update operation for a single
stripe.

RS codes are both storage-optimal and general: by storage-optimal,
we mean that the storage overhead (i.e., n/k) is the minimum to
provide fault tolerance against any n−k node failures (such storage-
optimal fault tolerance is also called the Maximum Distance Sepa-
rable property); by general, we mean that n and k can be arbitrary
integers (provided that 0 < k < n). The RS code construction
that we consider is systematic, meaning that the k data chunks are
included in a stripe after encoding.

To provide rack-level fault tolerance, existing erasure-coded DCs
distribute each stripe across n nodes in n distinct racks [11, 15, 21].
Recent studies [14, 34] propose to store each stripe in n nodes that
reside in r racks, for some parameter r < n, to minimize the cross-
rack traffic during failure repair at the expense of reduced rack-level
fault tolerance. It is shown in [14] that the overall reliability can
be improved under independent failures due to the reduction of
cross-rack repair traffic, but drops when correlated failures become
more common. For example, Figure 1 shows that the 14 chunks of a
stripe coded by RS(14,10) are stored in r = 4 racks. Here, we assume
that each rack should store no more than n − k chunks per stripe, so
that an erasure-coded DC can tolerate at least a single rack failure. In
this work, we study how to mitigate the cross-rack update traffic
by placing a stripe in r < n racks.

2.3 Parity Updates in Erasure Coding
Most practical erasure codes perform encoding via linear combina-
tions. We use RS codes as an example. Let D1,D2, · · · ,Dk be the
k data chunks, P1, P2, · · · , Pn−k be the n − k parity chunks, and
{γi , j }1≤i≤k ,1≤j≤n−k be the set of some encoding coefficients. Each
parity chunk Pj , where 1 ≤ j ≤ n − k , can be computed based on
Galois Field arithmetic [25] as follows:

Pj =
k∑
i=1

γi , jDi . (1)
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From Equation (1), we can also efficiently update a parity chunk
for any update of a data chunk. Suppose that a data chunkDi (where
1 ≤ i ≤ k) is updated to D ′

i . Then we can update each parity chunk
Pj (where 1 ≤ j ≤ n − k) into P ′j as follows:

P ′j = Pj + γi , j (D
′
i − Di ). (2)

Equation (2) implies that a parity chunk can be updated directly
from the delta of the data chunk D ′

i − Di , without accessing other
unchanged data chunks of the same stripe. We call this type of
parity updates delta-based updates. To elaborate, when a data node
updates a data chunk Di to a new data chunk D ′

i , it sends the delta
D ′
i −Di to each of the n −k parity nodes, which update their parity

chunks based on Equation (2) (note that the coefficientγi , j is known
and determined by the erasure code construction). If we distribute a
stripe across r = n racks, the amount of cross-rack traffic for parity
updates is equal to n − k chunks, as the delta D ′

i − Di has the same
size as a data chunk. An open question is: if we distribute a stripe
across r < n racks, can we reduce the cross-rack update traffic?

3 CROSS-RACK-AWARE UPDATES
CAU is a cross-rack-aware update mechanism that aims to mitigate
the cross-rack update traffic. Recall from §1 that CAU builds on
three design elements: selective parity updates, data grouping, and
interim replication. We elaborate them in details.

3.1 Append-Commit Procedure
To avoid frequent parity updates, CAU adopts an iterative append-
commit procedure to update data chunks. Each iteration consists of
the append and commit phases (see Figure 2). In the append phase,
when a data chunk is updated, CAU first identifies the data node
where the original data chunk resides. It then appends the new data
chunk to an append-only log that is co-located with and maintained
by the data node, without immediately updating the associated
parity chunks. The length of the append phase can be adjusted
depending on the update frequency; for example, it lasts for a fixed
time period if the update frequency is low, or until the append-
only log reaches a size limit if the update frequency is high. Then
CAU switches to the commit phase, in which it updates the parity
chunks (via delta-based updates) based on the new data chunks
in the append-only log of each data node. CAU performs the two
phases of the append-commit procedure iteratively.

The append-commit procedure defers parity updates to exploit
the opportunity of aggregating the updates of data or parity chunks
in batch, and we use this property to design selective parity updates
(see §3.2) and data grouping (see §3.3). However, it also degrades
reliability as there is no redundancy to protect the updated data
chunks until the commit phase. We address this issue via interim
replication (see §3.4) and conduct reliability analysis (see §3.5) to
justify that the fault tolerance is preserved.

3.2 Selective Parity Updates
In the commit phase, parity updates incur cross-rack transfers when
the data and parity chunks being updated reside in different racks.
Here, we extend the delta-based updates (see §2.3) into selective
parity updates so as to mitigate the cross-rack update traffic.

DN DN PN PN

new
update

Commit 
Phase

Append 
Phase

append 
to log

new
update

append 
to log

delta

delta

Figure 2: Append-commit procedure (DN: data node; PN: par-
ity node).

Ri Rj

data-delta chunks

(a) data-delta commit

Ri Rj

parity-delta chunks

(b) parity-delta commit

parity node

data node

Figure 3: Selective parity updates: (a) data-delta commit and
(b) parity-delta commit. In (a), CAU sends i ′ = 2 data-delta
chunks from Ri to Rj ; in (b), CAU sends j ′ = 2 parity-delta
chunks from Ri to Rj .

Problem: We first formalize the parity update problem as follows.
Consider a stripe of n erasure-coded chunks, with k data chunks
{D1,D2, · · · ,Dk } and n − k parity chunks {P1, P2, · · · , Pn−k } that
are spread across r racks denoted by {R1,R2, · · · ,Rr }. Without
loss of generality, suppose that rack Ri has i ′ data chunks being
updated, denoted by {D1,D2, · · · ,Di′}, and another rack Rj has
j ′ parity chunks of the same stripe, denoted by {P1, P2, · · · , Pj′},
where 1 ≤ i , j ≤ r , 1 ≤ i ′ ≤ k , and 1 ≤ j ′ ≤ n − k . To update
each parity chunk Pm into P ′m in Rj (where 1 ≤ m ≤ j ′), we can
generalize Equation (2) as:

P ′m = Pm +
i′∑
h=1

γh,m (D ′
h − Dh ), (3)

where γh,m is the encoding coefficient used by Dh (where 1 ≤ h ≤

i ′) for the parity chunk Pm .
Based on Equation (3), we observe that there are two different

ways to update a parity chunk in the commit phase. We call them
data-delta commit and parity-delta commit. Figure 3 illustrates the
two parity update approaches, as elaborated below.
Data-delta commit:A data-delta commit operation updates multi-
ple parity chunks based on the change of each single data chunk (see
Figure 3(a)). Specifically, for each data chunkDh (where 1 ≤ h ≤ i ′)
being updated, CAU computes a data-delta chunk D ′

h − Dh . It then
sends each of the i ′ data-delta chunks from Ri to one of the j ′ parity
nodes in Rj , which then forwards a copy of each data-delta chunk
to each of the remaining j ′ − 1 parity nodes. To update each parity
chunk Pm into P ′m (where 1 ≤ m ≤ j ′), the corresponding parity
node adds all i ′ data-delta chunks to Pm as in Equation (3). We
see that a data-delta commit operation incurs a cross-rack transfer
of i ′ data-delta chunks. Figure 3(a) shows the data-delta commit
operation with i ′ = 2 and j ′ = 3.
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Parity-delta commit: A parity-delta commit operation updates
each parity chunk by aggregating the changes of multiple data
chunks (see Figure 3(b)). Specifically, to update each parity chunk
Pm into P ′m (where 1 ≤ m ≤ j ′) in Rj , CAU collects all changes
of data chunks in one of the data nodes in Ri . The data node then
computes a parity-delta chunk

∑i′
h=1 γh,m (D ′

h −Dh ) and sends it to
the parity node that stores Pm . The parity node adds the received
parity delta chunk to Pm to form P ′m based on Equation (3). We see
that a parity-delta commit operation incurs a cross-rack transfer of
j ′ parity-delta chunks. Figure 3(b) shows the parity-delta commit
operation with i ′ = 3 and j ′ = 2.

Discussion: The key difference between data-delta commit and
parity-delta commit lies in where we compute the change of a parity
chunk. In data-delta commit, we compute the change of a parity
chunk in Rj , where the parity chunks are stored; in contrast, in
parity-delta commit, we first compute the change of a parity chunk
in Ri and then send the result to Rj . Both approaches incur different
amounts of cross-rack update traffic. CAU performs the following
decision: if i ′ ≤ j ′, CAU performs data-delta commit; otherwise,
it performs parity-delta commit. Thus, the amount of cross-rack
update traffic is min{i ′, j ′}.

Note that the current design of selective parity updates does not
necessarily achieve the theoretically minimum cross-rack update
traffic. For example, in data-delta commit, we treat all i ′ data-delta
chunks different, but if they are identical, we may send only one
data-delta chunk from Ri to Rj . Also, in parity-delta commit, we
update each parity chunks independently. However, if the under-
lying erasure code allows one parity chunk to be computed from
another parity chunk (e.g., RDP [10]), we may send only one parity-
delta chunk (instead of j ′ parity-delta chunks) from Ri to Rj , and
compute all parity chunks within Rj . How to find the theoretically
minimum cross-rack update traffic is posed as future work.

3.3 Data Grouping
The effectiveness of selective parity updates is restricted by the
underlying chunk placement. Here, we further reduce the cross-
rack update traffic by relocating chunks to different nodes. Our
observation is that the same group of data chunks is likely updated
across several append-commit iterations due to high spatial locality
in updates [35]. Thus, CAU performs data grouping, which relocates
the data chunks that are updated in the current append-commit
iteration to be stored in the same rack, so that they can be updated
together within the same rack in the following append-commit
iterations; meanwhile, the relocation should maintain the same
degree of fault tolerance.

To limit parity recomputations, our current data grouping design
processes each stripe independently, rather than multiple stripes.
Also, to limit expensive data relocations, it only selects two racks for
each stripe to perform data grouping, by relocating the data chunks
of one rack into another rack. Such design choices are sufficient
for reducing the cross-rack update traffic (see §5).

Algorithm 1 shows how data grouping works. CAU performs
data grouping on a per-stripe basis at the end of each append-
commit iteration. For each stripe that has data chunks updated in
an append-commit iteration, CAU first identifies rack Ri that has
the highest number of updated data chunks in the stripe in the

Ri1 Rj1

parity nodedata node

Ri1 Ri2 Rj1

data-delta chunk

swap

Rj2 Rj3

Rj2 Rj3
parity-delta chunk

(a) before data grouping

(b) after data grouping

Figure 4: Data grouping: we can swap the updated data
chunk in Ri2 with one of the chunks in Ri1, such that the
four updated data chunks are now stored in Ri1.

Algorithm 1: Data Grouping
1 for each stripe do
2 Identify rack Ri (1 ≤ i ≤ r ) with the highest number of

updated data chunks in the stripe in the last append phase
3 for each rack Rl (1 ≤ l , i ≤ r ) do
4 if l ′ + i′ < ci then
5 Compute the gain Gl = bl − (b∗l + 2l

′)

6 else
7 Set the Gl = 0

8 Find Rl where Gl is maximum among all racks
9 Swap l ′ data chunks in Rl with l ′ non-updated data chunks in Ri

last append phase (step 2). Suppose that Ri stores ci data chunks
including the i ′ updated data chunks, where we require that ci ≤
n − k for single-rack fault tolerance (see §2.2). Then CAU checks
the remaining r − 1 racks. For each rack Rl (where 1 ≤ i , l ≤ r )
that has l ′ updated data chunks of the same stripe, CAU first checks
if i ′ + l ′ ≤ ci (step 4). The rationale is that if we swap all the l ′
updated chunks from Rl with l ′ non-updated data chunks in Ri , and
the next append phase only updates the i ′ + l ′ chunks, then we can
eliminate the cross-rack update traffic from Rl in the future commit
phases. Specifically, we calculate bl and b∗l , which correspond to
the amounts of cross-rack update traffic (in units of chunks) before
and after relocating l ′ chunks from Rl to Ri , based on selective
parity updates in §3.2. Since the relocation will swap the l ′ updated
data chunks in Rl and another l ′ non-updated data chunks in Ri ,
it also incurs a cross-rack traffic of 2l ′ chunks. Thus, the gain of
such data grouping is bl − (b∗l + 2l ′) (step 5). Finally, CAU finds
the rack Rl that has the maximum gain, and swaps its l ′ updated
data chunks with the l ′ non-updated chunks in Ri (steps 8-9). The
complexity of Algorithm 1 isO(tr ), where t is the number of stripes
that have data chunks updated and r is the number of racks.

Figure 4 depicts the idea of data grouping. Before data grouping,
rack Ri1 has i ′1 = 3 updated data chunks and rack Ri2 has i ′2 = 1
updated data chunk. Suppose that we want to relocate the updated
data chunk in Ri2 to Ri1 (which has the most updated data chunks).
Before data grouping (see Figure 4(a)), in order to update the three
parity chunks in racks Rj1 , Rj2 , and Rj3 , CAU needs to send one
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parity-delta chunk from Ri1 and one data-delta chunk from Ri2 to
each of the three racks (i.e., bi2 = 6 chunks of cross-rack update
traffic). Now we swap i ′2 = 1 updated data chunk from Ri2 with a
non-updated data chunk in Ri1 (which incurs two chunks of cross-
rack traffic). If the four data chunks in Ri1 are updated again, CAU
only needs to send b∗i2 = 3 parity-delta chunks from Ri1 to Rj1 ,
Rj2 , and Rj3 (see Figure 4(b)). Thus, the gain of data grouping is
bi2 − (b∗i2 + 2 × i ′2) = 1 chunk.

3.4 Interim Replication
To prevent any data loss of updated data chunks in the append
phase, CAU performs interim replication by storing replicas tem-
porarily for the updated data chunks until we perform parity up-
dates in the commit phase. Such replicas will be removed afterwards,
so that they do not incur additional storage overhead in the long
run.

To balance between fault tolerance and the amount of cross-rack
update traffic, CAU currently stores one replica for each newly
updated data chunk in a different rack (i.e., not in the same rack
where the data node with the newly updated data chunk resides),
so as to tolerate any single-node or single-rack failure. For example,
since each rack stores no more than n − k chunks of a stripe (see
§2.2), there must exist one of then−k parity nodes of the same stripe
residing in a different rack, and we may choose the parity node to
store the replica. We argue that providing temporary protection
against a single-node or single-rack failure is sufficient in short
term, as single failures are the most common failure pattern in
production [15, 27]. Our reliability analysis also shows that CAU
preserves fault tolerance (see §3.5).

3.5 Reliability Analysis
We now analyze the reliability of CAU. We show that even though
CAU uses the append-commit procedure to update data chunks, if
interim replication is enabled, then it still achieves the same level of
reliability as the baseline erasure coding approach, which updates
all parity chunks of a stripe immediately for each data chunk update.
Our analysis studies the reliability of CAU during the append phase;
once all parity chunks are updated in the commit phase, CAU has
the same reliability as the baseline approach.
Setting: We consider both node failures and rack failures. Let θ1
and θ2 be the expected lifetimes of a node and a rack, respectively.
Suppose that nodes and racks are independent and their lifetimes
are exponentially distributed; such assumptions provide useful
approximations [17]. The probability that a node fails (denoted
by f1) and the probability that a rack fails (denoted by f2) for a
duration of time τ can be computed by:

f1 = 1 − e
− τ
θ1 , f2 = 1 − e

− τ
θ2 . (4)

For node failures, we set θ1 = 10 years [9]. For rack failures,
we focus on top-of-rack (ToR) switch failures. We take the aver-
age probability of a ToR switch failure in one year as 0.0278 [13,
Figure 4]. From Equation (4), we estimate that θ2 = 36 years (by
setting f2 = 0.0278 and τ = 1 year).

We consider RS(9,6) for erasure coding, as it is also used in
production (e.g., QFS [23]). We assume that the n = 9 chunks of
a stripe are stored in n = 9 distinct nodes organized in r = 3

racks with n/r = 3 nodes each. This configuration can tolerate any
triple-node failure or any single-rack failure.
Analysis: Our objective is to calculate the data loss probabilities for
the baseline erasure coding approach as well as CAU in the append
phase. For CAU, we consider two variants: (i) CAU-0, which keeps
no replica for each newly updated data chunk, and (ii)CAU-1, which
enables interim replication and keeps one replica for each newly
updated data chunk in a parity node residing in a different rack. To
simplify our analysis, we assume that the n−k = 3 parity nodes are
organized in the same rack, and the replicas are distributed across
all parity nodes in CAU-1.

We first analyze the probability for a general number of node
failures, while there is no rack failure. Let Ei , j denote the event
that i data nodes and j parity nodes fail concurrently, while all r
racks are still available, where 0 ≤ i ≤ k and 0 ≤ j ≤ n − k . We can
compute the probability of Ei , j (denoted by Pr(Ei , j )) as:

Pr(Ei , j )

=

(
k

i

)
· f i1 · (1 − f1)

k−i︸                    ︷︷                    ︸
i data node failures

·

(
n − k

j

)
· f

j
1 · (1 − f1)

n−k−j︸                              ︷︷                              ︸
j parity node failures

· (1 − f2)
r .︸     ︷︷     ︸

no rack failure

(5)

We next analyze the probability for a general number of rack
failures, while the remaining nodes in other surviving racks are
accessible. Let Fl denote the event that l racks fail, where 0 ≤ l ≤ r ,
while the nodes in the remaining r − l racks are all available. Each
rack consists of n/r nodes (assuming that n/r is an integer), so
there are (r − l)n/r remaining nodes in other surviving racks. We
compute the probability of Fl (denoted by Pr(Fl )) as:

Pr(Fl ) =
(
r

l

)
· f l2 · (1 − f2)

r−l︸                    ︷︷                    ︸
l rack failures

· (1 − f1)
(r−l )n/r︸             ︷︷             ︸

remaining nodes are available

. (6)

Using Equations (5) and (6), we compute the data loss probabili-
ties for baseline erasure coding and CAU as follows.

• Baseline erasure coding: The baseline erasure coding approach
under RS(9,6) ensures data availability in the following cases: (i)
no more than three nodes fail while there is no rack failure (i.e.,⋃

0≤i+j≤3 Ei , j ); and (ii) only one rack fails while the nodes in the
surviving racks are available (i.e., F1). The data loss probability
(denoted by Prec ) is given by:

Prec = 1 −
[( ∑

0≤i+j≤3
Pr(Ei , j )

)
+ Pr(F1)

]
.

• CAU-0: Since there is no redundancy to protect newly updated
data chunks in CAU-0, any data node failure will result in data
loss. Thus, CAU-0 only ensures data availability in the following
cases: (i) no failure happens (i.e., E0,0); (ii) only parity nodes fail (i.e.,⋃

1≤j≤3 E0, j ); (iii) only the rack in which the parity nodes reside
fails. The data loss probability (denoted by Prcau0) is

Prcau0 = 1 −
[
Pr(E0,0) +

( ∑
1≤j≤3

Pr(E0, j )
)
+
Pr(F1)
r

]
.

• CAU-1: Since CAU-1 replicates a new data chunk to another
parity node, a pair of data node and parity node failures will result
in data loss (assuming that each parity node holds the replicas of
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Figure 5: Data loss probabilities for baseline erasure coding,
CAU-0 (no interim replication), and CAU-1 (with interim
replication).
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Figure 6: System architecture of CAU.

some data chunks). Thus, CAU-1 ensures data availability in the
following cases: (i) no failure happens (i.e., E0,0); (ii) only a single
node fails (i.e., E0,1 ∪ E1,0); (iii) only two data nodes fail (i.e., E2,0);
(iv) only two parity nodes fail (i.e., E0,2); (v) only three data nodes
fail (i.e., E3,0); (vi) only three parity nodes fail (i.e., E0,3); and (vii) a
single rack fails while the nodes in the surviving racks are available
(i.e., F1). Thus, the data loss probability (denoted by Prcau1) is

Prcau1 =1 − [Pr(E0,0) + Pr(E0,1) + Pr(E1,0) + Pr(E2,0)
+ Pr(E0,2) + Pr(E3,0) + Pr(E0,3) + Pr(F1)].

Figure 5 plots the data loss probabilities for Prec , Prcau0, and
Prcau1 for a duration τ from 0 to 18 hours; we can view this as a
duration of the append phase before the parity chunks are updated
in the commit phase. As both f1 and f2 increase with τ , the data loss
probabilities increase with τ as well. CAU-0 has the highest data
loss probability without any redundancy, so adding redundancy for
the append phase is critical. CAU-1 has higher data loss probability
than the baseline erasure coding approach, but it maintains the
same order of magnitude for the data loss probability. For example,
when τ = 18, we have Prcau1 = 9.83 × 10−7 and Pec = 2.24 × 10−7.
We pose the analysis for different (n,k) and different numbers of
racks r as future work.

4 IMPLEMENTATION
We have implemented a CAU prototype. Figure 6 shows the CAU
architecture, which comprises a metadata server and multiple stor-
age nodes. The metadata server manages the metadata information
of every chunk being stored, including the chunk ID, the stripe ID
that the chunk belongs to, the data node ID where the chunk is
stored, and the parity node IDs. It also records the chunk IDs of the
updated data chunks as well as the stripe IDs that have data chunk
updates during the append phase.
Append phase: We first describe the workflow of the append
phase when a client issues an update request to a data chunk (see

Figure 6). The client first sends the updated request, with the chunk
ID of the updated data chunk, to the metadata server (step 1). The
metadata server returns an access ticket (step 2), which states the
data node ID where the data chunk is stored, the parity node ID
where the replica of the data chunk is stored for interim replication,
and the parity node IDs where the parity chunks will be stored
in the commit phase. The client attaches the access ticket to the
new data chunk and sends the data chunk to the corresponding
data node (step 3). The data node appends the updated data chunk
to its append-only log (step 4), and also forwards a replica of the
updated data chunk to a parity node in another rack (step 5). The
parity node stores the replica (step 6) and returns an ACK to the
data node (step 7). Finally, the data node sends an ACK to the client
to complete the update request (step 8).

Commit phase: The metadata server triggers the commit phase to
update parity chunks. It first identifies all stripes that have updated
data chunks from its recorded information. For each stripe, it sends
a commit request to the involved data nodes and specifies whether
data-delta commit or parity-delta commit should be used, and the
data nodes send the data-delta or parity-delta chunks accordingly.
Each parity node returns an ACK to the metadata server upon
completing the parity updates. When the metadata server receives
the ACKs from all n − k parity nodes, it ensures that the stripe is
correctly committed.

Implementation details: Our CAU prototype is written in C on
Linux. We implement the erasure coding operations using the Jera-
sure Library v1.2 [26]. To speed up performance, we also leverage
multi-threading to parallelize data transmissions; for example, a
node may send (receive) chunks to (from) multiple nodes via mul-
tiple threads, and the metadata server issues commit requests to
multiple nodes via multiple threads as well.

5 EVALUATION
We evaluate CAU from three aspects: (i) trace-driven analysis,
which shows that CAU significantly saves cross-rack update traffic
under real-world workloads with different access characteristics;
(ii) local cluster experiments, which show that CAU achieves high
update performance in various cluster configurations; and (iii) Ama-
zon EC2 experiments, which show that CAU achieves high update
performance in real-world geo-distributed environments.

5.1 Trace-Driven Analysis
We conduct trace-driven analysis on Microsoft Cambridge Traces
[22], which record the access characteristics of enterprise storage
servers. The traces span 36 volumes of 179 disks from 13 servers
in one week. Each trace lists the read/write requests, including
the timestamps, request addresses, request sizes, etc. We further
classify the traces based on a metric called update locality, which we
define as the average number u of stripes being updated for every
fixed number of update requests (e.g., 1,000 in our analysis). A low
u implies high update locality, as the updates are more clustered in
fewer stripes. In the interest of space, we select 20 volumes for our
analysis: 10 of them have the highest update locality (i.e., lowest u)
and another 10 of them have the lowest update locality (i.e., highest
u) among all 36 volumes.
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We consider two configurations of erasure-coding deployment:
(i) RS(9,6) over n = 9 nodes and r = 3 racks; and (ii) RS(16,12) over
n = 16 nodes and r = 4 racks1. We partition the address space of
the trace for each volume into units of chunks, which we select 1MB
in our analysis. Our analysis assumes that the chunks are stored
in a DC based on each of the above two configurations. For each
volume of traces, we replay the write requests, which are treated
as updated requests and will trigger parity updates.

In CAU, when the metadata server finds that the number of
updated stripes (i.e., the stripes with updated data chunks) exceeds
some threshold (denoted by us ), it triggers the commit phase; by
default, we set us = 100. We also enable both data grouping and
interim replication, so our analysis includes the cross-rack transfer
overhead due to both features.

We compare CAU with two approaches (see Figure 7): the base-
line delta-based update approach and PARIX [18]. The baseline
transmits n − k delta chunks to update all n − k parity chunks im-
mediately for each data chunk update. On the other hand, PARIX
handles updates in two stages. If a data chunk is updated for the
first time, PARIX sends the new data chunk and the old data chunk
to all n − k parity nodes. If the same data chunk is updated again,
PARIX only sends the new data chunk to the parity nodes, each of
which appends the received data chunk to a log. Later when the
metadata server finds that the number of updated stripes exceeds
us (by default, we set us = 100 as in CAU), it notifies each parity
node to fetch the old and new data chunks from the log to update
the parity chunk. Compared to the baseline, PARIX incurs slightly
more network traffic (for sending the old data chunk), but saves
I/Os for reading parity chunks to perform individual parity updates
(each parity chunk can now be computed from multiple updated
data chunks in batch). Note that both the baseline and PARIX pro-
vide the same degree of reliability protection (see the reliability
analysis of the baseline erasure coding in §3.5).
Comparisons of cross-rack update traffic: Figure 8 shows the
amounts of cross-rack update traffic of the baseline, PARIX, and
CAU, in which the results are normalized to that of PARIX. Overall,
CAU significantly saves the cross-rack update traffic. For example,
among all 20 volumes, CAU saves 48.4% and 51.4% of cross-rack
update traffic on average compared to the baseline and PARIX,
respectively, in the first configuration (i.e., RS(9,6) with r = 3 racks)
(see Figures 8(a) and 8(b)), while the savings further increase to

1Recall that in practice, a DC contains much more than n nodes (see §2.2). Our analysis
can be viewed as focusing on the stripes stored in the same n nodes.
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Figure 8: Comparisons of cross-rack update traffic in the
baseline, PARIX, and CAU via trace-driven analysis.

60.9% and 63.4%, respectively, in the second configuration (i.e.,
RS(16,12) with r = 4 racks) (see Figures 8(c) and 8(d)). The sec-
ond configuration comprises more racks and includes more parity
chunks for fault tolerance, in which case the cross-rack update
overhead in both the baseline and PARIX is higher.

Also, CAU generally saves more cross-rack update traffic when
the update locality is high. For example, in RS(16,12) with four
racks, CAU saves 56.3% of cross-rack update traffic over PARIX for
the volumes with low update locality (see Figure 8(c)), while the
saving increases to 66.9% for the volumes with high update locality
(see Figure 8(d)). The reason is that the volumes with high update
locality have more update requests clustered, thereby allowing
CAU to be more likely to aggregate update requests within a rack
in selective parity updates.
Analysis on selective parity updates: We next analyze the per-
formance gain of selective parity updates. We reconfigure the
append-commit phase of our CAU prototype to perform differ-
ent parity update approaches in the commit phase (see §3.2 for
details): (i) data-delta commit only, which always performs data-
delta commit for cross-rack parity updates, (ii) parity-delta commit
only, which always performs parity-delta commit for cross-rack
parity updates, and (iii) selective parity updates, in which we select
the minimum of data-delta commit and parity-delta commit for
each stripe to mitigate the cross-rack update traffic. We focus on
the configuration RS(16,12) with r = 4 racks.

Figure 9 shows the results for all 20 volumes, in which we nor-
malize the results with respect to data-delta commit only. Both
data-delta commit only and parity-delta commit only may outper-
form each other for different traces, yet selective parity updates
achieve the least cross-rack update traffic in all volumes. Overall,
selective parity updates reduce 20.7% and 20.0% of cross-rack up-
date traffic on average compared to data-delta commit only and
parity-delta commit only, respectively.
Analysis of data grouping: As data grouping triggers cross-rack
data reallocation (see §3.3), we also analyze its overhead and justify
that the cross-rack update traffic saving brought by data grouping
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Figure 9: Comparison on different parity update approaches
for RS(16,12) with r = 4.
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Figure 10: Saving ratio of data grouping for RS(16,12) with
r = 4.

outweighs the data allocation overhead. We compare the saving
ratio of the cross-rack update traffic with data grouping compared
to that without data grouping. We focus on RS(16,12) with r = 4
racks. We also examine how the number of updated stripes us kept
in the append phase affects the results.

Figure 10 shows the saving ratio of data grouping for all 20
volumes, where us = 2, 20, and 100. A positive saving ratio means
that data grouping reduces the cross-rack update traffic. We see
that 85% of cases (51 out of 60) have a positive saving ratio. The
savings reach up to 27.4%, 17.6%, and 16.3% for us = 2, 20, and 100,
respectively. For the other cases with a negative saving ratio, data
group may incur up to 5.8% more cross-rack update traffic (src2_2
when us = 100). We further examine the effect of us on the update
performance in §5.2.

5.2 Local Cluster Experiments
We evaluate our CAU prototype on a local cluster with 12 machines
to study its update performance under various cluster settings. Each
machine runs Ubuntu 16.04.3 LTS, and has a quad-core 3.4GHz Intel
Core i5-7500 CPU, 32GB RAM, and 1TB TOSHIBA DT01ACA100
SATA disk. All nodes are connected via a 10Gb/s Ethernet switch.

We consider RS(9,6) with r = 3 racks for erasure coding deploy-
ment. Among the 12 machines, we assign nine of them as storage
nodes, one as the client, one as the metadata server, and the re-
maining one as the gateway that resembles the network core (see
Figure 1). To simulate a hierarchical DC, we partition the nine
storage nodes into three logical racks with three storage nodes
each. Any inner-rack transfer can go through the 10Gb/s switch
directly, while any cross-rack transfer is redirected to the gateway,
which relays the traffic to the destination node. We use the Linux
traffic control command tc to limit the gateway bandwidth, so as to
mimic the over-subscription scenario (see §1) where the cross-rack
bandwidth is constrained and less than the inner-rack bandwidth.
Also, unless otherwise specified, our CAU prototype issues buffered
I/Os (the default I/O mode in Linux), in which read/write requests
may be served by the buffer cache of each storage node.
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Figure 11: Impact of gateway bandwidth.
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Figure 12: Impact of non-buffered I/O.

We again compare CAU with the baseline and PARIX as in
§5.1. We focus on four volumes: wdev_1, wdev_3, rsrch_1, and
src2_1. Both wdev_1 and wdev_3 have high update locality, while
both rsrch_1 and src2_1 have low update locality. We plot the
average results over five runs, as well as the error bars that show
the maximum and minimum across the five runs.
Impact of gateway bandwidth:We first evaluate the update per-
formance for different values of gateway bandwidth. We vary the
gateway bandwidth (i.e., the cross-rack bandwidth) as 0.5Gb/s,
1Gb/s, 2Gb/s; note that the cross-rack bandwidth in production
is 1Gb/s [29], while the inner-rack bandwidth is 10Gb/s.

Figure 11 shows the results in terms of update throughput (i.e.,
the amount of updated data chunks per second). Overall, CAU sig-
nificantly improves the update throughput by 41.8% and 51.4% on
average compared to the baseline and PARIX, respectively. Also,
the performance gain of CAU increases as the gateway bandwidth
decreases (i.e., more constrained cross-rack bandwidth). For ex-
ample, for wdev_3, when the gateway bandwidth is 2Gb/s, CAU
increases the update throughput of the baseline and PARIX by 49.3%
and 41.4%, respectively; when the gateway bandwidth decreases
to 0.5Gb/s, the improvements increase to 52.6% and 54.6%, respec-
tively. When the cross-rack bandwidth is more constrained, the
reduction of cross-rack update traffic in CAU is more beneficial for
high update performance.

Note that the baseline generally outperforms (slightly) than
PARIX in most cases, as PARIX is designed to reduce I/Os in parity
updates at the expense of incurring more cross-rack transfers [18].
Since buffer I/Os are used here and I/O requests may be served by
the buffer cache, the cross-rack bandwidth plays a more critical
role in determining the update performance.
Impact of non-buffered I/O: We now study the impact of non-
buffered I/O (i.e., the buffered cache for I/O requests is disabled)
on update throughput. Specifically, we enable the flag O_SYNC in
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Figure 13: Impact of us .

write requests to flush all data to disk, and also enable the flag
O_DIRECT in read requests to directly retrieve data from disk with-
out accessing the buffer cache. We consider two settings of the
gateway bandwidth: 0.5Gb/s and 2Gb/s.

Figure 12 shows the results. Clearly, compared to the case with
buffered I/O, the update throughput drops when non-buffered I/O
is used and the I/O overhead also plays a role in determining the
update performance. Nevertheless, CAU still improves the updated
throughput by 29.6% and 29.1% compared to the baseline and PARIX,
respectively. CAU not only reduces the cross-rack update traffic,
but also reduces the I/O overhead by aggregating the updates of
data and parity chunks.

We note that PARIX achieves higher update throughput than the
baseline for wdev_1 and wdev_3, both of which have high update
locality. In both volumes, the updates are more clustered and have
less cross-rack traffic, so the reduction of the I/O overhead in PARIX
is more advantageous in improving the update performance.

Impact of us : We also study how the number of updated stripes
us kept in the append phase affects the update performance of
CAU. We vary us as 2, 5, 10, 20, 50, and 100, and fix the gateway
bandwidth as 0.5Gb/s. For comparisons, we also include the results
of the baseline, which remain fixed for different values of us .

Figure 13 shows the results. When us is small, CAU has similar
performance to the baseline as it triggers parity updates frequently.
The update throughput of CAU increases with us at the beginning
since it has more opportunity to aggregate updates in the append
phase, but becomes stable when us exceeds 10.

5.3 Amazon EC2 Experiments
We further evaluate CAU on Amazon EC2 in geo-distributed set-
tings. We create a set of virtual machine (VM) instances across
four regions, namely Tokyo, Seoul, Sydney, and Singapore. We
select VM instance type t2.small, in which each VM instance
runs Ubuntu 14.04.5 LTS and has a 2.40GHz Intel Xeon E5-2627
CPU, 2GB memory, and 70GB storage capacity. Before running our
experiments, we first measure the inner-region and cross-region
bandwidth across the four regions using iperf. Table 1 presents
the results from one of our measurements, in which each number
denotes the measured bandwidth from the region in the row to the
region in the column. It shows that the cross-region bandwidth is
much more scarce than the inner-region bandwidth, such that the

Table 1: Measured bandwidth among regions (Unit: Mb/s)
Regions Seoul Singapore Sydney Tokyo
Seoul 919.0 46.4 43.0 118.0

Singapore 58.0 560.4 43.6 43.6
Sydney 44.8 37.0 840.3 53.9
Tokyo 108.9 53.7 62.6 493.5
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Figure 14: Update throughput on Amazon EC2.

inner-region bandwidth is 11.3× the cross-region bandwidth on
average.

We deploy RS(16,12) and store four chunks of each stripe at
four different VM instances in each region. We also create two
additional VM instances as the metadata server and the client. We
compare the baseline, PARIX, and CAU, and set the chunk size
as 512KB. We present the average results over five runs, and also
show the error bars indicating the maximum and minimum across
the five runs.

Figure 14 plots the results. Note that the network bandwidth
among the VM instances fluctuates across time, so the variance of
each result is higher than that in local cluster experiments. Again,
CAU outperforms both the baseline and PARIX, and its performance
gain is higher in wdev_1 and wdev_3 with high update locality. In
wdev_1, the average update throughput of CAU is 31.5% and 32.4%
higher than those of the baseline and PARIX, respectively, while in
wdev_3, the average update throughput of CAU is 24.9% and 33.8%
higher than those of the baseline and PARIX, respectively.

6 RELATEDWORK
We review related work on improving parity update performance
in erasure-coded storage.
Delta-based updates: Existing parity update solutions mostly
build on delta-based updates for partial-stripe writes (see §2.3).
Parity logging [36] is a well-known approach of mitigating par-
ity update overhead in RAID-5 by eliminating the reads of parity
chunks and appending parity deltas to a log device. CodFS [6] re-
alizes parity logging in clustered storage, by placing parity deltas
next to the original parity chunks to limit disk seeks during re-
covery. PARIX [18] eliminates the reads of old data chunks for
parity computations by directly logging data deltas (i.e., changes
of data chunks), at the expense of extra network transmissions for
reconstructing parity chunks from the original data chunk. Other
studies enhance delta-based updates in different aspects. FAB [12]
proposes quorum-based algorithms for decentralized erasure cod-
ing operations. Aguilera et al. [2] propose distributed protocols for
lightweight concurrent updates. T-Update [24] finds a minimum
spanning tree to propagate parity updates across nodes; while T-
Update constructs the minimum spanning tree given a rack-based
DC topology, it does not reduce the amount of cross-rack update
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traffic. CAU also builds on delta-based updates. In contrast to pre-
vious work, CAU mitigates the cross-rack update traffic in erasure-
coded DCs by taking into account the hierarchical nature of DCs.

Full-stripe updates: To eliminate the reads of parity chunks in
partial-stripe writes, some approaches directly form new stripes us-
ing new data chunks and issue full-stripe updates in a log-structured
manner. They also mark the old data chunks as invalid and reclaim
their space via garbage collection. Full-stripe updates are commonly
used in systems that treat stored data as immutable, such as HDFS-
RAID [1], QFS [23], BCStore [20], and Giza [7]. However, full-stripe
updates not only incur garbage collection overhead to reclaim the
space of stale data chunks, but also require parity re-computations
for the remaining active data chunks.

Data placement: Some approaches (e.g., [32, 33]) propose new
data placement strategies that group the data chunks that are likely
accessed together into the same stripe, so as to mitigate parity up-
date overhead. CAU also addresses data placement via data group-
ing, but is tailored for mitigating the cross-rack update traffic.

7 CONCLUSION
Erasure coding provides a storage-efficient means for modern DCs
to achieve data reliability. However, it incurs high update penalty
in maintaining the consistency between data and parity chunks.
CAU is a cross-rack-aware update mechanism that addresses the
hierarchical nature of DCs. It mitigates the cross-rack update traffic
through selective parity updates and data grouping, and further
maintains data reliability through interim replication. Trace-driven
analysis, local cluster experiments, and Amazon EC2 experiments
show that CAU reduces a significantly amount of cross-rack update
traffic and achieves high update throughput.
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