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Abstract—Privacy preservation is critical for neural network
inference, which often involves collaborative execution of different
parties to make predictions on sensitive data based on sensitive
neural network models. However, the expensive cryptographic
operations of privacy preservation also pose performance chal-
lenges to neural network inference. We address this performance-
security tension by designing PP-Stream, a distributed stream
processing system for high-performance privacy-preserving neural
network inference. PP-Stream adopts hybrid privacy-preserving
mechanisms for linear and non-linear operations of neural network
inference. It treats inference data as real-time data streams, and
parallelizes the inference operations across multiple pipelined
stages that are executed by multiple servers and threads. It also
solves the load-balanced resource allocation across servers and
threads as an optimization problem. We prototype PP-Stream
and show via testbed experiments that it achieves low inference
latencies on various neural network models.

Index Terms—homomorphic encryption, obfuscation, distributed
stream processing

I. INTRODUCTION

A. Motivation and Challenges

Neural network inference has been widely applied in various
domains, such as face recognition [43], [47], medical diagnosis
[30], [48], and home monitoring [8], [13]. Its model training
and inference procedures are often collaboratively executed by
two parties, namely the model provider and the data provider.
In the training phase, the model provider designs the neural
network model and employs algorithms to train the model
parameters with sufficient training data as input, while in the
inference phase, the data provider feeds data of interest into the
model provider to yield inference results from the trained model.
To make neural network inference practical and scalable, we
need to address two primary deployment challenges: privacy
preservation and high performance.
Privacy preservation. The collaborative nature of neural
network inference makes privacy preservation critical [40].
From the model provider’s perspective, the model parameters
are often their proprietary assets, since the designs of models
and training algorithms require dedicated domain knowledge
from human experts. Also, the massive datasets for training
need laborious collection and pre-processing and the training
procedure consumes extensive hardware resources, making the
model provider unwilling to disclose such critical information
[17], [19], [29]. From the data provider’s perspective, the input
data for inference is often related to personal privacy [19],

[53], [59], and the model is expected to produce inference
results without knowing the sensitive input data. Thus, both the
model parameters for the model provider and the input data for
the data provider should be well protected. Furthermore, it is
critical to support simple deployment without relying on third
parties for privacy preservation, as third-party services need to
be trusted and hence require strong security assumptions. Even
though prior studies address the privacy issue in neural network
inference (see Section VII for details), they suffer from various
limitations, such as accuracy drops in inference (e.g., [31],
[33], [34], [38]), high performance overhead in using multiple
protocols (e.g., [24], [45], [51]), loss of generality (e.g., [49],
[51]), and reliance on trusted third parties or environments (e.g.,
[50], [57], [64]).
High performance. It is also critical to maintain high perfor-
mance in neural network inference, yet privacy preservation and
high performance are conflicting goals. In particular, privacy
preservation builds on expensive cryptographic operations;
for example, homomorphic encryption, a widely used cryp-
tographic primitive in prior privacy-preserving approaches
(e.g., CryptoNets [31] and CryptoDL [33], [34]), can increase
the computation and communication times by two orders
of magnitude over plaintexts in model training [66]. Some
privacy-preserving approaches (e.g., [24], [45], [51]) combine
multiple cryptographic protocols, but require expensive secure
transformations across different protocols [56].

To validate the performance overhead, we implement a simple
privacy-preserving residual network [32] based on Paillier’s
homomorphic encryption [55] using the GMP library [5].
Specifically, we encrypt a tensor (multi-dimensional array)
of size 28×28, perform scalar multiplication (with the scaling
constant 106) on the encrypted tensor, perform homomorphic
addition between the original encrypted tensor and scalar
multiplication results, and finally obtain the homomorphic
addition results by decryption. We repeat the above steps 1,000
times with different input tensors from the images of the MNIST
dataset [10], and benchmark the average computational latency
of each step (see the testbed details in Section VI-A). Figure 1
shows the latency results for processing an input tensor versus
the key size in Paillier’s homomorphic encryption. The latencies
for encryption/decryption and arithmetic operations for privacy
preservation are on the order of seconds and milliseconds,
respectively. For comparisons, we also perform the same scalar
multiplication and addition on plaintexts (not shown in the
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Fig. 1: Homomorphic encryption benchmark.

figure), whose average computational times are only 2.1 µs
and 1.7 µs, respectively. Therefore, we see that homomorphic
encryption incurs heavy computation overhead in privacy-
preserving neural networks.

B. Contributions

Our core idea is to design lightweight yet secure privacy-
preserving mechanisms for neural network inference, and adapt
them into distributed stream processing to parallelize neural
network inference by treating input data for inference as
real-time data streams. To this end, we design PP-Stream, a
distributed stream processing framework for high-performance
privacy-preserving neural network inference. PP-Stream aims
for: (i) privacy preservation for both model and data providers in
neural network inference, (ii) high inference accuracy, (iii) low
inference latency, (iv) supporting general neural networks, and
(v) being deployable in untrusted environments. To the best of
our knowledge, PP-Stream is the first system that simultaneously
satisfies all these goals.

To achieve privacy preservation, PP-Stream decomposes
the inference procedure into linear and non-linear operations
and protects them with hybrid privacy-preserving techniques.
Specifically, for linear operations, PP-Stream applies homomor-
phic encryption to directly process encrypted tensors without
decryption and obtain the encrypted linear operation results.
Since practical homomorphic encryption approaches only work
for linear operations, for non-linear operations, PP-Stream
adopts a lightweight obfuscation protocol, in which the model
provider performs permutation on the element positions of each
tensor and sends the obfuscated tensors to the data provider
to perform non-linear operations. The model provider later
receives the non-linear operation results from the data provider,
performs inverse permutation on the element positions of the
received results, and feeds the non-obfuscated outputs to the
next round of linear operations.

To alleviate the high performance overhead in privacy-
preserving mechanisms (e.g., homomorphic encryption), we
exploit system-level optimizations that are scalable and can
support general neural networks. PP-Stream is designed as a
distributed stream processing system that encapsulates linear
and non-linear operations into alternate pipelined stages that run
on different servers between the model and data providers. In
each stage, PP-Stream assigns multiple threads to parallelize ten-
sor processing (i.e., homomorphic encryption and obfuscation
operations). For efficient resource usage, PP-Stream performs
load-balanced resource allocation by solving an integer linear
programming problem to assign CPU resources across different

stages. To mitigate the communication overhead, it further
performs tensor partitioning, which divides an input tensor
into sub-tensors and feeds the sub-tensors (instead of the whole
tensor) into multiple threads, each of which produces some
elements of the output tensor.

In summary, we make the following contributions:

• We design PP-Stream based on hybrid privacy-preserving
mechanisms. We also discuss its correctness and security
guarantees. (Section III)

• We design and implement PP-Stream as a distributed stream
processing system that builds on several design elements,
such as scaling floating-point numbers to integers for cryp-
tographic operations, encapsulating operations into pipelined
stages, performing load-balanced resource allocation, and
partitioning tensors to multiple threads. To the best of our
knowledge, PP-Stream is the first system that maps privacy-
preserving neural network inference into a distributed stream
processing system. (Section IV)

• We evaluate PP-Stream on nine neural network models
trained from public datasets [1]–[3], [7], [10]. PP-Stream
achieves low inference latency, while preserving high infer-
ence accuracy. Its load-balanced resource allocation reduces
the inference latency by up to 64.94% compared to without
load-balanced resource allocation, and its tensor partitioning
reduces the inference latency by up to 61.64% compared
to without tensor partitioning. We further measure the
information leakage of PP-Stream, and show that PP-Stream
reduces the inference latencies of state-of-the-art systems,
including SecureML [51], CryptoNets [31], CryptoDL [33],
[34], and EzPC [24]. (Section VI)

The PP-Stream prototype is now open-sourced at the follow-
ing link: https://github.com/calanquee/PP-Stream-Project.

II. PRELIMINARIES

A. Basics of Neural Networks

We provide an overview of neural network inference. We
consider a neural network that feeds the data through a sequence
of layers. The data that is fed into each layer can be expressed
as tensors (i.e., multi-dimensional arrays), and each layer
transforms a tensor by some activation functions. The first
layer (called the input layer) receives the raw input tensors;
the last layer (called the output layer) outputs the inference
results; each of the intermediate layers (called the hidden layers)
receives the output tensors from its previous layer as input
tensors, operates on the received tensors, and forwards the
output tensors to the next layer. The weights of the connections
across the layers are called the model parameters. The training
step learns the model parameters, while the inference step
outputs the prediction results based on the model parameters.

In this paper, we consider a collaborative inference scenario
that involves two parties, namely the model provider and the
data provider. Specifically, the model provider starts with a
well-trained neural network model, which can be trained on
plaintexts through general frameworks (e.g., PyTorch [12] and
TensorFlow [14]). It also manages the model parameters and
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Fig. 2: A CNN model whose hidden layers can be classified into
linear (L), non-linear (N), and mixed (M) layers.

outputs inference results from the model. The data provider
provides the raw data to the model provider for inference.

Given a neural network, we can classify each hidden layer by
its operations into three types: (i) linear layer, which contains
only linear operations (i.e., tensor addition and multiplication)
between model parameters and input tensors; (ii) non-linear
layer, which contains only non-linear activation functions (e.g.,
ReLU and SoftMax); and (iii) mixed layer, which contains a
mix of linear and non-linear operations. To illustrate, Figure 2
depicts a convolution neural network (CNN) [44] that includes
nine hidden layers with different types of operations. Convolu-
tion, batch normalization, and fully-connected layers are linear
layers; the ReLU and SoftMax layers are non-linear layers; the
Sigmoid layer is a mixed layer with both linear (e.g., scalar
multiplication between input tensors and model parameters)
and non-linear (e.g., exponentiation) operations.

B. Design Goals

PP-Stream aims for the following design goals:

• Privacy preservation: It protects both model parameters for
the model provider and input data for the data provider in
neural network inference.

• High accuracy: It maintains nearly identical inference
accuracy compared with the plain inference without privacy
preservation.

• High performance: It achieves high throughput and low
latency in neural network inference.

• Generality: It supports general neural networks without the
need of modifying the training and inference protocols.

• Simple deployment: It can be deployed in untrusted envi-
ronments, without relying on trusted services.

Table I compares state-of-the-art privacy-preserving neural
network inference systems and PP-Stream, and shows how
existing systems are limited in achieving some of the goals
besides privacy preservation. In terms of accuracy, CryptoNets
[31], CryptoDL [33], [34], E2DM [38], Faster CryptoNets
[25], FHE-DiNN100 [22], nGraph-HE [21], LoLa [23], CHET
[27], and DELPHI [49] all apply approximate fitting for
non-linear operations (e.g., activation functions), leading to
accuracy degradations. In terms of performance, CryptoNets
[31], CryptoDL [33], [34], E2DM [38], Faster CryptoNets [25],
and nGraph-HE [21] have high inference latency based on
the reported results in their published papers; for example,
CryptoNets [31] has two orders of magnitude higher latency
than SecureML [51]. We also evaluate EzPC [24] in our testbed
and show its high inference latency especially in large models

TABLE I: Comparisons with state-of-the-arts (in order of publica-
tion years) in privacy-preservation (PP), high accuracy (HA), high
performance (HP), generality (G), and simple deployment (SD).

Framework Design Goals
PP HA HP G SD

CryptoNets [31] 3 7 7 7 3

CryptoDL [33], [34] 3 7 7 7 3

SecureML [51] 3 3 3 7 7

E2DM [38] 3 7 7 7 3

Faster CryptoNets [25] 3 7 7 7 3

Chameleon [57] 3 3 3 3 7

Slalom [64] 3 3 3 3 7

FHE-DiNN100 [22] 3 7 3 7 3

nGraph-HE [21] 3 7 7 7 3

SecureNN [65] 3 3 3 3 7

LoLa [23] 3 7 3 7 3

CHET [27] 3 7 3 7 3

EzPC [24] 3 3 7 3 3

QuantizedNN [15] 3 3 3 3 7

DELPHI [49] 3 7 3 7 3

CrypTFlow [41] 3 3 3 3 7

PP-Stream (ours) 3 3 3 3 3

(Section VI). In terms of generality, some systems [21]–[23],
[25], [27], [31], [33], [34], [38], [49] need model retraining
(i.e., the training protocol is changed) or special activation
functions [51], so they sacrifice generality. In terms of simple
deployment, SecureML [51], SecureNN [65], QuantizedNN
[15], and CrypTFlow [41] rely on two or three non-colluding
servers to act as the model provider, while Chameleon [57]
and Slalom [64] rely on trusted execution environments. Thus,
they cannot achieve the simple deployment goal.

C. Threat Model

We define the threat model about the adversarial capabilities.
We assume that both the model and data providers are honest-
but-curious (as in prior studies [49], [57]), meaning that they
provide correct model parameters and raw data, respectively,
and faithfully execute the protocols, so that the data provider
will eventually obtain the inference results. However, they are
curious about the sensitive information from the other provider
and attempt to extract the sensitive information through protocol
execution. Because the model and data providers exchange
information through the network, we assume that the adversaries
can launch passive attacks and eavesdrop on the communication
between the model and data providers. Based on the threat
model, we provide two guarantees for privacy-preserving neural
network inference.

• Correctness. Given the privacy-preserving inference protocol,
the data provider should obtain the same inference results
as in the original inference protocol without any privacy-
preserving mechanism.

• Security. Given the honest-but-curious assumption, we
specify the security guarantees against the compromised
model and data providers as well as passive adversaries that



eavesdrop on the communication between the model and
data providers.
– We ensure that the compromised model provider cannot ob-

tain any information regarding both the data provider’s raw
input tensors (except for the dimension) and intermediate
results during protocol execution.

– We ensure that it is computationally infeasible for the
compromised data provider to derive the model parameters
based on the information obtained from the inference
phase, even though there may be a negligible amount
of information exposure (e.g., tensor dimensions) to the
compromised data provider.

– We ensure that the adversaries cannot extract the model
parameters from the model provider and the raw data from
the data provider by eavesdropping on the communication
between the model and data providers.

Note that a compromised data provider can execute model
stealing attacks by training a new model based on the queried
samples and corresponding inference results. A possible
countermeasure is to rate-limit the number of requests issued
by the data provider [39].

III. HYBRID PRIVACY PRESERVATION

For privacy preservation, the model parameters should always
reside in the model provider, while the raw input data and
inference results should always reside in the data provider. This
requirement motivates our design to decompose the inference
phase. Specifically, PP-Stream protects neural network inference
via hybrid privacy preservation by applying different privacy
preservation mechanisms to linear and non-linear operations.
We first provide an overview of the collaborative workflow of
neural network inference in PP-Stream (Section III-A). We then
describe the designs for privacy-preserving linear and non-linear
operations based on homomorphic encryption (Section III-B)
and obfuscation (Section III-C), respectively. Finally, we discuss
the security implications of our hybrid design (Section III-D).
Note that each of the privacy-preserving techniques has been
studied in prior work (including homomorphic encryption [55]
and obfuscation [52]), so we do not claim that we propose
novel privacy-preserving methods. Instead, our contribution
here is to seamlessly integrate these techniques into distributed
stream processing (Section IV).

A. Overview of Collaboration Workflow

Figure 3 shows the collaborative inference workflow between
the model and data providers in PP-Stream. Suppose that the
model provider maintains a neural network and the data provider
sends a tensor to the model provider for inference. Here, we
assume that a neural network starts with a linear layer and
ends with a non-linear layer (which is true in typical neural
networks, say, CNNs (Figure 2)). We can divide the workflow
into three parts, each of which has a different mix of steps
(i.e., encryption, decryption, obfuscation, inverse obfuscation,
linear operations, and non-linear operations).

In the first round, the data provider encrypts the raw input
tensor (Step 1.1) and sends the encrypted tensor to the model

Model ProviderData Provider

(1.2) Enc. tensor

(2.8) Enc.+Obf. tensor

(2.4) Enc.+Obf. tensor

(1.3) Linear operations
(1.4) Obfuscation

(2.1) Decryption
(2.2) Non-linear operations
(2.3) Re-encryption

(2.5) Inverse obfuscation
(2.6) Linear operations
(2.7) Obfuscation

(1.1) Encryption

(3.2) Inverse obfuscation
(3.3) Linear operations(3.4) Enc. tensor

(3.5) Decryption
(3.6) Non-linear operations
(3.7) Inference result

(1.5) Enc.+Obf. tensor

First round

Last round

Intermediate rounds

(3.1) Enc.+Obf. tensor

Fig. 3: Workflow of PP-Stream, in which the model and data providers
exchange encrypted tensors (with or without obfuscation).

provider for inference (Step 1.2). The model provider performs
linear operations on the encrypted tensor based on homomorphic
encryption (Step 1.3). It then obfuscates the resulting tensor
(Step 1.4) and sends the obfuscated tensor back to the data
provider (Step 1.5).

In each of the intermediate rounds, the data provider decrypts
the obfuscated tensor (Step 2.1), performs non-linear operations
(Step 2.2), re-encrypts the resulting tensor (Step 2.3), and sends
the encrypted tensor to the model provider (Step 2.4). The
model provider performs inverse obfuscation to recover the
true encrypted tensor (Step 2.5), executes linear operations on
the encrypted tensor (Step 2.6), obfuscates the resulting tensor
(Step 2.7), and sends the obfuscated tensor to the data provider
(Step 2.8). The model and data providers repeat Steps 2.1-2.8
in each subsequent intermediate round.

In the last round, the data provider sends the encrypted tensor
to the model provider (Step 3.1), which performs inverse obfus-
cation (Step 3.2) and linear operations (Step 3.3) on the tensor
from the data provider. It then sends directly the encrypted
tensor to the data provider without obfuscation (Step 3.4) (we
discuss the security implications in Section III-D). The data
provider then decrypts the received tensor (Step 3.5), performs
the last non-linear operation on the tensor (Step 3.6), and finally
obtains the inference result (Step 3.7).

B. Privacy-Preserving Linear Operations

To protect linear operations, we leverage homomorphic
encryption, which allows linear operations (including addition
and multiplication) over ciphertexts without decryption. Ho-
momorphic encryption can be classified as fully homomorphic
encryption (FHE) and partially homomorphic encryption (PHE).
In this work, we choose PHE, which has better computational
performance than FHE. In particular, we use Paillier’s public-
key cryptosystem [55] (referred to as Paillier’s PHE in short).
Let E(.) and D(.) denote the public-key encryption and
decryption functions in Paillier’s PHE, respectively. For the
linear operations of a privacy-preserving neural network, we
leverage the homomorphic property of Paillier’s PHE to support
two types of arithmetic operations on ciphertexts, namely
addition and scalar multiplication, as elaborated below (note
that we omit the modulo operations for brevity):



• Addition. Let m1 and m2 be two plaintext integers. The
addition of m1 and m2 can be expressed as:

m1 +m2 = D(E(m1) ·E(m2)). (1)

• Scalar multiplication. Let w be a scalar and m be a plaintext
integer. The scalar multiplication of w and m can be expressed
as:

w×m = D(E(m)w). (2)

Linear operations in neural networks are often in the form of
∑i wimi+b, where wi is the i-th weight, b is the bias (both wi’s
and b are the model parameters), and mi is the i-th element of
the input tensor from the data provider. Under Paillier’s PHE,
a linear operation can be expressed as:

∑i wimi +b = D(E(∑i wimi +b)

= D(∏i E(mi)
wi ·E(b)).

(3)

Thus, the data provider can send the encrypted tensors (i.e.,
E(mi)’s) to the model provider, which performs an encrypted
linear operation as ∏i E(mi)

wi ·E(b) and returns the result to
the data provider (assuming no obfuscation on the returned
result). Then, the data provider decrypts the result to obtain
∑i wimi + b, without revealing the plaintext tensors mi’s to
the model provider. Note that Paillier’s PHE (and public-key
cryptosystems in general) needs to work on integers, while
neural network parameters can be floating-point numbers. Thus,
we need to first convert floating-point numbers into integers
before we apply Paillier’s PHE in PP-Stream (Section IV-A).

C. Privacy-Preserving Non-Linear Operations

To protect non-linear operations, we leverage a lightweight
obfuscation mechanism, in which the model provider obfuscates
a tensor (which is encrypted by the data provider) by permuting
its element positions before sending the tensor to the data
provider for performing non-linear operations. Specifically, to
obfuscate a multi-dimensional tensor, denoted by T, the model
provider first reshapes T into a one-dimensional vector v, where
the dimension size of v is the product of all dimension sizes of
T, by representing the elements of T in lexicographic order in
v; for example, for a two-dimensional array, the elements of the
first row of T are first assigned to v, followed by the elements
of the second row of T, and so on. Given v, the model provider
randomly permutes the elements of v to form v′, and sends v′
to the data provider for performing non-linear operations. Note
that in the first round and each of the intermediate rounds (i.e.,
Steps 1.4 and 2.7 in Figure 3, respectively), the model provider
randomly permutes a tensor with different random seeds, so the
permuted element positions vary across the intermediate rounds.
Since the permutation is in essence a one-to-one mapping, the
model provider can invert the permutation order of a tensor
and restore its original element positions.

In this work, we target four non-linear functions: ReLU,
Sigmoid, SoftMax, and MaxPooling; ReLU, Sigmoid, and
SoftMax are activation functions, while MaxPooling is a
downsampling function. Both ReLU and Sigmoid can work
on permuted tensors without compromising the correctness

as they perform element-wise operations, while SoftMax and
MaxPooling can only work on non-obfuscated tensors (i.e.,
the element positions cannot be permuted). Nevertheless, since
SoftMax is often used in the last hidden layer, the model
provider does not perform obfuscation (Section III-A), meaning
that the data provider can perform SoftMax on non-obfuscated
tensors. MaxPooling can be replaced with a convolution layer
where the stride is two plus a ReLU layer [62].

D. Discussion

We discuss how our hybrid privacy-preserving mechanisms
maintain the correctness and security guarantees described in
Section II-C. For correctness, both Paillier’s PHE and obfusca-
tion maintain the correctness of linear and non-linear operations,
respectively, so the inference results remain unaffected.

For security, since Paillier’s PHE is provably semantically
secure under certain intractability assumptions [55], the tensors
that are sent by the data provider for linear operations are secure
against a compromised model provider. Also, the obfuscation
mechanism builds on the random permutation of a multi-
dimensional tensor, in which the total number of possible
permutations is P!, where P is the product of all dimension sizes
of the tensor. The probability that a compromised data provider
can infer the original tensor from a randomly permuted tensor
is 1/P!, which is negligibly small for practical neural network
applications (e.g., P is up to 32×32×8= 8192 in our evaluated
neural networks (Section VI)). Note that the permuted tensor
still leaks some information since the obfuscation changes
permutations rather than values. We measure this information
leakage via distance correlation [63] in Section VI.

Recall that the model provider sends directly the encrypted
tensor to the data provider without obfuscation in the last
round (Section III-A). To extract model parameters of a linear
operation, a compromised data provider needs to obtain both
the input and output tensors. While the compromised data
provider can access the output tensor of the linear operations in
the last round since there is no obfuscation, it only has access
to the obfuscated input tensor from the previous round (i.e.,
the tensor sent to the model provider in Step 3.1 in Figure 3).
Thus, the model parameters used in the linear operations in
the last round remain secure.

Furthermore, both the model and data providers always
exchange encrypted information over the network, as shown
in Figure 3. Therefore, the communication is secure against
eavesdropping attacks from passive adversaries.

IV. PP-STREAM DESIGN

PP-Stream is a distributed stream processing system that
realizes the collaborative workflow of privacy-preserving neural
network inference (Section III-A). It treats the layers of a
neural network model as stream operations across different
servers and pipelines the processing of inference requests across
the layers in a streaming fashion; each layer can be further
parallelized with multiple threads for further performance gains.
This improves the inference performance.
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However, adapting privacy-preserving neural network infer-
ence into distributed stream processing is non-trivial. First, we
should ensure that the linear and non-linear operations are only
executed in the model and data providers for privacy preserva-
tion, respectively. Second, the distributed deployment includes
multiple servers equipped with multiple CPU cores, and the
resource demands also vary across different neural network
layers. How to efficiently allocate the available computational
resources across servers and CPU cores is critical. Third, we
should address security requirements during resource allocation
(e.g., linear and non-linear operations cannot be deployed
on the same server), while ensuring load-balanced resource
allocation. Finally, we should mitigate the resource usage
overhead in distributed deployment, both in communication
and computation.

To this end, we design PP-Stream with four key components:
(i) parameter scaling, in which we scale floating-point model
parameters to integers for cryptographic operations, while lim-
iting the computational overhead; (ii) operation encapsulation,
in which we encapsulate the linear and non-linear operations of
neural network inference into alternate pipelined stages that run
between model and data providers; (iii) load-balanced resource
allocation, in which we perform both server and CPU core
allocations for different stages in a load-balanced manner by
formulating an integer programming problem; and (iv) tensor
partitioning, in which we only send sub-tensors as input to each
thread if applicable to reduce the communication overhead.

A. Parameter Scaling

Recall that we perform Paillier’s PHE [55] for privacy-
preserving linear operations (Section III-B). Since Paillier’s
PHE cannot work for floating-point numbers (e.g., model
parameters), we need to convert floating-point numbers into
integers before PP-Stream’s deployment. Note that prior
studies (e.g., [42], [60]) also address parameter scaling in
machine learning and adopt a similar scaling approach as
ours (see below), so as to avoid parameter overflows for
specific hardware (e.g., programmable switches). In contrast,
we apply parameter scaling for compatibility with cryptographic
operations in a privacy-preserving setting. As shown in our
experiments (Section VI-B), PP-Stream preserves the neural
network inference accuracy even though it casts floating-point
numbers into integers.

We require the model provider to perform parameter scaling
for a neural network; that is, for each model parameter, the

model provider first multiplies the model parameter with a
scaling factor F (which is in power of 10) and rounds the
result off to the nearest integer. We then perform neural network
inference on the scaled setting (where all parameters are
scaled by F to integers). How to choose a proper scaling
factor presents a trade-off between accuracy and efficiency: a
larger scaling factor achieves higher precision for float-point
model parameters, yet it increases the computational burdens
and hence degrades the inference performance, as the scalar
multiplication operations in Paillier’s PHE now need to work
on larger numbers (and vice versa for a smaller scaling factor).

We adopt a parameter scaling approach to preserve the
accuracy of neural network inference, while limiting the com-
putational overhead. We perform the following three steps. In
Step 1, for a given neural network model, we test the inference
accuracy (denoted by A) using the training set; here, we define
the inference accuracy as (T P+T N)/(T P+T N +FP+FN),
where T P, T N, FP, and FN are the numbers of true positives,
true negatives, false positives, and false negatives, respectively.
In Step 2, we round each model parameter to f decimal places,
starting from f = 0, to extract a new (approximate) model with
the rounded parameters. We then test the new model’s accuracy
(denoted by A′) using the same training set. If A and A′ differ
by less than a pre-specified threshold (0.01% in our default
setting) or f hits a maximum limit (6 in our case), we choose
the value of f and proceed to Step 3; otherwise, we increment
f by one and repeat Step 2. In Step 3, we select the scaling
factor F as F = 10 f . Note that we bound f to a maximum
limit in Step 2 to avoid operating on very large numbers, while
keeping the inference accuracy after scaling close to that before
scaling as much as possible.

B. Operation Encapsulation

Figure 4 illustrates the architecture of PP-Stream, which
performs privacy-preserving neural network inference into
pipelined stages. We first map each hidden layer (i.e., a linear,
non-linear, or mixed layer, as defined in Section II-A) into a
primitive layer that contains either only linear operations or only
non-linear operations. Specifically, we map each linear (resp.
non-linear) layer into a linear (resp. non-linear) primitive layer,
and decompose each mixed layer into a linear primitive layer
and a non-linear primitive layer. PP-Stream then encapsulates
the primitive layers into pipelined stages.

There are two extreme approaches of encapsulating primitive
layers into stages, both of which should be avoided. One



TABLE II: Notations used in resource allocation.

Symbol Meaning

N merged neural network
` number of primitive layers in N
Li i-th primitive layer in N , 1≤ i≤ `

Ii
variable indicating i-th primitive layer in N belongs
to linear or non-linear category, 1≤ i≤ `

s number of servers for allocation
S j i-th server for allocation, 1≤ j ≤ s
c j number of CPU cores in server S j, 1≤ j ≤ s
Ti CPU time Li in N requires, 1≤ i≤ `

xi, j
0-1 variable indicating whether Li in N deploys
on server S j, 1≤ i≤ `, 1≤ j ≤ s

yi number of allocated threads of Li in N , 1≤ i≤ `

extreme is to encapsulate each primitive layer into a single
stage. However, it can introduce substantial serialization and
deserialization overhead to pass the data across stages. Another
extreme is to encapsulate all primitive layers into a single stage.
However, it destroys privacy preservation (Section II-B), as the
linear and non-linear primitive layers need to be executed by
the model and data providers, respectively.

To this end, PP-Stream merges the adjacent primitive layers
of the same type (i.e., linear or non-linear) of a given input
neural network into a merged primitive layer. It deploys each
merged primitive layer into a single stage. Thus, the linear and
non-linear merged primitive layers are executed in alternate
pipelined stages, as shown in Figure 4. For brevity, we refer
to a “merged primitive layer” simply as a “primitive layer” in
the following discussion.

C. Load-balanced Resource Allocation

Given a merged neural network, PP-Stream assigns each
primitive layer into a single stage that runs on a server. Note
that a server may have one or multiple primitive layers of the
same type (i.e., linear or non-linear primitive layer). Within
each server, PP-Stream performs multi-threading by allocating
a number of threads to each primitive layer, subject to the
available resources. Note that PP-Stream performs resource
allocation offline before the start of processing inference
requests. Since the computational load of each primitive layer
depends on the neural network model, which is static, it can be
determined in advance through offline profiling (see below).
Notation. We first define the notations. Consider a merged
neural network N with ` primitive layers L1,L2, · · · ,L`. Let
Ii (1≤ i≤ `) be an indicator variable, where Ii = 1 if Li is a
linear primitive layer, or Ii =−1 if Li is a non-linear primitive
layer. Let s be the total number of servers S1,S2, · · · ,Ss, and
c j (1≤ j ≤ s) be the number of CPU cores in server S j. Also,
let Ti (1≤ i≤ s) be the time for running Li, obtained through
offline profiling. Finally, let xi, j (1≤ i≤ `, 1≤ j ≤ s) be a 0-1
indicator variable, where xi, j = 1 if Li is deployed in S j, and
yi (1≤ i≤ `) be the number of threads allocated to Li.
Objective. Our high-level goal is to evenly distribute the
computational resources across primitive layers. Since each
primitive layer has varying computational loads, we aim to

balance the execution times of all primitive layers, so that
no primitive layer becomes the bottleneck. In this work, we
consider a homogeneous setting and assume that each server has
identical processing capacities, meaning that the load-balanced
allocation across threads can imply load balancing at a system-
wide level; a heterogeneous setting across servers is posed as
our future work.

Before we solve the load balancing problem, we first profile
Ti (i.e., the time to run the primitive layer Li) offline, which
can be viewed as part of the training phase. Specifically, for a
given merged neural network N , we run each of its primitive
layers in a single process (i.e., a stage). We feed an input tensor
into N and measure the execution time of each primitive layer
Li. We repeat the measurement for 100 input tensors randomly
selected from the training set of N and obtain the average
execution time for Li.

We formulate our load-balanced resource allocation problem
as an integer linear programming (ILP) problem. Our optimiza-
tion objective is to find xi, j and yi (1 ≤ i ≤ ` and 1 ≤ j ≤ s)
that solve the following problem:

min∑
`

i=1 ∑
`

i′=1

∣∣∣∣Ti

yi
− Ti′

yi′

∣∣∣∣ , (4)

subject to the following constraints:

∑
s
j=1 xi, j = 1 for each i ∈ [1, `], (5)∣∣∑`

i=1(xi, j× Ii)
∣∣= ∑

`
i=1 xi, j for each j ∈ [1,s], (6)

yi ≥ 1 for each 1≤ i≤ `, (7)

∑
`
i=1(xi, j× yi)≤ c j×2 for each 1≤ j ≤ s. (8)

The objective function (Equation (4)) is to minimize the sum
of absolute differences in execution times across all pairs of
primitive layers, where Ti/yi represents the average execution
time per thread. Other objective functions (e.g., minimizing the
maximum difference of execution times of a pair of primitive
layers) are also applicable.

The optimization problem is subject to the following four
constraints. The first constraint (Equation (5)) ensures that each
primitive layer Li is assigned to only one server. The second
constraint (Equation (6)) ensures that each server S j deploys
either all linear primitive layers (i.e., Ii = 1 for all xi, j = 1) or all
non-linear primitive layers (i.e., Ii =−1 for all xi, j = 1), so as to
satisfy privacy preservation. The third constraint (Equation (7))
ensures that each primitive layer is assigned at least one thread.
The final constraint (Equation (8)) is that the total number of
threads assigned to the primitive layers in each server does not
exceed the available CPU resources. Here, if hyper-threading
is enabled, at most two threads can simultaneously run on each
physical CPU core.

The above ILP problem can be solved with the branch-and-
bound method [6]. Note that the solving process is performed
offline (within a few hours on a commodity machine), so the
cost of problem solving is acceptable in practice.

D. Tensor Partitioning
After solving the load-balanced resource allocation problem,

we need to determine how to distribute the computation tasks
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Fig. 5: Tensor partitioning.

across threads. A straightforward approach is to feed an input
tensor directly to each thread, which produces one element
of the output tensor at a time. Our observation is that the
operations for some neural network layers can be decomposed
into partial operations that can be parallelized across threads,
where each partial operation only requires an input of part of
the input tensor (i.e., sub-tensor). In this case, we can send only
a sub-tensor, instead of an entire tensor, to a thread, thereby
mitigating the communication overhead.

We explain the above idea via an example of a convolution
layer (a common type of neural network operations), as shown
in Figure 5(a). Suppose that the convolution layer processes
a 3×3 input tensor (whose elements are denoted by mi j for
1≤ i≤ 3 and 1≤ j ≤ 3) and produces a 2×2 output tensor,
with a 2× 2 filter (whose elements are denoted by wi j for
1≤ i≤ 2 and 1≤ j ≤ 2), a stride of 1, and no padding. The
input tensor is divided into four sub-tensors, each of which is
multiplied with the filter to produce an element of the output
tensor. Note that each element of the output tensor only requires
a sub-tensor as input.

Based on the above example, we propose a tensor partitioning
approach that feeds only the input sub-tensors into each thread
and determines how each thread generates output sub-tensors.
Specifically, suppose that a primitive layer Li is allocated with
yi threads. PP-Stream first determines the number of elements
in the output tensor and evenly partitions these elements across
all yi threads (i.e., each thread produces a fraction 1/yi of all
the elements in the output tensor). It then partitions an input
tensor into sub-tensors and distributes only the elements of the
required sub-tensors into each thread. For example, Figure 5(b)
shows the tensor partitioning design, in which the primitive
layer is assigned two threads and each thread only receives six
(out of nine in total) elements of the input tensor to generate
two (out of four in total) elements of the output tensor.

It is worth noting that output tensor partitioning can also be
employed for fully-connected operations, while input tensor
partitioning can only be applied for convolution operations in
neural networks as they operate based on the input tensor’s
local information. For a neural network model that contains
convolution operations, PP-Stream employs both input and
output tensor partitioning; otherwise, it only performs output
tensor partitioning. Furthermore, tensor partitioning can operate
with CPU processing, without relying on specialized hardware
(e.g., GPU [54] or TPU [4]).

V. IMPLEMENTATION

We build a prototype of PP-Stream in C++ with around 4.6 K
LoC. Specifically, we use the GMP library [5] to implement
the cryptographic operations in Paillier’s PHE [55] based on
modular arithmetic, where the key size is set as 2,048 bits due
to security considerations [16]. In addition, we implement PP-
Stream as a distributed stream processing system based on AF-
Stream [36], which performs stream processing across multiple
workers (i.e., processes) that run on multiple servers. We map
each worker in AF-Stream into a stage. Inside each stage, we
implement load-balanced resource allocation (Section IV-C)
and tensor partitioning (Section IV-D).

VI. EVALUATION

We evaluate PP-Stream via testbed experiments on real-world
datasets. Our experimental findings include:

• Parameter scaling allows PP-Stream to choose a suitable
scaling factor that preserves inference accuracy (defined in
Section IV-A) with a low inference latency. (Exp#1)

• By encapsulating operations into a distributed stream pro-
cessing pipeline, PP-Stream effectively reduces the inference
latency than the centralized approach by 96.54%. (Exp#2)

• With load-balanced resourced allocation, PP-Stream reduces
the inference latency by up to 64.94%, and the performance
gain is higher for larger neural network models. (Exp#3)

• With tensor partitioning, PP-Stream reduces the inference
latency by up to 61.64%, and the performance gain is higher
when more CPU cores are available. (Exp#4)

• Our obfuscation mechanism efficiently reduces information
leakage, especially for larger neural networks. (Exp#5)

• PP-Stream achieves lower inference latency than state-of-the-
art systems. (Exp#6)

A. Setup

Testbed. We deploy PP-Stream on a testbed composed of nine
servers, each of which is equipped with an Intel Xeon E5-2630
2.20 GHz 24-core CPU, 256 GB memory, and an Intel 82599ES
10 Gbps Ethernet NIC. We assign the stages in PP-Stream to
CPU cores across these nine servers.
Datasets and models. We evaluate PP-Stream on nine neu-
ral network models from MNIST [10], CIFAR-10 [3] and
healthcare datasets [1], [2], [7], as summarized in Table III;
such datasets are widely used in the literature on privacy-
preserving neural network inference (e.g., [20], [31], [49], [56]).
Specifically, the MNIST dataset [10] consists of a collection



TABLE III: Description of datasets and models.

Dataset Model
# Samples # Servers

Train Test Model / Data

Breast [1] 3FC 456 113 2 / 1
Heart [7] 3FC 820 205 2 / 1

Cardio [2] 3FC 60,000 10,000 2 / 1
MNIST-1 [10] 3FC 60,000 10,000 2 / 1
MNIST-2 [10] 1Conv+2FC 60,000 10,000 2 / 1
MNIST-3 [10] 2Conv+2FC 60,000 10,000 2 / 2

CIFAR-10-1 [3] VGG13 [61] 50,000 10,000 6 / 3
CIFAR-10-2 [3] VGG16 [61] 50,000 10,000 6 / 3
CIFAR-10-3 [3] VGG19 [61] 50,000 10,000 6 / 3

of 70,000 grayscale images of handwritten digits from 0 to 9
with 28×28 pixels each. The CIFAR-10 dataset [3] consists of
60,000 32×32 color images (with 32×32×3 pixels each) in
10 classes with 6,000 images each. The breast cancer (Breast)
dataset [1] consists of 569 instances with 30 features each,
where each instance includes a binary target variable indicating
if a tumor is malignant or benign. The heart disease (Heart)
dataset [7] contains 1,025 samples with 13 features, in which
each sample includes a binary target variable that indicates if the
patient has heart disease. The cardio disease (Cardio) dataset
[2] includes 70,000 records with 11 features each, and its target
variable indicates the presence of cardiovascular disease.

Each dataset is trained with a neural network model, in-
cluding 3FC (three fully-connected layers), 1Conv+2FC (one
convolution layer and two fully-connected layers), 2Conv+2FC
(two convolution layers and two fully-connected layers), and
VGG13/16/19 [61]; note that all models are commonly used
in the computing vision domain. The models are trained by
Matlab for neural networks [9] and PyTorch [12], and are
consistent with those used in prior studies [31], [45], [49], [51],
[56]–[58]. Furthermore, we deploy different numbers of servers
for the model and data providers, as shown in Table III.

Due to the insufficient CPU resources in our testbed, we
unfortunately cannot evaluate PP-Stream for larger models
(e.g., ResNet50 [32] and DenseNet121 [35]), and we pose such
evaluation as future work. We conjecture that PP-Stream still
maintains high inference performance for larger models due to
its distributed stream processing design.
Metrics. Our experiments focus on the following two metrics:
the inference accuracy (defined in Section IV-A) and the
inference latency (defined as the execution time of processing
an inference request). Note that for the inference accuracy,
our goal is not to improve the accuracy of the original model;
instead, we focus on mitigating the difference of the inference
accuracy before and after parameter scaling (Section IV-A).

B. Results

(Exp#1) Scaling factors. We first evaluate the efficiency of our
parameter scaling approach (Section IV-A) and how different
scaling factors affect the inference accuracy.

Table IV shows the results for different scaling factors on the
nine models; the rightmost column also shows the inference

TABLE IV: (Exp#1) Inference accuracy versus scaling factor on the
training set.

Model
Accuracy tested by training set (%) Original

100 101 102 103 104 105 106 (%)

Breast 59.21 59.21 98.24 98.24 98.24 98.24 98.46 98.68

Heart 47.93 64.51 99.27 99.51 99.51 99.51 99.76 99.76

Cardio 50.09 55.93 71.12 71.48 71.52 - - 71.52

MNIST-1 9.87 9.75 9.75 97.99 98.09 98.10 - 98.10

MNIST-2 9.87 10.22 67.80 67.80 98.24 - - 98.24

MNIST-3 10.44 11.24 43.81 96.32 96.51 - - 96.51

CIFAR-10-1 10.00 37.49 90.25 91.05 91.05 91.05 91.06 91.06

CIFAR-10-2 10.00 19.46 82.72 92.43 92.45 - - 92.45

CIFAR-10-3 10.00 16.35 31.18 92.09 92.67 92.68 - 92.68

(Note: the bold numbers correspond to the selected scaling factors)

TABLE V: (Exp#1) Inference accuracy versus scaling factor on the
testing set.

Model
Accuracy tested by testing set (%) Original

100 101 102 103 104 105 106 (%)

Breast 70.34 70.34 96.46 96.46 96.46 96.46 97.34 97.34

Heart 50.74 65.86 97.57 98.06 98.06 98.54 98.54 98.54

Cardio 51.12 56.28 71.07 71.46 71.46 71.46 71.46 71.46

MNIST-1 9.80 9.74 9.74 96.37 96.54 96.54 96.54 96.54

MNIST-2 9.80 10.10 10.10 67.98 97.38 97.38 97.38 97.38

MNIST-3 10.28 11.35 44.36 96.60 96.76 96.76 96.76 96.76

CIFAR-10-1 10.00 37.06 83.95 84.65 84.66 84.66 84.66 84.66

CIFAR-10-2 10.00 19.51 77.91 85.99 85.99 85.99 85.99 85.99

CIFAR-10-3 10.00 16.57 29.91 86.10 86.39 86.39 86.39 86.39

(Note: the bold numbers correspond to the selected scaling factors)

accuracy on the training set without parameter scaling (the
original case). In general, the inference accuracy increases with
the scaling factor. However, for some models, the inference
accuracy under a small scaling factor can match the inference
accuracy without parameter scaling. For example, the scaling
factor can be selected as 104 for Cardio, MNIST-2, MNIST-
3, and CIFAR-10-2. Note that the inference accuracy for
Breast (slightly) deviates from the inference accuracy without
parameter scaling by more than 0.01% due to the small size
of the training set, the deviation is limited and does not
compromise the testing accuracy (see below).

To prove that the selected scaling factors can preserve
the inference accuracy in practice, we evaluate the inference
accuracy for different scaling factors using the testing set.
For each model, we first perform parameter scaling based
on different scaling factors (from 100 to 106) to extract the
corresponding approximate models. We then evaluate the
inference accuracy using the testing set.

Table V shows the results; the rightmost column shows the
inference accuracy on the testing set without parameter scaling
(the original case). The inference accuracy is significantly worse
than that of the original case for a small scaling factor (e.g.,
100), yet it increases with the scaling factor. We observe that for
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all nine models, the selected scaling factors by our parameter
scaling approach preserve the same inference accuracy in the
testing set as in the original case without parameter scaling. It
is noting that PP-Stream applies scaling factors selected by our
parameter scaling scheme for all the models in the following
experiments (i.e., Exp#2-4, and 6).

We also evaluate the inference latency of PP-Stream for
different scaling factors. We focus on the MNIST and CIFAR-
10 models, as the healthcare models have small scales and
cannot show performance differences for different scaling
factors. In our evaluation, we enable all features of PP-Stream
(i.e., operation encapsulation, load-balanced resource allocation,
and tensor partitioning).

Figure 6 shows the inference latency results versus the
scaling factor. The inference latency generally increases with
the scaling factor since larger scaling factors will introduce more
homomorphic encryption operations (i.e., scalar multiplication).
For example, when the scaling factor increases from 100 to 106,
the inference latency increases by 29% and 23% in MNIST
and CIFAR-10 models, respectively. The results show the
performance-accuracy trade-off in neural network inference.
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(Exp#2) Effectiveness of distributed stream processing. We
evaluate how PP-Stream reduces the inference latency by map-
ping the primitive layers into distributed stream processing. We
compare four variants: (i) PP-Stream-25, which runs distributed
stream processing and performs inference on ciphertexts on 25
CPU cores in total; (ii) PP-Stream-50, which runs distributed
stream processing and performs inference on ciphertexts on 50
CPU cores in total; (iii) PlainBase, which runs as a centralized
system on a single server and performs inference on plaintexts;
and (iv) CipherBase, which runs as a centralized system on
a single server and performs inference on ciphertexts. For
PP-Stream-25 and PP-Stream-50, we disable load-balanced
resource allocation and tensor partitioning; instead, for a given
total number of CPU cores and a neural network model, PP-
Stream evenly distributes the CPU cores across the stages (note
that some stages may have one more CPU core than the others
if the number of CPU cores is not divisible by the number of
servers) and feeds an input tensor to each thread to generate
one element of the output tensor at a time.

Figure 8 shows the inference latency results; we only show
the results for the MNIST and healthcare models in the
interest of space. We make the following observations. First,



comparing PlainBase and CipherBase, CipherBase suffers from
a significantly higher inference latency than PlainBase. For
example, for the MNIST-3 model, the inference latency of
PlainBase is 0.13 s only, while that of CipherBase is 1,461.09 s.
This implies that privacy-preserving mechanisms incur severe
performance overhead. For a larger scale of the model, the per-
formance overhead of privacy-preserving mechanisms is more
severe. Second, comparing PP-Stream-25/50 and CipherBase,
PP-Stream’s inference latency is one order of magnitude less
than CipherBase’s. By mapping primitive layers into distributed
stream processing, PP-Stream-25 and PP-Stream-50 reduce the
inference latency of CipherBase on average by 95.63% and
97.46%, respectively. This shows the significant performance
gain through distributed stream processing. Third, PP-Stream-
50 reduces the inference latency of PP-Stream-25 on average
by 39.24%. This shows that PP-Stream can achieve a higher
performance gain with more available CPU cores.
(Exp#3) Load-balanced resource allocation. We evaluate
PP-Stream with and without load-balanced resource allocation
(Section IV-C) by varying the total number of CPU cores in
the whole system. For the case without load-balanced resource
allocation, we configure PP-Stream to evenly distribute the
CPU cores to each stage; for the case with load-balanced
resource allocation, we evenly distribute the CPU cores to all
allocated servers, and assign the CPU cores to different stages
by solving the optimization problem formulated in Section IV-C.
In both cases, we enable distributed stream processing and
tensor partitioning during runtime.

Figure 7 shows the inference latency results; here, we focus
on the healthcare and MNIST models. For each model, load-
balanced resource allocation reduces the inference latency
by around 42.55% on average. In particular, the maximum
reduction is 64.94%, which occurs for the MNIST-3 model. The
reason is that the MNIST-3 model has the largest scale among
the six models and it benefits the most from load-balanced
resource allocation. Thus, we expect that load-balanced resource
allocation is more effective for larger models in reducing the
inference latency. Furthermore, we observe that assigning more
CPU cores improves inference performance, yet there exists
a diminishing return as we assign more CPU cores. While it
is intriguing to explore and characterize such a trade-off, it is
beyond the scope of our paper and is posed as our future work.
(Exp#4) Tensor partitioning. We evaluate PP-Stream with and
without tensor partitioning (Section IV-D) by varying the total
number of CPU cores. For the case without tensor partitioning,
we configure PP-Stream to feed the whole input tensor to each
thread, which produces one element of the output tensor at a
time. For the case with tensor partitioning, each linear stage
employs output tensor partitioning, while some linear stages that
are responsible for convolution operations also leverage input
tensor partitioning. In both cases, we enable distributed stream
processing and employ load-balanced resource allocation to
distribute given CPU resources.

Figure 9 shows the inference latency results; here, we focus
on the healthcare and MNIST models. We have the following
two observations. First, when PP-Stream is allocated only a

TABLE VI: (Exp#5) Information leakage measurement.

Tensor Length Distance Tensor Length Distance

25 0.2898 210 0.0566
26 0.1767 211 0.0405
27 0.1232 212 0.0289
28 0.1087 213 0.0200
29 0.0783 - -

small number of CPU cores, tensor partitioning only marginally
reduces the inference latency, as the bottleneck is primarily
due to limited CPU resources. As the number of CPU cores
increases, tensor partitioning shows higher performance gains,
as it can now partition an input tensor into smaller tensors that
are sent to more threads and each thread generates a smaller
output sub-tensor during inference (i.e., each thread has less
load now). We see that tensor partitioning reduces the inference
latency by up to 61.64%. Second, tensor partitioning reduces
more latency in MNIST-2 and MNIST-3 models than that
in healthcare and MNIST-1 models. This discrepancy arises
because the healthcare and MNIST-1 models lack convolution
operations, limiting their utilization of tensor partitioning to
solely focusing on output tensor partitioning.
(Exp#5) Information leakage measurement. Recall that we
use the obfuscation mechanism to protect model parameters
(Figure 3). However, PP-Stream still has some information
leakage since the obfuscation mechanism only re-orders the
tensors instead of changing their values. Here, we quantify the
information leakage by distance correlation [63], [67], which
has been widely used in the theory of statistics. Specifically, for
each model in Table III, we run the privacy-preserving inference
phase in the testing sets and export all the tensors that need to
be obfuscated. The tensor length (i.e., the number of values in a
tensor) varies from 25 to 213 for all exported tensors. Then, we
perform obfuscation on these tensors and measure the distance
correlation between the before-obfuscated and after-obfuscated
tensors via Python Dcor [11]. A smaller distance correlation
implies that the two tensors are more different; in particular, the
distance correlation is one if two tensors are identical, while it
is zero if they are totally different.

Table VI shows the distance correlation results between
the before-obfuscated and after-obfuscated tensors during the
inference for all models in Table III. Here, we only show the
results versus the tensor length, as our observation indicates that
when two before-obfuscated tensors have an equal number of
values, the distance correlation results remain nearly identical
with differences less than 0.1%.

We make the following observations. First, our obfuscation
mechanism effectively reduces information leakage. The high-
est recorded distance correlation is 0.2898, which is significantly
lower from one (i.e., without obfuscation). We believe that such
a distance correlation is weak, meaning that the obfuscated
tensors are weakly correlated with the non-obfuscated tensors.
Second, as the tensor becomes larger, the distance correlation
becomes smaller, meaning that larger tensors become more
different after obfuscation. This shows that our obfuscation
mechanism shows less information leakage for larger neural



TABLE VII: (Exp#6) Comparisons with state-of-the-arts.

Inference latency (s)
MNIST-1 MNIST-2 MNIST-3

SecureML [51] 4.88∗ - -
CryptoNets [31] - 297.5∗ -

CryptoDL [33], [34] - 320∗ -
EzPC [24] 2.42 2.92 25.66

PP-Stream (ours) 0.72 1.14 12.20
(Note: ∗ means the numbers are reported in corresponding papers)

networks. Since neural networks typically have large tensors
(e.g., our CIFAR-10 models have a tensor length of up to 213),
our obfuscation mechanism maintains high privacy in practice.
(Exp#6) Comparisons with state-of-the-arts. We show that
PP-Stream achieves a low latency compared with state-of-the-art
systems, including SecureML [51], CryptoNets [31], CryptoDL
[33], [34], and EzPC [24] on privacy-preserving neural network
inference. For SecureML, CryptoNets, and CryptoDL, since
their artifacts are not publicly available, we compare the latency
based on the numbers reported in their respective publications
using the same neural network models (i.e., the MNIST-1 and
MNIST-2 models); note that such high-level comparisons are
also adopted in prior studies [45], [56]. For EzPC, we deploy
its open-source system in our testbed and reproduce the three
MNIST models to compare the performance of PP-Stream and
EzPC in the same evaluation environment.

Table VII shows the inference results. We first consider
SecureML, CryptoNets, and CryptoDL. For the MNIST-1 model
with a scaling factor 105, the inference latency of PP-Stream is
0.72 s, while the inference latency of SecureML [51] is 4.88 s
on two Amazon EC2 c4.8xlarge instances with 60 GB of
RAM each; for the MNIST-2 model with a scaling factor of
104, the inference latency of PP-Stream is 1.14 s, while the
inference latency of CryptoNets [31] is 297.5 s on a server with
a single Intel Xeon E5-1620 3.5 GHz CPU and 16 GB of RAM,
and that of CryptoDL [33], [34] is 320 s on a virtual machine
with 48 GB of RAM and 12 CPU cores. Thus, PP-Stream
achieves high inference performance.

We further compare PP-Stream and EzPC. The inference
latencies of EzPC are 2.42 s, 2.92 s, and 25.66 s for the MNIST-
1, MNIST-2, and MNIST-3 models, respectively (i.e., 236%,
156%, and 110% higher than those of PP-Stream, respectively).
PP-Stream outperforms EzPC for two reasons. First, EzPC
suffers from its high protocol transition overhead due to the
frequent switching between secret sharing and garbled circuits.
Second, PP-Stream achieves high inference performance by
pipelining the processing of inference requests in a streaming
fashion, which is not readily done in EzPC as its secret sharing
and garbled circuits require multiple rounds of interactions for
each layer of neural network inference.

VII. RELATED WORK

Prior studies address privacy preservation in neural network
inference. Earlier privacy-preserving neural network inference
systems [18], [52] support non-linear operations, but they do not
preserve the correctness of the inference results (Section II-C).

CryptoNets [31], CryptoDL [33], [34] and E2DM [38] build
on homomorphic encryption as in PP-Stream, yet they suffer
from accuracy loss and need to retrain models as they replace
the ReLU function with approximated polynomials. In contrast,
PP-Stream maintains the correctness of the inference results
and preserves model accuracy.

Some studies build neural network inference frameworks
through hybrid approaches. MiniONN [45] and SecureML
[51] build on homomorphic encryption, garbled circuits, and
secret sharing. Specifically, MiniONN [45] uses approximately
fitting to replace activation functions, while SecureML [51]
uses special activation functions that may not support general
neural network functions (e.g., ReLU). EzPC [24] builds on
garbled circuits and secret sharing. Since the formats vary
across cryptographic protocols, the transitioning across the
protocols in the above systems [24], [45], [51] incurs high
performance overhead. DELPHI [49] proposes a planner that
makes a decision for ReLU or approximated polynomials,
which has the same limitations as SecureML in terms of
generality. ABY3 [50] builds on a three-server model that
involves a trusted third party, while Chameleon [57] relies on a
trusted execution environment. QuantizedNN [15], FLEXBNN
[28], and Force [26] build on non-colluding three-party or
four-party computation frameworks. In contrast, PP-Stream
addresses the above limitations by supporting general neural
network functions and untrusted environments, without relying
on specialized settings such as trusted execution environments.

Some studies address the performance issues in neural net-
work inference. For example, there exist hardware acceleration
approaches based on GPU [54] and TPU [4], but they do not
address privacy preservation. FALCON [46] uses Fast Fourier
Transform to accelerate secure linear operations in neural
networks. Cheetah [37] builds on lattice-based homomorphic
encryption for fast performance. In contrast, PP-Stream is
readily deployable in commodity servers.

VIII. CONCLUSION

PP-Stream is a distributed stream processing system for
privacy-preserving neural network inference. It decomposes
the inference workflow into linear and non-linear operations,
and protects them with hybrid privacy-preserving techniques.
It also maps the inference operations into a distributed stream
processing architecture, and further performs load-balanced
resource allocation and tensor partitioning for better resource
utilization. Our evaluation shows that our PP-Stream prototype
effectively supports widely used neural network models with
high inference accuracy and low inference latencies.
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