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Abstract—Read-modify-writes (RMWs) are increasingly ob-
served in practical key-value (KV) storage workloads to support
fine-grained updates. To make RMWs efficient, one approach is to
write deltas (i.e., changes to current values) to the log-structured
merge-tree (LSM-tree), yet it increases the read overhead caused
by retrieving and combining a chain of deltas. We propose
a notion called key-delta (KD) separation to support efficient
reads and RMWs in LSM-tree KV stores under RMW-intensive
workloads. KD separation aims to store deltas in separate storage
areas and group deltas into storage units called buckets, such
that all deltas of a key are kept in the same bucket and can
be all together accessed in subsequent reads. To this end, we
build KDSep, a middleware layer that realizes KD separation and
integrates KDSep into state-of-the-art LSM-tree KV stores (e.g.,
RocksDB and BlobDB). We show that KDSep achieves significant
I/O throughput gains and read latency reduction under RMW-
intensive workloads while preserving the efficiency in general
workloads.

Index Terms—LSM-trees, key-value stores

I. INTRODUCTION

Key-value (KV) storage is a critical paradigm for enabling
structured storage at scale, by organizing data as KV pairs
for reads (i.e., retrieving existing KV pairs from storage) and
writes (i.e., inserting KV pairs into storage or overwriting
existing KV pairs with new values). While read-intensive [4]
and write-intensive [26], [29] workloads have been observed in
production, field studies show that read-modify-writes (RMWs)
are also common, in which existing KV pairs are read from
storage, fully or partially modified based on the current values,
and written back to storage. For example, 92.5% of all requests
are reportedly RMWs [7] in artificial-intelligence/machine-
learning (AI/ML) services in RocksDB [16] production at
Facebook; more than 90% of transaction requests are RMWs
in the transactional database benchmarks [1], [27]; 50% of
requests are RMWs in one of the core cloud system workloads
(Workload F) in YCSB benchmarks [12]. RMWs are also
commonly observed in NoSQL stores [25], real-time data
processing [9], [18], and social graph databases [3], [10].

RocksDB [16], which serves as the backend storage for
Facebook’s AI/ML services with intensive RMWs [7], builds
on the widely adopted Log-Structured Merge-tree (LSM-tree)
[22] for persistent KV storage. The LSM-tree arranges KV
pairs in log-structured storage across multiple tree levels and
issues sequential writes for new KV pairs for fast writes. It also
maintains KV pairs in a sorted manner within each tree level for
efficient reads and range queries. To support efficient RMWs,
RocksDB [16] provides the merge() operator: instead of
simply reading and modifying KV pairs, merge() writes the

delta (i.e., the change of the value) of a KV pair without reads,
thereby achieving fast RMWs. Thus, the LSM-tree is arguably
a good candidate for RMW-intensive workloads.

The merge() operator, however, increases the overhead
of subsequent reads to a key with deltas. For fast RMWs,
merge() only writes deltas to the LSM-tree, but does not
combine deltas with their associated KV pairs. Thus, reading
a KV pair retrieves not only the current value, but also a
chain of deltas, so as to reconstruct the latest version of
the value, and such deltas may span across tree levels. Our
evaluation (Section II-C) shows that compared with simply
reading and modifying KV pairs, merge() reduces the RMW
latency by up to 96.9%, but increases the read latency by
up to 74.1%, under RMW-intensive workloads. One possible
remedy to mitigating such read overhead is KV separation
[20], which stores values in separate storage outside of the
LSM-tree, so as to reduce the LSM-tree size and hence the read
latency. However, the current implementation of KV separation
of RocksDB, called BlobDB [14], still stores deltas in the
LSM-tree. Our evaluation (Section II-C) shows that while KV
separation reduces the read latency to some extent under RMW-
intensive workloads, the read latency remains high.

In this paper, we propose key-delta (KD) separation, which
aims for fast reads, while maintaining high RMW performance,
under RMW-intensive workloads. KD separation is inspired
by KV separation [20] and takes one step further to store
deltas in separate storage outside of the LSM-tree. It builds
on three design elements: (i) bucket-based delta placement,
which groups deltas by buckets, such that all deltas of a key are
mapped to the same bucket and any subsequent read to a key
can be efficiently done by directly accessing a single bucket for
all its corresponding deltas; (ii) delta-based garbage collection,
which reclaims the space of stale deltas from buckets, and
further allows buckets to be dynamically split and merged to
keep the bucket sizes and the number of buckets manageable;
and (iii) crash recovery, which ensures that the states of writes
and garbage collection can be recovered after crashes.

To realize KD separation, we design and implement KDSep,
a middleware layer that integrates KD separation into existing
LSM-tree KV stores to efficiently handle RMW-intensive
workloads. We demonstrate that KDSep can be feasibly
integrated into existing LSM-tree KV stores with or without
KV separation, including RocksDB, BlobDB, and vLogDB
(the KV separation implementation in [8]). We also conduct
asymptotic analysis on the performance of KDSep.

We evaluate KDSep using custom workloads that are
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Figure 1: Architecture of an LSM-tree KV store.

synthetically generated with tunable parameters, the production
workloads based on Facebook’s RocksDB deployment [7],
and YCSB core workloads [12]. Experimental results show
that under RMW-intensive workloads, our KDSep prototype
increases the I/O throughput by 67.0-80.5% and reduces the
read latency by 41.9-49.9% compared with the baseline KV
stores without KD separation. Our KDSep prototype is open-
sourced at https://github.com/adslabcuhk/kdsep.

II. BACKGROUND AND MOTIVATION

A. Basics of LSM-Trees

LSM-tree organization. We provide an overview of an LSM-
tree KV store, as shown in Figure 1. An LSM-tree organizes
KV pairs in n+ 1 levels, denoted by L0, L1, · · · , Ln (from
lower to higher). Each level stores KV pairs in immutable
fixed-size files of several MiB each (e.g., 64 MiB default in
RocksDB [16]), called SSTables, in persistent storage. Each
SSTable groups KV pairs in data blocks of several KiB each
and keeps an index block that stores the key ranges and offsets
of all data blocks in the SSTable. For efficient range queries,
each SSTable sorts all KV pairs by keys, and all SSTables at
the same level (except L0) have disjoint key ranges. Also, the
total size of Li (2 ≤ i ≤ n) is often multiple times that of its
lower level Li−1 (e.g., 10× in RocksDB [16]).
Writes. The put(key, value) operator writes a KV pair
to an LSM-tree. It first appends the KV pair to a write-ahead
log (WAL) for crash recovery, and then writes the KV pair in an
in-memory mutable structure, called the MemTable. When the
MemTable is full, it is converted to an immutable MemTable,
which is flushed and becomes an SSTable in L0 on disk; the
flushed KV pairs are also removed from the WAL. The KV pairs
in the SSTables are migrated to higher levels via compaction
with the following steps: (i) selecting an SSTable in Li (0 ≤
i ≤ n− 1) and multiple SSTables in Li+1 with overlapping
key ranges, (ii) merge-sorts all the KV pairs and discards any
invalid (stale) KV pairs, and (iii) writes the live (non-stale)
KV pairs as new SSTables to Li+1. After compaction, all KV
pairs in each level (except L0) remain sorted, so that the query
to a key in Li (i ≥ 1) can be done via binary search. Note that
compaction leads to write amplification, as it rewrites the valid
KV pairs to new SSTables.
Reads. The get(key) operator reads a KV pair of a given
key and returns its value. It first searches the currently written
MemTable and the immutable MemTables in memory, followed

by the SSTables on disk from the low to high levels of the
LSM-tree. Thus, it leads to read amplification, as it often issues
multiple random reads to the SSTables in different levels. To
accelerate reads, the index block in each SSTable maintains
a Bloom filter [6] to quickly check if a key exists. Also, the
frequently accessed index blocks and data blocks are cached
in an in-memory block cache.

B. Read-Modify-Writes

A read-modify-write (RMW) logically reads a KV pair from
the LSM-tree to memory, modifies the value in memory, and
writes the modified KV pair back to the LSM-tree. We discuss
two RMW approaches, namely Get-Put and Merge.
Get-Put. An RMW can be realized with a pair of get() and
put(), by reading the original value via get(), modifying
the value, and writing the new value via put(). The Get-Put
approach is used in YCSB benchmarking [12] and modern
LSM-tree KV stores. For example, the update in YCSB core
workloads A, B, and F implements an RMW by reading a
database record with multiple fields via get(), modifying
one or multiple fields, and writing back the updated database
record via put(). Another example is the update of a statistical
counter (e.g., in machine learning inference for monitoring
user activities in social networks at Facebook [7]), which
implements an RMW by reading the counter value via get(),
incrementing or decrementing the counter value, and writing
back the new counter value via put(). One drawback of the
Get-Put approach is that its performance is bottlenecked by
get(), which incurs read amplification (Section II-A).
Merge. To mitigate the get() overhead in the Get-Put
approach, RocksDB introduces the merge(key, delta)
operator [15], which performs RMWs by writing the delta,
defined as the difference between the original and new values.
Referring to the examples above, to modify a field in a database
record, the delta represents the offset of the field within the
record and the new content of the field; to update a statistical
counter, the delta is the numerical difference from the original
value to the new value.

Suppose that a client calls merge() to issue an RMW for
a key. The merge() operator first combines the key and delta
into a key-delta (KD) pair, and then writes the KD pair to the
WAL and the MemTable. The MemTable is flushed to the disk
as an SSTable when it is full, as in the original write workflow
of the LSM-tree KV store; note that each of the MemTables
and SSTables now contains a mix of KV pairs and KD pairs.
Thus, merge() eliminates get() as in the Get-Put approach
and improves the RMW performance.

RocksDB provides two implementable interfaces under
the merge() operator: (i) fullMerge(value, deltaL-
ist[]), which specifies how to merge a list of deltas in
deltaList[] with the input original value into a new
value, and (ii) partialMerge(delta1, delta2), which
merges two deltas (i.e., delta1 and delta2) into a single
delta to reduce the number of deltas in SSTables. Both interfaces
are called during compaction in RocksDB: if a KD pair
encounters a KV pair of the same key, the delta of the KD pair
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Figure 2: Latencies for Get-Put and Merge.

may be merged with the KV pair via fullMerge(); if a KD
pair encounters another KD pair of the same key, the two KD
pairs can be merged into one via partialMerge().

The get() operator under Merge is different from the
original read path, as it needs to search and combine all deltas
of a given key to reconstruct the returned value. Specifically,
it searches all MemTables, and the SSTables from low to high
levels, and stores all deltas of the given key in memory. It stops
the search when it finds the latest KV pair of the given key.
It then applies all deltas in memory to reconstruct the latest
value via fullMerge() and returns the new value. Thus,
although merge() makes RMWs more efficient, it incurs extra
overhead to reads, especially when a KV pair is frequently
updated with RMWs and the reads to the KV pair need to
aggregate a large chain of deltas.

C. Motivating Experiments

Comparisons of Get-Put and Merge. We compare the
read and RMW performance of both Get-Put and Merge to
understand their performance trade-offs. We first load 100 M
1-KiB KV pairs to RocksDB in our testbed (Section IV-A),
where each KV pair has a 24-byte key and a 1,000-byte value.
Each value contains 10 100-byte fields (the default setting
of YCSB [12]). We then issue workloads of 50 M operations
mixed with reads and RMWs following a Zipf distribution with
a Zipfian constant of 0.99, with direct I/O enabled. An RMW
randomly selects and modifies one of the 100-byte value fields
in a KV pair in both Get-Put and Merge.

Figure 2 shows the average read and RMW latencies of
both Get-Put and Merge, in which we vary the read-to-RMW
ratio from 10:90 to 90:10. We observe the performance trade-
off in Merge and Get-Put. For Merge, it significantly reduces
the RMW latencies of Get-Put by 95.7-96.9% (from 139.8-
156.1 µs to 4.8-6.0 µs) (Figure 2(a)), as Get-Put issues many
pairs of get() and put() when there exist several RMWs
for a key, while Merge directly stores KD pairs in the LSM-
tree and avoids multiple calls of get(). However, Merge
also increases the read latencies of Get-Put by 50.8-74.1%
(Figure 2(b)), as Merge needs to search for the value and all
deltas of a key, while Get-Put directly reads the up-to-date
KV pair. In particular, its read latency is higher for smaller
read-to-RMW ratios (e.g., 10:90), as it injects more deltas into
the LSM-tree and increases the read overhead. For Get-Put,
its RMW and read latencies are almost identical, as they are
both dominated by get(), while put() in RMWs incurs
negligible overhead.

Figure 3: Latencies with and without
KV separation.

Figure 4: Number of reads at different
SSTable levels.

Can KV separation mitigate the RMW overhead? KV
separation, first proposed by WiscKey [20], is known for
reducing write and read amplifications by separating the storage
of keys and values. Its idea is that values are not needed for
indexing. Thus, it stores keys and metadata in the LSM-tree
for indexing, while storing keys and values in an append-only
circular log called the vLog (the keys in the vLog are for
efficient value lookups [20]). It significantly reduces the LSM-
tree size, so it mitigates the compaction and lookup costs, and
hence the write and read amplifications, respectively.

Intuitively, KV separation is expected to also mitigate the
overhead of both Get-Put and Merge. We evaluate Get-Put
and Merge on BlobDB [14], which realizes KV separation in
RocksDB and stores keys and values in dedicated files (called
Blob files). Note that for KD pairs in Merge, BlobDB still
keeps them (in addition to keys and metadata) in the LSM-tree.
We focus on the read-to-RMW ratio of 50:50, and evaluate the
average read and RMW latencies of both Get-Put and Merge.

Figure 3 shows the average latencies of RMWs and reads
with and without KV separation. KV separation (i.e., BlobDB)
reduces both RMW and read latencies in Get-Put and Merge
compared with no KV separation (i.e., RocksDB). For Get-Put,
KV separation (i.e., Get-Put+BlobDB) mitigates the RMW and
read latencies by 46.5% and 48.0%, respectively, compared
with no KV separation (i.e., Get-Put+RocksDB), but the RMW
latency remains high. For Merge, the RMW latencies of both
KV separation (i.e., Merge+BlobDB) and no KV separation (i.e.,
Merge+RocksDB) are low. However, the read latency of Merge
remains high; for example, the read latency of Merge+BlobDB
is 116.6% higher than that of Get-Put+BlobDB.

To further study the read penalty of Merge, we analyze the
number of random reads issued to different LSM-tree levels for
both Get-Put and Merge under KV separation. Figure 4 shows
the results. We make two observations. First, almost most of
the KV pairs in Get-Put appear in the low levels (e.g., totally
156.2 K reads in L0 and L1), while the KD pairs in Merge
may appear across different levels, especially high levels (e.g.,
153.7 K and 536.7 K reads in L2 and L3, respectively). Second,
Merge has much more reads than Get-Put (773.7 K versus
381.1 K reads), since the LSM-tree also stores a large number
of KD pairs. We also find that at the end of the workload,
23.2% of the total SSTable size is occupied by KD pairs in
Merge+BlobDB (not shown in the figure).

III. KDSEP DESIGN

We propose key-delta (KD) separation, which separates the
storage of KD pairs from the LSM-tree, so as to further reduce
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the size of the LSM-tree and hence the read amplification
for retrieving KD pairs. KD separation follows the similar
observations in KV separation [20] that keys are only needed
in the LSM-tree for indexing, while values and deltas can be
kept outside of the LSM-tree. It can be viewed as an LSM-tree
optimization technique complementary to KV separation.

To this end, we design KDSep, a middleware layer aiming for
enhancing LSM-tree KV stores via KD separation to achieve
high-performance RMWs and reads under RMW-intensive
workloads, while maintaining high read/write performance for
general workloads (even without RMWs). It builds on the
Merge approach for RMWs, as Merge outperforms Get-Put in
RMWs, while reducing the read overhead in Merge via KD
separation. KDSep is designed to support general LSM-tree
KV stores with and without KV separation (e.g., BlobDB and
RocksDB, respectively).

A. Design Challenges

Despite the relevance with KV separation, KD separation
differs from KV separation in its design and has the following
unique challenges.
Challenge 1: Reducing reads to LSM-tree metadata. Tra-
ditional KV separation keeps metadata in the LSM-tree to
store the location of the KV pair in the vLog [20]. However,
storing metadata in the LSM-tree for KD separation can incur
large read overhead, as a key can have multiple deltas that
require separate metadata records for the key. This leads to
multiple random reads in the LSM-tree and causes significant
performance degradations in reads. It is important to consider
removing the metadata records for KD pairs from the LSM-tree.
Challenge 2: Reducing reads to KD pairs. KD separation
writes deltas to some separate storage space outside of the
LSM-tree, and creates new challenges in the design of delta
placement. Each read to a key now needs to retrieve all its KD
pairs from the separate storage space, as opposed to reading a
single value from the vLog in KV separation [20]. It is critical
to group the deltas together to mitigate random reads.
Challenge 3: Garbage collection of KD pairs. With KD
separation, existing KD pairs become invalid when a new KV
pair for the same key is written via put(), as the deltas are
derived from the old KV pair. Garbage collection is needed for
reclaiming the free space of invalid KD pairs. However, it is
critical to effectively locate invalid KD pairs using lightweight
data records, since keeping track of the locations of KD pairs
in the LSM-tree, as in KV separation [20], can incur high
lookup overhead [8].
Challenge 4: Crash recovery. Crash recovery in KV separa-
tion should maintain the consistent states for both the LSM-tree
and the vLog. KD separation adds one more separate storage
component for deltas and requires special attention to crash
recovery for all storage components.

B. Design Overview

KDSep realizes KD separation to store KD pairs in the
delta store, which resides outside of the LSM-tree. It builds on
several techniques to resolve the challenges in Section III-A.

Memory
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Figure 5: Architecture of KDSep. We show how KDSep extends WiscKey’s
vLog implementation [20] with new components (shaded) for KD separation.

• Bucket-based delta placement (Section III-C). The delta
store partitions its storage space into append-only partitions
called buckets. KDSep maps the KD pairs of a key into the
same bucket, so that it does not need to keep the metadata
of KD pairs in the LSM-tree, while it can still readily locate
all KD pairs of a key (Challenge 1 addressed). It can also
readily retrieve all KD pairs of a key as they are grouped
together in the same bucket (Challenge 2 addressed).

• Delta-based garbage collection (Section III-D). For effi-
cient garbage collection, KDSep adds a special type of data
called anchor for each put(), so as to readily identify and
clean the invalid KD pairs issued before the anchor. It also
dynamically splits and merges buckets to keep the bucket
sizes and the number of buckets manageable (Challenge 3
addressed).

• Crash recovery (Section III-E). KDSep maintains crash
consistency under KD separation, and further supports the
recovery of in-memory data structures under KD separation
(Challenge 4 addressed).

Architecture. Figure 5 shows the architecture of KDSep.
To make our discussion complete, we assume that KDSep
is integrated into WiscKey’s vLog implementation, which
implements not only KV separation but also fast recovery
(Section III-E); recall that KDSep is also applicable for KV
stores without KV separation. KDSep keeps KD pairs in the
delta store. It also keeps a commit log and a manifest file in
persistent storage for crash recovery. We assume that a solid-
state drive (SSD) is used for persistent storage for reasonably
high performance as in WiscKey [20].

Like WiscKey, KDSep keeps an in-memory write buffer for
fast writes. The write buffer caches both KV pairs and KD
pairs and flushes them in batch to the vLog and the delta store,
respectively. Also, KDSep introduces three new in-memory
data structures: (i) a skip list for indexing buckets with disjoint
key ranges in the delta store, (ii) a key-delta (KD) cache for
fast access to frequently accessed KD pairs, and (iii) a bucket
table for efficient bucket-based data management.
Interfaces. We focus on three interfaces: (i) put() for writing
a new KV pair (i.e., blind updates), (ii) merge() for writing
a new KD pair (i.e., Merge-based RMWs), and (iii) get()
for retrieving the latest version of a KV pair. We describe their
workflows under KDSep as follows.

(i) Write workflow of put() and merge(): KDSep keeps
the newly written KV pairs from put() and KD pairs from
merge() in the in-memory write buffer. If the total size
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Figure 6: Indexing buckets with a skip list in KDSep.

of KV pairs and KD pairs in the write buffer exceeds the
buffer size limit, KDSep flushes the write buffer as follows.
First, it groups all KV pairs and KD pairs in the write buffer
by their keys. If a key has a newly written value, KDSep
performs fullMerge() on the value and all its deltas (if any)
appearing after the value to generate a new KV pair for flushing;
otherwise, if a key does not have a newly written value (i.e.,
only having KD pairs), KDSep performs partialMerge()
on the deltas to prepare a new KD pair for flushing. Finally, for
crash recovery, KDSep updates the vLog, commit log, LSM-tree,
and delta store in order (Section III-E). For KV pairs, KDSep
flushes them to the vLog, writes the metadata to the LSM-tree,
and writes anchors to the buckets in the delta store; for KD
pairs, KDSep appends them to the commit log (Section III-E),
updates the bucket table, and writes them to the delta store
(see Section III-C for details). Note that it does not need to
write metadata to the LSM-tree.

(ii) Read workflow of get(): KDSep reads the latest value
by searching in parallel for the value and deltas from the vLog
and delta store, respectively. Specifically, it queries the LSM-
tree to locate the KV pair in the vLog; meanwhile, it checks
the in-memory data structure and retrieves the KD pairs (if
any). Finally, it performs fullMerge() on the value and
deltas, and returns the merged value.

C. Bucket-based Delta Placement

KDSep partitions the delta store into buckets and determinis-
tically maps KD pairs to buckets. It allocates each bucket with
fixed-size contiguous storage space (e.g., 256 KiB by default)
that starts from a specific offset. Each bucket stores KD pairs
with key ranges that are disjoint from any other buckets. KDSep
maintains a skip list to organize buckets in an ordered manner,
such that all KD pairs across buckets are ordered, but may not
be ordered within a bucket.
Skip list. KDSep maintains an in-memory skip list to index
buckets, as shown in Figure 6, so as to support efficient queries
and updates over an ordered set of buckets.

The skip list maintains multiple layers of linked lists of
nodes, in which each node stores the smallest key of a bucket
and the reference to the bucket. The bottom layer indexes all
buckets, while the higher layers maintain skipping pointers for
the fast search of nodes in the bottom layer. The number of
nodes in a layer is roughly half of that of its next lower layer.
Let N be the maximum number of buckets in the delta store.
Then the number of layers is O(logN), while the query and
update costs are also O(logN) [24].

Bloom filters

SSD

Memory

Index Buffer

Sorted part

KD pairKD pair… … … …KD pair Anchor

Unsorted part

KD pair: <key size, delta size, key, delta>
Anchor: <key size, anchor flag, key>

Figure 7: Bucket data organization.

Initialization. Before writing any KD pairs, the delta store
is empty. KDSep initializes the delta store and the skip list
when it writes KD pairs from the write buffer for the first
time. Specifically, KDSep sorts the KD pairs and divides them
into multiple buckets of small sizes (e.g., 5% of the bucket
capacity) with disjoint key ranges, so that it reserves most of
the bucket capacity for further appends of KD pairs. It then
builds the initial skip list based on the smallest key of each
bucket. Note that as KDSep receives the writes of more KD
pairs, the buckets will grow in size and are split during garbage
collection (Section III-D), so the initial sizes of buckets have
negligible impact on the overall performance.
Bucket data organization. Each bucket stores two types of
data: KD pairs and anchors, in which the anchors mark the
deletion of KD pairs. While it is straightforward to store new
data at the end of a bucket in an append-only manner for fast
writes, the KD pairs and anchors of a key are scattered across
the bucket, thereby degrading the read performance.

To guarantee both efficient reads and writes, KDSep arranges
each bucket with two parts: a sorted part and an unsorted
part, as shown in Figure 7. The sorted part stores only KD
pairs sorted by keys, without anchors, for efficient reads, while
the unsorted part stores both KD pairs and anchors in an
append-only manner for efficient writes. KDSep relocates KD
pairs from the unsorted part to the sorted part during garbage
collection (Section III-D). It also keeps an in-memory bucket
table to manage per-bucket data. The bucket table contains
three components for each bucket: (i) a per-bucket index, (ii)
two per-bucket Bloom filters, and (iii) a per-bucket buffer. We
elaborate on each component as follows.

(i) Per-bucket index. The per-bucket index maintains the
locations of sorted keys in the sorted part of the bucket, so as
to quickly retrieve the KD pairs of a key. It is created when
the bucket is under garbage collection (Section III-D). To keep
the index size small, the per-bucket index only keeps a subset
of keys and offsets, such that the offset distance between two
adjacent indexed keys is slightly larger than the SSD page
size 4 KiB. This allows a read to load at most two SSD pages.
Specifically, suppose that KDSep reads the KD pairs of a key
K from the sorted part. It first finds the key range in the per-
bucket index where K resides. It then loads the SSD pages
(at most two) from the sorted part, and searches for the KD
pair of K. Let the bucket capacity be 256 KiB, the key size
be 24 bytes, and the reference size be 4 bytes. The per-bucket
index size is at most 256/4× (24+4) bytes = 1.75 KiB.

(ii) Per-bucket Bloom filters. To quickly determine if a KD
pair exists in a bucket, KDSep keeps two small in-memory
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per-bucket Bloom filters (of size 2 KiB each), one for the sorted
part and one for the unsorted part. The Bloom filter for the
sorted part is reset and created when the bucket is under garbage
collection, while the Bloom filter for the unsorted part is reset
when the bucket is under garbage collection and is updated
upon receiving new KD pairs.

(iii) Per-bucket buffer. Since KD pairs are often small (e.g.,
100 bytes [7], [12]), flushing KD pairs individually to an SSD
page (of size 4 KiB) can lead to substantial small writes and
high write amplification [21]. Thus, when KDSep flushes KD
pairs from the write buffer to the delta store, it first adds them
to the per-bucket buffer. It then flushes the per-bucket buffer
to the SSD when the buffer becomes full. We configure the
per-bucket buffer size as 4 KiB to match the SSD page size.
KD cache. KDSep uses an in-memory KD cache to cache the
recently read/written KD pairs, as they are likely accessed again
soon. For each KD pair being read, KDSep either adds it to the
KD cache if its key is new, or combines it with any currently
cached KD pair of the same key with partialMerge(). For
each KD pair being written, if the key is already cached, KDSep
combines it with the cached KD pair. For each anchor being
written, KDSep replaces any existing KD pair with a new one
with an empty delta. The KD cache uses least-recently-used
eviction if it becomes full.
Bucket writes/reads. We describe how to write KD pairs and
anchors to a bucket and read KD pairs from a bucket.

(i) Writes of KD pairs and anchors. KDSep writes KD pairs
and anchors when it flushes the write buffer to the delta store
(Section III-B). First, it uses the key of the KD pair or the
anchor to query the skip list for the associated bucket. Second,
it appends the KD pair or anchor to the per-bucket buffer, which
is flushed to the unsorted part of the bucket when being full.
Third, it inserts the key to the per-bucket Bloom filter for the
unsorted part. Finally, it updates the KD cache.

(ii) Reads of KD pairs. KDSep reads KD pairs associated
with a key from the bucket during get(). First, it queries
the KD cache and returns the cached KD pair upon a cache
hit. Second, it searches the skip list by the key for the bucket.
Third, it checks if the key exists in the sorted and unsorted
parts based on the per-bucket Bloom filters. Based on the query
results, it searches via the per-bucket index for the KD pair
from the sorted part, or searches for the KD pairs that appear
after the latest anchor from the unsorted part. It also calls
partialMerge() to combine the KD pairs being retrieved.
Any KD pair being retrieved is also updated into the KD cache.

Note that the per-bucket Bloom filters may return false
positives, in which the search to the sorted part or unsorted
part does not find the corresponding KD pair. In this case,
KDSep returns an empty delta.

D. Delta-based Garbage Collection

The goals of delta-based garbage collection are three-fold.
First, it reclaims the free space for the delta store by removing
invalid KD pairs and merging KD pairs of the same key.
Second, it sorts the KD pairs and adds them to the sorted
part (Section III-C). Finally, it controls the bucket sizes and the

number of buckets by dynamically splitting and merging buckets
based on workload patterns. Due to workload skewness, some
buckets may receive more KD pairs than others and become
full soon, even though the delta store still has available space.
Thus, KDSep re-allocates buckets based on workload patterns.

We elaborate on the steps of garbage collection as follows.
Step 1: Triggering. KDSep triggers garbage collection when
it is about to flush the write buffer to the delta store but some
buckets are full and cannot store the flushed data. Such buckets
are referred to as victim buckets, which will be selected for
garbage collection.
Step 2: Preparing valid KD pairs. For each victim bucket,
KDSep groups the KD pairs and anchors by keys. For each
key, KDSep keeps only the KD pairs after the latest anchor (if
any) and performs partialMerge() on such KD pairs, so
as to reduce the number of valid KD pairs.
Step 3: Writing valid KD pairs. KDSep determines if
each victim bucket should be split. We define a configurable
parameter called the split threshold (in bytes), such that KDSep
compares the total size of valid KD pairs prepared from Step 2
against the split threshold to decide if a victim bucket should
be split. There are three cases:
• Case 1 (Rewriting a bucket): If the total size of valid KD

pairs is no larger than the split threshold, KDSep does not
split the victim bucket. Instead, it rewrites the valid KD pairs
in a sorted manner to the sorted part of a new bucket in the
delta store.

• Case 2 (Splitting a bucket): If the total size of valid KD
pairs exceeds the split threshold and the current number of
buckets is no larger than N − 2, KDSep splits the victim
bucket. We choose N −2, since a split temporarily adds two
new buckets and we ensure that the split does not increase
the number of buckets beyond N. KDSep partitions the valid
KD pairs into two new buckets based on their key ranges,
and writes the KD pairs in a sorted manner to the sorted
parts of the respective buckets.

• Case 3 (Merging with the vLog): If the total size of valid
KD pairs exceeds the split threshold and the current number
of buckets exceeds N − 2, it implies that the delta store
cannot allocate more buckets. KDSep merges all KD pairs
in the victim bucket with the KV pairs in the vLog via
fullMerge() and frees the victim bucket.

Step 4: Updating index structures. KDSep updates the bucket
table and the skip list based on the new locations of the valid
KD pairs. Figure 8 shows how KDSep updates the skip list if
it splits or merges buckets. If KDSep splits a bucket, it inserts
a new node into the skip list; if KDSep merges two buckets,
it deletes the node that originally references the bucket with
larger keys from the skip list. In both cases, KDSep updates
the references of the remaining nodes to point to the newly
written buckets.
Step 5: Merging buckets. KDSep merges buckets with only a
few KD pairs, so that other frequently appended buckets can be
split. Specifically, it checks if the number of buckets exceeds
N −2 (i.e., no split can be done in the future). If so, KDSep
examines all pairs of adjacent buckets along the skip list and
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Figure 8: Bucket splits and merges.

selects the pair of buckets whose total size of valid KD pairs
is the smallest. If the selected pair of buckets has a total size
no larger than the bucket capacity and it is not just generated
by the split in Case 2 of Step 3, then KDSep rewrites all valid
pairs of the selected pair of buckets in a sorted manner to the
sorted part of a new bucket, and updates the index structures
as in Step 4.

E. Crash Recovery

KDSep supports crash recovery for the LSM-tree, vLog, and
delta store during writes and garbage collection.
Crash recovery for writes. Recall that in writes, KDSep
flushes the write buffer and updates the vLog, LSM-tree, and
delta store in order (Section III-B). We follow WiscKey [20]
to remove the WAL to avoid redundant writes, as the vLog
can also serve the purposes of WAL. Like WiscKey, KDSep
periodically records the head pointer of the vLog (i.e., the
offset where the vLog issues new writes) to the LSM-tree. In
crash recovery, KDSep scans from the offset specified by the
head pointer to the end of the vLog, so as to provide crash
consistency between the vLog and the LSM-tree.

To provide crash consistency between the vLog and the
delta store, KDSep attaches a global monotonically increasing
sequence number into each KD pair and anchor during put()
or merge() to identify the occurrence sequence. It also
introduces a commit log to append the KD pairs and anchors
(with sequence numbers). Specifically, KDSep first flushes
the write buffer by appending the KV pairs to the vLog and
appending the KD pairs and anchors to the commit log (both
appends can be done in parallel). Next, it writes a commit
message to the commit log. Finally, it updates the LSM-tree
(including the metadata and recorded head pointer), bucket
table, and delta store. We consider the two crash scenarios to
show how KDSep performs crash recovery.

• Case 1: A crash happens before the commit message is
written. In this case, the data in the write buffer is not fully
committed. KDSep rolls back the commit log to discard any
non-committed data. It also rolls back the vLog by setting
the latest head pointer as the recorded head pointer in the
LSM-tree (which refers to the last committed writes). Any
non-committed data in the vLog can later be overwritten by
the newly committed KV pairs from the latest head pointer.

• Case 2: A crash happens after the commit message is written.
Like WiscKey, KDSep reads the head pointer from the LSM-
tree, scans the vLog from the recorded head pointer to the
end, and rewrites the scanned keys and their metadata to the
LSM-tree.

Table I: Summary of results of asymptotic analysis.

Without KDSep With KDSep
KV+KD reads O(n+m) O(1)

KV writes O(Fn) O(Fn)
KD writes O(Fn) O( 1

1−p ) or O(Fn)

In both cases, KDSep recovers the bucket table through the
commit log. It scans the commit log (after discarding any non-
committed data) and recovers the per-bucket buffers from the
commit log if they have larger sequence numbers than the data
in buckets (i.e., such data is yet written to the buckets before
the crash). Finally, it scans all buckets to recover the per-bucket
index and Bloom filters.
Crash recovery for garbage collection. Garbage collection
may change the bucket references in the skip list. To ensure that
the buckets can be located after crashes, KDSep maintains a
manifest file to record the keys and bucket offsets in the skip list
(note that RocksDB also maintains a manifest file to track the
version changes of files). The manifest file in KDSep persists a
snapshot of the skip list and appends any record that describes
the changes of the skip list. During garbage collection, KDSep
first updates the index structures and modifies the buckets,
and then appends the smallest keys and bucket offsets for the
buckets that are to be modified into the manifest file. During
crash recovery, KDSep replays the snapshot and appended
records in the manifest file to rebuild the skip list.

F. Asymptotic Analysis

We provide an asymptotic analysis on the read and write
performance of KDSep and show the effectiveness of KD sep-
aration. We show that KDSep improves the read performance
and preserves the write performance. Prior studies [5], [11],
[20] also provide asymptotic analysis on LSM-trees, but they
do not consider KD separation.

Here, we assume that the LSM-tree caches all index blocks
and Bloom filters in memory, which is realistic in modern KV
store implementations [16]. We also assume that the vLog
is disabled, yet introducing the vLog only makes the LSM-
tree smaller and does not compromise our analysis. Table I
summarizes our analytical results.
Read performance. Recall that n+1 is the number of LSM-
tree levels (Section II-A), and let m be the maximum number
of SSTables in L0. Each read retrieves all KD pairs and the
KV pair for a key. Without KD separation, to retrieve all KD
pairs, the LSM-tree reads each SSTable in L0 and examines all
the LSM-tree levels, so the number of reads can be O(n+m);
to retrieve the KV pair, the LSM-tree issues an O(1) read,
assuming a sufficiently low false positive rate of the Bloom
filter [11]. With KD separation, the total read complexity is
O(1) only, since KDSep reads a single bucket to find all its KD
pairs, and issues an O(1) read in the LSM-tree to retrieve the
KV pair associated with the KD pairs. Note that the read size
in the bucket may be larger (bounded by the bucket capacity of
256 KiB) than that in the LSM-tree (e.g., a 4 KiB data block).
However, the read latency is not proportional to the read size
for small reads. For example, a 256 KiB read on our tested drive
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[2] has only about 4× latency compared with a 4 KiB read.
Also, the read size can be further mitigated by the per-bucket
index and Bloom filters.
Write performance. Let F be the ratio of sizes between two
adjacent LSM-tree levels (e.g., 10 by default in RocksDB).
Without KD separation, each written KV or KD pair can be
repeatedly written during compaction for at most O(Fn) times,
since the data is written by F times on average in each LSM-
tree level. With KD separation, the number of writes for KV
pairs is also O(Fn), while the number of writes for KD pairs
depends on whether there is sufficient reserved space of the
delta store for storing all written KD pairs:
• Case 1 (Sufficient reserved space): Let p (p < 1) be the ratio

of the split threshold with respect to the bucket capacity. If
there is enough space, garbage collection does not cause splits,
so the total size of valid KD pairs during garbage collection
is upper-bounded by the split threshold. Thus, each KD pair
is rewritten by at most p times in one garbage collection
operation. In the long run, the average number of repeated
writes for a KD pair is upper-bounded by O(p+ p2 + p3 +
· · ·) = O( 1

1−p ). For example, by setting the split threshold
as 80% of the bucket capacity, the fraction is only 1

1−p = 5,
so KD separation does not cause significant degradations in
write performance.

• Case 2 (Insufficient reserved space): Each KD pair in the
bucket is merged with its corresponding KV pair (see Step 3,
Case 3 in Section III-D). It causes an O(1) additional read
for the KV pair. After merging, the write complexity of each
new KV pair is O(Fn), as in without KD separation.

G. Implementation Details

We implement a KDSep prototype in C++ on Linux with
14.4 K LoC to support KD separation. In particular, we
implement the delta store as a large file in user space, in
which the buckets start from the file offsets that are aligned
with the multiples of bucket capacity. We let KDSep issue reads
and writes via pread and pwrite system calls, respectively.

KDSep serves as a middleware layer that can be integrated
into general LSM-tree KV stores (which may not support
Merge) with minimal code changes. In this work, we integrate
KD separation into RocksDB (v7.7.3) [16] and BlobDB (which
is included in RocksDB’s source code) [14]; RocksDB does not
support KV separation, while BlobDB does. We also integrate
KDSep with vLog-based KV store implementation in [8], which
supports KV separation and uses RocksDB (v7.7.3) [16] for
the LSM-tree.
Multi-threading. KDSep implements multi-threading for I/O
parallelization. It manages threads using asio::thread_-
pool in the boost library. When flushing the write buffer,
KDSep groups the KD pairs and anchors that belong to
the same bucket and allocates one thread to write them to
the bucket. In particular, KDSep leverages multi-threading to
preserve the efficiency of reads by issuing reads to multiple
storage components in parallel. It allocates two threads, one for
reading KV pairs from the LSM-tree and the vLog, and another
for reading KD pairs from the delta store. The two threads

exchange data via a lock-free message queue using the boost
library, and use polling for low-latency data synchronization.
Note that our polling implementation only causes slightly higher
CPU usage (Section IV-B).

KDSep also issues two threads for range queries, one for
reading the keys and metadata from the LSM-tree to retrieve
KV pairs from the vLog, and another for retrieving the KD
pairs from delta store. It performs fullMerge() on the KV
and KD pairs, and returns the merged KV pairs.
Memory budget. The memory usage mainly comes from
the block cache (in RocksDB), KD cache, and bucket table.
To control the overall memory usage and subject to a given
memory budget, KDSep dynamically tunes the capacity of
the block cache as the KD cache and bucket table sizes
grow. Specifically, KDSep sets a memory budget and initially
sets the capacity of the block cache equal to the memory
budget. During runtime, if the KD cache and bucket table
grow in size, KDSep reduces the capacity of the block cache
using the Cache::SetCapacity() interface in RocksDB
to maintain the same memory usage.
Trade-off discussion. Our KDSep implementation makes trade-
offs in two aspects. First, it trades additional CPU cycles to
support I/O parallelization with multi-threading for faster reads
and writes. Nevertheless, such CPU overhead is small compared
to I/Os (Section IV-B). Second, it trades extra memory for
maintaining per-bucket buffers, yet the extra memory usage
is negligible since the major memory usage is for caching
(e.g., 215 ×4 KiB= 128 MiB for per-bucket buffers, equivalent
to 128

4∗1024 = 3.1% of the total memory budget).

IV. EVALUATION

A. Methodology

Testbed. We conduct experiments on a single machine running
Ubuntu 22.04 LTS with Linux kernel 5.15. The machine is
equipped with a 16-core Intel Xeon Silver 4215 CPU, 96 GiB
DDR4 memory, and a 3.84 TiB Western Digital Ultrastar DC
SN640 NVMe SSD [2].
Default settings. We consider three baseline KV stores, namely
RocksDB, BlobDB, and vLogDB (i.e., the vLog-based KV
store implementation in [8]). We also add KDSep as a
middleware layer to RocksDB, BlobDB, and vLogDB, referred
to as RocksDB+KDS, BlobDB+KDS, and vLogDB+KDS.

For all six KV stores, we configure the LSM-tree based
on the official tuning guide for RocksDB [17]. In particular,
we set the MemTable size as 64 MiB and the SSTable size
as 16 MiB. For multi-threading, we allocate eight threads for
flushing and compaction. For vLogDB and vLogDB+KDS, we
over-provision the vLog with 30% additional space of the total
data size for garbage collection of KV pairs [8].

By default, for the KV stores with KD separation, we set
the maximum number of buckets as N = 32,768 and the bucket
capacity as 256 KiB (i.e., the capacity of the delta store is
8 GiB). We set the split threshold as 204.8 KiB (i.e., 80% of
the bucket capacity). We enable direct I/Os for reads and writes.

We configure all KV stores with the same memory budget
as 4 GiB for fair comparisons. For RocksDB, BlobDB, and
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vLogDB, the block cache size in the LSM-tree is 4 GiB. For
their variants of KD separation, we control the total size of
the block cache, KD cache, and bucket table under the same
memory budget (Section III-G). We set the default write buffer
size as 2 MiB. For KD separation, we set the maximum size
of the KD cache as 0.5 GiB.

B. Performance under Different Workloads

Exp#1: Custom synthetic workloads. We use YCSB [12] to
generate custom synthetic workloads with varying distributions
of get() and merge() for different degrees of RMW-
intensive workloads. We load 100 GiB of 1-KiB KV pairs,
each with a key size 24 bytes and a value size 1,000 bytes,
to each KV store. We then issue 200 M operations of get()
or merge() to the KV pairs. We set the read-to-RMW ratio
as 10:90, the Zipfian constant as 0.99, and the value field size
as 100 bytes (i.e., each value has 10 fields). Each merge()
modifies a randomly selected field as in Section II-C. We
evaluate the throughput, average and 99th-percentile read and
RMW latencies, I/O sizes, total storage space, and CPU usage.

Figure 9(a) shows the throughput. KDSep increases the
throughput of RocksDB, BlobDB, and vLogDB by 80.5%,
67.0%, and 68.2%, respectively, due to the reduction of average
read latencies (i.e., the main design goal of KDSep).

Figures 9(b) and 9(c) show the average read and RMW
latencies, respectively. From Figure 9(b), KDSep reduces the
read latencies of RocksDB, BlobDB, and vLogDB by 49.9%,
41.9%, and 46.3%, respectively, since it avoids reading a chain
of deltas in the LSM-tree during reads. From Figure 9(c),
KDSep reduces the RMW latencies of RocksDB, BlobDB,
and vLogDB by 6.7%, 33.3%, and 7.4%, respectively. The
reason for the high reduction in BlobDB is that when BlobDB
performs LSM-tree compaction, it retrieves the values from the
Blob files and merges them with any associated KD pairs in
the SSTables selected for compaction. By removing KD pairs
from the LSM-tree, KDSep reduces the compaction overhead
of BlobDB and hence the RMW latency.

Figures 9(d) and 9(e) show the 99th-percentile read
and RMW latencies, respectively. Compared with RocksDB,
BlobDB, and vLogDB, KDSep reduces the 99th-percentile
read latencies by 48.2%, 42.7%, and 36.5%, respectively
(Figure 9(d)) and the 99th-percentile RMW latencies by 62.4%,
23.6%, and 49.9%, respectively (Figure 9(e)). In particular,
KDSep shows a higher reduction of 99th-percentile RMW
latencies for RocksDB and vLogDB than for BlobDB. The
reason is that BlobDB has the smallest LSM-tree compared with
vLogDB and RocksDB by cleaning KD pairs during LSM-tree
compaction, while vLogDB keeps KD pairs in the LSM-tree
and RocksDB maintains both KV and KD pairs in the LSM-
tree. Thus, BlobDB has fewer compaction operations and hence
fewer latency spikes (i.e., its 99th-percentile RMW latency is
smaller), even though its average RMW latency is higher. By
offloading KD pairs to the delta store, KDSep eliminates the
differences among the KV stores and keeps the 99th-percentile
RMW latency low in all cases (7.49-7.93 µs).

Figure 9(f) shows the amount of I/Os incurred during the
operations. KDSep reduces the I/O sizes of RocksDB, BlobDB,
and vLogDB by 27.4%, 41.1%, and 36.9%, respectively. The
reason is that KDSep reduces random reads in the LSM-tree
with the reduced LSM-tree size; in particular, it also reduces
the compaction overhead of BlobDB.

Figure 9(g) shows the storage size of each KV store at the end
of the workloads. KDSep slightly increases the storage sizes of
RocksDB and vLogDB by 6.4% and 6.1%, respectively, due to
additional storage in the delta store (e.g., anchors and invalid
KD pairs). On the other hand, KDSep reduces the storage
size of BlobDB by 12.5%. The reason is that BlobDB merges
KD pairs in SSTables with the KV pairs in Blob files during
compaction, and creates additional Blob files to accommodate
the new merged KV pairs. Note that the original KV pairs
(which now become invalid) are still stored in Blob files and
wait for being reclaimed, so the total size of Blob files remains
large. On the other hand, KDSep eliminates such operations
and reduces the total size of Blob files in BlobDB.

Figure 9(h) shows the average CPU usage during runtime,
in which we measure the CPU usage using the top -b -n
1 -p processID command every second and obtain the
average. KDSep incurs 2.0×, 1.7×, and 2.0× CPU usage for
RocksDB, BlobDB, and vLogDB, respectively, since KDSep
uses one extra thread to perform parallel reads in the delta
store while accessing the LSM-tree and vLog (Section III-B).
Nevertheless, the total CPU usage of KDSep is no more than
15% and has significantly less overhead than I/Os (the major
overhead of KV stores).
Exp#2: UP2X workloads. We consider the production work-
loads of AI/ML services of UP2X, a distributed KV store based
on RocksDB, at Facebook [7]. Since we do not have access to
the real workloads, we synthesize the workloads based on the
statistics reported in [7], in which the workloads contain 92.53%
merge(), 7.46% get(), and less than 0.01% put(). The
key and value sizes follow normal distributions, with averages of
10.45 bytes and 46.8 bytes, and standard deviations of 1.4 bytes
and 11.6 bytes, respectively. We first load 1 billion KV pairs
into each KV store. We then issue 200 M operations based on
the distributions of merge(), get(), and put().

Figure 10 shows the results. Figure 10(a) shows that KDSep
increases the throughput of RocksDB, BlobDB, and vLogDB
by 51.3%, 30.3%, and 34.2%, respectively. Figure 10(b) shows
that the average read latency decreases by 28.5-39.0% due
to the reduced read overhead to deltas. Figure 10(c) shows
that the average RMW latency reduces by 0.4-6.4%, showing
that KDSep does not degrade the RMW performance. Note
that RocksDB outperforms BlobDB and vLogDB even though
the latter two apply KV separation. The reason is that the
UP2X workloads are dominated by small values, in which the
extra I/Os to the LSM-tree and the value storage under KV
separation are more severe for small values [19].
Exp#3: YCSB workloads. We consider the six YCSB core
workloads [12] to show that KDSep preserves high performance
in general workloads: A (50% reads and 50% updates), B (95%
reads and 5% updates), C (100% reads), D (95% latest reads
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Figure 9: Exp#1: Synthetic RMW-intensive workloads.
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Figure 10: Exp#2: UP2X workloads.

Figure 11: Exp#3: YCSB workloads.

and 5% writes), E (95% range queries and 5% writes), and F
(50% reads and 50% RMWs). Note that the updates and RMWs
in the original workloads A, B, and F are based on Get-Put.
Thus, we also implement three additional YCSB workloads for
A, B, and F, whose updates and RMWs are based on Merge
(referred to as workloads AM, BM, and FM, respectively). All
workloads, except workload D, follow a Zipf distribution with
a Zipfian constant 0.99 (default in YCSB), while workload D
reads the latest written keys. We issue 200 M operations to
each KV store for each of workloads except workload E, and
1 M operations for workload E. For each core workload, we
start with a clean KV store, load the whole KV store with
100 GiB of 1-KiB KV pairs (with a key size 24 bytes and a
value size 1,000 bytes, in which each value has 10 100-byte
fields), and run the workload.

Figure 11 shows the throughput results. For workloads A-F
(without Merge), KDSep incurs almost no extra overhead for
RocksDB, BlobDB, and vLogDB, even though KD pairs are not
included. The throughput differences with and without KDSep
for the KV stores are within 2.4%. Also, when KDSep is used,
BlobDB and vLogDB increase the throughput of workloads A-
D and F by 53.0-101.2% and 47.0-65.7% compared with
RocksDB, respectively, meaning that KDSep still preserves the
benefits of KV separation; for workload E (i.e., range-query-
intensive), BlobDB and vLogDB have 89.8% and 18.9% lower
throughput compared with RocksDB, respectively. Note that
the overhead of KV separation in range queries is consistent
with the findings of prior studies [8], [19], [20]. Note that
BlobDB is much slower than vLogDB, as it does not support
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multi-threaded range queries. The range query overhead of KV
separation can be mitigated via the sorting of KV pairs [19],
[28], which is orthogonal to our work.

We further examine workloads AM, BM, and FM, in which
we modify updates and RMWs to use Merge. For both
workloads AM and FM with 50% merge(), KDSep increases
the throughput of RocksDB, BlobDB, and vLogDB by 79.6-
80.1%, 19.5-20.5%, and 64.7-65.4%, respectively. Note that
the increase is the lowest in BlobDB, as BlobDB can leverage
compaction to merge values in Blob files with the deltas and
reduce the number of KD pairs in the LSM-tree. Compared
with Exp#1, in which BlobDB has large compaction overhead,
BlobDB in workloads AM and FM has fewer KD pairs (only
50% merge() instead of 90%) and hence lower compaction
overhead. For workload BM with only 5% merge(), KDSep
still increases the throughput of RocksDB, BlobDB, and
vLogDB by 5.3%, 9.7%, and 12.4%, respectively.

C. Impact of Workload Settings

We consider different workload settings based on the custom
synthetic workloads (see Exp#1). By default, we configure the
read-to-RMW ratio as 10:90, the Zipfian constant as 0.99, the
value size as 1,000 bytes, and the value field size of 100 bytes
(i.e., each value has 10 fields). We focus on vLogDB with and
without KDSep.
Exp#4: Impact of read-to-RMW ratios. We first vary the
read-to-RMW ratio from 10:90 to 90:10. We issue 200 M
operations for each setting.

Figure 12 shows the throughput. Overall, KDSep has higher
performance gains at low read-to-RMW ratios (i.e., more RMW-
intensive); for example, when the read-to-RMW ratios are 10:90,
30:70, and 50:50, KDSep increases the throughput of vLogDB
by 68.2%, 68.4% and 66.0%, respectively, while the throughput
gain drops to 35.1% and 18.6% when the read-to-RMW ratios
become 70:30 and 90:10, respectively. The reason is that in
RMW-intensive workloads, the read overhead for combining
deltas increases. Nevertheless, KDSep maintains throughput
gains even with limited RMWs.
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Figure 14: Exp#6: Impact of value and delta sizes.

Exp#5: Impact of skewness. We examine the impact of
skewness by varying the Zipfian constant from 0.8 to 1.2
(a larger value means higher skewness), given that practical
workloads have a Zipfian constant no larger than 1.2 [30].

Figure 13 shows the throughput. Overall, KDSep increases
the throughput of vLogDB by 50.8-67.2%. The gain is the
lowest for the lowest skewness (i.e., the Zipfian constant is 0.8).
The reason is that with low skewness, the access covers more
keys and hence there exist more KD pairs. The delta store
merges the KD pairs with KV pairs in the vLog in garbage
collection and causes higher read and write overhead.
Exp#6: Impact of value and delta sizes. We consider how
the value and delta sizes affect the performance. We fix the
read-to-RMW ratio as 10:90. We first vary the value size from
1,00 bytes to 8,000 bytes and fix the field size as 100 bytes
(i.e., each value has 1 to 80 fields). Figure 14(a) shows that
KDSep increases the throughput of vLogDB by 20.5-68.2%.
The throughput is the highest for a medium value size, since
KV separation performs worse for smaller values, while get()
have larger read sizes on the vLog for larger values.

We next vary the field size from 25 bytes to 800 bytes and
fix the value size as 8,000 bytes. Each delta is a modification to
a field. To accommodate the different delta sizes, we also vary
the number of buckets and the (in-memory) bucket table size
proportionally. Figure 14(b) shows that KDSep’s throughput
gain for vLogDB increases from 13.3% to 80.6% as the delta
size increases. This shows that KDSep has higher performance
gains for larger delta sizes, as larger deltas occupy more space
in the LSM-tree without KDSep.

D. Performance of Delta-based Garbage Collection

We evaluate delta-based garbage collection by considering
the performance impact of enabling bucket splits and merges,
using the default custom synthetic workloads in Section IV-C.
Exp#7: Bucket splits and merges. We consider two schemes
for bucket management under KD separation. The first scheme
is Rewrite-only, in which the delta store simply rewrites a victim
bucket to a new bucket without bucket splits and merges during
garbage collection; during the rewrites, any invalid KD pairs are
removed and the valid KD pairs for the same key are merged.
Since Rewrite-only disables bucket splits, we let the delta store
distribute KD pairs to as many buckets as possible (up to N
buckets) during initialization so as to utilize all available delta
store space. The second scheme is Split+Merge, in which the
delta store performs bucket splits and merges during garbage
collection (i.e., our design).

Figure 15 shows the results. Split+Merge shows 55.1%,
29.4%, and 19.3% higher throughput than Rewrite-only for
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Figure 15: Exp#7: Bucket splits and
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Figure 16: Exp#8: Impact of the split
threshold.

RocksDB+KDS, BlobDB+KDS, and vLogDB+KDS, respec-
tively. Rewrite-only statically maps KD pairs to buckets and
causes some buckets to receive more KD pairs than others;
such buckets are frequently selected for garbage collection
and hence lead to high rewrite overhead. In contrast, KDSep
re-allocates KD pairs to buckets via bucket splits and merges
based on the workload patterns, so as to limit the garbage
collection overhead.
Exp#8: Impact of the split threshold. We vary the split
threshold from 10% to 90% of the bucket capacity (recall
that our default is 80% of the bucket capacity). Figure 16
shows the results (note that vLogDB has the same throughput
independent of the split threshold). We show that the throughput
is insensitive to the split threshold. Even though a smaller split
threshold makes KDSep split buckets more aggressively, the
number of buckets will finally converge to N (i.e., the maximum
number of buckets) and the performance becomes stable.

E. Performance of Crash Recovery

We evaluate crash recovery of KDSep based on the custom
synthetic workloads.
Exp#9: Overhead of crash recovery. We evaluate the per-
formance of KDSep with and without the support of crash
recovery; for the latter case, we disable the commit log and
manifest file. We consider four synthetic workloads: W1 (90%
merge() and 10% get()), W2 (100% merge()), W3 (50%
put() and 50% merge()), and W4 (100% put()). For each
workload, we start with an empty KV store, pre-load 100 GiB
of 1-KiB KV pairs, and issue 200 M operations.

Figure 17 shows the normalized throughput with respect to
no crash recovery support. In W1-W3, the throughput with
crash recovery support only drops by 2.5-6.9%, while in W4,
the throughput only drops by 0.6%. It shows that the crash
recovery support incurs limited overhead for workloads with
and without merge().
Exp#10: Recovery performance. We evaluate the recovery
time of KDSep upon crashes. We run the four synthetic
workloads described in Exp#9. For each workload, we pre-
load 100 GiB of 1-KiB KV pairs and issue 200 M operations.
We randomly crash the KV store using the kill -9 pro-
cessID command in the midst of workload execution and
recover the KV store. We conduct ten rounds for each workload,
and report the average recovery time with error bars showing
standard deviations.

Figure 18 shows the results. In W1-W3, the absolute average
recovery times of vLogDB are 1.07-1.82 s. Compared with
vLogDB, the absolute average time of KDSep increases by
4.08-5.02 s. KDSep has slower recovery since it needs to scan
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mance.

all buckets to recover the bucket table; the average total sizes
of all buckets to recover in W1, W2, and W3 are 5.84 GiB,
5.16 GiB, and 4.62 GiB, respectively (not shown in the figure).
Note that we leverage multi-threading (16 threads) to fully
utilize the CPU resources and SSD bandwidth to mitigate the
overhead of bucket table recovery. KDSep has a larger standard
deviation of recovery time than vLogDB since its recovery
time depends on the size of the delta store during recovery,
which varies in a large range. In W4, KDSep has a comparable
recovery time (1.69 s) with vLogDB (1.65 s) because it does
not introduce deltas in the delta store.

F. Performance of Caching

We study the impact of the write buffer and KD cache
on the performance of KDSep. We use the default custom
synthetic workloads in Section IV-A and focus on vLogDB
and vLogDB+KDS.
Exp#11: Impact of the write buffer size. We evaluate the
impact of the write buffer size. We vary the write buffer size
from 1 MiB to 16 MiB. Figure 19 shows the results. We see
that the throughput differences of KDSep are within 2.1% only,
instead of seeing increasing throughput with a larger write
buffer size. The reasons are two-fold. First, the performance
under RMW-intensive workloads is mainly determined by reads,
and increasing the write buffer size has limited impact on read
performance gains. Second, when flushing the KD pairs from
the write buffer, KDSep needs to search the skip list. A larger
write buffer incurs more overhead on processing KD pairs and
causes slightly longer stalls for reads. Thus, a small write buffer
size is suitable for our design.
Exp#12: Impact of the maximum KD cache size. We
evaluate the impact of the maximum KD cache size. We
increase the maximum KD cache size from zero to 1 GiB,
subject to the total memory budget of 4 GiB. Figure 20 shows
the results. When the maximum KD cache size is zero,
KDSep’s throughput is 80.2% of vLogDB’s. Nevertheless,
a small maximum KD cache size (e.g., 32 MiB) sufficiently
reduces reads to buckets, and KDSep has higher throughput
than vLogDB by up to 68.2% when the maximum KD cache
size is 512 MiB. Increasing the maximum KD cache size to
1 GiB shows slight performance drops, as the block cache size
decreases and the cache misses for accessing the LSM-tree
become more frequent.

V. RELATED WORK

Some KV stores focus on optimizing RMWs [9], [11],
[18]. FASTER [9] optimizes RMWs by performing latch-
free in-place updates in mutable partitions and appending
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maximum KD cache size.

deltas as partial updates into append-only partitions. Kalavri
et al. [18] improve FASTER by applying multiple backends
with workload-aware configurations. Note that the indexing
of FASTER is based on hash tables, while KDSep uses the
LSM-tree. SplinterDB [11] optimizes KV operations on the
Bε -tree and supports delta-based RMWs, but the delta may
still be separated to different storage components and lead to
high read overhead. In contrast, KDSep groups KD pairs of
the same key in the same bucket to mitigate read overhead.

Many studies enhance KV separation (proposed by WiscKey
[20]) to address different scenarios in LSM-tree optimization.
HashKV [8] deterministically maps values by keys into
dedicated logs with hash functions, so as to reduce the garbage
collection overhead in value storage; note that KDSep shares
similar ideas of hash-based data placement, yet it applies the
idea to delta placement. Bourbon [13] builds a lightweight
index with machine learning for KV separation to reduce the
query overhead of KV pairs. DiffKV [19] differentiates value
management by putting small values in the LSM-tree, medium-
size values in tree-based value storage, and large values in the
vLog as in WiscKey. Kreon [23] introduces a spill mechanism
to reduce CPU overhead of reorganizing key indices under
KV separation. FenceKV [28] maps values to different storage
areas based on their key ranges to improve update and range
query performance. KDSep takes one step further and proposes
KD separation for delta-based RMW-intensive workloads.

VI. CONCLUSION

RMW-intensive workloads are commonly found in produc-
tion LSM-tree KV stores. We propose KD separation, inspired
by the idea of the well-known KV separation technique, to store
KD pairs outside of the LSM-tree. KD separation has specific
challenges that are distinct from KV separation, and builds on
several design elements: bucket-based delta placement, delta-
based garbage collection, and crash recovery. We implement
KDSep, a middleware layer that realizes KD separation and
is designed to support general LSM-tree KV stores with
and without KV separation. Extensive experiments show that
KDSep achieves throughput gain and read latency reduction
compared with various baselines without KD separation under
different workloads.
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