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Abstract—Erasure coding is commonly used as a storage-
efficient redundancy method for fault tolerance in cold storage.
Recent studies have begun to explore the use of erasure coding in
hot storage, which requires fast online recovery to preserve read
performance. However, existing erasure-coded repair strategies
cannot effectively handle frequent and rapidly-changing network
congestions in hot storage clusters. In this paper, we present the
notion of pivots, which refer to the storage nodes with sufficient
available downlink and uplink bandwidths in a congested hot
storage network. We propose PivotRepair, a pivot-based pipelined
single-chunk repair technique that leverages pivots for enabling
the fast construction of a pipelined repair tree that bypasses
congested links. We further propose an adaptive scheduling
strategy to improve full-node repair performance. We prototype
PivotRepair and show that the repair time of a single-chunk
repair and a full-node repair can be reduced by up to 71.27%
and 16.50%, respectively, over state-of-the-art repair schemes.

I. INTRODUCTION

To maintain data reliability at low cost, today’s distributed
storage systems adopt erasure coding to protect data with a low
degree of redundancy [24], [34], while preserving the same
fault tolerance as replication [52]. For instance, Azure [24]
and Facebook [34] adopt erasure coding to reduce redundancy
to 1.33x and 1.4x, respectively, instead of 3x in three-way
replication [14], [21]. An erasure code works by encoding k
uncoded fixed-size units, called chunks, into n (n > k) coded
chunks, such that any k out of n coded chunks can rebuild the
k uncoded chunks. By distributing n coded chunks across n
storage nodes, a distributed storage system can provide fault
tolerance against node failures in clustered [20], [24], [42] or
geo-distributed storage [11], [17], [34], [46].

Although erasure coding improves storage efficiency, it
results in a high repair cost. Repair is triggered when reading
unavailable data caused by transient failures or reconstructing
lost data from permanent failures. In either case, a requestor
(i.e., a node where the lost chunk is reconstructed) needs to
read multiple available chunks from multiple helpers (i.e.,
the surviving nodes that store the available chunks) for
reconstruction, thereby leading to substantial repair traffic (i.e.,
the amount of data transferred for repair). Prior studies propose
repair-friendly erasure codes that reduce the repair traffic (e.g.,
regenerating codes [19], [36], [41], [50] and locally repairable
codes [24], [37], [47]). Recently, new repair strategies focus
on distributing (instead of reducing) the repair traffic to reduce
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the repair time. For example, PPR [33] parallelizes the repair

via multiple partial operations to distribute the repair traffic

across helpers; RP [28] pipelines the repair across helpers in
sub-blocks (called slices) to evenly distribute repair traffic; PPT

[12] pipelines the repair in a tree-like structure in non-uniform

traffic environments.

While erasure coding is popularly used in cold storage,
recent studies explore erasure coding for serving hot data
[15], [40], [54], and modern data centers also perform erasure
coding on hot storage nodes [24]. Unlike in cold storage, hot
storage clusters host frequently accessed data, and hence their
services often require low I/O latencies. Once any data chunk
becomes unavailable due to transient or permanent failures, an
immediate and fast repair operation is critical to reconstruct
any unavailable data chunk and maintain data availability.

Achieving immediate and fast repair for erasure-coded hot
storage is challenging, as the available bandwidth for repair
jobs is often limited. For example, practical storage systems
often rate-throttle the available bandwidth for repair jobs
[24], [48]. Also, the network bandwidth is often shared by
both repair and foreground jobs, and application workloads
may periodically transfer a large volume of data that causes
network congestion to repair jobs [31]. Our measurement
analysis in §III-A on three typical hot data workloads (namely
TPC-DS [9], TPC-H [10], and SWIM [16]) shows that the
available bandwidth highly fluctuates, and different nodes
may experience congestions at different times. State-of-the-art
pipelined repair strategies either cannot rapidly bypass network
congestion (e.g., RP [28]) or cannot solve for the most suitable
pipelined tree in a short time (e.g., PPT [12]).

Nevertheless, our measurement analysis (§III-A) also shows
that while there exist congested nodes in a hot storage cluster,
there also likely exist uncongested nodes that have sufficient
available downlink and uplink bandwidths. Thus, our main idea
is to exploit such uncongested nodes (called pivots) to construct
a pipelined tree (composed of multiple leaf-to-root paths) for
repairing unavailable chunks, such that the pipelined tree can
(i) effectively bypass congestion by making the pivots relay
the repair traffic and (ii) be quickly initialized and constructed
via the pivots (§IV).

In this paper, we present PivotRepair, a pivot-based repair
technique that aims for fast pipelined repair in erasure-coded
hot storage. Our contributions include:

« We conduct measurement analysis and show that in hot
storage clusters, congestion is frequent and rapidly changing,
while some nodes (i.e., pivots) still have abundant bandwidth.

o We design an O(nlogn) greedy algorithm for PivotRepair
(recall that n is the number of coded chunks) that exploits



pivots to generate a pipelined tree. We prove that our
algorithm is optimal, in that it maximizes the bottlenecked
bandwidth. We further propose an adaptive scheduling
strategy to enhance full-node repair performance.

We prototype and evaluate PivotRepair on Amazon EC2.
Compared to RP [28] and PPT [12], PivotRepair reduces the
repair time for a single-chunk repair and a full-node repair
by up to 71.27% and 16.50%, respectively. Our prototype is
open-sourced at: https://github.com/YuchongHu/PivotRepair.

II. BACKGROUND
A. Basics of Erasure Coding

The literature (see survey [39] and §VI) has various proposals
on erasure coding constructions, among which Reed-Solomon
(RS) codes [45] are popularly adopted in production (e.g.,
HDFS [42], Ceph [53], Swift [5], and QFS [35]). An RS code
is associated with two parameters (n,k), where k < n, and is
applied to a set of chunks of fixed size (e.g., 64 MiB [21]).
An (n,k) RS code encodes k data chunks into n— k equal-size
parity chunks, such that any k out of the n data/parity chunks
(collectively called a stripe) suffice to rebuild the original k
data chunks. Specifically, for a stripe composed of data and
parity chunks denoted by D; (1 <i<k)and P; (1 <j<n—k)
respectively, the parity chunks are calculated from a linear
combination of the data chunks as P; = Y% a;’lDi, where
Ocj-’1 (1<i<kand 1< j<n—k) are encoding coefficients
constructed from the Vandermonde matrix [13]. For example,
for a (5,3) RS code, its first parity chunk Py = D+ oDy +
a?Dj3. Additions and multiplications are based on Galois Field
GF(2") [45] over w-bit words, such that the words at the
same offset of k data chunks are encoded to generate the
corresponding words in the parity chunks [28]. In particular, the
addition of two chunks is done by bitwise-XOR operations, and
multiplying a chunk by a constant is operated via multiplying
each word of the chunk by the constant.

B. Linearity

Erasure codes are in essence based on linear encoding, so
the repair operations can be performed via a linear addition.
For example, for a (5,3) RS code, we can repair the first
data chunk Dy = P, + 01D, + 0612D3. The linearity of repair
operations implies two properties [33]:

o Property 1: Additions keep the data size unchanged. The
XOR-based additions ensure that the addition results have
the same size as the original chunks. For example, to repair
Dy, all partial addition results (i.e., P, Pi + a;D;, and P; +
oDy + 0612D3) have the same size as that of D;.

o Property 2: Additions are associative. The order of linear
additions does not alter the results. For example, both (P +
o D)+ 0612D3 and P, + (1D, + a12D3) can decode D;.
Property 1 simplifies the parallelization and pipelining of

repair operations since all the additions of a repair operation

always handle fixed-size chunks, while Property 2 enables a

repair operation to flexibly perform additions in any order.

Recent efficient erasure-coded repair schemes [12], [28] (see
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Figure 1: Examples of conventional repair, PPR, RP, and PPT. Note
that in all repair methods, any transmission between two nodes should
go through the switch as in common storage clusters, but for brevity,
we do not always show the switch in the figures of this paper (e.g.,
Figure 1(d)).

§1I-C for details), as well as our proposed method PivotRepair,
also build on these two properties.

C. Repair

Erasure coding has the well-known repair problem [24], [38],
[42], [47], due to its excessive bandwidth usage when repairing
any unavailable data. Figure 1(a) depicts the congestion issue
when repairing a failed chunk with a (6,4) RS code (we call
this conventional repair). Specifically, for an (n,k) RS code, the
repair of a failed chunk (say, stored in N;) requires the requestor
(denoted by R) to download k of the remaining chunks of the
same stripe from k different available helpers; this leads to
the congestion at the requestor and increases the overall repair
time. For example, in Figure 1(a), the requestor R downloads
one chunk from each of the helpers (say, N3,N4,N5,Ng), S0
the downlink of the requestor is four times more congested
than each of the helpers. To reduce repair traffic, many repair-
friendly erasure codes (e.g., [19], [24], [25], [36], [41], [43],
[47]) have been proposed, but they all do not address network
congestion during the repair process as they assume that the
requestor downloads the data for reconstruction (albeit with
less repair traffic). To address congestion in erasure-coded
repair, three recent repair approaches are proposed as follows.
« Partial-Parallel-Repair (PPR) [33] (Figure 1(b)): PPR

decomposes a repair operation into parallel partial sub-

operations that are performed simultaneously in multiple
helpers. It improves repair performance by distributing the
repair traffic more evenly across the network links.

« Repair Pipelining (RP) [28] (Figure 1(c)): RP [28] observes
that PPR does not fully balance the distribution of repair
traffic (e.g., Ng in Figure 1(b) has the most repair traffic),
so the most congested helper still bottlenecks the repair
performance. Thus, RP arranges all helpers as a chain-like
path, and pipelines the repair operation across helpers in
sub-chunks (called slices), such that no link transmits more
traffic than others (i.e., no bottlenecked links).



« Parallel Pipeline Tree (PPT) [12] (Figure 1(d)): PPT [12]
finds that a chain-like path (like RP) may bottleneck the repair
performance by the slowest link of the path (e.g., No — N3
with an available bandwidth of 20Mb/s in Figure 1(d)).
Alternatively, PPT’s pipelined tree replaces this link with
another two links with the same receiver, such that even if
the bandwidth of each link has been reduced by half due to
the same receiver, the slowest link still has a higher available
bandwidth (e.g., 30 Mb/s in Figure 1(d)) than RP. However,
PPT needs to search all link bandwidths via permutation
enumeration to maximize the slowest link bandwidth, thereby
incurring an exponential time complexity (based on Bell
number By, [12] for an (n,k) RS code).

Compared to PPR, both RP and PPT introduce the pipelining
technique for improved repair performance. Thus, in this paper,
we also focus on the pipelined repair. In general, the throughput
of a pipeline cannot be better than that of its slowest stage,
so our main goal of the pipelined repair is to maximize the
bandwidth of its slowest stage.

III. OBSERVATIONS AND MOTIVATION

Addressing the congestion issue in the repair problem
of erasure coding is challenging in hot storage, since the
bandwidth is often shared by both application and repair
jobs. Thus, we first study the bandwidth details of hot storage
workloads and identify two observations (§III-A). Based on
the observations, we argue that in hot storage, state-of-the-art
pipelined repair strategies (i.e., RP and PPT) cannot efficiently
perform the repair (§11I-B).

A. Measurement Analysis

Hot storage workloads require fast response time, such as
in quick decision making [6] and web content [4]. Thus, we
conduct measurement analysis on three hot storage workloads to
motivate our study, namely: (i) TPC-DS [9], which is a popular
decision support benchmark featuring one throughput metric of
queries; (ii) TPC-H [10], which is a classical decision support
benchmark featuring business databases; and (iii) SWIM [7],
which is a MapReduce trace on a 3000-machine cluster at
Facebook within 1.5 months. To evaluate the workloads, we set
up a Hadoop cluster of 16 machines with the edge bandwidth
of 1 Gbps (configured by the Linux tc command [8]). For
TPC-DS and TPC-H, we generate traces of size 100 GB atop
Hive; for SWIM, we generate a scaled-down trace on 16
machines atop MapReduce. By evaluating the three traces in our
cluster, we make two observations about network congestion
that motivate the design of PivotRepair.

Our measurement analysis focuses on the used node band-
width of each node, defined as the larger value of the used
downlink and uplink bandwidths of the node incurred by
applications. This indicates the congestion level of the node.
Correspondingly, the available node bandwidth is defined as
the remaining node bandwidth for the repair job, which is the
smaller value of the available downlink and uplink bandwidths
of the node. Here, we measure the link bandwidth using the

Traces
Usage rate || TPC-DS | TPC-H | SWIM
>90% 37.1% 57.8% | 23.6%
>95% 37.6% 61.2% | 24.4%
=100% 40.2% 67.3% | 29.7%

Table I: Percentage of the total time for congested nodes with C, >
0.5.

Linux nload command [3] to monitor network traffic and
bandwidth usage in real time.

Observation 1: Figure 2 shows the used node bandwidth
distribution over 16 nodes within 6000s (measured at one-
second intervals). We observe each of 16 nodes experiences
congestion (i.e., the used node bandwidth is close to 1 Gbps)
at different times, and the set of congested nodes at each one-
second interval varies frequently and rapidly. Also, it is shown
that even a single congested link may significantly degrade the
jobs that have communicating tasks traversing the link [18].
Thus, it is likely that the performance of a repair job is severely
bottlenecked by frequent and rapidly-changing congested nodes
caused by application jobs in hot storage.

Observation 2: Table I shows the heterogeneity of the used
node bandwidth across different application workloads when
congestion happens. To measure the congestion, we use the
usage rates [27] (i.e., the percentage of node bandwidth usage)
that range from 90% to 100% to indicate the presence of
congestion. We also use the coefficient of variation C, (i.e.,
the ratio of the standard deviation to the mean) of the average
used node bandwidth over the 16 nodes in each one-second
interval (as in [18]), so as to show the extent of bandwidth
heterogeneity (e.g., C, = 0 means all the nodes use identical
bandwidth). We find that the nodes with ratio C, > 0.5 account
for up to 67.3% of the total time under congestion, meaning
that when congestion happens, the used node bandwidths of
different nodes are heterogeneous. In other words, the available
node bandwidths for repair are also heterogeneous (assuming
that each node has 1 Gbps edge bandwidth for all application
and repair jobs). Thus, it is likely that during repair, even if
some nodes are congested, there still exist some uncongested
nodes with relatively sufficient available downlink and uplink
bandwidths.

B. Motivation

Observation 1 shows that state-of-the-art pipelined repair
strategies (i.e., RP [28] and PPT [12]) cannot efficiently cope
with hot storage, specified as follows.

First, RP fails to handle the frequently congested nodes
during repair, as RP runs all the repair stages in series along
a chain-like pipelined path where each helper transfers the
same amount of data. Take Figure 3 for example, and consider
the same setting as in Figure 1 with heterogeneous available
downlink and uplink bandwidths of each node for repair.
Figure 3(a) shows that RP requires each helper to transfer data
from its predecessor to its successor, so the most congested
node N5 (which has the downlink bandwidth of 200 Mbps) will
bottleneck RP.
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Figure 2: Used Node Bandwidth Distribution by application workloads in hot storage.

Second, PPT cannot adapt to the rapidly-changing congested
nodes, since it takes a long time to construct the pipelined
tree and cannot quickly adapt to the available bandwidths on-
the-fly based on the real-time link states. Figure 3(b) shows
that PPT needs to enumerate all possible pipelined trees and
examine their slowest link, and the enumeration time is based
on the Bell number B [12], which increases exponentially
with k. Thus, it is challenging to conduct enumeration quickly
for rapidly-changing congestion for a large k. For example,
in Figures 7(d)-(f), when k = 4, the enumeration time of a
single-chunk repair is only hundreds of milliseconds. However,
when k = 10, the enumeration time rises up to thousands of
seconds, which may not be practical for a single-chunk repair
with (14,10) RS codes deployed in Facebook [43], [47].

While RP and PPT fail to handle congested nodes efficiently
in hot storage, Observation 2 shows the existence of uncon-
gested nodes (e.g., N4 in Figure 3(c), with both sufficient
available downlink and uplink bandwidths), which motivates
us to leverage them to improve the pipelined repairs.

Our main idea is (i) to bypass the congested nodes (out-
performs RP) using the uncongested nodes to relay the repair
traffic, and (ii) to accelerate the pipelined tree construction
(outperforms PPT) using the uncongested nodes to construct
the tree in advance, which will be specified in §IV-A.

IV. PIVOTREPAIR
A. Overview

We propose a notion of pivots to indicate the uncongested
nodes in a storage network. Our goal is to design a pivot-based
pipelined repair technique, namely PivotRepair, to construct an
optimal and fast-constructed pipelined repair tree. By “optimal”,
we mean that the tree bypasses as many congested nodes as
possible and has the maximum bandwidth of its slowest stage.

To this end, PivotRepair uses pivots to form a pipelined
tree, specified as follows. First, PivotRepair lets the requestor
be the root node of the tree. Then it selects k helpers from
n— 1 surviving nodes. Among the k helpers, it selects the
uncongested helpers as pivots, which serve as the non-leaf
nodes of the tree. The pivot-based non-leaf nodes can be used
to relay the repair traffic to avoid congestion, and also can be
used to determine parts of the pipelined tree quickly.

We use Figure 3 as an example to show the benefits of
PivotRepair. First, we can let the pivot N4 be a non-leaf node
of the tree, while the congested nodes (i.e., N3, Ns, and Ng) only
serve as the leaf nodes. Ny can relay the data from N3, N5, and
Ng to fully utilize its sufficient downlink and uplink bandwidths,

Available Uplink Bandwidth (Mbps) 600 | 800 | 510 | 600
Available Downlink Bandwidth (Mbps) | 130

(a) RP @ 200 400 @ 600 @ 800 e
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Figure 3: Motivating example. Here, we assume that the available
bandwidth between two nodes (e.g., from N3 to N5 in Figure 3) is the
smaller one of N3’s upload bandwidth and N5’s download bandwidth.

while bypassing the congested downlinks of N3, Ns, and Ng.
Note that N4, which has 1,000 Mbps downlink bandwidth, can
relay the data from N3 and N5 by providing two downlinks
with 500 Mbps bandwidth each. This is in contrast to RP, which
can be bottlenecked by congested nodes. Second, the pivot
Ny can be quickly selected by checking each node’s available
downlink and uplink bandwidths, so the non-leaf nodes of
the pipelined tree can be quickly determined. In this way, the
whole pipelined tree can also be quickly constructed. This is
more suitable to cope with the rapidly-changing congested
nodes than PPT, which requires enumerating all possible trees
(around k! trees [12]) and is time-consuming (e.g., Figure 3(b)
has to check 24 trees). As shown in Figure 3(c), we let Ny
become a child of the requestor and also become a non-leaf
node (that has at least one child). For the remaining nodes N3,
Ns, and Ng (which will serve as leaf nodes), we only need
to check at most seven possible trees to find the optimal tree
(i.e., each of N3, N5, and Ny is a child node of either N4 or R,
while N, has at least one child node).

B. Algorithm

We define the bandwidth of the slowest link of the repair
pipelined tree as minimum bandwidth of the tree (denoted by
Buin); PivotRepair aims to maximize By,;,. We then design
PivotRepair based on two major steps: inserting and replacing.
Specifically, PivotRepair constructs the tree by (i) inserting



Algorithm 1 Tree Construction

Input: nodes bandwidths, requestor R
Qutput: an optimal pipelined repair tree 7'
1: procedure MAIN

2 T =R

3 S = set of sorted k pivots descended by theo(-)
4 INSERTING

5: REPLACING
6
7

8

return 7
: end procedure
: function INSERTING
9: Q is empty // Q is a priority queue based on prac(-)
10: Q.push(R)
11: for each node N; € S(1 <i<k) do

12: N; = Q.pop()

13: T.N; — new_child = N;
14: Q.push(N;)

15: Q.push(V;)

16: end for

17: end function

18: function REPLACING

19: L = set of leaf nodes in T

20: [ = number of leaf nodes in T

21: L' = LU{the unselected nodes}

22: L* = set of top [ nodes in L' with largest up(-)
23: Lreplaced =L-L*

24: for each node N; € L*(1 <i<k) do

25: if N; ¢ L then

26: Select one of the remaining nodes of Lyepjgceq 88 N;
27: Replace N;j in T with N;

28: end if

29: end for
30: end function

k pivots (sorted by node available bandwidth) one by one to
construct a preliminary tree that aims to maximize By;,, and
(ii) replacing some leaf nodes with those nodes that are not
selected in the inserting step but have higher available uplink
bandwidths. In this way, the inserting step ensures that all
non-leaf nodes are constructed by pivots to bypass congested
non-leaf nodes, so that the pipelined tree has available link
bandwidth between non-leaf nodes. The replacing step further
increases the available bandwidth of the links connected to
leaf nodes to bypass congested leaf nodes.

We define a set of notations as follows. We denote available
uplink and downlink bandwidths of node N; by up(i) and
down(i), respectively. In theory, each available node bandwidth
(denoted by theo(i)) is min{up(i),down(i)}, while in practice,
the node’s downlink bandwidth is shared by its multiple
child nodes. Thus, we denote its practical available node
bandwidth by prac(i) which is min{up(i),avgDown(i)}. Here,
avgDown(i) = down(i)/c is the average available bandwidth
for each downlink of N; connected to its ¢ child nodes.

Algorithm 1 details the inserting and replacing steps:
Preparation: Before inserting, the requestor serves as the root
node of the tree (Line 2). Then it sorts the n — 1 surviving
nodes in descending order of theo(-), and obtains the set of
sorted k pivots that have the largest theo(-), denoted by S.
Step 1 (Inserting): We first create a priority queue Q based
on prac(-) (Line 9). Q is initialized with the requestor as the

N, | N3 | Ny | Ns | Ng | R
Uplink (Mbps) 750 500 150 500 | 500 | 980
Downlink (Mbps) | 100 130 | 1000 | 200 | 900 | 980

R is the requestor, sort other nodes in terms of theo(:):
8 : Ng, N5, Ng, N3, N,

Insert R as the root node:

Insert Ng:

BED

Insert Ns:

N, | 500
R | 490

R [ 490
Ne | 450
Ns | 200

Ne | 450
R [ 327
Ns | 200
N, | 150

Replace N, with N,:

L": N;, N3, Ns

Lreplaced '

Figure 4: Illustration of Algorithm 1. Suppose that N; fails and
N>, N3, ..., Ng are helpers. The table in each Inserting step represents
the current priority queue Q (including the nodes and their prac(-)
values) before each pivot is to be inserted.

first element (Line 10). For each of k pivots N; (Line 11), Q is
to help determine the inserting place of each pivot by choosing
a node N; out of the current Q to serve as the pivot’s parent
node, such that this chosen node N; has the largest prac(-)
(Line 12), and the preliminary tree T inserts N; as its node
Nj’s child node (Line 13). Then we update Q via adding N;
and its parent node N; (Lines 14-15). Finally, we can obtain
the preliminary tree T after inserting the k pivots.
Step 2 (Replacing): To replace the preliminary tree’s leaf
nodes with those nodes that are not selected in inserting but
have higher available uplink bandwidths, we first record the set
of all / leaf nodes (denoted by L) of the preliminary tree after
Step 1 (Inserting) (Lines 19-20). Let L' be the union of L and
the set of those nodes that are not selected during inserting
(Line 21). We then sort all nodes in L', and obtain the set of [
nodes that has the largest uplink bandwidths, denoted by L*
(Line 22). Next, we find the preliminary tree’s leaf nodes that
do not belong to L* (i.e., they have lower uplink bandwidths
than those in L*), denoted by Lypiqceq (Line 23), and replace
them with those nodes that are not selected in 7 but in L*
(Lines 24-29).

Figure 4 illustrates Algorithm 1 with (n,k) = (6,4). Piv-
otRepair first inserts the requestor into the tree and then



sorts the n— 1 =5 helpers in terms of theo(-). PivotRepair
finds k = 4 pivots S = {Ng,Ns,N4,N3} based on theo(-) in
descending order, and then inserts the pivots one by one while
satisfying that each pivot’s parent node has the largest prac(-)
for each insert to increase B,;,. Lastly, at the replacing step,
the leaf-node Ny is replaced by N, to increase By;y.

Note that Algorithm 1 only ensures that each inserted pivot
of the tree can achieve its current maximum B,,;, (i.e., local
optimum), but it is not sure that Algorithm 1 can obtain the
tree that has the final maximum B,,;, (i.e., global optimum).
Thus, we will prove Algorithm 1’s optimality in §IV-C.

C. Optimality and Complexity

Algorithm 1 aims to maximize the minimum bandwidth and
accelerate the pipelined tree construction, and next we show its
optimality in bandwidth (Theorem 1) and low time complexity.

Lemma 1. For any pipelined tree T,
Buin = min{min{S, },min{S;}},

where Sy is the set of prac(-) of the non-leaf nodes, and S; is
the set of up(-) of the leaf nodes.

Proof: For any tree T, its By, is limited in three cases: (a)
up in non-leaf nodes; (b) avgDown in non-leaf nodes; (c) up
in leaf nodes. We define the set of bandwidths in the above
cases as S,, Sp, and S, respectively. Clearly, we have

Biin = min{min{S,},min{Sp},min{S. }},
Sn = SaUSp,S1 =S,

6]
2

Based on Equations (1) and (2), we can have
Byin = min{min{S,; },min{S;}}. O

Lemma 2. For any pipelined tree T constructed by the
Inserting step, it achieves optimal min{S,;}.

Proof: We prove via mathematical induction, in which we have
each step established by finding the contradiction that no other
tree can achieve any higher min{S,,}, and thus the tree T has
the optimal min{S,;}. The details are shown in Appendix. [J

Lemma 3. For any pipelined tree T constructed by the
Inserting step, the Replacing step can change T into a pipelined
tree with optimal B,iy.

Proof: We prove by cases on the bandwidths of the tree’s leaf
nodes, and find that the replacing step always makes the tree
have optimal B,,;,. The details are shown in Appendix. L]

Theorem 1. For any pipelined tree T constructed by Algo-
rithm 1, it achieves optimal B,,.

Proof: The theorem holds based on Lemmas 2 and 3. O

The overall time complexity of Algorithm 1 is O(nlogn).
Specifically, all sorting operations in both preparation and
replacing take O(nlogn) time, while inserting only needs
O(nlogn) time to finish. The main reason is that we leverage
a priority queue to rapidly choose the inserting place with the

largest prac(-) for each pivot. Note that for each pivot, it is
the priority queue that allows us to choose an optimal inserting
place in O(logn) time, without traversing all the tree’s existing
nodes in O(n) time. Experiment 2 in §V-C shows Algorithm 1’s
low running time even with a large n.

D. Slice-level Repair

Although Algorithm 1 has optimal (maximized) minimum
bandwidth and low time complexity, repairing a single chunk
with a large size (e.g., 64 MiB [21]) may still take a too long
time to match the dynamics of network links during the repair
process. It means that if we repair chunks one at a time, it
will delay the total time to repair under the rapidly changing
link-state (which may be serving short requests) in hot storage.

Thus, PivotRepair decomposes a single chunk into multiple
slices [28]. For RS codes, a slice can be as small as one
byte (§II-A), which is much smaller than the chunk size, so a
single slice can be quickly transferred. When multiple slices are
being transferred in parallel in the tree, the helpers constitute
a pipeline of transferring slices, such that the pipelined tree
can exploit all their bandwidth resources rather than a single
one, while hiding the computation overhead at the same time.
In this way, PivotRepair can fit in the rapidly changing link
state in hot storage by finishing repair instantly.

E. Enhancing Full-Node Repair with Adaptive Scheduling

Besides a single-chunk repair, PivotRepair also addresses
a full-node repair that restores all lost chunks of a failed
node. The full-node repair in PivotRepair is not a trivial task,
as it triggers multiple single-chunk repairs which may incur
competition for bandwidth resources, thereby impairing the
repair performance or disturbing the foreground jobs.

A straightforward way is to perform Algorithm 1 for all
single-chunk repairs and find the optimal parallelization of all
schemes to fully utilize the bandwidth resources. However, a
full-node repair often involves a large number of stripes, so it
is impractical to check all stripes in advance. More importantly,
even if we only check part of the related stripes and design
optimal bandwidth-utilized repair pipelining methods, these
methods may not work optimally after a while under rapidly
changing available bandwidths in hot storage.

Alternatively, PivotRepair proposes an adaptive scheduling
strategy for its full-node repair. The main idea is to arrange
appropriate tasks to perform in different situations based on
currently available bandwidths; in other words, we should avoid
starting a new task when its pipelined repair tree’s links are
shared by too many repair tasks in progress, or it will cause
competitions with these running tasks.

To this end, PivotRepair starts a new repair task based
on a recommendation value (denoted by r); the larger r of a
single-chunk repair task candidate (denoted by T) is, the more
likely PivotRepair will start 7,. Clearly, r is mainly dominated
by currently available bandwidths and running tasks, so we let

n
r:Bmin*Z S(,-’c)'((ﬁ%iEHO)Jrﬁ) )

i=1

3)



where (i) By,in, as defined in §1V-B, is the minimum bandwidth
of the pipelined repair tree of 7. under currently available
bandwidths, (ii) n is the number of currently running tasks,
(iii) S(; ) shows the similarity degree of trees between 7; and
the /' running tasks 7;, where the similarity degree is calculated
via the number of identical upload/download nodes between
T; and T, (iv) E; is the expected time to finish the ith running
task based on its By, obtained by Algorithm 1, (v) A; is the
actual time of performing the i running task, and (vi) a and
B are parameters to indicate how strong the running tasks do
not recommend T as a new task, since the larger @ and fB are,
the smaller r is.

From Equation (3), we find that (i) when B,,;, is larger, r is
also larger, which means we are more likely to recommend 7
that can be repaired with better pipelined repair performance;
(ii) when n is larger, r becomes smaller, which means we are
less likely to recommend any new task when there are more
running tasks; (iii) when S; ) is larger, r becomes smaller,
which means we are less likely to recommend 7, that has more
identical links of the running tasks; (iv) when M is
larger, r becomes smaller, which means we are less llikely to

recommend any new task when running tasks are more delayed.

Here, max(A; — E;,0) is the delayed time of the /" running
task.

In this way, the value r can show the bandwidth competitions
from both foreground jobs and repair jobs, and indicates
whether a repair task should be performed at this time. As
a result, we can check r of all tasks and choose the most
recommended one to run every time to avoid the congestion
as much as possible.

Specifically, the strategy works as follows: it first generates
the pipelined trees of all stripes to be repaired via Algorithm 1
to compute r, and then it selects the stripe with the largest r
(called best stripe) to perform the repair. Next, it repeats the
operations until the value of r of the best stripe is smaller than
the threshold that we fix based on experience from current
tasks, which suggests that we should not add any repair task,
due to too many running tasks or emerging foreground traffic.
Thus PivotRepair obtains a couple of the best stripes that can
be repaired in parallel currently. After one of the recently-added

tasks finishes, it follows the above procedure to schedule again.

Additionally, when the foreground jobs become continuously
active, it will prevent new repair tasks from running and check
periodically until available bandwidths turn sufficient, to avoid
potential congestion.

Note that for each best stripe, PivotRepair always selects the
node that has the most downlink bandwidth as the requestor,
so all requestors are often distributed and the best stripes
are repaired across multiple nodes. Thus, PivotRepair can
be easily employed in large-scale systems to repair an entire
node’s stripes across different requestors as well as dozens of
helpers according to their available bandwidths.

F. Discussion

Multi-chunk repair: PivotRepair mainly focuses on speeding
up the repair of a single failed chunk per stripe, which accounts

for the most repair scenarios in practice [24], [42] (e.g., over
98% of cases [42]). When a stripe has multiple failed chunks,
PivotRepair resorts to conventional repair, where a node
downloads k available chunks to regenerate all failed chunks.
Computation overhead: PivotRepair schedules repair opera-
tions mainly based on the available network capacity of nodes,
but the computational resource usage may also need to be
taken into account. One simple way to address the computation
overhead issue is to check the computation capacity states of
all nodes and identify which nodes have enough CPU cycles.
We then run Algorithm 1 only based on the selected nodes.
We may also partition time into timeslots, each of which only
schedules a fraction of slice-repair tasks across nodes [51].
Multi-layer network: PivotRepair considers the case that all
nodes are directly connected to a single switch. However, in
modern data center networks, multi-layer network topologies
are common and nodes may reside in different racks and
be connected to different rack switches. Thus, the available
bandwidth in cross-rack links is typically lower than that in
the same rack. To address the topology heterogeneity, we
can construct the PivotRepair’s pipelining tree such that the
pipelined repair can be performed locally within racks as much
as possible. We pose this issue as future work.

V. EVALUATION
A. Implementation

We implement a prototype system for PivotRepair in C++
and Python with about 3500 SLoCs, based on Intel ISA-L [2].
The system architecture has a single Master and multiple
Data-Nodes, where the Master organizes k helpers to
perform the repair while the Data-Nodes that store data
serve as helpers. When receiving a repair request, the Master
will call the algorithm to generate a repair scheme with the
instant bandwidths situation, and send tasks to Data—-Nodes
to perform a pipelined repair. Note that we also implement the
state-of-the-art repair techniques RP [28] and PPT [12] in the
same system for fair comparisons.

B. Experiments Setup

We set Reed-Solomon codes with parameters (n, k) including:
(6,4) (a typical RAID-6 setting), (9,6) (used in QFS [35]),
(12,8) (used in Baidu Atlas [26]), and (14,10) (used by
Facebook [43], [47]). Each chunk is set to 64 MiB [21] by
default in coding.

We conduct cloud experiments under different network
bandwidth environments based on the three workloads. Recall
that we have 6000 records of the link bandwidth distribution
of 16 different nodes for each of TPC-DS, TPD-H, and SWIM
($III-A). Here we randomly select a set of bandwidths situations
with congestions for the three workloads respectively.

We evaluate performance of single-chunk and full-node
repairs for PivotRepair, RP, and PPT in the three workloads.
To replay network conditions of the workloads and distributions,
we use the Linux traffic control command tc [8] to replay the
link bandwidth changes of each node exactly the same as that
in the workloads and distributions.
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Figure 5: Experiments 1-3: Overall repair time, running time, and transfer time for different traces and parameters (n,k).

We conduct experiments on Amazon EC2 [1], deployed on
16 m5.xlarge instances in US East (North Virginia) region.
We configure 15 instances that act as Data-Nodes (each
represents a helper) and one instance that acts as Master. We
report average results of each experiment over five runs.

C. Experiments

Experiment 1 (Overall single-chunk repair time): We
evaluate the overall repair time, the algorithm running time
and the transfer time for single-chunk repairs for different
traces and parameters (n,k), where the overall repair time is
composed of the algorithm running time and the transfer time.
Figure 5 compares the average overall single-chunk repair time
for PivotRepair, RP, and PPT. Compared to RP, PivotRepair
is always faster in all cases, especially for the cases with larger
k. For example, in Figure 5(b) with k = 10, PivotRepair’s
overall repair time is reduced by 71.27% compared to RP.
Compared to PPT, PivotRepair has a similar performance
when 7 is small (e.g., k =4 and 6). For example, in Figure 5(c)
with k = 6, PivotRepair’s and PPT’s overall repair times are
1.67 s and 1.69 s, respectively. However, when k becomes larger,
PPT’s overall repair time grows exponentially. For instance, in
Figure 5(a), PPT’s overall single-chunk repair time increases

from 6.83 s under (12,8) to 1.31 x 10* s under (14, 10), which
is much higher than RP and PivotRepair. The reason is that
PPT takes a long time to generate its repair scheme when k is
large, which will be discussed in Experiment 2.

Experiment 2 (Algorithm running time): We measure the
algorithm running time of generating repair schemes for
PivotRepair, RP, and PPT in three workloads. Figures 5(d)-5(f)
show that among all traces, PivotRepair has larger running
times to RP under (6,4), but smaller ones under (9,6), (12,8)
and (14,10). Nevertheless, RP’s running time in (14,10) is
about 10ms, which is still affordable for a single-chunk repair.
In contrast, PPT’s running time increases exponentially with &,
which ranges from 2.38 x 10° to 1.31 x 10'® s under (14,10)
for the three traces, which fails to handle the rapidly-changing
bandwidths in hot storage. The reason is that PPT needs to
enumerate all possible trees to search for the optimal one,
which increases exponentially as k becomes larger. Finally, we
see that PivotRepair’s running time grows slowly and it only
takes 4.81-5.30 us to finish in (14,10), which conforms to its
O(nlogn) time complexity (§IV-B).

Experiment 3 (Transfer time for single-chunk repair): We
evaluate the transfer time for single-chunk repair in three
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Figure 7: Experiment 6: Node repair time for different approaches.

workloads. Figures 5(g)-5(i) show that PivotRepair always
remains as fast as PPT and keeps its performance gains over
RP in three workloads. For example, in Figure 5(b) with k = 10,
PivotRepair reduces the single-chunk repair transfer time of
RP by 71.2%. The low transfer time of PivotRepair conforms
to the fact that PivotRepair’s repair scheme has the optimal
Bmin (§IV'B)

Experiment 4 (Impact of slice size): We evaluate the single-
chunk repair time versus the slice size with a fixed bandwidth
situation. We set the chunk size to 64 MiB and (n,k) is set to
(6,4). We vary the slice size ranging from 2 KiB to 1024 KiB.
Figure 6(a) shows that performances of all approaches keep
steady with varied slice sizes, and we can draw a similar
conclusion to the one in (6,4) of Experiment 1, on the
comparison between PivotRepair and the others.
Experiment 5 (Impact of chunk size): We evaluate the overall
single-chunk repair time versus the chunk size, also with a
fixed bandwidth situation. We set the slice size to 32 KiB and
(n,k) is set to (6,4). We vary the slice size from 8 MiB to 128
MiB. Figure 6(b) shows the overall single-chunk repair time
of PivotRepair, RP, and PPT, which increase linearly with the
chunk size, while PivotRepair also maintains its advantage.
Experiment 6 (Node Repair): We evaluate the node repair
rate versus different (n,k). To perform a full-node repair, we
first write a number of stripes of chunks randomly across all
15 nodes in the EC2 cluster, then erase 64 chunks of one
node from 64 stripes to mimic a single node failure, and then
repair all the erased chunks with different approaches. Fig-
ure 7 shows that PivotRepair outperforms the other schemes,
which demonstrates its advantage in hot storage. Additionally,
PivotRepair’s adaptive scheduling strategy effectively reduces

its original node repair time. For example, in Figure 7 under
(9,6), PivotRepair’s adaptive scheduling time (51.6s) can be
reduced up to 16.50% compared to RP (61.8 s). Note that the
reduction between PivotRepair and RP of the full-node repair
time is lower than that of the single-chunk repair time (see
Experiment 1). The reason is that the full-node repair lasts for
a longer period of time. Only a portion of which will have
congestion (Figure 3), thereby degrading the advantages of
PivotRepair. In addition, we find that PPT’s full-node repair
performance drops drastically when k = 10, due to the same
reason in Experiment 2.

VI. RELATED WORK

Regenerating codes [19] are a family of erasure codes that
minimize the repair traffic by allowing nodes to send encoded
data for repair, including Product-Matrix codes [44], Zigzag
codes [49], FMSR codes [23], PM-RBT codes [41], Butterfly
codes [36], and Clay codes [50]. Some erasure codes minimize
I/O during repair by sending fewer chunks in a single-node
repair, such as Rotated RS codes [25] and Hitchhiker [43].
Locally repairable codes [24], [37], [47] mitigate repair I/O
with extra storage. PivotRepair operates on RS codes, which
satisfy linearity and are widely deployed in production (§1I-A).

Previous studies propose repair-efficient techniques for
erasure-coded storage. Lazy recovery [48] delays immediate
repairs, so as to reduce the repair traffic at the expense
of degraded reliability. PPR [33] reduces the single-chunk
repair time by parallelizing the repair operation as partial
operations. RP [28] further reduces the single-chunk repair time
by pipelining the repair operation in slices (its extended version
[30] also addresses hierarchical topologies and multi-chunk
repair). PPT [12] improves RP by utilizing a pipelined tree.
SMFRepair [55] uses idle nodes to bypass low-bandwidth links
in the heterogeneous network. ECWide [22] exploits combined
locality to address the wide-stripe repair problem. OpenEC [29]
designs a directed-acyclic-graph-based programming abstrac-
tion to provide a unified and configurable framework for the
erasure-coded storage system. HACFS [54] and Dayu [51] cope
with dynamic workload changes by switching between different
erasure codes [54] or scheduling repair tasks in free timeslots
[51]. RepairBoost [32] focuses on improving full-node repair
by careful traffic balancing and scheduling. PivotRepair aims
to accelerate the repair operation in the hot storage, which
can effectively construct an optimal pipelined repair tree via
exploiting uncongested nodes.

VII. CONCLUSIONS

We propose PivotRepair, a fast pipelined repair technique
for erasure-coded hot storage. PivotRepair is based on our
observations that the repair job can be bottlenecked by rapidly-
changing congested nodes in hot storage, while the storage
network often contains uncongested nodes. We present an
optimal algorithm to construct quickly the pipelined repair
tree by exploiting uncongested nodes called pivots. We also
propose an adaptive scheduling strategy to improve full-node
repair performance. We prototype and evaluate PivotRepair



on Amazon EC2. Our evaluation demonstrates the efficiency
of PivotRepair in single-chunk and full-node repairs.

APPENDIX

Proof of Lemma 2: We prove via mathematical induction,
i.e., checking the optimality when the i’ step of insertion is
finished.

When i = 1, the only node in the priority queue Q is R (i.e.,
the requestor), and the only way to obtain the tree (denoted
by Tp) is to insert Nj as a child of R. Also R will become the
only non-leaf node, so we get

min{Sy; } = prac(R),where prac(R) =down(R)  (4)

Thus, 77 can reach optimal min{Sy;}.

For mathematical induction, we assume that tree T;(1 <
k <n—1), constructed after k steps of insertion, can reach
optimal min{S,;}. Next, we examine the case when i = k+ 1,
i.e., inserting N; as a child of N;, where N; is the head of the
priority queue. Here we define possible prac; if inserting a
child to node N; as pp(i), such that we can obtain N; that has
the biggest pp in all nodes of 7. Thus, we can deduce

min{Su(Tir1) } = min{Su(Ti), pp(J)} )

We discuss the value of pp(j) based on two cases.
Case 1:  pp(j) > min{S,(Ty)}, ie.,

min{Su (Ti1)} = min{Su (Tx)}- (6)

Here T;, cannot achieve a higher min{S,;} by adjusting the
tree, or it will contradict the assumption that 7; has optimal
min{S,;(Ty)}. So Ti+1 achieves optimal min{S,;(T;+1) in this
case.

Case 2:  pp(j) < min{Sy(Ty)}, ie.,

min{Su (Tesr)} = pp(J)- 7

This case can be proved similar to Case 1 by contradiction and
specified as follows. Note that the case 2 is based on discussion
of the node to adjust, and we further discuss the adjustment
on leaf nodes and non-leaf nodes based on two cases.

Case 2.1: For leaf nodes in Ty, |, we assume that swapping
a non-leaf nodes in Ty with a leaf node N; can generate a
tree with a higher min{S,;(T+1)}. But we find that when N
becomes a non-leaf node, it actually makes S,; lower as N; has
a lower prac value. Thus this swap contradicts the assumption
above, and there is no adjustment available on leaf nodes to
improve min{S,;(Ti+1)}.

Case 2.2: For non-leaf nodes in 7, we assume that moving
children of a non-leaf node N, to another node N, can generate
a tree with a higher min{S,;(T;;1)}. But we find it impossible
to improve the bottleneck, since the nodes excluding N; do
not have a higher pp value than pp(j) due to the priority
queue, and then increasing the number of N,’s children will
make pp(b) lower than pp(j), which brings a lower bottleneck
instead. Further, even if N, is N, it is essentially equivalent to
swapping the positions of the new child to be inserting N; and
one of N,’s children. This swap does not improve pp(j), since

it will not change the number of children for each node in ;.
Therefore, the moving contradicts the assumption above, and
there is no adjustment available on non-leaf nodes to improve
min{ Sy (Ti+1)}-

Based on Cases 2.1 and 2.2, we conclude that
min{Su;(Ty+1)} is optimal in Case 2.

Based on Cases 1 and 2, T;.; can achieve optimal
min{S,;(Tiy1)}, i.e., the k+ 1'" step establishes.

Based on above established steps, we can deduce that the
nth step still establishes, and thus tree 7, reaches optimal
min{Sy }. O
Proof of Lemma 3: Based on the replacing step, we can have
that the [ leaf nodes in T will be replaced by the top / nodes
with the largest up among the unselected candidates and the
previous leaf nodes in 7', so as to get the final tree (denoted
by T%). Based on Lemma 1, we know that B,,;, is the smaller
value of min{S,;} and min{S;}. And based on Lemma 2, T
has optimal min{S,;}. While the above replacing operations
do not change the number of each non-leaf node’ children as
well as S,;, T* still achieves optimal min{S,,}.

We then discuss the situation of leaf nodes in 7* based on
two cases.

Case 1 (min{S;} > min{S,;}): The up bandwidths in leaf nodes
are not the bottleneck (to achieve min{S;}), so no matter how
the leaf nodes are distributed, B, = min{Sy} is true, as
we always keep the number of each non-leaf node’ children
unchanged based on the replacing step. If we assume that 7*
can be adjusted to achieve a higher B,,;,, then it contradicts the
deduction of Lemma 2 above. As a result, 7* reaches optimal
min{S;} in this case.

Case 2 (min{S;} < min{Sy}): The leaf node with the lowest
up bandwidth becomes the bottleneck, and B, = min{S;} is
always true no matter how the leaf nodes are distributed, as
we always keep the number of each non-leaf nodes’ children
unchanged based on the replacing step.

Next, we discuss whether min{S;} can be improved by
replacing the leaf node Ny that has the lowest up bandwidth
in T* based on two cases.

Case 2.1: If min{S;} of T* can be improved via replacing with
an unselected node, according to the replacing step, any leaf
node in 7* has a higher up bandwidth than any node does not
belong to T*, making it impossible to improve min{S;} via
replacing with any node that has a higher up bandwidth.
Case 2.2: If min{S;} of T* can be improved via with another
non-leaf node, then to keep the number of nodes in T*
unchanged, N; has to become a new non-leaf node, which
makes

min{Sy;} <theo(s) <up(s). (8)
Based on Lemma 1 and Equation (8), we have

Biin = min{min{S,; },min{S;}}
< theo(s) < up(s). )

We have that it cannot improve B,j,.



Based on Cases 2.1 and 2.2, there is no available way to
improve By, in Case 2.
Based on Cases 1 and 2, T* achieves optimal B,;,. O
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