
1

CDStore: Toward Reliable, Secure, and Cost-Efficient Cloud Storage via
Convergent Dispersal

Mingqiang Li, Chuan Qin, Jingwei Li, and Patrick P. C. Lee

Abstract—We present CDStore, a unified multi-cloud storage
solution for users to outsource backup data with reliability,
security, and cost efficiency guarantees. CDStore builds on an
augmented secret sharing scheme called convergent dispersal,
which supports deduplication by using deterministic content-
derived hashes as inputs to secret sharing. We present the
design of CDStore, and in particular, describe how it combines
convergent dispersal with two-stage deduplication to achieve both
bandwidth and storage savings and also be robust against side-
channel attacks that can be launched by a malicious user on
the client side. We demonstrate via cost analysis that CDStore
achieves significant monetary cost savings over baseline cloud
storage solutions.

Index Terms—Secret sharing, deduplication, cloud storage.

I. INTRODUCTION

Multi-cloud storage coalesces multiple public cloud storage
services, operated by independent vendors, into a single stor-
age pool. By dispersing data with some form of redundancy
across multiple clouds, multi-cloud storage provides a plausi-
ble way to realize reliable and secure outsourced storage. By
reliable, we mean that the stored data remains available even
in the presence of cloud failures; by secure, we mean that the
stored data is protected with the guarantees of confidentiality
(i.e., the data is kept secret from unauthorized parties) and
integrity (i.e., the data remains uncorrupted).

Secret sharing is one form of redundancy that provides both
reliability and security guarantees, and it has been realized
in multi-cloud storage (e.g., [2], [3], [5], [14]). Given the
configuration parameters r, k, and n (where r < k < n), it
transforms a data input (called secret) into n coded outputs
(called shares), such that the secret can be recovered with any
k out of n shares and the secret cannot be inferred if only
r shares are available. Secret sharing often comes with high
redundancy. For example, Shamir’s scheme [16] has the same
storage overhead as replication. However, it is plausible to
reduce the redundancy of secret sharing to be slightly higher
than that of erasure coding, while preserving security in the
computational sense [14].

However, existing secret sharing algorithms prohibit storage
savings achieved by deduplication, which works by keeping
only one physical data copy and having it shared by other
copies with identical content. Field measurements show that
deduplication is especially effective for some workloads with
high content similarity, such as backups [17]. On the other
hand, secret sharing uses random input seeds to generate

Mingqiang Li is now with Hong Kong Advanced Technology Center,
Ecosystem & Cloud Service Group, Lenovo Group Ltd. This work was done
when he was with the Chinese University of Hong Kong.

Chuan Qin, Jingwei Li, and Patrick P. C. Lee are with the Department of
Computer Science and Engineering, The Chinese University of Hong Kong.

shares. If users embed different random input seeds, their
shares will differ and cannot be deduplicated, even though
their original data is identical.

Motivated from users’ perspectives, we present CDStore,
which provides a unified multi-cloud storage solution with
reliability, security, and cost efficiency guarantees. CDStore
builds on an enhanced secret sharing scheme called convergent
dispersal, whose core idea is to replace the random input seeds
of traditional secret sharing with deterministic cryptographic
hashes derived from the original data, while the hashes cannot
be inferred by attackers without knowing the whole original
data. Thus, identical secrets are always transformed into identi-
cal shares, which can be deduplicated. We believe that unifying
secret sharing and deduplication is beneficial for cloud storage:
secret sharing provides reliability and security guarantees,
while deduplication provides cost-efficiency guarantees by
offsetting the dispersal-level redundancy of secret sharing with
the removal of content-level redundancy.

This article is an extension to our conference paper [10],
in which we have discussed the design and implementation
details of CDStore and presented its performance results based
on testbed experiments. Here, we provide detailed cost break-
down analysis, and show how CDStore significantly saves
monetary costs over baseline cloud storage solutions (e.g.,
by more than 70% in some cases). The source code of our
CDStore prototype is available online1.

II. CDSTORE DESIGN

CDStore is designed for an organization to outsource the
storage of data of a large group of users to multiple clouds.
It builds on the client-server architecture shown in Figure 1.
Each user of the same organization runs a CDStore client to
store and access his data in multiple clouds over the Internet. In
each cloud, a co-located virtual machine (VM) instance owned
by the organization runs a CDStore server between multiple
CDStore clients and the storage backend.

CDStore targets backup workloads, which are known to
have high content similarity [17]. We consider a type of
backups obtained by snapshotting applications, file systems,
or virtual disk images. In CDStore deployment, each user
machine submits a series of backup files (e.g., in UNIX tar
format) to the co-located CDStore client, which processes the
backups and uploads them to the CDStore servers in all clouds.

A. Goals and Assumptions

We state the design goals and assumptions of CDStore in
three aspects: reliability, security, and cost efficiency.

1http://ansrlab.cse.cuhk.edu.hk/software/cdstore

2

VM Storage

CDStore
client

VM Storage

VM Storage VM Storage CDStore
server

Internet

Fig. 1. CDStore architecture.

Reliability: CDStore tolerates failures of cloud storage
providers and even CDStore servers. Outsourced data is
accessible if a tolerable number of clouds (and their co-
located CDStore servers) are operational. CDStore also tol-
erates client-side failures by offloading metadata management
to the server side (see Section II-D). In the presence of cloud
failures, CDStore decodes original secrets and then rebuilds
any lost share as in Reed-Solomon codes [13], and we do not
consider cost-efficient recovery here [9].

Security: CDStore ensures confidentiality and integrity of
outsourced data, as long as a tolerable number of clouds
are uncompromised. Note that the confidentiality guarantee
requires that the secrets be drawn from a very large message
space, so that brute-force attacks are infeasible [1]. CDStore
also avoids side-channel attacks [7], [8] via two-stage dedu-
plication (see Section II-C). Here, we do not consider strong
attack models, such as Byzantine faults in cloud services [2].
We also assume that the client-server communication over the
network is protected, so that an attacker cannot infer any secret
by eavesdropping the transmitted shares.

Cost efficiency: CDStore uses deduplication to reduce both
bandwidth and storage costs. It also incurs limited overhead
in computation (e.g., VM usage) and storage (e.g., metadata).

B. Convergent Dispersal

Convergent dispersal enables secret sharing with dedupli-
cation by replacing the embedded random input seed with a
deterministic cryptographic hash derived from the secret. Thus,
two secrets with identical content must generate identical
shares, making deduplication possible. Also, it is computa-
tionally infeasible to infer the hash without knowing the whole
secret. Our idea is inspired by convergent encryption [6] used
in traditional key-based encryption, in which the random key is
replaced by the cryptographic hash of the data to be encrypted.
Figure 2 shows the main idea of how we augment a secret
sharing algorithm with convergent dispersal.

Here, we present a convergent dispersal instantiation based
on an existing secret sharing scheme called AONT-RS [14],
which combines Rivest’s all-or-nothing transform (AONT)
[15] for confidentiality and Reed-Solomon coding [13] for
fault tolerance. We call our convergent dispersal instantiation
CAONT-RS, which aims to inherit the reliability and security
properties of the original AONT-RS, and makes two key modi-
fications. First, to improve performance, CAONT-RS replaces

Rivest’s AONT [15] with another AONT based on optimal
asymmetric encryption padding (OAEP) [4]. The rationale is
that Rivest’s AONT performs multiple encryptions on small-
size words, while OAEP-based AONT performs a single
encryption on a large-size, constant-value block. Also, OAEP-
based AONT provably provides no worse security than any
AONT scheme [4]. Second, CAONT-RS replaces the random
input seed in AONT with a deterministic cryptographic hash
derived from the secret. Thus, it preserves content similarity
in dispersed shares and allows deduplication.

We elaborate the encoding and decoding of CAONT-RS,
both of which are performed by a CDStore client. Figure 3
shows an example of CAONT-RS with n = 4, k = 3. Also,
CAONT-RS has r = k − 1 = 2, as in AONT-RS [14].

Encoding: We first transform a given secret X into a
CAONT package. Specifically, we first generate a hash key h,
instead of a random key, derived from X using a (optionally
salted) hash function H (e.g., SHA-256):

h = H(X). (1)

To achieve confidentiality, we transform (X,h) into a CAONT
package (Y, t) using OAEP-based AONT, where Y and t are
the head and tail parts of the CAONT package and have
the same size as X and h, respectively. To elaborate, Y is
generated by:

Y = X ⊕G(h), (2)

where ‘⊕’ is the XOR operator and G is a generator function
that takes h as input and constructs a mask block with the
same size as X . Here, we implement the generator G as:

G(h) = E(h,C), (3)

where C is a constant-value block with the same size as X ,
and E is an encryption function (e.g., AES-256) that encrypts
C using h as the encryption key.

The tail part t is generated by:

t = h⊕H(Y). (4)

Finally, we divide the CAONT package into k equal-size
shares (we pad zeroes to the secret if necessary to ensure that
the CAONT package can be evenly divided). We encode them
into n shares using the systematic Reed-Solomon codes [13].

To enable deduplication, we ensure that the same share
is located in the same cloud. Since the number of clouds
for multi-cloud storage is usually small, we simply disperse
shares to all clouds. Suppose that CDStore spans n clouds,
which we label 0, 1, · · · , n − 1. After encoding each secret
using convergent dispersal, we label the n generated shares
0, 1, · · · , n − 1 in the order of their positions in the Reed-
Solomon encoding result, such that share i is to be stored on
cloud i, where 0 ≤ i ≤ n−1. This ensures that the same cloud
always receives the same share from the secrets with identical
content, either generated by the same user or different users.
This also enables us to easily locate the shares during restore.

Decoding: To recover the secret, we retrieve any k out of
n shares and use them to reconstruct the original CAONT
package (Y, t) (note that the retrieval size is slightly more than

3

Secret
sharing

Secret Shares

Hash

Fig. 2. Idea of convergent dispersal.

X
RS

Secret

Y

t

CAONT

X
Y

t

n sharesCAONT
package

G HH

h

k shares

Fig. 3. Example of CAONT-RS with n = 4 and k = 3. Note that r = k − 1 = 2.

the original secret size by the size of h). Then we deduce hash
h by XOR’ing t with H(Y) (see Equation (4)). Finally, we
deduce secret X by XOR’ing Y with G(h) (see Equation (2)),
and remove any padded zeroes introduced in encoding.

We can also verify the integrity of the deduced secret X .
We simply generate a hash value from the deduced X as in
Equation (1) and compare if it matches h. If the match fails,
then the decoded secret is considered to be corrupted.

Remarks: We briefly discuss the security properties of
CAONT-RS. CAONT-RS ensures confidentiality, provided that
an attacker cannot gain unauthorized accesses to k out of n
clouds, and ensures integrity through the embedded hash in
each secret. It leverages AONT to ensure that no information
of the original secret can be inferred from fewer than k shares.
We note that an attacker can identify the shares of different
users and perform brute-force dictionary attacks [1] inside the
clouds, and thus we require that the secrets be drawn from a
large message space (see Section II-A). To mitigate brute-force
attacks, we may replace the hash key in CAONT-RS with a
more sophisticated key generated by a key server [1], with the
trade-off of introducing the key management overhead.

C. Two-Stage Deduplication

We first overview how deduplication works. Deduplication
divides data into fixed-size or variable-size chunks. Each
chunk is uniquely identified by a fingerprint computed by a
cryptographic hash of the chunk content. Two chunks are said
to be identical if their fingerprints are the same, and fingerprint
collisions of two different chunks are assumed to be unlikely.
Deduplication stores only one copy of a chunk, and refers any
duplicate chunks to the copy via small-size references.

To realize deduplication in cloud storage, a naı̈ve approach
is to perform global deduplication on the client side. Specifi-
cally, before a user uploads data to a cloud, it first generates
fingerprints of the data. It then checks with the cloud by
fingerprint for the existence of any duplicate data that has
been uploaded by any user. Finally, it uploads only the unique
data to the cloud. Although client-side global deduplication
saves upload bandwidth and storage overhead, it is susceptible
to side-channel attacks that can be launched by a malicious
user on the client side [7], [8]. One attack is to infer the
existence of data of other users [8]. Specifically, an attacker
generates the fingerprints of some possible data of other users
and queries the cloud by fingerprint if such data is unique and
needs to be uploaded. If no upload is needed, then the attacker
infers that other users own the data. Another attack is to gain
unauthorized access to data of other users [7]. Specifically, an

attacker uses the fingerprints of some sensitive data of other
users to convince the cloud of the data ownership.

CDStore prevents side-channel attacks through two-stage
deduplication, which eliminates duplicates first on the client
side and then on the server side. Suppose that each CDStore
server maintains a deduplication index that keeps track of
which shares have been stored by each user and how shares
are deduplicated. Then we implement the two deduplication
stages as follows.

Intra-user deduplication: A CDStore client first runs dedu-
plication only on the data owned by the same user, and uploads
the unique data of the user to the cloud. Before uploading
shares to a cloud, the CDStore client first checks with the
CDStore server by fingerprint if it has already uploaded the
same shares. Specifically, the CDStore client first sends the
fingerprints generated from the shares to the CDStore server.
The CDStore server then looks up its deduplication index,
and replies to the CDStore client a list of share identifiers that
indicate which shares have been uploaded by the CDStore
client. Finally, the CDStore client uploads only unique shares
to the cloud based on the list.

Inter-user deduplication: A CDStore server runs dedupli-
cation on the data of all users and stores the globally unique
data in the storage backend. After the CDStore server receives
shares from the CDStore client, it generates a fingerprint from
each share (instead of using the one generated by the CDStore
client for intra-user deduplication), and checks if the share
has already been stored by other users by looking up the
deduplication index. It stores only the unique shares that are
not yet stored at the storage backend. It also updates the
deduplication index to keep track of which user owns the
shares. Here, we cannot directly use the fingerprint generated
by the CDStore client for intra-user deduplication. Otherwise,
an attacker can launch a side-channel attack, by using the
fingerprint of a share of other users to gain unauthorized access
to the share [7].

Remarks: Two-stage deduplication forces a user to upload
shares that may have been uploaded by another user and hence
avoiding client-side inter-user deduplication [8]. It makes
deduplication patterns independent across users’ uploads, so
an attacker cannot infer the data content of other users through
deduplication occurrences.

Both intra-user and inter-user deduplications effectively re-
move duplicates. Intra-user deduplication eliminates duplicates
of the same user’s data, for example, when a user makes
repeated backups of the same application or file system.
Inter-user deduplication further removes duplicates of multiple

4

users, for example, when the machines of multiple users
of the same organization share the same operating system
configurations [11]. The removal of duplicates translates to
cost savings (see Section III).

D. Implementation Details

We have implemented a CDStore prototype based on the
client-server model in Figure 1. Here, we highlight the impor-
tant implementation details of CDStore, while the full details
are in our conference paper [10].

Chunking: CDStore can perform deduplication on fixed-
size or variable-size chunks. We implement variable-size
chunking based on Rabin fingerprinting [12]. Here, we set
the size of each secret (chunk) on the order of kilobytes
to effectively remove duplicates. For example, our default
average chunk size is 8KB.

Server-side metadata management: We make CDStore
servers keep and manage all metadata on behalf of CDStore
clients, which are generally less reliable. There are two types
of metadata: (i) file metadata, which describe file information,
and (ii) share metadata, which describe each unique share
being stored. We distribute the metadata across all CDStore
servers for reliability.

In particular, we encode and disperse file pathnames, which
are considered to be sensitive metadata, via CAONT-RS. Each
CDStore server stores both file and share metadata at the
storage backend, and keeps the respective file and share indices
in local index structures to reference metadata.

Container management: CDStore mitigates I/O overheads
by arranging storage in units of containers. We have two types
of containers: share containers, which hold unique shares, and
recipe containers, which hold file recipes (i.e., the complete
file descriptions). All shares and file recipes are packed into
respective containers, with a default size 4MB each.

Multi-threading: We exploit multi-threading to parallelize
intensive operations. For example, we parallelize the encod-
ing/decoding operations of CAONT-RS: in file uploads, we
pass each secret output to one of the threads for encoding; in
file downloads, we pass the received shares of a secret to a
thread for decoding. Also, we use multiple threads for com-
munications to fully utilize the network transfer bandwidth.

III. COST ANALYSIS

We present detailed cost breakdown analysis on how
CDStore saves monetary costs over baseline cloud storage so-
lutions. Our conference paper [10] also presents performance
results of CDStore based on testbed experiments.

A. Cost Components

We first characterize the cost components of CDStore.
Our analysis is based on the tiered price plans of four

cloud providers in November 2015, including Amazon Singa-
pore2, Google Asia3, Azure Southeast Asia4, and Rackspace

2https://aws.amazon.com/pricing/services/
3https://cloud.google.com/pricing/
4https://azure.microsoft.com/en-us/pricing/

Hong Kong5. Free charges apply to inbound transfers to VM
instances as well as data transfers between co-located VM
instances and cloud storage. We now break down the total
backup cost incurred by CDStore in two aspects.

• VM cost: The VM cost is the fee charged for running
VM instances for hosting CDStore servers. The VM cost
has two parts: (i) running cost, which is the total fee paid
for running VM instances based on actual usage, and (ii)
transfer cost, which charges the outbound transferred data
from the VMs to CDStore clients (e.g., when a CDStore
server informs a CDStore client of what unique shares
need to be uploaded).

• Backend cost: The backend cost is the fee charged for
storage. We consider backend cost in two parts: (i) stor-
age cost, which charges the data storage for unique shares
and file recipes, and (ii) request cost, which charges the
storage requests (e.g., PUT, GET).

As an example, Table I shows the price plans of Amazon
EC2 on-demand instances and S3 storage for our calculations
of the VM and backend costs, respectively. Note that Amazon
provides cheaper pricing options. For example, EC2 offers
reserved instances that allow significant discounts for long-
term usage, while charging upfront payments for resource
reservations; Glacier6 only charges one-third of S3’s storage
cost, but with a higher retrieval cost. In addition, the price
plans vary across cloud providers. In particular, Rackspace
charges the highest storage cost among the four providers, yet
its request cost is free of charge. How to harness different
pricing options for further cost savings is an important future
work.

In practice, we reclaim the space of expired data to avoid
unlimited data growth. Our analysis assumes that CDStore
arranges containers by the backup time, so each container
keeps either all active data, or all expired data. CDStore simply
issues DELETE requests to expired containers. Since DELETE
is free in all storage services, the reclaim cost is zero.

B. Case Study

We analyze the monthly backup cost of CDStore, and
elaborate our calculations via a case study.

We derive our parameters from the backup datasets in
EMC’s field study [17]. The datasets cover up to 200TB of
pre-deduplicated data. The deduplication ratio ranges from 2×
to 14×. The retention time ranges from 3 days to 3 years. The
study also indicates that backup files are of large size, possibly
over 100GB.

In our case study, suppose that an organization schedules
weekly backups for its user data. Let the weekly backup
size be 16TB per week, the deduplication ratio be 10×, the
retention time be 26 weeks (about six months), and the average
file size and average chunk (secret) size be 100GB and 8KB,
respectively. We fix (n, k) = (4, 3) for the four different cloud
providers we consider. We assume that each CDStore server is
always online, and each CDStore client has an average upload

5http://www.rackspace.com/cloud/public-pricing/
6https://aws.amazon.com/glacier/pricing

5

TABLE I
AMAZON EC2 AND S3 PRICE PLANS (IN US$) IN NOVEMBER 2015. WE ONLY LIST THE ESSENTIAL ITEMS FOR OUR ANALYSIS.

(a) EC2 On-demand Instances
CPU Storage (GB) Price ($/hour)
4 80 0.265
8 160 0.529
4 800 1.018
8 1,600 2.035
16 3,200 4.07
32 6,400 8.14

(b) EC2 Monthly Transfer Prices
Data Range Price ($/GB)
First 1GB Free
Up to 10TB 0.120
Next 40TB 0.085
Next 100TB 0.082
Next 350TB 0.080

(c) S3 Monthly Storage Prices
Data Range Price ($/GB)
First 1TB 0.0300
Next 49TB 0.0295
Next 450TB 0.0290
Next 500TB 0.0285
Next 4000TB 0.0280

(d) S3 Request Price
Request Price ($/10,000 req)
GET 0.004
PUT 0.05
Delete Free

bandwidth of 15MB/s. We now explain how we derive each
cost component.

VM cost: We first examine the running cost. Our goal
is to choose the cheapest VM based on two principles: (i)
CPU core principle, in which there are enough CPU cores
to serve CDStore clients, and (ii) VM storage principle, in
which a VM can keep all file and share indices locally (see
Section II-D) according to the estimated storage size and
deduplication efficiency.

For the CPU core principle, we measure the average number
of CDStore clients that can be concurrently served by dividing
the amount of backup data (i.e., 16TB/week) by the per-client
upload bandwidth (i.e., 15MB/s), so we have 1.85. If we use
one CPU core to serve each CDStore client and reserve one
additional CPU core for the main thread of a CDStore server,
then we need at least three CPU cores here.

For the VM storage principle, we compute the average
number of files managed in a VM by dividing the total amount
of backups (i.e., 416TB over six months) by the average file
size (i.e., 100GB), so we have around 4,260 files. We also
compute the average number of unique shares managed in
a VM by dividing the amount of unique data being stored
after deduplication (i.e., 41.6TB for 10× deduplication ratio)
by the average chunk size (i.e., 8KB), so we have around
5.58×109 shares. In our CDStore implementation, the file and
share index entry sizes are 64 bytes and 72 bytes, respectively.
Thus, we need around 370GB of VM local storage.

Based on the above derivations, we choose the VM type
with four CPUs and 800GB storage for Amazon EC2 (see Ta-
ble I(a)), whose monthly running cost is around US$740 (i.e.,
US$1.018/hour×24×365/12). Similarly, we can derive the
monthly running costs for Google (US$180), Azure (US$700),
and Rackspace (US$1,620).

The transfer cost of CDStore is actually very small. It is
charged when a CDStore server informs a CDStore client of
what shares need to be uploaded, such that each share identifier
can be embedded in a single byte. For 16TB weekly backups,
the monthly transfer cost of each VM is only around US$1.

Backend cost: We first examine the backend storage cost,
which depends on the amounts of unique shares and file
recipes being stored in each cloud. For unique shares, we
divide the total amount of unique data being stored after dedu-
plication (i.e., 41.6TB for 10× deduplication ratio) divided by

k (i.e., 3), so we have 13.87TB per cloud7. For file recipes, our
implementation contains 16-byte headers for all files and 40-
byte fingerprint entries for all secrets in the original backup
data. The total amount of file recipes stored is 16×4,260 +
40×5.58 × 1010 ≈ 2.03TB (the numbers of files and secrets
are obtained based on the VM cost calculations). Thus, each
cloud stores around 15.87TB of data, and the monthly storage
cost is calculated from Amazon prices as 1×1024×0.03 +
14.87×1024×0.0295 ≈ US$480. Similarly, we can calculate
the storage cost for other cloud services as Google (US$420),
Azure US$380 and Rackspace US$1,480.

We next examine the backend request cost. From above,
we upload to each cloud around 15.87TB/6 ≈ 2.65TB of
data per month, including unique shares and file recipes.
Recall that CDStore arranges storage in units of containers
(see Section II-D). If the container size is 4MB, there will
be 2.65TB/4MB ≈ 695,000 PUT requests to each cloud
per month. For Amazon, the monthly request cost is only
695,000×0.05/10,000 ≈ US$3. Both Google and Azure charge
very low request costs, and Rackspace is free of charge for
requests. Our study shows that the storage cost dominates over
the request cost.

C. Cost Results

We evaluate the monthly costs of CDStore. We consider
the same setting in Section III-B, except that we now vary
the weekly backup size and deduplication ratio. We compare
CDStore with two baseline cloud storage systems that do
not support deduplication: (i) an AONT-RS-based multi-cloud
system that achieves the same fault tolerance and security
as CDStore, and (ii) a single-cloud system that incurs zero
redundancy for fault tolerance, but encrypts user data with
random keys. Both baseline systems incur no VM cost, and
we assume that they have zero storage costs due to metadata
and zero request costs.

For CDStore and AONT-RS-based multi-cloud system, we
use the tiered price plans of Amazon, Google, Azure, and
Rackspace; for the single-cloud system, we compute the cost
of each of the four cloud providers and present the average.
We show that even though CDStore introduces redundancy for
fault tolerance and VMs for deduplication management, it still
achieves cost savings through deduplication.

7For simplicity, we assume that the redundancy for fault tolerance is n
k

.
Note that the storage redundancy of AONT-RS [14] (on which CDStore builds)
is slightly larger than n

k
(see Section II-B), but the difference is small and

has limited impact on our cost results.

6

Weekly Size (TB)
0.25 1 4 16 64 256

M
on

th
ly

 C
os

t
($

)

102

103

104

105

106

CDStore
AONT-RS
Single-cloud

Deduplication Ratio
0 10 20 30 40 50

M
on

th
ly

 C
os

t
(U

S$
)

103

104

105

CDStore
AONT-RS
Single-cloud

(a) Varying weekly backup size
(step size is 1GB)

(b) Varying deduplication ratio
(step size is one)

Fig. 4. Monthly costs of different cloud storage systems.

Weekly Size (TB)
0.25 1 4 16 64 256

M
on

th
ly

 C
os

t
(U

S$
)

101

102

103

104

105
VM Cost
Backend Cost

Deduplication Ratio
0 10 20 30 40 50

M
on

th
ly

 C
os

t
(U

S$
)

102

103

104

105
VM Cost
Backend Cost

(a) Varying weekly backup size
(step size is 1GB)

(b) Varying deduplication ratio
(step size is one)

Fig. 5. Breakdown of the monthly costs of CDStore.

Figure 4 shows the monthly costs of the cloud storage
systems. Figure 4(a) shows the monthly costs versus different
weekly backup sizes, while we fix the deduplication ratio as
10×. CDStore incurs a higher cost than the baseline systems
for the weekly backup size less than 1TB due to the VM
cost, but achieves cost savings when the weekly backup size
increases. For example, for the weekly backup size 64TB,
CDStore has a monthly cost of US$20,600, while those of
the AONT-RS and single-cloud systems are US$90,000 and
US$64,000 (i.e., 77% and 68% of savings from CDStore),
respectively. Note that the jagged curve of CDStore is caused
by switching to the cheapest VM instance.

Figure 4(b) shows the monthly costs of the cloud storage
systems versus different deduplication ratios, while we fix the
weekly backup size as 16TB. The cost of CDStore decreases
with the increase of deduplication ratio, yet those of both base-
line systems remain unchanged. For the deduplication ratio
50×, CDStore incurs a monthly cost of US$1,950 only, and
achieves 92% and 89% savings when compared to the AONT-
RS-based (i.e., US$23,200) and single-cloud systems (i.e.,
US$17,000), respectively. To summarize, CDStore achieves
high cost savings over the baseline systems for large weekly
backup sizes and large deduplication ratios.

Figure 5 presents the breakdown of the monthly costs of
CDStore, in terms of the VM and backend costs. Figure 5(a)
shows the results versus different weekly backup sizes, while
we fix the deduplication ratio as 10×. The VM cost is higher
than the backend cost when the weekly backup size is small,
yet the backend cost will become dominant as the weekly
backup size increases. Figure 5(b) shows the results versus
different deduplication ratios, while we fix the weekly backup
size as 16TB. Both the VM and backend costs decrease as the
deduplication ratio increases.

Our analysis focuses on the backup cost, and we briefly
discuss the restore cost of CDStore. To restore a backup, a
CDStore client downloads slightly more data than the original
backup size to decode the original secrets (see Section II-B).
The restore cost of CDStore is the sum of outbound transfer
costs of k clouds; if all clouds have the same outbound transfer
cost, it is roughly the same as that of the single cloud system.

IV. CONCLUSIONS

CDStore is a multi-cloud storage system for organizations
to outsource backup and archival storage to public cloud
vendors, with three goals in mind: reliability, security, and
cost efficiency. The core design of CDStore is convergent
dispersal, which augments secret sharing with the deduplica-
tion capability. CDStore also adopts two-stage deduplication
to achieve bandwidth and storage savings and prevent side-
channel attacks. Our cost analysis demonstrates that CDStore
achieves significant cost savings via deduplication.

ACKNOWLEDGMENTS

This work was supported in part by Research Grants
Council of Hong Kong (ECS CUHK419212 and GRF
CUHK413813) and Cisco University Research Program Fund
(CG#593822) from Silicon Valley Community Foundation.

REFERENCES

[1] M. Bellare, S. Keelveedhi, and T. Ristenpart. DupLESS: Server-aided
encryption for deduplicated storage. In Proc. USENIX Security, 2013.

[2] A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa. DepSky:
Dependable and secure storage in a cloud-of-clouds. ACM Trans. on
Storage, 2013.

[3] A. Bessani, R. Mendes, T. Oliveira, N. Neves, M. Correia, M. Pasin,
and P. Verissimo. SCFS: A shared cloud-backed file system. In Proc.
USENIX ATC, 2014.

[4] V. Boyko. On the security properties of OAEP as an all-or-nothing
transform. In Proc. CRYPTO, 1999.

[5] C. Cachin, R. Haas, and M. Vukolić. Dependable storage in the
intercloud. IBM Research Report RZ 3783, 2010.

[6] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and M. Theimer.
Reclaiming space from duplicate files in a serverless distributed file
system. In Proc. IEEE ICDCS, 2002.

[7] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg. Proofs of
ownership in remote storage systems. In Proc. ACM CCS, 2011.

[8] D. Harnik, B. Pinkas, and A. Shulman-Peleg. Side channels in cloud
services: Deduplication in cloud storage. IEEE Security & Privacy,
2010.

[9] Y. Hu, H. C. H. Chen, P. P. C. Lee, and Y. Tang. NCCloud: Applying
network coding for the storage repair in a cloud-of-clouds. In Proc.
USENIX FAST, 2012.

[10] M. Li, C. Qin, and P. P. C. Lee. CDStore: Toward reliable, secure, and
cost-efficient cloud storage via convergent dispersal. In Proc. USENIX
ATC, 2015.

[11] D. T. Meyer and W. J. Bolosky. A study of practical deduplication. In
Proc. USENIX FAST, 2011.

[12] M. Rabin. Fingerprint by random polynomials. Technical report, Tech-
nical Report TR-15-81, Center for Research in Computing Technology,
Harvard University, 1981.

[13] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields.
Journal of the Society for Industrial and Applied Mathematics, 1960.

[14] J. K. Resch and J. S. Plank. AONT-RS: Blending security and
performance in dispersed storage systems. In Proc. USENIX FAST, 2011.

[15] R. L. Rivest. All-or-nothing encryption and the package transform. In
Proc. FSE, 1997.

[16] A. Shamir. How to share a secret. Communications of the ACM, 1979.
[17] G. Wallace, F. Douglis, H. Qian, P. Shilane, S. Smaldone, M. Chamness,

and W. Hsu. Characteristics of backup workloads in production systems.
In Proc. USENIX FAST, 2012.

7

Mingqiang Li is now with Hong Kong Advanced
Technology Center, Ecosystem & Cloud Service Group,
Lenovo Group Ltd. His current research interests
include cloud computing and storage systems. Email:
mingqiangli.cn@gmail.com.

Chuan Qin is now a PhD student at The Chinese University
of Hong Kong. His research interests include cloud security
and deduplication. Email: cqin@cse.cuhk.edu.hk.

Jingwei Li is now a postdoctoral researcher at The Chi-
nese University of Hong Kong. His research interests
include applied cryptography and cloud security. Email:
lijw1987@gmail.com.

Patrick P. C. Lee is now an Associate Professor of the De-
partment of Computer Science and Engineering at the Chinese
University of Hong Kong. His research interests are in various
applied/systems topics including storage systems, distributed
systems and networks, operating systems, dependability, and
security. Email: pclee@cse.cuhk.edu.hk.

