# **ELECT: Enabling Erasure Coding Tiering for LSM-tree-based Storage**



Yanjing Ren<sup>1</sup>, Yuanming Ren<sup>1</sup>, Xiaolu Li<sup>2</sup>, Yuchong Hu<sup>2</sup>, Jingwei Li<sup>3</sup>, Patrick P. C. Lee<sup>1</sup> The Chinese University of Hong Kong<sup>1</sup>, Huazhong University of Science and Technology<sup>2</sup> University of Electronic Science and Technology of China<sup>3</sup> Source code: https://github.com/adslabcuhk/elect

**Problem:** Replication incurs high storage overhead in distributed key-value stores Motivation



# SSTables # accesses (a) Statistics across levels

# SSTables (%)

(b) Access distributions in  $L_4$ 

Edge Storage  $\bigcirc$ 

Cloud Storage

**Edge-cloud storage: Example of storage tiering** 

- > Erasure coding provides low redundancy fault-tolerance for distributed storage
- Skewed workloads are common in practical key-value stores

**Storage and access patterns in Cassandra** 

> We explore storage tiering for LSM-tree-based storage to separate data into hot and cold tiers

Main Idea

- > ELECT, a distributed KV store that enables erasure coding tiering
  - Extends LSM-tree with hybrid redundancy by storing hot KV pairs with replication and cold KV pairs with erasure-coding in the hot tier
  - **Offloads cold KV pairs to the cold tier** to further alleviate hot-tier storage overhead

## **ELECT Design**

Redundancy transitioning



- Decouples replicas into multiple LSM-trees
- Offline cross-encoding of SSTables in last LSM-tree level
- Load-balanced decentralized parity node selection
- Fine-grained replica removal
- Hotness awareness
  - Monitor SSTables' hotness by access frequency and lifetime
  - Offloading cold data to the cold tier
- **Balancing storage-performance trade-off** 
  - Determine SSTables involved in redundancy transitioning and cold-data offloading based on user-specified storage saving target



ELECT is prototyped atop Cassandra 4.10.0 (all artifact badges are awarded)

| ARTIFACT    | ARTIFACT    | ARTIFACT    |
|-------------|-------------|-------------|
| EVALUATED   | EVALUATED   | EVALUATED   |
| usenix      | USENIX      | usenix      |
| association | ASSOCIATION | association |
| AVAILABLE   | FUNCTIONAL  | REPRODUCED  |

### **Prototype Experiments**

#### **Consider an edge-cloud setting**



#### **Performance of YCSB core workloads**

- Storage overhead: 56.1% edge storage saving from Cassandra
- > Performance: Preserve Cassandra throughput (up to **3%** difference except for workload E)

