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Abstract

Given the skewed nature of practical key-value (KV) storage
workloads, distributed KV stores can adopt a tiered approach
to support fast data access in a hot tier and persistent storage in
a cold tier. To provide data availability guarantees for the hot
tier, existing distributed KV stores often rely on replication
and incur prohibitively high redundancy overhead. Erasure
coding provides a low-cost redundancy alternative, but in-
curs high access performance overhead. We present ELECT,
a distributed KV store that enables erasure coding tiering
based on the log-structured merge tree (LSM-tree), by adopt-
ing a hybrid redundancy approach that carefully combines
replication and erasure coding with respect to the LSM-tree
layout. ELECT incorporates hotness awareness and selec-
tively converts data from replication to erasure coding in the
hot tier and offloads data from the hot tier to the cold tier.
It also provides a tunable approach to balance the trade-off
between storage savings and access performance through a
single user-configurable parameter. We implemented ELECT
atop Cassandra, which is replication-based. Experiments on
Alibaba Cloud show that ELECT achieves significant storage
savings in the hot tier, while maintaining high performance
and data availability guarantees, compared with Cassandra.

1 Introduction
Storage tiering provides a storage paradigm for balancing the
trade-off between access performance and storage persistence
in large-scale storage. In particular, for distributed key-value
(KV) storage, practical KV workloads are known to have
skewed access patterns [6,9,16,62], in which a small fraction
of KV pairs are frequently accessed (i.e., hot) and the remain-
ing large fraction of KV pairs are rarely accessed (i.e., cold).
Thus, it is natural for distributed KV stores to adopt storage
tiering, in which a hot tier provides fast data access for hot
KV pairs, while a cold tier provides persistent storage with
less-demanding performance requirements for cold KV pairs.

A primary use case for storage tiering is edge-cloud stor-
age. Our motivation is that Internet-of-things (IoT) appli-
cations are forecast to generate over 79.4 ZB of data in the
wild by 2025 [51]. Since the cloud access performance is
bottlenecked by the constrained Internet bandwidth, IoT appli-
cations are often coupled with the edge computing paradigm,
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in which edge nodes, the lightweight instances (e.g., micro-
datacenters) provisioned with limited computation and stor-
age resources, are deployed in close proximity to IoT de-
vices [52, 53]. From a storage perspective, we can deploy a
distributed KV store as the high-performance hot tier in the
edge, while the cloud forms the persistent cold tier. Such an
edge-cloud storage architecture has been used in virtualized
network functions [40], multi-tier computing [42], multime-
dia management [21], etc. In addition to edge-cloud storage,
storage tiering is also applicable to other storage architec-
tures, such as content-delivery networks and cloud block stor-
age (e.g., the combination of Amazon’s Elastic Block Store
(EBS) [1] and Simple Storage Service (S3) [2]).

Providing data availability guarantees for hot-tier storage
is necessary, especially when the hot tier is deployed in
distributed storage environments where failures are preva-
lent [24]. For example, in edge-cloud storage, edge nodes
have limited storage resources and are also prone to fail-
ures [53]. While the cloud provides abundant persistent stor-
age resources, reconstructing any lost data for failed edge
nodes from the cloud is inefficient due to the high edge-
cloud latencies [12, 67]. Thus, to ensure data availability
against edge node failures, the edge can introduce storage
redundancy, so that any lost data in the edge can be directly
reconstructed through the redundant data from other avail-
able edge nodes, without the need for retrieving data from
the cloud for reconstruction. However, modern distributed
KV stores [18, 22, 34, 46] are commonly designed for cloud
data centers with sufficient resources, and adopt replication
to distribute exact redundant copies for individual KV pairs
across multiple nodes to provide fault tolerance against node
failures. Replication multiplies storage overhead, which is
prohibitive for resource-constrained edge nodes, or generally,
the high-performance hot tier with limited storage resources.

Erasure coding provides a low-cost redundancy alternative
to achieve data availability with much lower storage overhead
compared with replication (see §2.3 for details). It has been
extensively studied in the literature, especially for distributed
KV storage in data centers (§7). However, there exists a
fundamental storage-performance trade-off for replication and
erasure coding: replication incurs high storage overhead, yet
it supports not only load balancing of reads across redundant
copies, but also simple reconstruction of any lost data from
another available redundant copy; in contrast, erasure coding
significantly reduces storage overhead, but it does not keep



redundant copies for load balancing and is known to incur
higher bandwidth and I/Os in reconstructing lost data when
failures happen [19, 26]. It is thus critical to mitigate the
storage overhead, while maintaining high access performance
as if replication were used, in the hot tier.

We present ELECT, a distributed KV store that enables
erasure coding tiering. ELECT builds on the log-structured
merge tree (LSM-tree) [45]. Given the skewed nature of
practical KV storage workloads [6,9,16,62], ELECT extends
the LSM-tree with a hybrid redundancy approach by storing
limited amounts of hot KV pairs with replication in the hot tier
for high access performance, while still achieving significant
storage savings by storing large amounts of cold KV pairs
with erasure coding in the hot tier. In addition, it can offload
cold KV pairs from the hot tier to the cold tier to further
alleviate the storage overhead in the hot tier.

Enabling hybrid redundancy in ELECT, however, is non-
trivial. ELECT should decide how (e.g., at what granularities),
when (e.g., on or off the write path), and what (e.g., differ-
entiating hot and cold KV pairs) to convert replicated KV
pairs into erasure-coded KV pairs. Most importantly, ELECT
should provide a mechanism to balance the trade-off between
storage savings and access performance; such a mechanism
should be adaptive to various user requirements. Note that
erasure coding has also been proposed for caching [49] and
content delivery networks [61] in the context of storage tier-
ing. The novelty of ELECT lies in the careful combination
of replication and erasure coding for LSM-tree-based storage
with several new design techniques (see §7 for details).

Our contributions are summarized as follows.

• We design ELECT to make a case for enabling erasure cod-
ing tiering for distributed KV storage. ELECT has several
design features: (i) a redundancy transitioning approach
for the conversion from replication to erasure coding based
on the LSM-tree; (ii) a hotness-aware approach for both
redundancy transitioning and the data offloading from the
hot tier to the cold tier; and (iii) a tunable approach, with
only a single user-specified parameter based on a storage
saving target for simple deployment, for configuring how
much data to be erasure-coded and offloaded.

• We implemented ELECT atop Cassandra v4.1.0 [3]. Cas-
sandra [34] is a distributed KV store that uses consistent
hashing [31] for data partitioning (§2.1) and the LSM-tree
for internal storage management (§2.2). We choose Cassan-
dra due to its decentralized, high-performance, and fault-
tolerant nature. Cassandra supports only replication, and
ELECT extends Cassandra with erasure coding tiering.

• We conduct experiments in an edge-cloud setting on Al-
ibaba Cloud [38]. Compared with (replication-based) Cas-
sandra, ELECT achieves 56.1% edge storage savings, with
similar performance in normal read/write operations.

We now open-source our ELECT prototype at
https://github.com/adslabcuhk/elect.
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Figure 1: Triple replication in a distributed KV store, in which each
node uses an LSM-tree for internal storage management.

2 Background
2.1 Distributed KV Stores
Modern distributed KV stores partition KV pairs across mul-
tiple nodes by either consistent-hashing-based [31] distribu-
tion [17, 18, 22, 34] or range-based distribution [5, 11, 46, 57].
Consistent hashing arranges nodes in a hash ring, in which
each node is associated with a range of the hash ring and
stores the KV pairs whose keys are hashed to the range. For
load balancing, each node can be further associated with mul-
tiple virtual nodes that are associated with different ranges of
the hash ring. In contrast, range-based distribution divides
the entire key space into non-overlapping ranges, in which
each node stores the KV pairs in one of the ranges. ELECT
builds on Cassandra [34], which uses consistent hashing, yet
its design is compatible with both distribution approaches.

Replication is commonly used in distributed KV stores for
fault tolerance [5,11,18,22,34,46,57]. Given a replication fac-
tor R, replication distributes R copies of each KV pair across
a set of nodes, which collectively form a replication group.
Suppose that there are M nodes (denoted by N0,N1, · · · ,NR−1)
arranged in a clockwise direction of a hash ring. Each node
Ni is associated with a non-overlapping key range Ki, where
0 ≤ i ≤ R−1, that corresponds to the keys that precede Ni in
the hash ring. Suppose that a KV pair is mapped to Ni. The
first copy of the KV pair (called the primary replica) is stored
in Ni, and the R−1 additional copies (called the secondary
replicas) are stored in the following nodes along the clock-
wise direction of the hash ring (i.e., Ni+1 mod M , Ni+2 mod M ,
· · · , Ni+R−1 mod M). Thus, each node Ni now manages the
primary replicas of its associated key range as well as the
secondary replicas of the associated key ranges of the R−1
preceding nodes in the anti-clockwise direction of the hash
ring. Figure 1 shows an example of triple replication (i.e.,
R = 3) and M = 6 nodes. For example, N0 stores the KV pairs
for K0, K5, and K4.

2.2 Log-Structured Merge Trees (LSM-Trees)
Each node in Cassandra [34] manages its internal storage
based on an LSM-tree [45], as also used in state-of-the-art
local [9] and other distributed [5, 11, 34, 46] KV stores. An
LSM-tree is a data structure designed for efficient writes (i.e.,
Put requests), reads (i.e., Get requests), and scans (i.e., Scan
requests). Figure 1 shows how an LSM-tree is deployed in



a distributed KV store. An LSM-tree organizes KV pairs
in immutable fixed-size files, called SSTables, across ℓ+1
levels, denoted by L0, L1, · · · ,Lℓ; L0 is the lowest level and Lℓ

is the highest level. Each SSTable stores multiple KV pairs
in a sorted manner in units of data blocks of size several KiB
each. To support fast reads, each SSTable maintains an index
block to track the key ranges and offsets of all data blocks
as well as a Bloom filter [7] to track its currently stored keys
with a small false positive rate. We refer to the data blocks
as the data component, and collectively refer to the index
block, Bloom filter, and SSTable metadata as the metadata
component, for an SSTable. Inside the LSM-tree, the number
of SSTables in each level increases from the lower to higher
levels, while the KV pairs of an SSTable do not overlap with
those of other SSTables in the same level except L0 (note that
some advanced LSM-trees may have overlapping KV pairs
across SSTables in the same level [48]).

Writes and reads of KV pairs are issued to an LSM-tree
as follows. Each write appends a newly written KV pair to
an on-disk write-ahead log (WAL) for crash consistency and
then inserts it into a mutable in-memory structure called a
MemTable. When the MemTable is full, it is turned into an
Immutable MemTable, which is then flushed to the lowest
level L0 as an SSTable. Each level has a capacity limit, in-
creasing from lower to higher levels. When a lower level
reaches its capacity limit, it triggers compaction to merge the
KV pairs in the lower level into its next higher level. Specifi-
cally, a compaction operation selects an SSTable in the lower
level, reads all SSTables in the higher level that have over-
lapping key ranges with the selected SSTable, sorts all the
latest KV pairs (while all stale KV pairs are discarded), and
re-generates and stores the non-overlapping SSTables in the
higher level. On the other hand, each read for a key searches
the MemTable and then the SSTables from L0 to Lℓ. It returns
the KV pair if the key is found, or null otherwise.

2.3 Erasure Coding
Erasure coding provides low-redundancy fault tolerance for
distributed storage. In this work, we focus on Reed-Solomon
(RS) codes [50], configured by two parameters n and k (where
k < n), as our erasure code construction. We choose RS codes
for three reasons: (i) they support general coding parameters n
and k (provided k < n); (ii) they have the minimum storage re-
dundancy for tolerating against any n− k node failures (a.k.a.
the Maximum Distance Separable (MDS) property); and (iii)
they have been popularly deployed in production [24, 43].

An (n,k) RS code encodes k original (uncoded) fixed-size
data chunks into n−k (coded) parity chunks of the same size,
and the collection of n data and parity chunks forms a cod-
ing group; the (n,k) RS code considered here is systematic,
meaning that the coding group keeps the k data chunks. It
ensures that any k out of the n chunks of a coding group can
reconstruct all k original data chunks. Large-scale storage sys-
tems comprise multiple coding groups that are independently

encoded/decoded, and the n chunks of each coding group are
distributed across n nodes to tolerate any n− k node failures
with n/k× storage overhead. Compared with replication, RS
codes incur much lower storage overhead with higher fault
tolerance; for example, Facebook [43] uses the (14,10) RS
code for four-node fault tolerance with 1.4× storage overhead
only, while traditional triple replication [25] only provides
two-node fault tolerance and incurs 3× storage overhead.

Erasure coding is known to have reconstruction penalty.
For example, for any lost chunk, an (n,k) RS code needs to
retrieve k available chunks from other alive nodes in the same
coding group so as to decode the lost chunk. Reconstruction
is common in practice due to the prevalence of failures [24,
26, 43], and there are two major reconstruction operations:
degraded reads (i.e., reads issued to lost chunks) and full-node
recovery (i.e., all data stored in a node is lost).

There are code constructions that reduce the reconstruction
bandwidth of RS codes (e.g., regenerating codes [19] and
locally repairable codes [26]). However, they still retrieve
more data for reconstruction than the amount of lost data,
and the trade-off between storage savings and reconstruction
bandwidth in erasure coding is fundamental [19].

3 Design Considerations
Before we present the design of ELECT, we pose five design
questions that need to be addressed.
Q1: At what granularity should KV pairs be encoded? In
the context of KV stores, there are two approaches to encode
KV pairs at different granularities: (i) self-encoding [8, 32,
33, 44], which splits a KV pair into k fixed-size data chunks
for encoding, and (ii) cross-encoding [14, 37, 65, 66], which
aggregates multiple KV pairs into individual data chunks and
performs encoding on each group of k different data chunks.
Self-encoding improves the parallelism of data access, but
incurs significant metadata overhead for indexing all chunks
of individual KV pairs [65], especially when KV services are
dominated by small KV pairs [9]. In contrast, cross-encoding
mitigates such metadata overhead, but the degraded read to a
KV pair during a node failure needs to retrieve k surviving
chunks of the same coding group for reconstruction, thereby
leading to amplified I/Os and bandwidth.

ELECT opts for cross-encoding to reduce the metadata
overhead; if we only encode cold KV pairs that are rarely
accessed (see Q3 below), the degraded read overhead should
be limited. Also, since LSM-trees organize KV pairs in units
of SSTables, ELECT opts for cross-encoding across multiple
SSTables (i.e., each SSTable is treated as a chunk) to align
with the LSM-tree-based storage management.
Q2: Should erasure coding be performed on or off the
write path? Erasure coding for KV pairs can be performed
inline [8, 20, 44], in which KV pairs are encoded on the write
path, or offline [23,36,58], in which KV pairs are first written
and later encoded in the background. Offline encoding has
the flexibility of first storing hot KV pairs with replication



0
.4 3
.8

3
9
.7 5

6
.2

9
.2

3
3
.7 4
6
.9

1
0
.2

  0

 25

 50

 75

100

# SSTables # accesses

F
ra

ct
io

n
 (

%
) L1 L2 L3 L4

0

25

50

75

100

0 25 50 75 100
# SSTables (%)

C
u
m

. 
a
cc

e
ss

 (
%

)

(a) Statistics across levels (b) Access distributions in L4

Figure 2: Storage and access patterns in Cassandra.

for high access performance (see Q3 below). Thus, ELECT
opts for offline encoding, in which KV pairs are first written
with replication, and later performs erasure coding (across
SSTables) in the background.
Q3: How should skewed access patterns be addressed?
Practical KV workloads have skewed access patterns [6,9,16,
62], in which few KV pairs are frequently accessed (hot) and
the majority of KV pairs are rarely accessed (cold). ELECT
opts to apply erasure coding to cold SSTables to mitigate the
degraded read overhead in cross-encoding (see Q1), while
storing hot SSTables with replication for high-performance
accesses with limited additional storage overhead. The idea
of applying replication for hot data and erasure coding for
cold data has been studied in prior studies [23,36,58], yet they
target different deployment environments and how to adapt
this idea into LSM-tree-based KV stores remains unexplored.

We motivate our design by examining the storage and
access patterns of SSTables in different LSM-tree levels by
generating realistic KV workloads using the benchmarking
tool YCSB [16], which has been extensively used for KV
storage evaluation in the literature. Specifically, we load
100 M 1-KiB KV pairs with a key size of 24 bytes and a
value size of 1000 bytes into Cassandra (v4.1.0) via YCSB
in our testbed (see §6.1 for testbed details). Also, using the
nodetool command in Cassandra, we flush the MemTable
of each LSM-tree to disk and force the compaction on all
SSTables to keep all nodes in a stable state. We find that the
last level (i.e., the highest level) is L4, while L0 is empty as the
SSTables originally in L0 are merged to L1 after the forced
compaction. We then issue 10 M reads to the stored KV
pairs, where the keys are accessed under the Zipf distribution
with a Zipfian constant of 0.99 (default in YCSB). Note that
we set the replication factor as one to mitigate the impact
of replication, and disable the key cache and row cache in
Cassandra to have all KV pairs read from on-disk SSTables.

Figure 2(a) shows the distributions of numbers of SSTables
and accesses to SSTables in each level. The intermediate
levels L2 and L3 have high read frequencies. However, L4
stores the most SSTables (56.2% of all SSTables), but only
accounts for 10.2% of accesses. This motivates us to perform
erasure coding only for the SSTables in the last level (e.g., L4
in this example) and replication for the SSTables in the lower
levels, so that we still achieve significant storage savings and
limit the degraded read overhead caused by erasure coding.

Figure 2(b) further shows the cumulative distribution of
access frequencies versus the SSTables in L4. Only 18.2% of

SSTables in L4 are accessed. This suggests that we can apply
erasure coding in a more fine-grained manner by selecting
only the SSTables that are rarely accessed for erasure coding
(i.e., with negligible degraded read overhead).
Q4: How should the access overhead in the cold tier be
mitigated? It is expected that the cold tier has worse access
performance than the hot tier. For example, in edge-cloud
storage, while the cloud provides much more abundant stor-
age resources than the edge, it is also limited by the high edge-
cloud latency over the Internet (e.g., 30 ms for client-to-cloud
communication versus 5 ms for client-to-edge communica-
tion [12, 67]). ELECT should selectively offload data that is
rarely accessed from the hot tier to the cold tier, so as to avoid
frequently retrieving the data back from the cold tier.
Q5: How should ELECT address the trade-off between
storage savings and access performance? Both redundancy
transitioning from replication to erasure coding and the data
offloading from the hot tier to the cold tier in essence trade
access performance for storage savings. ELECT should pro-
vide a tunable mechanism that allows users to balance the
trade-off depending on their requirements.

4 ELECT Design
ELECT extends Cassandra [34], which uses replication for
fault tolerance, with erasure coding tiering. It is deployed
across multiple nodes in the hot tier and is backed by the
cold tier with persistent storage. It proposes several design
elements to address the questions in §3.

• LSM-tree-based redundancy transitioning (§4.1). ELECT
applies cross-encoding (see Q1) across SSTables in an of-
fline manner (see Q2), by converting SSTables from replica-
tion into erasure coding (called redundancy transitioning).
It decouples the replicas originating from different nodes
into multiple LSM-trees, such that it applies cross-encoding
to the primary replicas and removes the secondary replicas
after encoding. One subtlety is that it should maintain the
correctness of redundancy transitioning even under LSM-
tree compaction, which changes the content of SSTables.

• Hotness awareness (§4.2). ELECT applies cross-encoding
to only SSTables in the last LSM-tree level (see Q3). It
also offloads SSTables that tend to be rarely accessed from
the hot tier to the cold tier to mitigate the access overhead
in the cold tier (see Q4).

• Balancing storage-performance trade-off (§4.3). ELECT
provides a user-configurable parameter, namely the stor-
age saving target, to balance the trade-off between storage
savings and access performance (see Q5).

4.1 LSM-tree-based Redundancy Transitioning
ELECT decomposes redundancy transitioning into four
steps: LSM-tree management (§4.1.1), parity node selection
(§4.1.2), cross-SSTable encoding (§4.1.3), and secondary
replica removal (§4.1.4). Figure 3 shows the overall redun-
dancy transitioning workflow in ELECT.
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4.1.1 LSM-tree Management

Decoupled replication management. In Cassandra, all repli-
cas stored in a node are managed in a single LSM-tree. To
facilitate cross-SSTable encoding across nodes and subse-
quent removals of replicas, ELECT borrows the idea of de-
coupled replication management [57,68] (originally designed
for reducing I/O amplification) by separating the replicas
into multiple LSM-trees in each node. Recall that for a repli-
cation factor R, each node maintains the primary replicas
originating from the node itself and the secondary replicas
originating from the R−1 preceding nodes in the hash ring
(§2.1). ELECT now lets each node maintain R LSM-trees,
comprising one primary LSM-tree for the primary replicas
and R−1 secondary LSM-trees for the R−1 respective sets
of secondary replicas. For example, in Figure 1 with R = 3,
N0 writes the primary replicas in key range K0 to the primary
LSM-tree and the secondary replicas in key ranges K5 and K4
to two other secondary LSM-trees.
LSM-tree level generation. The original LSM-tree creates a
new level Lℓ when the current last level Lℓ−1 is full. However,
depending on the current storage usage, the last level Lℓ may
only contain a small number of SSTables. This compromises
the effectiveness of ELECT, which applies erasure coding
only to the SSTables in the last level. To address this issue,
ELECT modifies the current LSM-tree design and creates the
new level Lℓ in the LSM-tree only when the size of the current
last level Lℓ−1 reaches the capacity limit of the next level Lℓ.
For example, the LSM-tree in Cassandra currently sets the
size limits of Lℓ−1 and Lℓ as T and 10T , respectively, where
T is some capacity limit and the default capacity difference
across adjacent levels is 10×. ELECT now keeps adding
SSTables to Lℓ−1 even though the size exceeds T . It only
creates Lℓ when the size of Lℓ−1 exceeds 10T . It then still
keeps a size T of SSTables in Lℓ−1 and moves at least 9T of
SSTables to Lℓ. In this case, ELECT ensures that the last level
Lℓ always contains a sufficiently large number of SSTables
(almost 90% of all SSTables across all levels in our case)
and maintains the effectiveness of redundancy transitioning.
Note that if the LSM-tree grows and adds a new level, the
current erasure-coded SSTables in the previous last level will
be moved to the new last level.

4.1.2 Parity Node Selection

ELECT applies cross-SSTable encoding on k uncoded SSTa-
bles (called data SSTables) from k nodes (called data nodes)
and generates n− k coded SSTables (called parity SSTables)
that are stored in n− k nodes (called parity nodes). Before
encoding, ELECT first selects the set of parity nodes to which
the parity SSTables are distributed. The selection process
should satisfy the following requirements: (i) for fault toler-
ance, the parity nodes should be distinct from the data nodes;
(ii) for load balancing, the parity SSTables are evenly dis-
tributed across all nodes after parity node selection; and (iii)
for scalability, the parity nodes can be deterministically se-
lected by individual nodes without centralized coordination.

To satisfy the above requirements, ELECT forms each
coding group over n consecutive nodes in the hash ring,
say Ni mod M , N(i+1) mod M , · · · , N(i+n−1) mod M for 0 ≤ i < M,
where M is the total number of nodes, the first k nodes are the
data nodes, and the following n−k nodes are the parity nodes.
Also, each node locally maintains a monotonic sequence num-
ber Q (initialized as zero). Specifically, for each SSTable in
the primary LSM-tree that is selected by Ni (0 ≤ i < M) for
erasure coding, Ni selects a leader parity node Np, which will
be responsible for computing and sending the parity SSTables
(§4.1.3) to n− k−1 other parity nodes. It computes p as:

p = (i+(Q mod k)+1) mod M, (1)
and increments the sequence number Q by one for each
SSTable being selected for erasure coding. Note that the
selection of SSTables is based on their priorities (§4.2).

We explain via an example the idea behind Equation (1).
From Figure 1 (where M = 6), we use (6,4) RS coding. Thus,
N0 (deterministically) selects a leader parity node from N1,
N2, N3, and N4 in a round-robin fashion for encoding its
SSTables as Q increases; similarly, N1 selects a leader parity
node from N2, N3, N4, and N5, and so forth. Inversely, each
node Ni (0 ≤ i < M) in the whole system will be selected
as a leader parity node by k nodes N(i−1) mod M , N(i−2) mod M ,
· · · , N(i−k) mod M , which now become the k data nodes of a
coding group; for example, in Figure 3, N4 serves as a leader
parity node for N0, N1, N2, and N3 in a coding group under
(6,4) RS coding. Since a large-scale storage system typically
contains multiple coding groups, ELECT ensures that all
coding groups are distributed across different sequences of
n consecutive nodes. Finally, each leader parity node (say
Np) will be the first parity node of a coding group, and the
remaining n− k − 1 parity nodes of the coding group are
the n− k − 1 succeeding nodes of Np along the clockwise
direction of the hash ring.

4.1.3 Cross-SSTable Encoding

Encoding workflow. Each of the k data nodes of a coding
group sends an SSTable to the leader parity node, which is
determined by the sequence number Q according to Equa-
tion (1) (§4.1.2). Upon receiving the k data SSTables, the



leader parity node encodes them into n− k parity SSTables,
stores one of the parity SSTables locally, and sends the re-
maining parity SSTables to the other n− k−1 parity nodes.
The parity nodes store the parity SSTables as separate files
outside of their LSM-trees. For example, from Figure 3, con-
sider a coding group for (6,4) RS coding with k = 4 data
nodes N0, N1, N2, and N3, all of which share the same leader
parity node N4. N0 sends an SSTable (say S) to N4. Then, N4
encodes S together with other SSTables (from N1, N2, and N3,
respectively) to generate the parity SSTables (say P and P′).
N4 stores P locally and sends P′ to another parity node N5.

The leader parity node also generates a metadata structure,
called ECMeta, for the coding group to support failure re-
construction (§5). The ECMeta contains n 4-tuples, each of
which describes a data/parity SSTable in the coding group,
including: (i) the cryptographic hash (e.g., SHA-256) of the
content of the data component of the SSTable (32 bytes), (ii)
the SSTable size (4 bytes), (iii) the identifier of the node that
stores the SSTable (4 bytes), and (iv) the position in the cod-
ing group (indexed from 0 to n−1) (4 bytes). In particular, we
borrow the idea from deduplication [47] and use the SSTable
hash as the unique identifier to search for the SSTable during
reconstruction, assuming that the hash collisions for distinct
SSTables are practically unlikely. The leader parity node then
sends the ECMeta of each data SSTable to the corresponding
R nodes in the replication group. Upon receiving the ECMeta,
each of the R nodes includes the ECMeta in the metadata
component of the corresponding SSTable.
Compaction-triggered parity updates. When a primary
LSM-tree undergoes compaction, its data SSTables (in the
last level) may be updated. ELECT needs to update the parity
SSTables of the same coding group to maintain consistency.

Consider a primary LSM-tree that undergoes compaction.
Let S0, S1, · · · , Su be the old data SSTables before compaction,
and S′0, S′1, · · · , S′v be the new data SSTables after compaction,
where u and v are the numbers of old data SSTables and
new data SSTables, respectively. Without loss of general-
ity, the two sequences of data SSTables (S0,S1, · · · ,Su) and
(S′0,S

′
1, · · · ,S′v) are ordered by (non-overlapping) key ranges.

ELECT pairs each of the old and new data SSTables as
(S0,S′0), (S1,S′1), and so forth. If u < v (i.e., there exist more
new data SSTables), the extra new data SSTables are simply
added as regular SSTables to the primary LSM-tree without
erasure coding; if u > v (i.e., there exist fewer new data SSTa-
bles due to deleted KV pairs), ELECT pairs each extra old
data SSTables with zero-filled dummy SSTables. The dummy
SSTables can later be replaced by the new data SSTables that
correspond to the same leader parity node.

For each pair of old and new SSTables, ELECT reads the
ECMeta of the old data SSTable to identify the corresponding
leader parity node. It sends the pair to the leader parity node,
which updates the parity SSTables of the same coding group
based on delta-based parity updates (similar to read-modify-
writes in RAID) [10] and sends out the updated ECMeta.

4.1.4 Secondary Replica Removal
ELECT removes the secondary replicas from the secondary
LSM-trees after cross-SSTable encoding to reclaim storage
space. Since the LSM-trees of different nodes perform com-
paction asynchronously, they may have distinct SSTables. It
is important to avoid incorrectly removing KV pairs from
the secondary replicas, especially for the KV pairs that are
updated after cross-SSTable encoding.

After cross-SSTable encoding, for each primary LSM-tree,
ELECT generates a key list for each data SSTable, where the
key list includes the keys in the SSTables and the correspond-
ing written timestamps; note that the timestamps are already
provided by Cassandra to identify the latest versions of KV
pairs among replicas. It sends the key list to the other sec-
ondary LSM-trees that contain the secondary replicas of the
data SSTable. For each secondary LSM-tree, ELECT finds
all SSTables in the last level whose KV pairs are covered
by the key list. It removes only the KV pairs that are either
the current or older versions with respect to the timestamps
specified in the key list. Note that ELECT creates new SSTa-
bles and tracks the key ranges of the removed KV pairs in
the metadata components of the new SSTables, so as to be
compatible with the LSM-tree management under replication.
Finally, it reconstructs the SSTables for the remaining KV
pairs. If the current versions of all KV pairs indicated by the
key list are removed, the key list is also removed.

Figure 4(a) shows the replica removal workflow in the last
level of a secondary LSM-tree. Suppose that the secondary
LSM-tree has four KV pairs in the last level Lℓ, denoted
by KV0, KV1, KV2, and KV3, whose keys are k0, k1, k2, and
k3, respectively, while the four KV pairs are stored in two
SSTables (KV0, KV1) and (KV2, KV3). Now, suppose that
the secondary LSM-tree receives a key list (k1,k2,k3), whose
timestamps indicate that KV1 is the current version (i.e., same
timestamp), KV2 is older, and KV3 is newer. Thus, ELECT
removes KV1 and KV2. It also creates an SSTable that tracks
the key ranges for the deleted KV1 and KV2.

Note that the secondary LSM-tree may not remove the
current version of a KV pair (e.g., KV2) as indicated in the
key list, as the KV pair to be removed is not yet moved to the
last level due to asynchronous compaction of different nodes.
Figure 4(b) shows a case where the second last level Lℓ−1 has
a newer version KV1 and the current version KV2 with respect
to the timestamps in the key list. During compaction, ELECT
removes KV2 and adds KV1 to the last level Lℓ.

4.2 Hotness Awareness
ELECT incorporates hotness awareness into redundancy tran-
sitioning and data offloading.
Hotness-aware redundancy transitioning. ELECT moni-
tors the hotness of each SSTable based on two metrics: (i)
the access frequency, which refers to the number of reads
issued to the SSTable as measured by Cassandra, and (ii) the
lifetime, which refers to the elapsed time since the SSTable
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Figure 4: Secondary replica removal in ELECT.

creation. Among the SSTables in the last level of the primary
LSM-tree in each node, an SSTable is said to have a higher
priority to be selected for encoding (§4.1.3) if it has a lower
access frequency and (if a tie exists) a longer lifetime. ELECT
selects the SSTables with higher priorities for encoding based
on a storage saving target (§4.3).
Cold-data offloading. ELECT dynamically offloads SSTa-
bles from the hot tier to the cold tier based on the hotness of
SSTables, so as to further mitigate the storage overhead in the
hot tier. First, it offloads parity SSTables with long lifetimes
as they only affect parity updates (§4.1.3) and failure recon-
struction. Second, after all parity SSTables are offloaded,
it selectively offloads the data SSTables with higher priori-
ties. The exact numbers of data and parity SSTables being
offloaded depend on a storage saving target (§4.3). Note that
if an SSTable is selected to be offloaded, only the SSTable’s
data component is moved, while its metadata component re-
mains in the hot tier to serve read and compaction operations.
Furthermore, when a read or compaction operation touches
an SSTable in the cold tier, ELECT retrieves the SSTable’s
data component from the cold tier to the hot tier.

4.3 Balancing Storage-Performance Trade-Off
Redundancy transitioning and data offloading alleviate the
storage overhead in the hot tier, yet they also incur perfor-
mance overhead compared with replicating all data in the hot
tier. To balance the trade-off between the storage savings
and access performance, ELECT introduces a configurable
storage saving target α with respect to when all SSTables are
replicated, so as to control the number of SSTables involved
in redundancy transitioning and data offloading. Specifically,
α is a fractional value between zero and one, such that a
larger α implies that more SSTables are erasure-coded and
offloaded from the hot tier to the cold tier, and vice versa.
Quantifying storage overhead. We approximate the storage
overhead in the hot tier based on the number of SSTables
in a single primary LSM-tree in a node. Let Call be the
total number of SSTables in the primary LSM-tree, Clast be
the number of SSTables in the last level of the LSM-tree,
Crt be the number of data SSTables in the last level being
converted from replication to erasure coding, and Cpm and

Cdm be the numbers of parity SSTables and data SSTables
being offloaded to the cold tier, respectively.

We now quantify the actual storage size of a replication
group (in terms of the number of SSTables), assuming that the
storage load is balanced (i.e., all nodes have the same number
of SSTables in their respective primary LSM-trees). ELECT
replicates Call −Crt SSTables and encodes Crt SSTables, so
their storage usage is (Call −Crt) ·R+Crt · n

k . It also offloads
Cpm +Cdm SSTables to the cold tier. Thus, the actual storage
size of a replication group is:

(Call −Crt) ·R+Crt · n
k −Cpm −Cdm. (2)

When all SSTables are replicated, the actual storage size of
a replication group is Call ·R. To achieve the storage saving
target α , our goal is to configure Crt , Cpm, and Cdm, so that

1− 1
Call ·R [(Call −Crt) ·R+Crt · n

k −Cpm −Cdm]≥ α. (3)

In ELECT, each node computes Crt , Cpm, and Cdm indepen-
dently (without centralized coordination) given Call , Clast , and
α . Assuming balanced storage loads, the respective values of
Call and Clast across nodes have very small differences.
Balancing trade-off. ELECT starts with redundancy transi-
tioning to keep all SSTables (replicated or erasure-coded)
in the hot tier. If α is not met, it offloads parity SSTables
to the cold tier, so that all SSTables remain accessible from
the hot tier when no failure occurs; in case of a node failure,
parity SSTables are needed for recovery. If α is still not met,
ELECT offloads data SSTables to the cold tier. Note that
ELECT only offloads erasure-coded SSTables to the cold tier,
so α may not be achievable if it is too large.

• Case 1 (Redundancy transitioning): ELECT sets Cpm =
Cdm = 0 and chooses the largest possible Crt to maximize
storage savings. Note that Crt ≤Clast . From Equation (3),
Crt is given by:

Crt = min{R·Call ·α
R−n/k , Clast}. (4)

• Case 2 (Offloading of parity SSTables): ELECT proceeds
to Case 2 if α is not met, i.e., Crt =Clast . It sets Cdm = 0
and chooses the largest possible Cpm. Note that the number
of parity SSTables is at most n−k

k ·Clast . From Equation (3),
Cpm is given by:

Cpm = min{R ·Call ·α − (R− n
k ) ·Clast ,

n−k
k ·Clast}. (5)

• Case 3 (Offloading of data SSTables): ELECT proceeds
to Case 3 if α is still not met, i.e., Cpm = n−k

k ·Clast . It
chooses the largest possible Cdm. Note that Cdm ≤ Clast .
From Equation (3), Cdm is given by:

Cdm = min{Call ·R ·α − (R−1) ·Clast , Clast}. (6)

5 Implementation
We implement ELECT in Java based on Cassandra v4.1.0 [3],
with around 27 K lines of code of modifications to Cassan-
dra’s codebase (which consists of 1.25 M lines of code), by
adding redundancy transitioning, hotness monitoring, data
offloading, full-node recovery, and degraded reads/writes.



We implement the erasure coding operations based on Intel’s
Intelligent Storage Acceleration Library [27] and link the
operations with Cassandra through the Java Native Interface.
Consistent reads/writes. Under replication, Cassandra sup-
ports consistent reads/writes based on the configurable
read/write consistency levels, which specify the number of
nodes in a replication group that need to acknowledge a
read/write request. ELECT maintains the same read/write
workflows for replicated KV pairs as in Cassandra. For writes,
ELECT performs the same consistent writes as in Cassandra
since it always writes KV pairs via replication. For reads, af-
ter receiving enough acknowledgments according to the read
consistency level, if a KV pair is replicated, ELECT follows
the same consistent read path as in Cassandra; if a KV pair
is erasure-coded, ELECT always returns the KV pair from
the primary LSM-tree or issues degraded reads (see below) if
the KV pair is unavailable. ELECT currently does not verify
reads for erasure-coded KV pairs.
Full-node recovery. Suppose that a node crashes and all its
LSM-trees are lost. ELECT performs recovery in a new node
on a per-LSM-tree basis. To recover a primary LSM-tree,
ELECT retrieves the secondary LSM-tree from another alive
node to the new node. The SSTables from the lowest to the
second last level in the LSM-tree are replicated and can be
directly recovered from their replicas. For the SSTables in
the last level being erasure-coded, ELECT retrieves k data
or parity SSTables of the same coding group based on the
ECMeta from the other alive nodes or the cloud to decode the
lost SSTables. To recover a secondary LSM-tree, ELECT
retrieves a primary LSM-tree or a secondary LSM-tree from
the other nodes in the same replication group; if a primary
LSM-tree is retrieved, ELECT removes the data components
of SSTables that are erasure-coded, as the secondary LSM-
tree only keeps their metadata components (§4.1.4).
Degraded reads. Suppose that ELECT receives a degraded
read to an unavailable KV pair. ELECT relays the read re-
quest to another alive node in the same replication group, with
a flag indicating the KV pair is unavailable. If the KV pair is
stored with replication, the alive node directly returns the KV
pair; otherwise, if the KV pair is stored with erasure coding,
the alive node decodes the SSTable containing the KV pair
by retrieving k data or parity SSTables of the same coding
group from the other alive nodes according to the ECMeta.
Degraded writes. Suppose that ELECT receives a degraded
write to a failed node. It follows Cassandra to apply the hinted
handoff mechanism [4], which allows the replay of a write to
a failed node that returns online.
Limitations. ELECT does not support incremental recovery
for individual SSTables as in Cassandra. Under replication,
Cassandra builds a Merkle tree [41] in each node to detect in-
consistencies among replicas for any failed SSTable recovery.
Since ELECT includes erasure-coded SSTables in LSM-trees,
it needs a revised Merkle tree that addresses both replication
and erasure coding.

ELECT also does not currently support dynamic topology
changes. We consider a possible approach for supporting
topology changes in ELECT as follows. For replicated KV
pairs, ELECT can relocate replicas when the nodes join or
leave as in Cassandra. For erasure-coded KV pairs, ELECT
can relocate some of the erasure-coded SSTables to keep
them in consecutive nodes in the hash ring (§4.1.2). As in
consistent hashing, ELECT should only relocate the KV pairs
stored in the adjacent nodes of each joining/leaving node in
the hash ring instead of all SSTables of the whole storage
system, so as to mitigate the relocation overhead.

6 Evaluation
We show via evaluation that ELECT reduces the storage
overhead of Cassandra and maintains high performance.

6.1 Methodology
Testbed. We consider an edge-cloud setting, where the edge
serves as the hot tier and the cloud serves as the cold tier.
Specifically, we conduct evaluation on Alibaba Cloud [38].
We set up M = 10 edge nodes and multiple (up to 32) client
nodes in the same geographical region. Each node is deployed
on an ecs.i3g.2xlarge instance with eight 2.5 GHz vC-
PUs, 32 GiB RAM, 447 GiB SSD, and Ubuntu 22.04 LTS.
All nodes are connected with a 3 Gbps network, with a net-
work latency of no more than 1 ms. We also deploy the cloud
on the Alibaba Object Storage Service in a different geograph-
ical region. Our measurement shows that the network latency
between the two regions is at least 45 ms.
Default settings. We compare ELECT with the vanilla Cas-
sandra. We configure Cassandra with triple replication
(R = 3) and store all replicas in the edge nodes. We also con-
figure ELECT with triple replication and the (n,k) = (6,4)
RS code, and enable all features under a storage saving tar-
get α = 0.6. For both systems, we fix the SSTable size as
4 MiB [28,64]. We disable SSTable compression for accurate
storage size calculation. We set the read and write consistency
levels as one and three, respectively (i.e., each of the reads and
writes needs to be acknowledged by one node and all three
replica nodes, respectively) for strong consistency. All other
parameters remain the same as the defaults in Cassandra.

We use the benchmarking tool YCSB [16] to generate dif-
ferent types of workloads. By default, in Exp#1, we load
100 M 1-KiB KV pairs with 24-byte keys and 1000-byte val-
ues into storage before each experiment and generate 10 M
requests; in the subsequent experiments that focus on ex-
amining the performance of individual KV operations, we
load 10 M 1-KiB KV pairs and generate 1 M requests, while
the performance trends remain stable as in Exp#1 even we
use smaller workloads. In all experiments, the requests by
default follow a Zipf distribution with a Zipfian constant of
0.99 (default in YCSB). Also, we run YCSB clients in two
client nodes, each of which has eight YCSB client threads to
simulate concurrent requests from multiple clients.
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Figure 5: Exp#1: YCSB core workloads. Throughput results are
normalized by Cassandra’s throughput (above each bar) in KOPS.

Our experiments consider normal (without failures) and
degraded (with failures) modes. For degraded mode, we crash
two edge nodes via the kill -9 command.

We plot the average results over five runs, with error bars
showing the 95% confidence intervals under the Student’s
t-distribution (note that some error bars may be invisible due
to small deviations).

6.2 Overall Analysis
Exp#1 (YCSB core workloads). We first compare the over-
all storage overhead and performance of Cassandra and
ELECT using the six YCSB core workloads [16], namely
A (50% reads, 50% writes), B (95% reads, 5% writes), C
(100% reads), D (95% reads, 5% writes), E (95% scans, 5%
writes), and F (50% reads, 50% read-modify-writes). Each
workload (except D) follows a Zipf distribution, while Work-
load D reads the latest written KV pairs. For ELECT, we
measure both edge-only and overall edge-cloud storage sizes.

Figure 5 shows the storage size and throughput results.
ELECT achieves 56.1% storage savings (in the edge only)
and 39.1% overall storage savings (in both the edge and cloud)
compared with Cassandra. The actual edge storage savings
of ELECT are slightly less than α = 0.6, as it also maintains
metadata components for deleted KV pairs in the secondary
LSM-trees after redundancy transitioning. The metadata com-
ponents of LSM-trees in ELECT account for 6.9% of its edge
storage size (not shown in the figure); note that no metadata
components are offloaded to the cloud (§4.2).

In terms of performance, both Cassandra and ELECT have
similar throughput (with up to 3% differences) in all work-
loads except E. For Workload E, which is scan-intensive,
ELECT achieves a 2.84× throughput gain over Cassandra.
The reason is that ELECT reduces individual LSM-tree sizes
and hence I/O amplification through decoupled replication
management, so the number of SSTables being accessed is
also reduced [57,68]. Such reduced access overhead has more
prominent performance improvements to scans, which read a
range of KV pairs.
Exp#2 (Benchmarking of KV operations). We evaluate the
average latencies of specific KV operations, including reads,
writes, scans, and updates. We load 10 M 1-KiB KV pairs
and issue 1 M requests for each type of KV operations (§6.1).
We consider both normal and degraded modes. For degraded
mode, we measure the performance of all requests (includ-
ing normal and degraded requests) when the system is in
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Figure 6: Exp#2: Benchmarking of KV operations. Results are nor-
malized by Cassandra’s latencies (above each bar) in milliseconds.

degraded mode with edge node failures. For example, if a
read encounters a non-failed node, it is a normal read; if it
encounters a failed node, it becomes a degraded read and
ELECT recovers the SSTable that contains the requested key.

Figure 6 shows the results. Note that Cassandra keeps
almost identical performance in both normal and degraded
modes as it keeps all replicated storage in the edge. In normal
mode (Figure 6(a)), ELECT maintains similar performance as
in Cassandra in reads, writes, and updates with up to 2.7% of
higher average latencies; it reduces the average scan latency
of Cassandra by 21.5% (see Exp#1). In degraded mode (Fig-
ure 6(b)), ELECT still has similar performance of Cassandra
in writes and updates with up to 3.3% higher average latencies
and reduces the average scan latency of Cassandra by 21.1%.
However, ELECT incurs a latency increase of 5.32× in reads
over Cassandra, mainly due to the retrieval of SSTables from
the cloud to the edge for recovery if the degraded reads are
issued to the KV pairs in the last LSM-tree level.

We further examine the read and scan results in degraded
mode. For reads, we observe that both Cassandra and ELECT
have very similar 99th-percentile latencies at about 1.7 ms
(not shown in the figure), meaning that most reads can be
served in the edge and have small latency differences. Some
degraded reads need to retrieve SSTables from the cloud, and
such requests increase the average read latency in degraded
mode. Unlike reads, ELECT still shows performance gains
in scans (which include normal and degraded reads to a range
of KV pairs) as in normal mode. The reason is that most
unavailable SSTables are recovered in the early stage of scans,
so the overall adverse impact on scans is much mitigated as
opposed to reads.

6.3 System-level Analysis
Exp#3 (Performance breakdown). We break down the per-
formance of writes, reads in normal mode, and reads in de-
graded mode. Each write comprises (i) writing to the WAL,
(ii) writing to the MemTable, (iii) flushing the MemTable,
(iv) compaction, (v) redundancy transitioning, and (vi) data
offloading. Each read in normal or degraded mode comprises
(i) reading from the MemTable, (ii) reading from the block
cache, (iii) reading from SSTables, and (iv) recovery (for
degraded reads). We measure the time of each step across
all nodes and obtain the average results on processing 1 MiB
of writes/reads based on the workloads as described in §6.1.
Since the steps are performed in parallel, the actual time spent



Steps Cassandra ELECT
Write

WAL 21.32 ± 0.76 ms 21.84 ± 0.28 ms
MemTable 37.98 ± 1.73 ms 40.84 ± 0.13 ms
Flushing 16.95 ± 0.29 ms 17.70 ± 0.18 ms

Compaction 205.87± 2.21 ms 169.03 ± 3.23 ms
Transitioning - 239.05 ± 2.69ṁs

Offloading - 162.84 ± 12.05 ms

Read in normal mode
Cache 17.05 ± 0.27 ms 18.35 ± 0.34 ms

MemTable 20.78 ± 0.95 ms 23.20 ± 0.61 ms
SSTables 182.69 ± 2.53 ms 177.55 ± 0.60 ms

Read in degraded mode
Cache 17.41 ± 0.33 ms 18.75 ± 0.18 ms

MemTable 21.54 ± 0.66 ms 23.38 ± 0.46 ms
SSTables 184.39 ± 1.67 ms 184.14 ± 2.35 ms
Recovery - 1957.64 ± 34.16 ms

Table 1: Exp#3: Performance breakdown. We show the average
latency of each step for processing 1 MiB of writes/reads and the
corresponding 95% confidence interval.

on an operation is less than the sum of times of all steps.
Table 1 shows the performance breakdown. Most common

steps in Cassandra and ELECT have similar latencies, ex-
cept for compaction in writes, ELECT has a smaller latency
by 17.9%. The reason is that ELECT decouples replication
management into multiple LSM-trees and reduces the I/O
amplifications in compaction [57, 68]. The redundancy tran-
sitioning has the highest average latency among all steps,
while the offloading has a low average latency since only
a fraction of data is transmitted from the edge to the cloud.
However, both redundancy transitioning and data offloading
are performed in the background and incur limited overhead
to writes, so ELECT has similar write performance as Cas-
sandra (see Exp#1 and Exp#2).

For reads in normal mode, both Cassandra and ELECT
have similar performance in each step. For reads in degraded
mode, ELECT is bottlenecked by the recovery step (with
1957.64 ms per MiB).
Exp#4 (Full-node recovery). We evaluate full-node recov-
ery in Cassandra and ELECT. We crash one edge node, delete
all its data, start a new edge node, and use the nodetool com-
mand to recover all lost data into the new edge node. We
evaluate the recovery performance of different loaded data
sizes, including 10 GiB, 20 GiB, and 30 GiB (i.e., 10 M, 20 M,
and 30 M 1-KiB KV pairs). For fair comparisons, we dis-
able the Merkle tree operation in Cassandra (which is not
supported in ELECT (§5)). Figure 7 shows the full-node
recovery times. The recovery times of Cassandra and ELECT
increase almost linearly. ELECT incurs about 50% higher
recovery time than Cassandra since it needs to retrieve data
and parity SSTables from other edge nodes or the cloud to
decode the lost SSTables in the primary LSM-tree.
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Figure 7: Exp#4: Full-node re-
covery time.

Steps Time
Copy 13.54± 0.22 s

Retrieve 373.98± 11.61 s
Decode 13.34 ± 0.48 s

Table 2: Exp#4: Recovery time
breakdown for 30 GiB data.

We further provide a breakdown of the full-node recov-
ery time of ELECT into three steps: (i) copying replicated
SSTables from other edge nodes; (ii) retrieving data and par-
ity SSTables for decoding; and (iii) decoding the lost SSTa-
bles. Table 2 shows the full-node recovery time breakdown
of ELECT for 30 GiB data. The recovery performance is
network-bound, in which retrieving the data and parity SSTa-
bles occupies 93.3% of the total recovery time.
Exp#5 (Resource usage). We compare the CPU usage, mem-
ory usage, disk I/O size, and network traffic of Cassandra and
ELECT. We consider three settings: (i) loading KV pairs
until the SSTables reach a stable state, (ii) running in normal
mode without failures, and (iii) running in degraded mode
with two node failures. After loading KV pairs, we issue 1 M
requests, including reads, writes, updates, and scans, with
one-fourth of all requests each. We measure the CPU usage,
memory usage, disk I/O, and network usage in all alive edge
nodes through the Linux system tools, namely top, free,
iostat, and iftop, respectively. We collect the resource
usage data every 1 s. We show the 95th-percentile CPU usage
and memory usage as well as the overall disk I/O size and
network traffic size.

Figure 8 shows the results. Figure 8(a) shows that ELECT
has 23.4% and 23.3% less 95th-percentile CPU usage than
Cassandra in load and degraded operations, respectively.
ELECT mainly performs network transmissions in redun-
dancy transitioning and data offloading, both of which in-
volve less CPU usage (in each 1-second interval). However,
ELECT has long durations in both redundancy transition-
ing and data offloading (Table 1), so its total CPU time is
still higher than Cassandra’s. Figure 8(b) shows that ELECT
slightly increases the 95th-percentile memory usage by 7.0%
during the load operation, since it needs extra memory space
for erasure coding. It also slightly reduces the memory usage
in normal and degraded modes by 4.9% and 5.1%, respec-
tively, as it reduces the LSM-tree size through decoupled
replication management. Figure 8(c) shows that ELECT re-
duces the disk I/O size of Cassandra by 23.6% in the load
operation, as it reduces the LSM-tree size and hence I/O am-
plifications through decoupled replication management, and
also reduces the compaction overhead of the secondary LSM-
trees by writing fewer KV pairs to the last LSM-tree level.
Note that ELECT still has higher disk I/O size in degraded
mode than in normal mode due to the reconstruction over-
head in erasure coding. Figure 8(d) shows that ELECT has
similar network traffic to Cassandra in normal mode, while
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Figure 8: Exp#5: Resource usage. All results are normalized by
Cassandra’s actual resource usage results (numbered atop the bars),
including CPU usage (%), memory usage (GiB), disk I/O size (GiB),
and network traffic (GiB).

it incurs 22.1% and 6.3% higher network traffic than Cas-
sandra in load and degraded operations, respectively. In the
load operation, ELECT distributes SSTables for redundancy
transitioning and offloads SSTables to the cloud; in degraded
mode, it retrieves SSTables to recover unavailable SSTables.

6.4 Parameter Sensitivity Analysis
Exp#6 (Impact of key and value sizes). We evaluate the
impact of different key and value sizes on Cassandra and
ELECT to show that ELECT still maintains storage savings
for different key/value sizes. Note that we fix the total size of
KV pairs loaded to storage as 10 GiB, so the total number of
KV pairs decreases as the key size or value size increases.

Figures 9(a) and 9(b) show the actual storage sizes of Cas-
sandra and ELECT for various key sizes with a fixed value
size 512 bytes and various value sizes with a fixed key size
32 bytes, respectively. The actual storage sizes of both sys-
tems decrease as the key and value sizes increase. The edge
and overall storage savings of ELECT over Cassandra in-
crease from 55.5% to 56.0% and from 34.9% to 39.3%, re-
spectively, as the key size increases from 8 bytes to 128 bytes,
and from 48.2% to 58.5% and from 33.9% to 41.1%, respec-
tively, as the value size increases from 32 bytes to 8 KiB. The
reason is that larger key and value sizes reduce the amount of
metadata for SSTable maintenance. This reduces the storage
overhead after redundancy transitioning in ELECT.

Figures 9(c) and 9(d) show the average read latencies in nor-
mal and degraded modes for various key and value sizes. The
read latencies of Cassandra and ELECT in normal mode and
the read latency of Cassandra in degraded mode are similar
as the KV pairs can be directly accessed. However, ELECT
has much higher average read latencies in degraded mode
than Cassandra, especially for small key and value sizes (e.g.,
6.4× when the key and value sizes are both 32 bytes), since
smaller key and value sizes increase the number of KV pairs
stored in an SSTable and hence the query overhead.
Exp#7 (Impact of storage saving target). We evaluate the
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Figure 9: Exp#6: Impact of key and value sizes.

impact of target storage saving α on ELECT, by varying α

from 0.1 to 0.9. Our results demonstrate the trade-off between
storage savings and access performance.

Figure 10(a) shows the edge-only and overall storage sizes
of ELECT. As α increases, the edge storage savings over
Cassandra increase from 9.2% to 86.0%, and differ from α

by no more than 4%. ELECT offloads SSTables from the
edge to the cloud when α ≥ 0.5, yet the overall storage size
(in both the edge and cloud) of ELECT remains unchanged
when α ≥ 0.5 and its savings over Cassandra stay at 40.8%.
The reason is that redundancy transitioning only applies to
the SSTables in the last LSM-tree level and cannot further
reduce the storage sizes of replicated SSTables in the lower
LSM-tree levels.

Figure 10(b) shows the average read latencies in normal
mode. The read latency of ELECT remains stable as α

increases from 0.1 to 0.6, but increases significantly from
0.53 ms to 1.89 ms when α increases from 0.6 to 0.9. The rea-
son is that after offloading data SSTables to the cloud (Case 3
in §4.3), reads to the primary LSM-tree retrieve data SSTa-
bles back from the cloud and are slowed down by edge-cloud
communication. We pose the parameter sensitivity analysis
for 99th-percentile latencies as future work.

Figure 10(c) shows the average read latencies in degraded
mode. As α increases from 0.1 to 0.5, the average latency of
ELECT increases from 0.59 ms to 1.09 ms, as more SSTables
are involved in redundancy transitioning and degraded reads
trigger more decoding operations. As α further increases,
ELECT starts to offload data SSTables to the cloud, and the
degraded reads are further slowed down due to the retrieval
of data SSTables from the cloud for decoding. When α = 0.9,
the average latency increases to 4.62 ms.
Exp#8 (Impact of coding parameters). We study the im-
pact of coding parameters on ELECT by varying k and fixing
n = k+2. We also consider different values of α . We focus
on the edge and overall storage sizes as well as the average
read latencies in normal and degraded modes.

Figure 11 shows the results. For a fixed α , even with
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different values of k, ELECT still maintains similar edge stor-
age sizes with no more than 1.7% differences (Figure 11(a)).
Although a larger k (with the fixed n− k) implies smaller
redundancy, the storage saving target α also determines the
actual edge storage size. Thus, the edge storage size remains
almost unaffected by different values of k for a fixed α .

The overall storage size (Figure 11(b)) of ELECT drops
from 18.0 GiB to 15.7 GiB when k increases from 4 to 8,
for both α = 0.6 and α = 0.8, as a larger k generates fewer
parity SSTables and reduces the overall storage size for a
large α ; note that the overall storage size remains unaffected
for different values of k for α = 0.4.

For a fixed α , the reads latencies in normal and degraded
modes are also similar for different values of k, albeit slight
latency decreases in degraded mode as k increases (Fig-
ures 11(c) and 11(d)). Intuitively, a larger k implies higher
reconstruction overhead, as k SSTables are retrieved for re-
construction in RS codes (§2.3). On the other hand, a larger
k also implies that fewer parity SSTables are generated and
offloaded to the cloud, and hence a degraded read retrieves
fewer parity SSTables from the cloud. This leads to slightly
improved read performance in degraded mode for a large k.

This experiment aims to show the applicability of ELECT
for different values of k. A more detailed analysis on the
trade-off between α and k is our future work.
Exp#9 (Impact of read consistency level). We show how
ELECT preserves consistent reads in Cassandra (§5). We
vary the read consistency level from one to three, while the
write consistency level remains three (under triple replication).
We focus on the throughput and 99th-percentile latency of
normal reads; for the latter, we show the impact of waiting
for responses from multiple replicas.

Figure 12 shows the results versus the read consistency
level for both Cassandra and ELECT. As the read consis-
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tency level increases from one to three (i.e., each read needs
to wait for the responses from more replicas), the average
read throughput of both systems (Figure 12(a)) decreases
by 23.2% for Cassandra and 25.8% for ELECT, while the
99th-percentile read latencies for both systems (Figure 12(b))
increase by around 50%. The results suggest that ELECT
maintains similar read performance as in Cassandra under
consistent reads.
Exp#10 (Impact of number of clients). We examine the
read/write performance of ELECT in normal mode as the
number of clients increases. We vary the number of client
nodes (deployed in different instances) from 1 to 32, while
each client node runs eight client threads, so the maximum
number of simulated clients reaches 256. Each simulated
client issues 100 K KV requests.

Figure 13 shows the throughput versus the number of sim-
ulated clients for both Cassandra and ELECT. Both systems
show similar increasing throughput trends as the number of
simulated clients increases. ELECT has slightly less through-
put than Cassandra, by 4% in normal reads and 5.7% in writes
when the number of simulated clients is 256, due to the re-
dundancy transitioning overhead.

6.5 Discussion
We discuss the performance of ELECT in other aspects that
are currently not explicitly evaluated.
Varying skewness in workloads. We currently focus on
skewed workloads as observed in practice [6, 9, 16, 62]. With
less skewed workloads, reads access larger portions of the key
space. Thus, more reads are issued to the last LSM-tree level,
and ELECT may see performance drops in degraded mode
as it applies erasure coding to the last LSM-tree level. Note
that ELECT does not directly determine the hotness of KV
pairs by monitoring their access patterns, while the read and
write patterns may have different distributions [6, 62]. Thus,
the actual performance of ELECT may be greatly affected by
the real-world access patterns.



Varying LSM-tree sizes. ELECT supports different LSM-
tree sizes as it still encodes SSTables in the last LSM-tree
level. It is expected to achieve higher storage savings for
larger LSM-trees since the number of SSTables increases
exponentially across LSM-tree levels and the last LSM-tree
level contains more SSTables.
Impact on reliability. The increase in the recovery time
of ELECT (Exp#4) degrades reliability (e.g., in terms of
mean-time-to-data-loss (MTTDL)). On the other hand, since
ELECT offloads some erasure-coded KV pairs to the cold
tier, which is in general more reliable than the hot tier (e.g.,
when edge nodes serve as the hot tier versus the cloud serves
as the cold tier in edge-cloud storage), the reliability can be
improved. The actual impact on reliability due to redundancy
transitioning remains an open issue.
Impact of LSM-tree compression. Our evaluation disables
compression to fairly measure ELECT’s storage savings.
ELECT still works with compression enabled and is expected
to achieve storage savings. Since Cassandra performs com-
pression on SSTables, ELECT can collect k compressed data
SSTables and pad them with zeroes to match the maximum
size of the k compressed data SSTables, so as to generate par-
ity SSTables via erasure coding. Note that such padded zeros
are only for erasure coding compatibility. They need not be
stored in data SSTables and will not add storage overheads.
Comparisons with CassandrEAS [8]. CassandrEAS also
extends Cassandra with erasure coding, but does not con-
sider redundancy transitioning. CassandrEAS reportedly has
much higher read and write latencies than Cassandra [8]. Our
evaluation also finds that CassandrEAS (based on its open-
source version) incurs high storage overhead for small values
due to extra metadata for erasure coding (e.g., 1.6× storage
overhead for 24-byte keys and 64-byte values compared with
3-way replication in Cassandra).

7 Related Work
Replication in distributed KV stores. Replication is com-
monly used in modern distributed KV stores [5, 18, 34, 46].
Several studies propose new replica management mecha-
nisms to support high-throughput and strongly consistent
writes [56], reduce data loss rates [15], improve query per-
formance [22, 54], and reduce I/O amplification in LSM-tree
compaction [57, 68]. In particular, ELECT has the similar
ideas of DEPART [68] and Tebis [57] to separate the LSM-
tree management for replicas, but focuses on synchronizing
the views of replicas for efficient redundancy transitioning.
Both DEPART and Tebis do not consider erasure coding.
Erasure coding in distributed KV stores. Erasure coding
has been extensively used in distributed KV stores. Some
studies apply replication for keys and metadata as well as
erasure coding for values for persistent [8, 32, 33, 44] and
in-memory [13, 37] KV stores. Some approaches [14, 65]
apply erasure coding across whole objects (including keys,
values, and metadata) for further storage savings, but they

are applied for in-memory KV stores and their performance
is guaranteed with memory access. Erasure coding is also
recently explored for disaggregated memory [35, 69].

In the context of storage tiering, EC-Cache [49] and C2DN
[61] also apply erasure coding to caching and content delivery
networks, respectively. EC-Cache performs self-encoding on
large objects and keeps erasure-coded chunks across cache
servers, while C2DN replicates small objects and applies
erasure coding to large objects. We emphasize that ELECT
differs from EC-Cache and C2DN in both problem formula-
tion and design techniques. Regarding problem formulation,
EC-Cache and C2DN aim for load balancing using erasure
coding for high performance, while ELECT considers redun-
dancy transitioning (from replication to erasure coding) for
storage savings. Regarding design techniques, EC-Cache and
C2DN are centralized (EC-Cache manages cache servers with
a centralized coordinator, while C2DN uses a cluster-local
load balancer), while ELECT performs decentralized parity
node selection (§4.1.2). ELECT also addresses selective data
offloading (§4.2) and configurable storage savings (§4.3),
both of which are not addressed by EC-Cache and C2DN.
Redundancy transitioning. Earlier studies consider the tran-
sitioning between replication and erasure coding on fixed-size
blocks in RAID [58] and distributed file systems [23, 36],
while ELECT considers variable-size KV pairs. Furthermore,
ELECT builds on Cassandra, a decentralized KV store, while
the above studies [23, 36, 58] are centralized. Some studies
consider the transitioning between erasure codes with dif-
ferent coding parameters to trade between performance and
redundancy overhead [55, 59, 60, 63] or between reliability
and redundancy overhead [29, 30]. Convertible codes [39]
are new erasure codes that minimize the transitioning I/O.
ELECT applies redundancy transitioning from replication to
erasure coding to balance the storage-performance trade-off.

8 Conclusions
We design ELECT, a distributed KV store that enables era-
sure coding tiering, to make a case for storage-efficient, high-
performance, and fault-tolerant KV storage. ELECT adopts
a hybrid redundancy approach by replicating hot KV pairs
and erasure-coding cold KV pairs. It also selectively offloads
them from the hot tier to the cold tier. It is tunable with a
single storage saving target parameter to balance the trade-off
between storage savings and access performance. Experi-
ments on Alibaba Cloud demonstrate the storage savings and
performance efficiency of ELECT compared with Cassandra.
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A Artifact Appendix
Abstract
ELECT is a distributed KV store that enables erasure coding
tiering based on the LSM-tree. It adopts a hybrid redundancy
approach that carefully combines replication and erasure cod-
ing with respect to the LSM-tree layout. Its prototype builds
on Cassandra.

Scope
Our artifact can be used to validate the concepts and designs
of ELECT presented in the paper. It is a research-driven
prototype and has several limitations, such as the inability to
support dynamic topology changes and incremental recovery,
that restrict its direct applicability in production.

Contents
The artifact consists of two sub-directories:

• src/, which includes both the implementation of the
ELECT prototype and a simple object storage backend,
such that ELECT can be connected with the object stor-
age backend in a local cluster; and

• scripts/, which includes both the evaluation scripts
and the YCSB benchmarking tool, such that the key and
value sizes are configurable.

The artifact also contains a README file that specifies
the prerequisites for the testbed and dependencies, steps for
building and configuring the ELECT prototype and YCSB
benchmark tool, and detailed instructions for artifact evalua-
tion.

Hosting
The artifact is accessible from GitHub at https://github.
com/adslabcuhk/elect. The version we provided for the
artifact evaluation is marked with the v1.0 tag.

Requirements
Hardware dependencies

To successfully run the end-to-end experiments with our pro-
totype and evaluation scripts, a minimum of eight machines
are recommended. These machines need to be connected via
a network, such that they are reachable from each other. For
each machine, we recommend quad-cores, 16 GiB of mem-
ory and above, and an SSD. We need at least six machines
that form the distributed KV store ELECT and use the de-
fault erasure coding parameters (n,k)=(6,4). In addition, we
have one machine that acts as a server node for storing cold
data in the cold tier, and one machine for running the YCSB
benchmark tool.

Software dependencies

Our artifact is developed and tested on Ubuntu 22.04 LTS
with the following software dependencies:

• The ELECT prototype and YCSB benchmark
tool: openjdk-11-jdk, openjdk-11-jre, ant,
ant-optional, maven.

• Erasure coding: clang, llvm, libisal-dev.
• Evaluation scripts: ansible, bc, python3,
python3-pip, cassandra-driver, numpy, scipy.

Testbed Setup
Please follow the steps below:

• Download the artifact from the URL: https://

github.com/adslabcuhk/elect/releases.
• Extract the files using tar -zxvf

elect-1.0.tar.gz and navigate into the pack-
age directory with cd.

• Modify the scripts/settings.sh file according to
the AE INSTRUCTION.md.

• Set up the machines with the provided scripts via bash
scripts/setup.sh full (the setup takes about 40
minutes, depending on the hardware configurations).

For the detailed setup, configuration instructions, and trou-
bleshooting, please refer to the README.md in the artifact
repository. The README.md file provides comprehensive in-
structions on the manual setup process and the solutions to
some common issues.

Evaluation

Artifact Claims
The performance results may vary from those in our paper
due to different factors, such as cluster sizes, machine specifi-
cations, operating systems, and software packages. However,
we expect that ELECT still demonstrates comparable perfor-
mance to Cassandra in regular operations, while significantly
reducing hot-tier storage overhead.

Experiments
To reproduce the results presented in the paper, please refer
to the AE INSTRUCTION.md file and follow the instructions
provided in the Evaluation section.
Exp#1 (YCSB core workloads). Expected outcome: Exp#1
produces the results as shown in Figure 5, which illustrates
that ELECT achieves similar performance as Cassandra in
YCSB core workloads while significantly reducing the hot-
tier storage overhead. In addition, ELECT outperforms Cas-
sandra in workload E, which consists of 95% scan operations,
due to replication decoupling. Approximate runtime: 20 com-
pute hours.

Exp#2 (Benchmarking of KV operations). Expected out-
come: Exp#2 produces the results as shown in Figure 6, which
illustrates that ELECT achieves similar performance as Cas-
sandra in common KV operations. Similar to Exp#1, ELECT
still outperforms Cassandra in the scan operations due to repli-
cation decoupling. Approximate runtime: 5 compute hours.
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Exp#3 (Performance breakdown). Expected outcome:
Exp#3 produces the results as shown in Table 1, which illus-
trates that ELECT has similar latencies in most common steps
as in Cassandra. Approximate runtime: 5 compute hours.
Exp#4 (Full-node recovery). Expected outcome: Exp#4 pro-
duces the results as shown in Figure 7 and Table 2, which
illustrates that ELECT incurs medium recovery overhead due
to the need for retrieving data and parity SSTables from other
nodes or the cold tier. Approximate runtime: 14 compute
hours.
Exp#5 (Resource usage). Expected outcome: Exp#5 pro-
duces the results as shown in Figure 8, which illustrates that
ELECT only increases the memory and network usage when
loading data due to redundancy transitioning and cold-data
offloading. In addition, for CPU usage, the 95%-percentile
CPU utilization will be less than Cassandra since the redun-
dancy transitioning and cold-data offloading consist of a large
amount of network transmission with long duration. Approxi-
mate runtime: 5 compute hours.
Exp#6 (Impact of key and value sizes). Expected outcome:
Exp#6 produces the results as shown in Figure 9, which illus-
trates that ELECT still maintains storage savings for different
key/value sizes. Approximate runtime: 40 compute hours.
Exp#7 (Impact of storage saving target). Expected out-
come: Exp#7 produces the results as shown in Figure 10,
which illustrates that ELECT can balance the storage over-
head and performance according to the storage saving target.
Approximate runtime: 45 compute hours.
Exp#8 (Impact of coding parameters). Expected outcome:
Exp#8 produces the results as shown in Figure 11, which
illustrates that ELECT can adapt to different erasure coding
parameters. Approximate runtime: 12 compute hours.
Exp#9 (Impact of read consistency level). Expected out-
come: Exp#9 produces the results as shown in Figure 12,
which illustrates that ELECT supports consistent reads. Ap-
proximate runtime: 5 compute hours.
Exp#10 (Impact of number of clients). Expected outcome:
Exp#10 produces the results as shown in Figure 13, which
illustrates that ELECT supports multi-client KV operations.
Approximate runtime: 5 compute hours.
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