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Abstract
Minimum-storage regenerating (MSR) codes are provably op-
timal erasure codes that minimize the repair bandwidth (i.e.,
the amount of traffic being transferred during a repair opera-
tion), with the minimum storage redundancy, in distributed
storage systems. However, the practical repair performance
of MSR codes still has significant room to improve, as the
mathematical structure of MSR codes makes their repair op-
erations difficult to parallelize. We present ParaRC, a parallel
repair framework for MSR codes. ParaRC exploits the sub-
packetization nature of MSR codes to parallelize the repair
of sub-blocks and balance the repair load (i.e., the amount of
traffic sent or received by a node) across the available nodes.
We show that there exists a trade-off between the repair band-
width and the maximum repair load, and further propose a fast
heuristic that approximately minimizes the maximum repair
load with limited search time for large coding parameters.
We prototype our heuristic in ParaRC and show that ParaRC
reduces the degraded read and full-node recovery times over
the conventional centralized repair approach in MSR codes
by up to 59.3% and 39.2%, respectively.

1 Introduction
Erasure coding has been widely deployed in practical dis-
tributed storage systems for providing fault tolerance against
the lost data in failed storage nodes, while incurring signif-
icantly lower redundancy overhead than traditional replica-
tion [37]. Among many erasure codes, Reed-Solomon (RS)
codes are the most popular and reportedly deployed in pro-
duction, such as Google [11], Facebook [23], Backblaze [9],
and CERN [25]. However, RS codes are known to incur high
repair bandwidth (i.e., the amount of traffic being transferred
during a repair operation) when repairing a failed node, as the
repair of any lost block needs to retrieve multiple coded blocks
from other available nodes for decoding, thereby leading to
bandwidth amplification.

Many repair-friendly erasure codes have been proposed
in the literature to reduce the repair bandwidth of RS codes.
Examples include regenerating codes [10, 24, 27, 33, 36], lo-
cally repairable codes [15, 17, 32], and piggybacking codes
[29, 30]. In particular, minimum-storage regenerating (MSR)
codes [10] are theoretically proven to be repair-optimal, such

that they minimize the repair bandwidth for repairing a sin-
gle node failure, while preserving the minimum storage re-
dundancy as in RS codes (i.e., the redundancy is minimum
among any erasure code that tolerates the same number of
node failures). For example, compared with the (14,10) RS
code adopted by Facebook [23, 29] (i.e., 10 original uncoded
blocks are encoded into 14 RS-coded blocks), MSR codes
with the same coding parameters can reduce the repair band-
width by 67.5%. Given the theoretical guarantees of MSR
codes, many follow-up efforts have proposed practical con-
structions for MSR codes and evaluated their performance in
real-world distributed storage systems (e.g., [13, 24, 27, 36]);
for example, Clay codes [36] are shown to minimize both re-
pair bandwidth and I/Os (i.e., the amount of disk I/Os to local
storage during a repair operation is the same as the minimum
repair bandwidth), support general coding parameters, and be
deployed and integrated in Ceph [3].

While MSR codes provably minimize the repair bandwidth,
we argue that their practical repair performance remains bot-
tlenecked by the node where the lost block is decoded, as
the node needs to retrieve an amount of data from other
available nodes more than the amount of lost data; in other
words, bandwidth amplification still exists, albeit less severe
than RS codes. To mitigate the repair bottleneck issue, re-
cent studies [20, 22] have shown how to parallelize and load-
balance the repair for RS codes across multiple available
nodes, by decomposing the repair operation into partial re-
pair sub-operations that are executed in different nodes in
parallel and combining the partially repaired blocks into the
final decoded block. Thus, it is natural to ask whether we
can also decompose and parallelize the repair for MSR codes
like RS codes. Unfortunately, the answer is negative: the re-
pair for RS codes satisfies the additive associativity of linear
combinations and the repair operation can be decomposed; in
contrast, MSR codes have a different mathematical structure
from RS codes, such that the repair of MSR codes needs to
solve a system of linear combinations and cannot be directly
decomposed (see §2 for details).

This motivates an alternative to parallelize the repair of
MSR codes. Our insight is that MSR codes build on sub-
packetization, in which a block is partitioned into sub-blocks
and the repair of a lost block in MSR codes is to retrieve a



subset of sub-blocks from other available nodes for decoding.
The sub-blocks of a lost block can be represented as different
linear combinations, and are finally decoded by solving the
system of linear combinations. Based on sub-packetization,
our idea is to distribute the repair of sub-blocks across differ-
ent available nodes and later combine the repaired sub-blocks
to reconstruct the lost block. An open question is how to dis-
tribute the repair of sub-blocks to balance the repair load (i.e.,
the amount of traffic sent or received by a node) across the
available nodes.

We present ParaRC, a parallel repair framework for MSR
codes that aims to balance the repair load across the available
nodes and hence accelerate the repair operation. We make the
following contributions:

• We observe that there exists a trade-off between the repair
bandwidth and the maximum repair load. To formally ana-
lyze the trade-off, we model the repair operation of MSR
codes as a directed acyclic graph (DAG) [19] and solve
the repair parallelization problem as a DAG coloring prob-
lem. We identify an extreme point, the min-max repair load
(MLP) point, which minimizes the maximum repair load
with the smallest possible repair bandwidth.

• We show that finding the MLP is computationally expensive
in general, and hence propose a fast heuristic that quickly
identifies the approximate MLP point even for large coding
parameters.

• We prototype ParaRC atop Hadoop 3.3.4 HDFS [4] and
evaluate our prototype on Alibaba Cloud [1]. We show that
ParaRC reduces the degraded read and full-node recovery
times by up to 59.3% and 39.2%, respectively, compared
with the centralized repair for Clay codes. We also show that
ParaRC reduces the full-node recovery time of the default
repair method in Hadoop-3.3.4 HDFS by 71.4%.

We release the source code of our ParaRC prototype at:
http://adslab.cse.cuhk.edu.hk/software/pararc.

2 Background and Motivation
2.1 Basics of Erasure Coding
We review the basics of erasure coding. We consider a large-
scale distributed storage system that organizes data and per-
forms reads/writes in fixed-size blocks, such that the block
size is large enough (e.g., 128 MiB in Hadoop 3.3.4 HDFS [4]
and 256 MiB in Facebook [28]) to mitigate I/O overhead.
In this work, we target the distributed storage environments
where the network bandwidth and disk I/Os are the bottle-
necks, as opposed to the computational overhead for encoding
and decoding operations in erasure coding.

There are many approaches to construct erasure codes,
among which Reed-Solomon (RS) codes [31] are the most
widely deployed (e.g., [9, 11, 23, 25]). Specifically, an (n,k)
RS code, configured by two parameters k and n (where n >
k), encodes every set of k original uncoded blocks into n
coded blocks, such that any k out of n coded blocks suffice

to decode the k original uncoded blocks. Each set of n coded
blocks is called a stripe. In this work, we focus on a single
stripe, while multiple stripes are independently and identically
encoded. Each stripe is stored in n distinct nodes, so as to
tolerate any n− k node (or block) failures. RS codes satisfy
three practical properties: (i) generality, where n and k can
be general parameters (provided that n > k), (ii) maximum
distance separable (MDS), where the redundancy overhead
n/k is the minimum for tolerating any n− k node failures,
and (iii) systematic, where the k uncoded blocks are kept in
the n coded blocks (i.e., the uncoded blocks remain directly
accessible after encoding).

We elaborate on the mathematical properties of RS codes to
help motivate our work. In this paper, we treat the uncoded and
coded blocks equivalently in a systematic stripe and simply
refer to them as “blocks” in our discussion. Let B0, B1, · · · ,
Bn−1 be the n blocks of a stripe in an (n,k) RS code that are
respectively stored in n nodes, denoted by N0, N1, · · · , Nn−1.
Each block can be expressed as a linear combination of k
blocks of the same stripe under Galois Field arithmetic. For
example, we have B0 =∑

k
i=1 aiBi for some coding coefficients

ai’s (1 ≤ i ≤ k).
Despite the popularity, RS codes are known to incur high

repair penalty, since repairing a single lost block in RS codes
needs to transfer multiple blocks of the same stripe from
other available nodes. The repair penalty manifests in two
aspects. First, the repair incurs high repair bandwidth, defined
as the amount of traffic transferred over the network during a
repair operation. In general, an (n,k) RS code incurs a repair
bandwidth of k times the block size when repairing a lost
block. Figure 1(a) shows an example of the conventional
centralized repair for the (4,2) RS code. To repair a lost block
(say B0), the new node (say N0) downloads any k = 2 blocks
(say B1 and B2 from N1 and N2, respectively), so as to repair
B0 via the linear combination of the downloaded blocks. The
repair bandwidth is 512 MiB for a block size of 256 MiB.

Second, the conventional centralized repair also incurs high
maximum repair load, where the repair load of a node is de-
fined as the amount of traffic that the node sends or receives,
whichever is larger, during a repair operation, and the maxi-
mum repair load is the largest repair load among all nodes. In
the centralized repair, the new node has the most traffic among
all nodes, as it receives an amount of traffic that is k times the
block size, while each other available node sends one block
only. Thus, the performance of the centralized repair is bottle-
necked by the new node. For example, from Figure 1(a), the
new node N0 has the most received traffic, and the maximum
repair load is also 512 MiB for a block size of 256 MiB.

Thus, the repair performance in RS codes is dominated by
both the repair bandwidth and the maximum repair load. We
argue that while many studies focus on reducing the repair
bandwidth (§2.2) or reducing the maximum repair load (§2.3),
there exists a trade-off in minimizing both of the performance
metrics (§2.4).
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Figure 1: Repair examples: (a) conventional repair for the (4,2) RS code; (b) centralized repair for the (4,2) Clay code (which
minimizes the repair bandwidth); and (c) repair pipelining for the (4,2) RS code (which minimizes the maximum repair load).

2.2 Reducing Repair Bandwidth
Existing studies on erasure coding reduce the repair band-
width by proposing new erasure code constructions. Examples
include regenerating codes [10, 13, 24, 27, 33, 35, 36], locally
repairable codes [15,32], and piggybacking codes [29,30]. In
this paper, we focus on minimum-storage regenerating (MSR)
codes (first proposed in [10]), which theoretically minimize
the repair bandwidth for repairing a single lost block, with
the minimum redundancy (i.e., MDS property) as RS codes.

MSR codes differ from RS codes by performing sub-
packetization, which divides a block into multiple sub-blocks
and performs encoding and repair at the sub-block granular-
ity. Specifically, an (n,k) MSR code partitions each block Bi
(0 ≤ i ≤ n− 1) into w sub-blocks (w > 1), denoted by bi,0,
bi,1, · · · , bi,w−1, such that each sub-block is encoded through a
linear combination of k×w sub-blocks from k blocks (under
Galois Field arithmetic). To repair any lost block (or w sub-
blocks therein), MSR codes only transfer sub-blocks from
the other nodes, such that the total amount of traffic of the
transferred sub-blocks is minimized.

Classical MSR codes [10] require that the available nodes
read all their locally stored sub-blocks, encode them, and
transfer the encoded sub-blocks to the new node (with the
minimum repair bandwidth) to repair the lost block. In this
work, we consider two state-of-the-art MSR codes, namely
Clay codes [36] and Butterfly codes [24], both of which have
been implemented and empirically evaluated. Our goal is to
show the applicability of our work to different MSR codes,
using Clay codes and Butterfly codes as two representatives.
In particular, Clay codes minimize both repair bandwidth and
I/Os (a.k.a. repair-by-transfer [33])) for general coding pa-
rameters n and k, while Butterfly codes minimize both repair
bandwidth and I/Os for the k uncoded blocks in a systematic
stripe and support n−k = 2 only. Thus, we use Clay codes as
our major baseline throughout the paper.

We first provide an overview for Clay codes. At a high
level, Clay codes repair a lost block in three steps: (i) pair-
wise reverse transformation (PRT), which couples sub-blocks
in pairs and generates intermediate sub-blocks; (ii) MDS de-
coding, which performs linear combinations on k sub-blocks

to decode intermediate sub-blocks and a subset of repaired
sub-blocks; and (iii) pairwise forward transformation (PFT),
which again couples sub-blocks in pairs to generate the re-
maining repaired sub-blocks, such that the lost block is com-
pletely repaired. In Clay codes, the number of sub-blocks w
is given by w = (n− k)⌈n/(n−k)⌉.

Let us take the (4,2) Clay code (where w = 4) as an exam-
ple, as shown in Figure 1(b). Let ci be the ith intermediate
sub-block generated in the repair. Also, let ⟨...⟩i denote some
linear combination of sub-blocks within the brackets, where
the subscript i differentiates the linear combinations with dif-
ferent coding coefficients. To repair a lost block, say B0, the
new node N0 downloads two sub-blocks bi,0 and bi,1 from
each Ni, where 1 ≤ i ≤ 3. N0 repairs the four sub-blocks of
B0 as follows. First, in the PRT step, N0 generates two inter-
mediate sub-blocks c0 and c1 by coupling b2,1 and b3,0:

c0 = ⟨b2,1,b3,0⟩0, c1 = ⟨b2,1,b3,0⟩1. (1)

Second, in the MDS decoding step, N0 performs linear combi-
nations on b2,0 and c0, and on b3,1 and c1. It repairs b0,0 and
b0,1, and generates two intermediate sub-blocks c2 and c3:

b0,0 = ⟨b2,0,c0⟩2, c2 = ⟨b2,0,c0⟩3,
b0,1 = ⟨b3,1,c1⟩4, c3 = ⟨b3,1,c1⟩5.

(2)

Finally, in the PFT step, N0 repairs b0,2 by coupling b1,0 and
c2, and repairs b0,3 by coupling b1,1 and c3:

b0,2 = ⟨b1,0,c2⟩6, b0,3 = ⟨b1,1,c3⟩7. (3)

The (4,2) Clay code minimizes the repair bandwidth to
384 MiB for a block size of 256 MiB (it downloads six sub-
blocks of size 64 MiB each). Compared with the (4,2) RS
code, the (4,2) Clay code reduces the repair bandwidth by
25%. Note that the maximum repair load of the Clay code is
also 384 MiB (same as the repair bandwidth), which is the
amount of traffic downloaded in the new node.

We also consider Butterfly codes [24] in this paper. For an
(n,k) Butterfly code (n−k = 2), we focus on the repair of the
first k original uncoded blocks in a systematic stripe (whose
repair bandwidth and I/Os are both minimized). An (n,k)



Butterfly code divides each block into w = 2k−1 sub-blocks.
When repairing a lost block, a new node first downloads half
of the sub-blocks from each available node. It then selects dif-
ferent subsets of sub-blocks among all the received sub-blocks
and performs XOR operations to repair the w sub-blocks of
the lost block. For example, to repair a lost block of size
256 MiB for the (4,2) Butterfly code, the new node down-
loads 128 MiB of sub-blocks from each of the three available
nodes, such that the repair bandwidth and the maximum repair
load are both 384 MiB.

2.3 Reducing Maximum Repair Load
Some studies reduce the maximum repair load by decom-
posing and parallelizing a repair operation across the avail-
able nodes [20, 22]. In this work, we focus on repair pipelin-
ing [20], which reduces the time of repairing a lost block to
almost the same as the time of directly reading a block.

Repair pipelining is mainly designed for RS codes [31].
It divides a single-block repair operation into multiple sub-
block repair operations and evenly distributes sub-block repair
operations across all nodes. For example, suppose that we
use repair pipelining to repair a lost block B0 for an (n,k)
RS code. It first divides each block Bi (0 ≤ i ≤ n− 1) into
multiple sub-blocks, denoted by bi,0,bi,1, · · · . Recall that each
block can be expressed as a linear combination of k blocks
(§2.1), say B0 = ∑

k
i=1 aiBi for some coding coefficients ai’s.

Repair pipelining makes two observations. First, each sub-
block in B0 is also a linear combination of the k sub-blocks at
the same block offset with the same coding coefficients, i.e.,
b0, j = ∑

k
i=1 aibi, j, for the j-th sub-block. Second, the linear

combination is addition associative, meaning that b0, j can be
computed from the linear combinations of partial terms.

To repair B0, repair pipelining works as follows. First, N1
starts the repair of b0,0 by sending a1b1,0 from its local storage
to N2. Second, N2 combines the received a1b1,0 with a2b2,0
from its local storage to form a1b1,0 +a2b2,0. Third, N2 sends
a1b1,0 + a2b2,0 to N3; meanwhile, N1 can start the repair of
b0,1 by sending a1b1,1 from its local storage to N2 without
interfering with N2’s transmission. Finally, the last available
node Nk reconstructs b0, j for each j-th sub-block and sends
b0, j to N0.

Repair pipelining reduces the maximum repair load to the
same as the block size. For example, Figure 1(c) shows an
example of repair pipelining for the (4,2) RS code. The maxi-
mum repair load is 256 MiB for a block size of 256 MiB since
each of the k available nodes sends or receives one block of
data; it is even less than that in Clay codes (Figure 1(b)). Note
that the repair bandwidth remains 512 MiB, the same as in
the conventional repair for RS codes (Figure 1(a)), since k
available nodes transfer k blocks of data in total.

2.4 Motivation and Challenges
From §2.3, a natural question to ask is whether we can apply
repair pipelining to MSR codes (§2.2) to reduce the maximum
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Figure 2: Examples of the parallel repair for the (4,2) Clay
code. The example in figure (a), with more careful repair
scheduling, has both less repair bandwidth and less maximum
repair load than the example in figure (b).

repair load. Unfortunately, the answer is negative, mainly
because the repair of sub-blocks is not based on the addition
associativity as in RS codes; instead, it is done by solving a
system of linear combinations (e.g., see Equations (1)-(3) in
§2.2 for Clay codes). Thus, we cannot pipeline the repair of
individual sub-blocks of MSR codes as in RS codes.

Nevertheless, the sub-packetization nature of MSR codes
offers an opportunity for parallelizing a repair operation to
reduce the maximum repair load. First, the repair of a sub-
block in MSR codes only requires a subset of available sub-
blocks; for example, in the (4,2) Clay code, each sub-block is a
linear combination of two currently stored or intermediate sub-
blocks. Thus, we can distribute the repair operations of sub-
blocks across different nodes for load balancing. Second, in
erasure coding implementation, each block is further divided
into smaller-sized units (called packets), so that the repair
of a block can be parallelized at the packet level (see §6 for
implementation details).

Figure 2(a) shows a parallel repair example for the (4,2)
Clay code. First, in the PRT step, N2 generates c0 and c1
from b3,0 (retrieved from N3) and b2,1 (locally stored in N2).
Second, in the MDS decoding step, N2 decodes c2 and b0,0
from b2,0 (locally stored in N2) and c0 (generated in the PRT
step), while N0 generates c3 and b0,1 from c1 (retrieved from



Repair
bandwidth (MiB)

Maximum repair
load (MiB)

RS; centralized 512 (highest) 512 (highest)
Clay; centralized 384 (lowest) 384 (high)
RS; parallel 512 (highest) 256 (lowest)
Clay; parallel 448 (medium) 320 (medium)

Table 1: Summary of the four repair methods for (n,k) =
(4,2).

N2) and b3,1 (retrieved from N3). Finally, in the PFT step, N1
repairs b0,2 from b1,0 (locally stored in N1) and c2 (retrieved
from N2), while N0 repairs b0,3 from b1,1 (retrieved from N1)
and c3 (generated in the MDS decoding step). Also, N0 re-
trieves the repaired b0,0 and b0,2 from N2 and N1, respectively.
In this example, the repair operation can be parallelized in
two aspects: (i) the repair of b0,1 and b0,3 in N0, as well as
the repair of b0,2 in N1, can be performed in parallel; and
(ii) the sub-block repair operations in N0, N1, and N2 can be
parallelized at the packet level. Thus, the maximum repair
load is 320 MiB (i.e., the five sub-blocks b0,0, b0,2, b1,1, b3,1,
and c1 retrieved by N0) for a block size of 256 MiB.

Such a parallel repair approach may amplify the repair
bandwidth, as some sub-blocks are reused more than once
by different nodes. For example, the sub-blocks b2,1 and b3,0
are used to compute c1, c2, and b0,0. Each of the three sub-
blocks will be transmitted over the network. Thus, instead of
transmitting each of the sub-blocks b2,1 and b3,0 only once as
in the centralized repair (Figure 1(b)), the parallel repair now
includes the sub-blocks b2,1 and b3,0 in three transmissions.
The repair bandwidth increases from the minimum point of
384 MiB to 448 MiB.

How to carefully schedule the parallel repair of different
sub-blocks is a critical issue. Figure 2(b) shows another ex-
ample of the parallel repair of the (4,2) Clay code, where
the repair is less efficiently scheduled. In this example, the
sub-blocks b2,0, b2,1, and b3,0 are all transmitted twice. Thus,
the repair bandwidth is 832 MiB, while the maximum repair
load is 512 MiB.

In summary, the parallel repair of MSR codes can be sched-
uled to balance the trade-off between the repair bandwidth
and the maximum repair load, as shown in Table 1 for the
(4,2) Clay code. Our goal in this paper is to design a parallel
repair solution that can effectively balance the trade-off for
general coding parameters of MSR codes.

3 Model and Analysis
Before we design the parallel repair solution for MSR codes,
we first formulate a generic repair model that characterizes the
trade-offs between the repair bandwidth and the maximum
repair load for different repair solutions, either centralized
(e.g., Figures 1(a) and 1(b)) or parallel (e.g., Figures 1(c) and
2). In this section, we design our repair model (§3.1) and
evaluate the repair bandwidth and the maximum repair load
of a repair solution (§3.2). Finally, we analyze the trade-off

between the repair bandwidth and the maximum repair load
for different repair solutions on RS and MSR codes (§3.3).

3.1 Characterizing Repair Solutions
Design requirements. We first identify three design require-
ments for our repair model to characterize repair solutions
based on our example in Figure 2:

• R1: It can describe the linear combination relationships of
sub-blocks (e.g., b0,0 is the linear combination of b2,0, b2,1,
and b3,0).

• R2: It can describe which node is scheduled to execute
a repair operation for each sub-block and how the repair
operation is executed (e.g., N2 downloads b3,0 from N3 and
generates b0,0 with its locally stored b2,0 and b2,1).

• R3: It can describe how the repaired sub-blocks are col-
lected (e.g., b0,0, b0,1, b0,2, and b0,3 can be repaired in differ-
ent nodes, but are finally collected by N0 for reconstructing
block B0).

Our repair model builds on the ECDAG abstraction [19],
which characterizes and schedules erasure coding operations
in distributed storage systems. Note that an ECDAG can
model the linear combination relationships of sub-blocks (i.e.,
R1 addressed), but cannot directly schedule the repair opera-
tions for different sub-blocks in different nodes (i.e., R2 and
R3 not addressed). In the following, we first introduce the
ECDAG abstraction, and then explain how it can be extended
to address all our requirements.

Basics of an ECDAG. We provide an overview of an ECDAG.
An ECDAG G = (V,E) is a directed acyclic graph (DAG) that
describes an erasure coding operation (including the repair
of a block), where V is the set of vertices and E is the set
of edges. A vertex vℓ ∈ V (where ℓ ≥ 0) refers to either a
sub-block that is stored in a node (i.e., ℓ= i×w+ j for bi, j,
where i, j ≥ 0) or an intermediate sub-block that is generated
on-the-fly but will not be finally stored (i.e., ℓ≥ n×w). With
a slight abuse of notation, we refer to a sub-block with its
vertex vℓ, where ℓ is the index. An edge e(ℓ1, ℓ2) ∈ E means
that the sub-block vℓ1 is an input to the linear combination for
computing the sub-block vℓ2 . Note that the repair workflows
vary across blocks, so the repair of each block will lead to a
different ECDAG instance.

We use Clay codes [36] as an example to show how an
ECDAG describes its repair workflow. Figure 3(a) shows
the block layout of the (4,2) Clay code (where w = 4) in an
ECDAG, and Figure 3(b) shows the repair flow for block B0,
which we introduce in §2.2. First, in the PRT step, we couple
sub-blocks v9 (b2,1) and v12 (b3,0) as a pair and perform linear
combinations to generate two intermediate sub-blocks v16 (c0)
and v17 (c1). Second, in the MDS decoding step, we decode
sub-blocks v0 (b0,0) and v18 (c2) from sub-blocks v8 (b2,0) and
v16 (c0), and we decode sub-blocks v1 (b0,1) and v19 (c3) from
sub-blocks v13 (b3,1) and v17 (c1). Note that the sub-blocks
v0 (b0,0) and v1 (b0,1) of B0 are repaired. Finally, in the PFT
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Figure 3: An ECDAG example of repairing B0 using the
(4,2) Clay code (w = 4).

step, we couple sub-blocks v4 (b1,0) and v18 (c2) to repair
sub-block v2 (b0,2), and also couple sub-blocks v5 (b1,1) and
v19 (c3) to repair sub-block v3 (b0,3). B0 is now fully repaired.

pECDAG. We extend the ECDAG abstraction into the
pECDAG abstraction to support the scheduling of parallel
sub-block repair operations, so that we can model the trade-
off between the repair bandwidth and the maximum repair
load. Specifically, a pECDAG makes two extensions over
an ECDAG. First, it associates each vertex with a color that
corresponds to a node, such that the node is responsible for
generating or storing all sub-blocks associated with the same-
colored vertices (i.e., R2 addressed). Second, it connects all
repaired sub-blocks, which may reside in different nodes to a
vertex R, which represents a data collector (i.e., R3 addressed).
Figure 4(a) shows the pECDAG for the parallel repair in Fig-
ure 2. To help our discussion, we refer to the topmost vertices
(e.g., v4, v5, v8, v9, v12, and v13) that correspond to the sub-
blocks retrieved from the other available nodes as the leaf
vertices, and the vertex R that corresponds to the data collec-
tor as the root vertex. Note that the colors of both the leaf
vertices and root vertex are fixed, as they depend on where the
retrieved sub-blocks and repaired block reside, respectively.

For example, from Figure 4(a), N2 (i.e., yellow-colored)
computes the sub-block v17 (c1) in Figure 2 and sends it to N0
(i.e., red-colored), which repairs the sub-blocks v1 (b0,1) and
v3 (i.e., b0,3). Also, N2 computes the sub-blocks v0 (b0,0) and
v18 (c2). It sends v18 to N1 (i.e., green-colored), which repairs
the sub-block v2 (b0,2). Finally, N0 collects all the repaired
sub-blocks for the reconstruction of B0.

3.2 Evaluating Repair Solutions
Given (n,k,w) and the block to repair, there are different ways
to color the vertices of a pECDAG, so there are multiple possi-
ble pECDAG instances. We associate each pECDAG instance
with a traffic table, so as to efficiently quantify the repair
bandwidth and the maximum repair load of the corresponding
repair solution.

Definition of a traffic table. A traffic table maintains the
amount of data that each node sends or receives when re-
pairing a block. For each node in the system, the traffic ta-
ble records the number of incoming sub-blocks received by
the node and the number of outgoing sub-blocks sent by the

1294 58

16 17

13

18

0 1

19

2 3

R

N1

N3

N2

N0

Node
In Out

N0 5 0

N1 1 2

N2 1 3

N3 0 2

1294 58

16 17

13

18

0 1

19

2 3

R

N1

N3

N2

N0

Node
In Out

N0 5 0

N1 1 2

N2 1 3

N3 0 2

(a) pECDAG (b) Load table

Figure 4: A pECDAG example of (4,2) Clay code with w= 4
to repair B0.

node. The repair bandwidth is the total number of incoming
sub-blocks (or equivalently, the total number of outgoing sub-
blocks) of all nodes, while the maximum repair load is the
largest number of incoming or outgoing sub-blocks of a node
across all nodes. For example, Figure 4(b) shows the traffic
table for the parallel repair solution shown in Figure 2, in
which the repair bandwidth is 7 sub-blocks and the maximum
repair load is 5 sub-blocks.

Construction of a traffic table. We show how we generate
the traffic table for a given pECDAG instance. We initialize a
traffic table T with two arrays T.In and T.Out, which record
the numbers of incoming and outgoing sub-blocks for each
node, respectively. For each vertex vi, we traverse each edge
e(vi,v j). Let N′ and N′′ be two nodes with respect to the colors
of vi and v j, respectively. If vi and v j have different colors, we
increment T.Out[N′] and T.In[N′′] by one; however, if there
exist two edges, say e(vi,v j) and e(vi,vh), such that v j and vh
have the same color that is different from vi’s color, we only
increment T once for the corresponding pairs of nodes. The
rationale is that the sub-block vi only needs to be transmitted
once to calculate the sub-blocks v j and vh.

For example, in Figure 4(a), both v18 and v0 have the same
color as v8, we do not need to update the traffic table. For v17,
as v1 has a different color, we count e(v17,v1) as a transmis-
sion and increment the traffic table. As v19 and v1 have the
same color, we do not need to increment the traffic table for
e(v17,v19).

3.3 Trade-off Analysis
Based on a pECDAG and its traffic table, we study the trade-
off between the repair bandwidth and the maximum repair
load. Our idea is to enumerate all possible color combinations
of a pECDAG and find the corresponding traffic table for each
color combination. Note that the colors of the leaf vertices
and the root vertex are fixed (§3.1). Thus, for a pECDAG,
we only need to enumerate the color combinations for the
intermediate sub-blocks and repaired sub-blocks. Currently,
we assume that the repair operation of a stripe is scheduled
among the nodes (i.e., n nodes for an (n,k) code) that store
the blocks of the stripe, so as to limit the interference across
different stripes.

We consider the repair scenarios of two MSR codes: the
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Figure 5: Trade-off analysis between the repair bandwidth
and the maximum repair load.

(4,2) Clay code and the (6,4) Butterfly code. We consider
the repair of block B0 (i.e., the first block of a stripe) and
construct a pECDAG for each of them. We apply a brute-
force search to enumerate all color combinations; for each
color combination, we generate the traffic table and obtain the
corresponding repair bandwidth and maximum repair load.
We show the spectrum of repair bandwidth and maximum
repair load for different color combinations under the (4,2)
Clay code (Figure 5(a)) and the (6,4) Clay code (Figure 5(b)).
In the figures, we highlight the points corresponding to the
centralized repair for RS codes (RS), repair pipelining for RS
codes (RP), and the centralized repair for Clay codes (Clay)
or Butterfly codes (Butterfly) for comparisons.

We find that different color combinations for an MSR code
have different trade-offs between the repair bandwidth and the
maximum repair load. We define a min-max repair load point
(MLP), which minimizes the maximum repair load, and whose
repair bandwidth is minimized given this optimal maximum
repair load. Note that the MLP does not guarantee the absolute
minimum value of repair bandwidth. For example, for the
(4,2) Clay code, the MLP happens to be overlapped with the
point of RP; for the (6,4) Butterfly code, the MLP reduces the
repair bandwidth by 15.6% compared with that of RP, while
it achieves the same maximum repair load as RP.

This observation indicates that the parallel repair of an
MSR code may further improve the repair performance of a
distributed storage system if we can find the MLP. However, it
is non-trivial to find the MLP in general. While the brute-force
approach can always find the MLP, it also has high complexity.

For a pECDAG of an (n,k) MSR code with w sub-blocks in
a block, the lower bound of the number of vertices being
colored is w (i.e., when there is no intermediate sub-block,
we only need to color the w repaired sub-blocks). In this case,
the lower bound of the total number of color combinations is
nw. For Clay codes, the lower bound is n(n−k)⌈n/(n−k)⌉

, while
for Butterfly codes, the lower bound is n2k−1

. For example,
for the (14,10) Clay code, the number of color combinations
is no less than 14256, while for the (12,10) Butterfly code,
the number of combinations is no less than 12512, which are
not solvable in polynomial time. Thus, for reasonably large
(n,k), it is important to reduce the size of the search space,
and hence the running time.

4 Heuristic
As the brute-force approach in general is time-consuming to
find the MLP, we propose a heuristic to find an approximate
point that is close to the MLP. Our goal is to find a parallel
repair solution represented in a pECDAG that keeps both
the repair bandwidth and the maximum repair load as low as
possible.

Design idea. The high-level idea is to search all the color
combinations for a pECDAG, while pruning some branches
based on the heuristic to reduce the search space. Intuitively,
we can view our heuristic as searching for the solution based
on Pareto optimality, such that it searches for the MLP on the
Pareto frontier and prunes the dominated solutions that have
both larger repair bandwidth and larger maximum repair load
than a candidate solution.

We first introduce the key definitions. If two pECDAGs,
say X and Y , have the same DAG structure except in the color
of a single vertex that refers to an intermediate sub-block or a
repaired sub-block, we call X and Y the neighbors. We per-
form the search on a pECDAG by examining all the neighbors
of the pECDAG. If we have examined all the neighbors of a
pECDAG, we say that the pECDAG is searched; otherwise,
the pECDAG is un-searched. Our heuristic is composed of
the following three steps.

Step 1: Initialization. We define an un-searched pool, which
is used to keep the pECDAGs that will be searched, as well
as a candidate pool, which is used to record the candidate
pECDAG solutions to be returned. At the beginning, we gen-
erate a random pECDAG, in which the color of a vertex that
refers to an intermediate sub-block or a repaired sub-block
is randomly selected from a set of candidate colors that rep-
resent the nodes storing the available blocks and the node
storing the repaired block. We add the random pECDAG to
the un-searched pool and the candidate pool for initialization.

Step 2: Searching. Each time we retrieve a pECDAG from
the un-searched pool. We enumerate all the neighbors of this
pECDAG by changing the color of only one vertex (which
refers to an intermediate sub-block or a repaired sub-block). If
there are α such vertices and β candidate colors, a pECDAG



has α × (β − 1) neighbors (note that for each vertex, there
are β −1 different candidate colors to which we can change).
After we examine all the neighbors of the pECDAG (i.e., the
pECDAG is searched), we remove the pECDAG from the
un-searched pool.

Step 3: Pruning. After Step 2, we generate α × (β −1) new
neighbors of a pECDAG. However, not all of them are suitable
for future search. Here, we consider different cases of how
we compare a neighbor pECDAG that we generate in Step 2
with the pECDAGs in the candidate pool to decide whether
the neighbor pECDAG is suitable for future search. Suppose
that there are two pECDAGs in the candidate pool (say, A and
B), and Figure 6 shows the four cases when we compare a
neighbor pECDAG with the solutions in the candidate pool:

• Case 1 (Figure 6(a)): This is an example of a generated
neighbor pECDAG that is not suitable for future search. If
there exists a pECDAG in the candidate pool that provides
less maximum repair load and less repair bandwidth than
the neighbor that we generate in Step 2, it means that we
already have an existing solution that outperforms the neigh-
bor. Thus, we discard the neighbor. The remaining three
cases show the examples of when we can add a neighbor
pECDAG to the candidate pool.

• Case 2 (Figure 6(b)): If the neighbor has the least maximum
repair load or the least repair bandwidth compared with
all the pECDAGs in the candidate pool, we can add the
neighbor to the candidate pool.

• Case 3 (Figure 6(c)): If the neighbor lies between two solu-
tions in the candidate pool, we can add the neighbor to the
candidate pool.

• Case 4 (Figure 6(d)): If we find that the repair bandwidth
and the maximum repair load of the neighbor are both less
than those of an existing pECDAG in the candidate pool,
we can add the neighbor to the candidate pool and also
remove the existing one from the candidate pool.

For the neighbors that have been added to the candidate pool,
we also add them to the un-searched pool for our future search.

Note that Step 2 and Step 3 are performed iteratively until
the un-searched pool is empty. Then, we report the pECDAG
that has the least maximum repair load as an approximate
MLP from the candidate pool.

Discussion. As our heuristic in general only provides a local
optimal solution, we can repeat the process to find an approxi-
mate MLP starting from Step 1 by multiple runs, such that we
can choose the one with the least maximum repair load from
all the runs. We show in §7.2 how the heuristic performs in
finding the approximate MLP.

5 Design of Repair Operations
Repair operations in a distributed storage system will be trig-
gered in two scenarios, namely degraded reads, where a client
reads an unavailable block, and full-node recovery, where the
distributed storage system repairs the lost blocks of a failed
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Figure 6: Compare a neighbor generated in Step 2 with solu-
tions in the candidate pool.

node in a new node. In this section, we design the two repair
operations based on our heuristic in §4.

Degrade reads. A client issues a degraded read operation
when it requests an unavailable block, in which it needs to
repair the requested block through the available blocks of
the same stripe stored in other nodes. We generate an ap-
proximate MLP from our heuristic. We then associate the
approximate MLP with a pECDAG, which describes the re-
pair workflow with the sub-blocks (including the available
sub-blocks, repaired sub-blocks, and intermediate sub-blocks)
and the nodes (i.e., the nodes that store the available blocks
and the node associated with client). Note that a pECDAG
varies for different unavailable blocks of a stripe. Also, as the
blocks of different stripes are distributed across different sets
of nodes in a distributed storage system, a pECDAG varies
across different stripes and needs to be generated for each
requested unavailable block of a stripe.

Full-node recovery. In a full-node recovery operation, a new
node is added to the system, and we repair all the lost blocks
of a failed node and store the repaired blocks in the new node.
We run our heuristic to generate an approximate MLP for each
lost block to be repaired and associate the approximate MLP
with a pECDAG. For each block, we associate the colors in
the corresponding pECDAG with both the nodes that store the
available blocks in the stripe and the new node that is added
for full-node recovery.

6 ParaRC
We propose a parallel repair middleware, ParaRC, to balance
the repair bandwidth and the maximum repair load for MSR
codes. We first introduce the architecture of ParaRC in §6.1.
We then elaborate on the implementation details in §6.2.



DataNode
Agent

DataNode
Agent

DataNode
Agent...

Controller

NameNode
PRS

Generator

Client

control flow data flow metadata flow

Figure 7: System architecture.

6.1 Architecture
We have built ParaRC as a repair middleware based on
OpenEC [19], an erasure coding framework that supports
the deployment of custom erasure coding solutions in existing
distributed storage systems. ParaRC leverages OpenEC to de-
ploy the parallel repair of MSR codes on Hadoop HDFS [4].
HDFS stores data in fixed-size blocks. It comprises a NameN-
ode and multiple DataNodes: the NameNode manages the
storage of all DataNodes and maintains the metadata of all
stored blocks, while the DataNodes provide the storage for
the blocks. ParaRC performs encoding across HDFS blocks:
for an (n,k) code, it encodes every k uncoded HDFS blocks
(i.e., data blocks) into n− k coded HDFS blocks (i.e., parity
blocks) to form a stripe, and stores the stripe in n DataNodes.

Figure 7 shows the architecture of ParaRC when it is inte-
grated with HDFS. ParaRC includes a parallel repair solution
generator, called the PRS generator. It also deploys a con-
troller that runs within the NameNode, and multiple agents,
each of which runs within a DataNode. We also deploy a
client that is co-located with an agent in a DataNode to issue
repair requests to ParaRC (note that the client can also run
in a standalone machine outside of the DataNodes). We now
elaborate on each component in detail.

PRS generator. The PRS generator pre-computes the parallel
repair solution for each single-block repair scenario offline
and stores the results before the system starts [16]; this offline
approach is suitable since the number of repair scenarios is
limited for moderate ranges of (n,k) that are commonly used
in practice [26]. The PRS generator runs the heuristic in §4
for an MSR code to generate a parallel repair solution that
operates at an approximate MLP. It constructs a pECDAG
based on the parallel repair solution. It stores the solution in
the controller, which coordinates the actual repair operation.

Controller. The controller coordinates the parallel repair op-
eration for the lost blocks that are encoded with MSR codes.
Upon receiving a repair request for a block, the controller
first reads the metadata of the block from HDFS to deter-
mine the location of other blocks in the same stripe. Then,
the controller constructs a pECDAG to repair the block with
the parallel repair solution returned from the PRS generator.
Finally, it translates the pECDAG into a set of basic tasks de-
fined in OpenEC [19], including (i) reading sub-blocks from

disk, (ii) fetching sub-blocks from other nodes, (iii) comput-
ing intermediate sub-blocks and repaired sub-blocks, and (iv)
persisting the repaired sub-blocks as the final repaired block.
Then, the controller sends the basic tasks to the agents to
perform sub-block repair operations to repair a lost block.

Agent. Each agent performs the basic tasks assigned by the
controller. For a reading task, an agent directly reads the sub-
blocks of a block stored in the local file system. For a fetching
task, an agent downloads the sub-blocks from another agent.
For a computing task, an agent generates the intermediate sub-
blocks or repaired sub-blocks. For a persisting task, an agent
stores the repaired sub-blocks as the final repaired block.

Client. A client sends repair requests to ParaRC. It can send
a degraded read request or a full-node recovery request to
ParaRC (§5). For a degraded read request, ParaRC coordinates
the parallel repair for an unavailable block requested by the
client; for a full-node recovery request, ParaRC repairs all lost
blocks of a failed DataNode in parallel in a new DataNode.

6.2 Implementation
We implement ParaRC in C++ with around 9.4 K LoC and
integrate ParaRC with Hadoop-3.3.4 HDFS [4] (HDFS-3 for
short). ParaRC uses Redis [7] for internal communications
among the controller, agents, and clients. It uses Intel’s Intel-
ligent Storage Acceleration Library (ISA-L) [6] to perform
encoding and decoding operations for erasure codes. It sup-
ports both the centralized repair and parallel repair for MSR
codes. In the following, we elaborate on the deployment de-
tails of ParaRC and how ParaRC is integrated with HDFS-3.

Deployment. To generate basic tasks for parallel repair, we
need to carefully co-locate sub-block repair operations to
avoid redundant data transmissions. For example, when we
deploy the pECDAG in Figure 4(a), we need to co-locate
the repair of sub-blocks v18 and v0, to make sure that the
sub-blocks v8 and v16 are only downloaded once in N2 in
the sub-block repair operation. To achieve this goal, we first
divide vertices into groups based on topological sorting, in
which we can co-locate the sub-block repair operations for
the vertices of the same color in the same group.

For example, the vertices in Figure 4(a) can be divided into
the following five groups according to topological sorting: (i)
v4, v5, v8, v9, v12, and v13; (ii) v16 and v17; (iii) v0, v1, v18, and
v19; (iv) v2 and v3; and (v) R. In group (ii), as v16 and v17 have
the same color, we can co-locate the two sub-block repair
operations, such that N2 can only download sub-block v12
from N3 only once to compute the two sub-blocks. Similarly,
we can co-locate the sub-block repair operations specified by
v0 and v18 in N2, and the sub-block repair operations specified
by v1 and v19 in N0.

HDFS-3 integration. To improve parallelism, in ParaRC, the
encoding of a stripe of blocks is divided into the encoding of
multiple small sub-stripes, where the data unit in each node
within a sub-stripe is called a packet. In MSR codes, each



packet contains w sub-packets. Each sub-stripe encodes k×w
sub-packets into n×w MSR-coded sub-packets, where the
size of a sub-packet is as small as 64 KiB. Thus, we implement
sub-packetization across sub-packets instead of sub-blocks
as in OpenEC [19], so that ParaRC can encode different sub-
stripes in parallel to fully utilize the system resources.

Note that HDFS-3 does not directly support MSR codes, so
we rely on ParaRC to generate MSR-coded blocks and store
them in HDFS-3. To enable the parallel repair for MSR codes
in HDFS-3, we run the ParaRC controller with the NameNode
and run each ParaRC agent with a DataNode. The controller
maintains a stripe store for MSR-coded stripes, which records
the metadata of each stripe, including the blocks of the same
stripe, and the location of each block in the same stripe. We
store the metadata of HDFS-3 blocks in the stripe store of
ParaRC, such that when repairing a block, the controller can
retrieve metadata from the stripe store.

Support for RS codes. ParaRC also supports RS codes. It
now implements both the conventional centralized repair ap-
proach and the parallel repair approach based on repair pipelin-
ing [20]. In repair pipelining, we divide a packet into sub-
packets and pipeline the repair of different sub-packets across
a repair path (i.e., each sub-packet is viewed as a slice in repair
pipelining [20]). The corresponding parallel repair solutions
are stored in the PRS generator. Note that RS codes have no
sub-packetization and a sub-stripe encodes k packets into n
RS-coded packets.

7 Evaluation
We conduct experiments for ParaRC on Alibaba Cloud [1].
We aim to answer the following questions:

• What is the performance of our heuristic in §4 in finding
the approximate MLP? (§7.2)

• How does the performance of ParaRC vary across different
system configurations? (§7.3 and §7.4)

• What is the performance overhead of ParaRC to HDFS-3
and how is the repair performance improved by the parallel
repair from ParaRC? (§7.5)

7.1 Setup
Testbed. We provision 23 memory-optimized instances on
Alibaba Cloud [1] for ParaRC, which includes the PRS gen-
erator, the controller, 20 agents, and a node that serves as
the client for degraded reads or the new node for full-node
recovery. The PRS generator runs on an ecs.r7.2xlarge
instance with 8 vCPUs and 64 GiB RAM, while other com-
ponents are deployed in ecs.r7.xlarge instances with 4
vCPUs and 16 GiB RAM. Each instance is also equipped with
a 40 GiB enhanced SSD with performance level PL0 [2] and
is installed with Ubuntu 18.04. All instances are connected
via a 10 Gbps network.

Default settings. We configure the default block size as
256 MiB and the default sub-packet size as 64 KiB; for exam-

ple, the packet size for the (14,10) Clay code is 256×64 KiB
= 16 MiB, so a stripe can be divided into 16 sub-stripes. In
our evaluation, we compare four repair approaches: (i) the cen-
tralized repair for RS codes (RS); (ii) repair pipelining for RS
codes (RP); (iii) the centralized repair for Clay/Butterfly codes
(Clay/Butterfly); and (iv) the parallel repair for Clay/Butterfly
codes (ParaRC). If we consider an (n,k) Clay/Butterfly code,
we also use the same (n,k) for RS and RP.

For degraded reads, we evaluate the average degraded read
time for the first k uncoded blocks. For full-node recovery,
we measure the total time of repairing 20 lost blocks of a
failed storage node from 20 stripes (whose available blocks
are randomly distributed across the non-failed storage nodes).
We plot the average results over 5 runs, including the error
bars showing the maximum and minimum of the 5 runs.

7.2 Finding the Approximate MLP
E1: Performance of finding the approximate MLP. We
evaluate our heuristic in §4 in finding the approximate MLP.
We focus on repairing B0 for Clay codes [36] and Butterfly
codes [24]. We evaluate the algorithm running times of our
heuristic and the brute-force approach. We also compare the
maximum repair load and repair bandwidth of the approxi-
mate MLP returned by our heuristic with those of RP and the
centralized repair for Clay/Butterfly codes.

We first compare the running time of our heuristic with that
of the brute-force approach. We only consider the (4,2) Clay
code (w = 4) and the (6,4) Butterfly code (w = 8), as the
brute-force approach for large (n,k) cannot be solved within
reasonable time. As shown in Table 2, for the (4,2) Clay
code, the heuristic reduces the running time from 264.1 s to
1.8 s, while for the (6,4) Butterfly code, the heuristic reduces
the running time from 34.2 s to 0.3 s. We also examine the
number of pECDAGs being examined by the heuristic. For
example, for the (14,10) Clay code, the heuristic examines
about 14 million pECDAGs only; the number is much less
than the lower bound of the number of pECDAGs (i.e., 14256)
that need to be examined by the brute-force approach (§3.3).
Thus, the heuristic significantly reduces the search space.

We note that the heuristic can find the solution whose max-
imum repair load has the same size as the block size, but
sometimes cannot. For example, the solution for the (6,4)
Butterfly code (w = 8) achieves the maximum repair load of
256 MiB (which is also the minimum), while the maximum
repair load of the solution for the (4,2) Clay code (w = 4)
is larger than the block size 256 MiB. The reason is that the
heuristic may return a local optimal solution.

We then compare the maximum repair load and repair band-
width of different repair approaches. The maximum repair
load of our heuristic is significantly less than that of the cen-
tralized repair for Clay/Butterfly codes. For example, for the
(14,10) Clay code (w = 256) the maximum repair load of the
MLP decreases to 271 MiB, which is 67.4% less than that of
the centralized repair for Clay codes (i.e., 832 MiB). We also



(n,k,w) RP Clay Approximate MLP Heuristic Brute-force
(4,2,4) (256,512) (384,384) (320,448) 1.8 s 264.1 s

(12,8,64) (256,2048) (704,704) (264,1224) 425.9 s -
(14,10,256) (256,2560) (832,832) (271,1609) 57.2 h -
(16,12,256) (256,3072) (960,960) (281,1774) 61.9 h -

(a) Clay codes
(n,k,w) RP Butterfly Approximate MLP Heuristic Brute-force
(6,4,8) (256,1024) (640,640) (256,896) 0.3 s 34.2 s

(12,10,512) (256,2560) (1408,1408) (297,2216) 31.64 h -
(b) Butterfly codes

Table 2: E1: Performance of finding the approximate MLP to repair B0 for Clay codes and Butterfly codes. We show the
(maximum repair load, repair bandwidth) for each repair approach. We also show the running time for the heuristic. For the brute-
force approach, we only show the running time for the (4,2,4) Clay code and (6,4,8) Butterfly code, as the other configurations
cannot be completed within reasonable time.
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Figure 8: E2: Varying MSR codes.

observe that when the maximum repair load decreases, the
repair bandwidth of our heuristic is higher than that of the
centralized repair, while it is still much less than the repair
bandwidth of RP (by 37.1%). We also observe similar trends
in Butterfly codes.

7.3 ParaRC Performance
We evaluate the performance of ParaRC in degraded reads
and full-node recovery under different settings.

E2: Varying MSR codes. We evaluate the performance of
ParaRC for different MSR code configurations, including the
(12,8) Clay code, the (14,10) Clay code, the (16,12) Clay
code, and the (12,10) Butterfly code. Figure 8 shows the
evaluation results.

We first analyze the performance of the degraded reads,
as shown in Figure 8(a). Overall, ParaRC has the smallest
degraded read time compared with other baseline repair ap-
proaches. For example, for the (16,12) Clay code, ParaRC
reduces the degraded read time by 76.4%, 51.9%, and 59.3%,

compared with RS, RP, and Clay, respectively. Although RP
minimizes the maximum repair load, its degraded read time
is not necessarily minimized, as RP still has high repair band-
width and needs to read the whole block from each avail-
able node in degraded reads. For the (12,10) Butterfly code,
ParaRC reduces the degraded read time by 43.8%, 3.7%, and
24.8% compared with RS, RP, and Butterfly, respectively.

We next analyze the performance of full-node recovery,
as shown in Figure 8(b). Like degraded reads, ParaRC also
has the smallest full-node recovery time compared with other
baseline repair approaches. For example, for the (16,12) Clay
code, ParaRC reduces the full-node recovery time by 76.9%,
70.2%, and 39.2% compared with RS, RP, and Clay, respec-
tively. For the (12,10) Butterfly code, ParaRC reduces the full-
node recovery time by 37.2% and 24.2% compared with RS
and RP, respectively. We observe that the network bandwidth
usages of the centralized repair for the (12,8) Clay code, the
(14,10) Clay code, the (16,12) Clay code, and the (12,10)
Butterfly code are 1,126 MiB/s, 973 MiB/s, 984 MiB/s, and
1,046 MiB/s, respectively, implying that it is bottlenecked by
the high maximum repair load at the new node where the lost
blocks are reconstructed. As ParaRC reduces the maximum
repair load, we observe that it significantly improves the re-
pair performance for Clay codes. However, we also observe
that the performance improvement of ParaRC is marginal for
Butterfly codes. The reason is that while the maximum repair
load reduces for Butterfly codes, the repair bandwidth also in-
creases (i.e., from 1,408 MiB to 2,216 MiB), thereby limiting
the performance improvements.

7.4 Micro-benchmarks
We study how the performance of ParaRC varies for different
sub-packet sizes and block sizes. We focus on the (14,10)
Clay code and the (12,10) Butterfly code.

E3: Varying sub-packet size for degraded reads. We eval-
uate ParaRC under different sub-packet sizes. We vary the
sub-packet size from 16 KiB to 256 KiB, and fix the block
size at 256 MiB (note that the packet size is the sub-packet
size multiplied by w, where w depends on the erasure code).
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Figure 9: E3: Varying sub-packet size for degraded reads.
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Figure 9 shows the results. For the (14,10) Clay code,
ParaRC has the smallest degraded read time compared with
other repair approaches for all the sub-packet sizes being con-
sidered. For example, when the sub-packet size is 128 KiB,
ParaRC reduces the degraded read time by 64.8%, 40.0%, and
44.8% compared with RS, RP, and Clay, respectively. For each
repair approach, we see a performance drop when the sub-
packet size decreases to 16 KiB due to the overhead of process-
ing a large number of sub-packets, and such a performance
drop is especially significant for RP. For example, when we
decrease the sub-packet size from 64 KiB to 16 KiB, the de-
graded read time of ParaRC increases by 12.8%. However,
ParaRC still outperforms other baseline repair approaches.

For the Butterfly code, we also observe similar results.
For all sub-packet sizes, ParaRC has the smallest degraded
read time. For example, when the sub-packet size is 128 KiB,
ParaRC reduces the degraded read time by 49.2%, 13.3%,
and 33.4% compared with RS, RP, and Butterfly, respectively.
When the sub-packet size decreases from 64 KiB to 16 KiB,
the degraded read time increases by 26.5%.

E4: Varying block size. We evaluate ParaRC under different
block sizes. We vary the block size from 64 MiB to 512 MiB,
and fix the sub-packet size at 64 KiB. The block size deter-
mines the number of sub-stripes; for example, for the de-
fault block size of 256 MiB, the number of sub-stripes for the
(14,10) Clay code is 16 (§7.1).

Figure 10 shows the results. When the block size is large,
ParaRC outperforms other repair approaches. For example,
when the block size is 512 MiB, ParaRC for the (14,10) Clay
code reduces the degraded read time by 67.3%, 60.9%, and
31.8% compared with RS, RP, and Clay, respectively, while

1
2

9
.7

1
2

8
.8

1
2

8
.8

1
3

1
.1

1
2

.63
5

.5

4
2

.8

4
4

.2

0

30

60

90

120

150

180

Encode Full-node recovery

T
im

e
 (

s
)

HDFS-RS
ParaRC-RS
ParaRC-RP
ParaRC-Clay

Figure 11: E5: HDFS-3 integration.

ParaRC for the (12,10) Butterfly code reduces the degraded
read time by 40.3%, 28.4%, and 12.3% compared with RS,
RP, and Butterfly, respectively.

When the block size is small, RP outperforms ParaRC.
For example, when the block size is 64 MiB, ParaRC for the
(14,10) Clay code has 22.1% higher degraded read time than
RP. The reason is that ParaRC fails to benefit from the parallel
repair for small block sizes due to high sub-packetization.
For example, when the block size is 64 MiB, a stripe is only
divided into 4 sub-stripes that are repaired in parallel for the
(14,10) Clay code, so the degree of parallelism is low. In
contrast, RP can pipeline the repair of 1,024 sub-stripes in
parallel (§6.2) and outperform ParaRC for small block sizes.

7.5 Performance in HDFS-3
E5: HDFS-3 integration. We evaluate the integration of
ParaRC into HDFS-3. Recall that we have shown the bene-
fits of ParaRC over other repair approaches (E2-E4). In this
experiment, we only focus on the performance overhead and
performance gain of ParaRC in HDFS-3 deployment. We
focus on the (14,10) Clay code with the default block size of
256 MiB.

Currently, HDFS-3 does not support Clay codes in its code-
base, so we mainly compare ParaRC with the RS code imple-
mentation in HDFS-3. We focus on evaluating the overhead
of encoding data by Clay codes in ParaRC and the full-node
recovery performance gain of ParaRC. We omit the results for
degraded reads to a lost block. The reason is that in HDFS-3,
a degraded read is triggered when reading a file, where all
blocks of the original file are returned to the client anyway. In
this case, the centralized repair of the lost block is sufficient.

We evaluate the performance of encoding 20 stripes and
repairing 20 lost blocks of a failed node in full-node recov-
ery (the full-node recovery procedure is described in §7.1).
We consider four approaches: (i) encoding by the default
RS codes and performing the default recovery approach in
HDFS (denoted by HDFS-RS); (ii) encoding by RS codes
and performing the centralized repair for RS codes in ParaRC
(denoted by ParaRC-RS); (iii) encoding by RS codes and per-
forming repair pipelining [20] in ParaRC (denoted by ParaRC-
RP); and (iv) encoding by Clay codes and performing the
parallel repair in ParaRC (denoted by ParaRC-Clay).

Figure 11 shows the results. For encoding, we observe that
the encoding of Clay codes in ParaRC and that of the encoding



of RS codes in HDFS-3 have similar overhead. For example,
HDFS-RS takes 131.1 s, while ParaRC-Clay takes 129.7 s
for encoding 20 stripes. For full-node recovery, ParaRC-Clay
reduces the full-node recovery time by 71.4% compared with
HDFS-RS; note that the total repair bandwidth for the full-
node recovery of 20 lost blocks in ParaRC-Clay is 16.25 GiB,
while that in HDFS-RS is 50 GiB (where (n,k) = (14,10)).

8 Related Work
RS codes [31] are popularly deployed in distributed storage
systems [3, 5, 9, 11, 23, 25], but incur high repair bandwidth
(§2.1). Thus, research efforts are made to improve the repair
performance of RS codes. One direction is to design fast
repair algorithms over RS codes, while another direction is to
design regenerating codes to minimize the repair bandwidth.

Repair algorithms for RS codes. PPR [22] divides the re-
pair of a block into partial operations and parallelizes them
for improved repair performance. Repair pipelining [18, 20]
divides the repair of a block into the repair of small slices,
organizes the available nodes that participate in the repair
operation into a repair path, and pipelines the repair of slices
along the repair path to reduce the degraded read time to be
almost the same as the time of reading a block. PPT [8], SM-
FRepair [39], and PivotRepair [38] propose different parallel
repair strategies for RS codes in heterogeneous bandwidth
environments. However, the above repair algorithms do not
reduce the repair bandwidth of RS codes. Our work focuses
on designing parallel repair algorithms for regenerating codes,
which have much lower repair bandwidth than RS codes.

Regenerating codes. Regenerating codes [10] are a family of
erasure codes that minimize the repair bandwidth. Minimum-
storage regenerating (MSR) codes not only minimize the re-
pair bandwidth, but also achieve the MDS property. Many re-
search studies propose new designs of MSR codes, including
F-MSR codes [13], PM-RBT codes [27], Butterfly codes [24],
and Clay codes [36]. Such MSR codes operate in different pa-
rameter regimes, such as n−k = 2 for F-MSR codes [13] and
Butterfly codes [24], and n ≥ 2k−1 for PM-RBT codes [27].
In particular, Clay codes [36] are state-of-the-art MSR codes
that support general parameters of n and k and are proven to
minimize both repair bandwidth and I/Os (§1). Geometric
partitioning [34] builds on Clay codes and divides an object
into variable-sized blocks to trade between the performance
of degraded reads and full-node recovery. However, the repair
strategy for existing MSR codes is still based on the central-
ized repair approach, in which a node downloads the required
data from all available nodes to repair a failed block. Even
though the repair bandwidth is still the minimum, the maxi-
mum repair load is high. ParaRC addresses this trade-off by
proposing a parallel repair strategy for MSR codes.

DAG-based erasure coding. OpenEC [19] proposes an
ECDAG abstraction to model and configure erasure coding
operations as a directed acyclic graph (DAG) without modify-

ing the I/O workflows of the underlying distributed storage
system. RepairBoost [21] proposes a DAG abstraction to load-
balance the full-node recovery workflow. Our work extends
ECDAG [19] to support the parallel repair for MSR codes.

9 Conclusions and Future Work
We present ParaRC, a parallel repair framework that improves
the repair performance of MSR-coded distributed storage
systems by exploiting the sub-packetization nature of MSR
codes. We show that there is a trade-off between the repair
bandwidth and the maximum repair load. ParaRC builds on
a fast heuristic that aims to minimize the maximum repair
load, while maintaining the low repair bandwidth. We im-
plement ParaRC as a middleware that runs atop HDFS. Our
evaluation results on Alibaba Cloud demonstrate that ParaRC
improves the repair performance of degraded reads and full-
node recovery compared with the conventional centralized
repair approach for Clay codes and Butterfly codes as well as
the repair pipelining approach for RS codes.

We discuss the limitations of our work and pose the follow-
ing open issues for future work.
• Currently, we only empirically show the performance gain

of ParaRC, but the theoretical analysis of the ParaRC de-
sign remains unexplored. Some open theoretical issues in-
clude: (i) the formulation of a multi-objective optimization
problem that minimizes both the repair bandwidth and the
maximum repair load; (ii) the difference between the re-
turned solution of the heuristic in §4 and the MLP; (iii)
the convergence of the heuristic in §4 to the MLP; and (iv)
faster and more efficient heuristics.

• ParaRC now focuses on the repair parallelism within a sin-
gle stripe (i.e., intra-stripe parallelism). One optimization is
to extend ParaRC with the repair parallelism across multiple
stripes (i.e., inter-stripe parallelism) for further performance
gains, particularly in declustered settings where the stripes
span across a large number of nodes [12]. Also, the full-
node recovery of ParaRC currently stores all reconstructed
blocks in a new node that replaces the failed node. We
can extend it to distribute the reconstructed blocks across
different nodes to avoid bottlenecking the new node.

• ParaRC is currently designed for large blocks and the mod-
erate parameters n and k. In future work, we consider small
blocks and wide stripes [14] (wide stripes encode data with
large parameters n and k for ultra-low redundancy).
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