
Separating Data via Block Invalidation Time Inference
for Write Amplification Reduction in Log-Structured Storage

Qiuping Wang1,2, Jinhong Li1, Patrick P. C. Lee1, Tao Ouyang2, Chao Shi2, Lilong Huang2

1The Chinese University of Hong Kong 2Alibaba Group

Abstract

Log-structured storage has been widely deployed in various
domains of storage systems, yet its garbage collection incurs
write amplification (WA) due to the rewrites of live data. We
show that there exists an optimal data placement scheme that
minimizes WA using the future knowledge of block invali-
dation time (BIT) of each written block, yet it is infeasible
to realize in practice. We propose a novel data placement
algorithm for reducing WA, SepBIT, that aims to infer the
BITs of written blocks from storage workloads and separately
place the blocks into groups with similar estimated BITs.
We show via both mathematical and production trace anal-
yses that SepBIT effectively infers the BITs by leveraging
the write skewness property in practical storage workloads.
Trace analysis and prototype experiments show that SepBIT
reduces WA and improves I/O throughput, respectively, com-
pared with state-of-the-art data placement schemes. SepBIT is
currently deployed to support the log-structured block storage
management at Alibaba Cloud.

1 Introduction
Modern storage systems adopt the log-structured design [30]
for high performance. Examples include flash-based solid-
state drives (SSDs) [5,10], file systems [15,21,27,30,32], key-
value stores [25,28], table stores [9], storage management [6],
in-memory storage [31], RAID arrays [18], and cloud block
services [40]. Log-structured storage transforms random write
requests into sequential disk writes in an append-only log,
so as to reduce disk seek overhead and improve write per-
formance. It also brings various advantages in addition to
high write performance, such as improved flash endurance in
SSDs [21], unified abstraction for building distributed appli-
cations [6, 9], efficient memory management in in-memory
storage [31], and load balancing in cloud block storage [40].
Recent advances in zoned storage [4, 7] also advocate the
adoption of log-structured storage based on append-only in-
terfaces for scalable performance.

The log-structured design writes live data blocks to the
append-only log without modifying existing data blocks in-
place, so it regularly performs garbage collection (GC) to
reclaim the free space of stale blocks. GC works by reading
a segment of blocks, removing any stale blocks, and writing
back the remaining live blocks. The repeated writes of live
blocks lead to write amplification (WA). They not only incur

I/O interference to foreground workloads [18], but also lead to
reduced flash lifespans and unnecessary power consumption
in data centers.

Mitigating WA in log-structured storage has been a well-
studied topic in the literature (§5). In particular, a large body
of studies focuses on designing data placement strategies by
properly placing blocks in separate groups. He et al. [16]
point out that a data placement scheme should group blocks
by the block invalidation time (BIT) (i.e., the time when a
block is invalidated by a live block; a.k.a. the death time [16])
to achieve the minimum WA. However, without obtaining
the future knowledge of the BIT pattern, how to design an
optimal data placement scheme with the minimum WA re-
mains an unexplored issue. Existing temperature-based data
placement schemes that group blocks by block temperatures
(e.g., write/update frequencies) [12, 20, 27, 33, 35, 42, 43] are
arguably inaccurate to capture the BIT pattern and fail to
effectively group the blocks with similar BITs [16].

We propose SepBIT, a novel data placement scheme that
aims for the minimum WA in log-structured storage. It in-
fers the BITs of written blocks from the underlying storage
workloads and separately places the written blocks into dif-
ferent groups, each of which stores the blocks with similar
estimated BITs. Specifically, it builds on the skewed write
patterns observed in the real-world cloud block storage work-
loads (e.g., Alibaba Cloud [23] and Tencent Cloud [46]). It
separates the written blocks into user-written blocks and GC-
rewritten blocks (defined in §2.1). It further separates each set
of user-written blocks and GC-rewritten blocks by inferring
the BIT of each block, so as to perform fine-grained separa-
tion of blocks into groups with similar estimated BITs. We
summarize our contributions below:
• We first design an ideal data placement strategy that has

the minimum WA in log-structured storage, based on the
(impractical) assumption of having the future knowledge
of BITs of written blocks. Our analysis not only motivates
how to design a practical data placement scheme that aims
to group the written blocks with similar BITs, but also
provides an oracular baseline for our comparisons.

• We design SepBIT, which performs fine-grained separation
of written blocks by inferring their BITs from the underly-
ing storage workloads. We show via both mathematical and
trace analyses that our BIT inference is effective in skewed
workloads. SepBIT also achieves low memory overhead in
its indexing structure for tracking block statistics.



• We evaluate SepBIT using real-world cloud block storage
workloads at Alibaba Cloud [23] and Tencent Cloud [46].
Trace analysis on both workloads shows that SepBIT has
the lowest WA compared with eight state-of-the-art data
placement schemes. For example, for the Alibaba Cloud
traces, SepBIT reduces the overall WA by 8.6-15.9% and
9.1-20.2% when the Greedy [30] and Cost-Benefit [30, 31]
algorithms are used for segment selection in GC, respec-
tively. It also reduces the per-volume WA by up to 44.1%,
compared with merely separating user-written and GC-
rewritten blocks in data placement.

• We prototype a log-structured storage system that supports
different data placement schemes and runs on an emulated
zoned storage backend based on ZenFS [3]. Our prototype
experiments show that SepBIT improves I/O throughput
over most volumes due to its efficient WA reduction; for
example, its median throughput is 20% higher than the
second best data placement scheme.

SepBIT is currently deployed at Alibaba Cloud Enhanced
SSDs (ESSDs) [1], which provide cloud block storage ser-
vices for end-users or applications. Each ESSD is a block-
level volume (or virtual disk) backed by flash-based SSD
storage, and aims to support low-latency (e.g., around 100µs)
and high-throughput (e.g., up to 1 M IOPS) I/O access. ESSDs
are deployed atop Pangu [29], a general distributed storage
platform that provides an append-only write interface. To be
compatible with the append-only write interface of Pangu,
ESSDs adopt the log-structured design and are abstracted as
log-structured storage in our paper.

Our trace analysis scripts and prototype are open-sourced at
http://adslab.cse.cuhk.edu.hk/software/sepbit.

2 Background and Motivation
2.1 GC in Log-Structured Storage
We consider a log-structured storage system that comprises
multiple volumes, each of which is assigned to a user. Each
volume is configured with a capacity of tens to hundreds of
GiB and manages data in an append-only manner. It is further
divided into segments that are configured with a maximum
size (e.g., tens to hundreds of MiB). Each segment contains
fixed-size blocks, each of which is identified by a logical block
address (LBA) and has a size (e.g., several KiB) that aligns
with the underlying disk drives. Each block, either from a new
write or from an update to an existing block, is appended to
a segment (called an open segment) that has not yet reached
its maximum size. If a segment reaches its maximum size,
the segment (called a sealed segment) becomes immutable.
Updating an existing block is done in an out-of-place manner,
in which the latest version of the block is appended to an open
segment and becomes a valid block, while the old version of
the block is invalidated and becomes an invalid block.

Log-structured storage needs to regularly reclaim the space
occupied by the invalid blocks via GC. A variety of GC poli-
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Figure 1: The workflow of a general data placement scheme.

cies can be realized, yet we can abstract a GC policy as a
three-phase procedure:
• Triggering, which decides when a GC operation should be

activated. In this work, we assume that a GC operation is
triggered for a volume when its garbage proportion (GP)
(i.e., the fraction of invalid blocks among all valid and in-
valid blocks) exceeds a pre-defined threshold (e.g., 15%).

• Selection, which selects one or multiple sealed segments
for GC. In this work, we focus on two selection algorithms:
(i) Greedy [30], which selects the sealed segments with the
highest GPs, and (ii) Cost-Benefit [30,31], which selects the
sealed segments that have the highest values GP∗age

1−GP (where
age refers to the elapsed time of a sealed segment since it
is sealed) for GC.

• Rewriting, which discards all invalid blocks from the se-
lected sealed segments and writes back the remaining valid
blocks into one or multiple open segments. The space of
the selected sealed segments can then be reused.
A log-structured storage system sees two types of written

blocks: each request that writes or updates an LBA in the
workload generates one user-written block (i.e., a new block)
and zero or more GC-rewritten blocks that are due to the
rewrites of the block during GC. Thus, GC incurs write ampli-
fication (WA), defined as the ratio of the total number of both
user-written blocks and GC-rewritten blocks to the number
of user-written blocks. In the deployment at Alibaba Cloud
ESSDs (§1), we observe that the high WA from GC degrades
both the effective I/O bandwidth and the SSD lifespans. It is
thus critical to minimize WA.

In this work, we aim to design a general and lightweight
data placement scheme that mitigates the WA due to GC in
cloud-scale deployment. Figure 1 shows the workflow of a
general data placement scheme, which separates all written
blocks (i.e., user-written blocks and GC-rewritten blocks) into
different groups and writes the blocks to the open segments of
the respective groups. The data placement scheme is compat-
ible with any GC policy (i.e., independent of the triggering,
selection, and rewriting policies).

2.2 Ideal Data Placement
We present an ideal data placement scheme that minimizes
WA (i.e., WA=1). We also elaborate why it is infeasible to
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realize in practice, so as to motivate the design of an effective
practical data placement scheme.

System model. We first define the notations. Consider a
write-only request sequence of blocks that are written to a
log-structured storage system. Let m be the number of user-
written blocks in the request sequence and s be the segment
size (in units of blocks). Let k = dm

s e be the number of sealed
segments in the system, and let S1,S2, · · · ,Sk denote the cor-
responding k sealed segments. Let oi (where oi ≥ 1) be the
invalidation order of the i-th block in the request sequence
based on the BITs of all blocks (where 1≤ i≤ m), meaning
that the i-th block is the oi-th invalidated block among all
invalid blocks.

Placement design. For the ideal placement scheme, we make
the following assumptions. Suppose that the system has the
future knowledge of the BITs of all blocks, and hence the
invalidation order oi of the i-th block in the request sequence
(where 1≤ i≤ m). It also allocates k open segments for stor-
ing incoming blocks, and performs a GC operation whenever
there are s invalid blocks in the system (i.e., one segment size
of invalid blocks).

The system writes the i-th block to the d oi
s e-th open seg-

ment. If the j-th (where 1≤ j ≤ k) open segment is full, it is
sealed into the sealed segment S j. Thus, S j stores the blocks
with the invalidation orders in the range of [( j−1) ·s+1, j ·s].
The first GC operation is triggered when there exist s invalid
blocks; according to the placement, all such blocks must be
stored in S1. Thus, the first GC operation will choose S1 for
GC, and there will be no rewrites as all blocks in S1 must be
invalid. In general, the j-th GC operation (where 1≤ j ≤ k)
will choose S j for GC, and there will be no rewrites as S j
contains only invalid blocks.

Figure 2 depicts an example of the ideal data placement
scheme. Consider a write-only request sequence with m = 8
blocks with three LBAs A, B, and C, and the i-th block is
written at time i (where 1≤ i≤ m). We fix the segment size
as s = 2. We show the status of the volume at time 2 and
time 6 when the second block and the sixth block are written,
respectively. At time 2, we have appended C to S1 and A to
S2, as their invalidation orders are 2 and 3, respectively. Note
that all blocks in S1 become invalid when block C is updated
at time 5, and at this time we can perform a GC operation
to reclaim the free space occupied by S1. Note that the GC

operation does not incur any rewrite. Later, at time 6, the
system appends A to S3 since its invalidation order is 5.

Limitations and lessons learned. While the ideal data place-
ment scheme achieves the minimum WA, there exist two
practical limitations. First, the scheme needs to have future
knowledge of the BIT of every block to assign the blocks
to the corresponding open segments, but having such future
knowledge is infeasible in practice. Second, the scheme needs
to provision k = dm/se open segments to hold all m blocks
in the request sequence in the worst case, as well as k cor-
responding sealed segments for keeping the blocks from the
k open segments. Such provisioning incurring high memory
and storage costs as m increases. Also, having too many open
and sealed segments incurs substantial random writes that
lead to performance slowdown.

A practical data placement scheme should address the
above two limitations. Without the future knowledge of BITs,
it should effectively infer the BIT of each written block. With
only a limited number of available open segments, it should
group written blocks by similar BITs instead of placing them
in strict invalidation order. Our goal is to address the limita-
tions driven by real-world cloud block storage workloads.

2.3 Trace Overview
We consider the public block-level I/O traces from two cloud
block storage systems, Alibaba Cloud [23] and Tencent Cloud
[46]. The Alibaba Cloud traces contain I/O requests (in mul-
tiples of 4 KiB blocks) from 1,000 virtual disks, referred to
as volumes, over a one-month period in January 2020. The
Tencent Cloud traces have 4,995 volumes over a nine-day
period in October 2018. In this paper, we mainly focus on
the Alibaba Cloud traces, while we verified that the Tencent
Cloud traces show similar findings [39].

The Alibaba Cloud traces comprise a variety of workloads
(e.g., virtual desktops, web services, key-value stores, and
relational databases), and hence are representative to drive our
analysis. We treat each volume in the traces as a standalone
volume in the log-structured storage system (§2.1), such that
each volume performs data placement and GC independently.
Our goal is to mitigate the overall WA across all volumes.

We pre-process the traces for our analysis and evaluation
as follows. We only consider write requests as they are the
only contributors of WA. Since some volumes in the traces
have limited write requests to trigger sufficient GC opera-
tions, we remove such volumes to avoid biasing our analysis.
Specifically, we focus on the volumes with sufficient write
requests: each volume has a write working set size (WSS)
(i.e., the number of unique LBAs being written multiplied
by the block size) above 10 GiB and a total write traffic size
(i.e., the number of written bytes) above 2× its write WSS.
To this end, we select 186 volumes from the Alibaba Cloud
traces, which account for a total of over 90% of write traffic
of all 1,000 volumes. The 186 volumes contain 10.9 billion
write requests, 410.2 TiB of written data (with 390.2 TiB of
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updates), 20.3 TiB of write WSS (with 17.2 TiB of update
WSS). Each of the 186 volumes has a write WSS ranging
from 10 GiB to 1 TiB and a write traffic size ranging from
43 GiB to 36.2 TiB. Since the WSS varies across volumes,
we configure the maximum storage space of each volume as

WSS
1−GPT , where GPT denotes the GP threshold to trigger GC.

2.4 Motivation
We show via trace analysis that existing data placement
schemes cannot accurately capture the BIT pattern and group
the blocks with similar BITs for effective WA mitigation. We
consider the 186 selected volumes from the Alibaba Cloud
traces (§2.3). We define the lifespan of a block as the number
of bytes written by the workload from when a block is written
until it is invalidated (or until the end of the trace). A block
is invalidated when the workload updates the same LBA. We
make three key observations.
Observation 1: User-written blocks generally have short
lifespans. We say that a block has a short lifespan if its lifes-
pan is smaller than the write working set size (WSS) (i.e., the
number of unique written LBAs multiplied by the 4 KiB block
size). We examine the percentages of user-written blocks that
fall into different lifespan range groups with short lifespans
that are represented as the fractions of the write WSS for
each volume. Figure 3 shows the cumulative distributions
of the percentages of user-written blocks across all volumes
in different lifespan groups. In a large fraction of volumes,
their user-written blocks tend to have short lifespans. For
example, half of the volumes have more than 79.5% of user-
written blocks with lifespans smaller than 80% of their write
WSSes, and have more than 47.6% of user-written blocks
with lifespans smaller than only 10% write WSS. In con-
trast, GC-rewritten blocks generally have long lifespans. By
definition, GC-rewritten blocks are rewritten as they remain
valid in the GC-reclaimed segments. In both Greedy and Cost-
Benefit selection algorithms, GC tends to select segments that
either show a high GP or exist for a long time, implying that
GC-rewritten blocks tend to have long lifespans.

Our findings suggest that user-written blocks and GC-
rewritten blocks can have vastly different BIT patterns, in
which user-written blocks tend to have short lifespans, while
GC-rewritten blocks tend to have long lifespans. Existing
data placement schemes either mix user writes and GC writes
[12, 20, 27, 35], or focus on user writes [33, 42, 43], in the

data placement decisions. Failing to distinguish between user-
written blocks and GC-rewritten blocks can lead to inefficient
WA mitigation. Instead, it is critical to separately identify the
BIT patterns of user-written blocks and GC-rewritten blocks.

Observation 2: Frequently updated blocks have highly
varying lifespans. We investigate frequently updated blocks,
referred to as the blocks whose update frequencies (i.e., the
number of updates) rank in the top 20% in the write working
set (i.e., the set of LBAs being written) of a volume. Specif-
ically, for each volume, we divide the frequently updated
blocks into four groups based on their ranks of update fre-
quencies, namely top 1%, top 1-5%, top 5-10%, and top 10-
20%, so that the blocks in each group have similar update
frequencies. The medians of the minimum update frequency
in the four groups across all volumes are 37.5, 8.5, 6.0, and
5.0, respectively. To avoid evaluation bias, we exclude the
blocks that have not been invalidated before the end of the
traces. For each group of a volume, we calculate the coeffi-
cient of variation (CV) (i.e., the standard deviation divided
by the mean) of the lifespans of the blocks; a high CV (e.g.,
larger than one) implies a high variance in the lifespans.

Figure 4 shows the cumulative distributions of CVs across
all volumes (note that 6, 6, 20, and 18 volumes in the four
groups have CVs exceeding 8, respectively). We see that
frequently updated blocks with similar update frequencies
have high variance in their lifespans (and hence the BITs); for
example, 25% of the volumes have their CVs exceeding 4.34,
3.20, 2.14, and 1.82 in the four groups top 1%, top 1-5%, top 5-
10%, and top 10-20%, respectively. Our findings also suggest
that existing temperature-based data placement schemes that
group the blocks with similar write/update frequencies [12,
20, 27, 33, 35, 42, 43] cannot effectively group blocks with
similar BITs, and hence the WA cannot be fully mitigated.

Observation 3: Rarely updated blocks dominate and have
highly varying lifespans. We examine the write working
set of each volume and define the rarely updated blocks as
those that are updated no more than four times during the
one-month trace period. We see that rarely updated blocks
occupy a high percentage in the write working sets of a large
fraction of volumes. In half of the volumes, more than 72.4%
of their write working sets contain rarely updated blocks. We
further examine the lifespans of those rarely updated blocks.
For each volume, we divide the rarely updated blocks into
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five groups that are partitioned by the lifespans of 0.5×, 1×,
1.5×, and 2× of their write WSSes. We then calculate the
percentage of those blocks that fall into each group.

Figure 5 shows the cumulative distributions of the percent-
ages of rarely updated blocks in different lifespan groups
across all volumes. In 25% of the volumes, more than 71.5%
of the rarely updated blocks have their lifespans smaller than
0.5× write WSS. For the remaining four groups, the medians
of the percentages are 24.9%, 8.1%, 3.3%, and 2.2%, respec-
tively. In other words, the lifespans of rarely updated blocks
can span both short and long lifespan ranges, and hence show
high deviations of BITs in a volume. As in Observation 2,
our findings again suggest that existing temperature-based
data placement schemes cannot effectively group the rarely
updated blocks with similar BITs. Rarely updated blocks are
often treated as cold blocks with low write frequencies, so
they tend to be grouped together and separated from the hot
blocks with high write frequencies. However, their vast differ-
ences in BIT patterns make temperature-based data placement
schemes inefficient in mitigating WA.

3 SepBIT Design
3.1 Design Overview
We design SepBIT based on our observations in §2.4. Sep-
BIT first separates blocks into user-written blocks and GC-
rewritten blocks due to their different BIT patterns (Observa-
tion 1). It further separates both user-written blocks and GC-
rewritten blocks by inferring their BITs instead of using block
temperatures as in existing temperature-based approaches
(Observations 2 and 3).

Figure 6 depicts the workflow of SepBIT. Our current
design of SepBIT defines six classes of segments, in which
Classes 1-2 correspond to the segments of user-written blocks,
while Classes 3-6 correspond to the segments of GC-rewritten
blocks. Each class is now configured with one open segment
and has multiple sealed segments. If an open segment reaches
the maximum size, it is sealed and remains in the same class.
SepBIT infers the lifespans of blocks and in turn the cor-

responding BITs of blocks. For user-written blocks (i.e.,
Classes 1-2), SepBIT stores the short-lived blocks (with short
lifespans) in Class 1 and the remaining long-lived blocks
(with long lifespans) in Class 2. For GC-rewritten blocks (i.e.,
Classes 3-6), SepBIT appends the blocks from Class 1 that
are rewritten by GC into Class 3, and groups the remaining

Time

Lifespan of 
Old Block

Current User WriteLast User Write

Invalidates Will Invalidate

Lifespan 
of New BlockInfers

Future User Write

(a) Inferring BITs of user-written blocks

Time

Age

Current GC WriteLast User Write

Rewrites Will Invalidate

Infers

Future User Write

Residual Lifespan

(b) Inferring BITs of GC-rewritten blocks
Figure 7: Ideas of inferring BITs in SepBIT.

GC-rewritten blocks into Classes 4-6 by similar BITs inferred.
The main idea of SepBIT is as follows. For each user-

written block, SepBIT examines its last user write time to
infer its lifespan. Specifically, for the write time, SepBIT uses
a monotonic timer (instead of the real timestamp) that incre-
ments by one for each user-written block. If the user-written
block is issued from a new write, SepBIT assumes that it has
an infinite lifespan. Otherwise, if the user-written block up-
dates an old block, SepBIT uses the lifespan of the old block
(i.e., the number of user-written bytes in the whole workload
since its last user write time until it is now invalidated) to
estimate the lifespan of the user-written block, as shown in
Figure 7(a). Our intuition is that any user-written block that
invalidates a short-lived block is also likely to be a short-
lived block (§3.2). Then if the short-lived blocks are written at
about the same time, their corresponding BITs will be close,
so SepBIT groups them into same class (i.e., Class 1). For
the long-lived blocks (including the user-written blocks from
new writes), SepBIT groups them into Class 2.

For each GC-rewritten block, SepBIT examines its age,
defined as the number of user-written bytes in the whole
workload since its last user write time until it is rewritten by
GC, to infer its residual lifespan, defined as the number of
user-written bytes since it is rewritten by GC until it is invali-
dated (or until the end of the traces), as shown in Figure 7(b).
As a result, the lifespan of a GC-rewritten block is its age plus
its residual lifespan. Our intuition is that any GC-rewritten
block with a smaller age has a higher probability to have
a short residual lifespan (§3.3), implying that GC-rewritten
blocks with different ages are expected to have different resid-
ual lifespans. Thus, SepBIT can distinguish the blocks of
different residual lifespans based on their ages and group the
GC-rewritten blocks with similar ages into the same classes.

Our design builds on the assumption that the access pattern
is skewed for inferring the BITs of blocks. We justify our
assumption via the mathematical analysis for skewed distribu-
tions and the trace analysis for real-world workloads (§3.2 and
§3.3). To adapt to changing workloads and GC policies, Sep-
BIT monitors the workloads to separate user-written blocks
and GC-rewritten blocks into different classes (§3.4).



3.2 Inferring BITs of User-Written Blocks
We show via both mathematical and trace analyses the ef-
fectiveness of SepBIT in estimating the BITs of user-written
blocks based on the lifespans. Let n be the total number of
unique LBAs in a working set; without loss of generality,
each LBA is denoted by an integer from 1 to n. Let pi (where
1 ≤ i ≤ n) be the probability that LBA i is being written in
each write request. Consider a write-only request sequence
of blocks, each of which is associated with a sequence num-
ber b and the LBA Ab. Let b and b′ (where b′ < b) denote
the sequence numbers of a new user-written block and the
corresponding invalid old block, respectively (i.e., Ab = Ab′ ).

Recall from §3.1 that SepBIT estimates the lifespan (de-
noted by u) of the user-written block b using the lifespan
(denoted by v) of the old block b′, so the estimated BIT of
block b is equal to the current user write time plus the es-
timated lifespan u; note that both u and v are expressed in
units of blocks. We claim that if v is small, u is also likely to
be small. To validate the claim, let u0 and v0 (both in units
of blocks) be two thresholds. We then examine the condi-
tional probability of u ≤ u0 given the condition that v ≤ v0
subject to a workload of different skewness. If the conditional
probability is high for small u0 and v0, then our claim holds.
Mathematical analysis. We examine the following condi-
tional probability (see derivation in our technical report [39]):

Pr(u≤ u0 | v≤ v0) =
Pr(u≤ u0 and v≤ v0)

Pr(v≤ v0)

=
∑

n
i=1(1− (1− pi)

u0) · (1− (1− pi)
v0) · pi

∑
n
i=1(1− (1− pi)v0) · pi

.

We analyze the conditional probability via the Zipf distribu-
tion, given by pi = (1/iα)/∑

n
j=1(1/ jα), where 1≤ i≤ n for

some skewness parameter α ≥ 0. A larger α implies a more
skewed distribution. We fix n = 10×218, which corresponds
to a working set of 10 GiB with 4 KiB blocks. We then study
how the conditional probability Pr(u ≤ u0 | v ≤ v0) varies
across u0, v0, and α .

Figure 8(a) first shows the conditional probability for vary-
ing u0 and v0, where we fix α = 1. We focus on short lifespans
by varying u0 and v0 of up to 4 GiB, which is less than the
write WSS (§2.4). Overall, the conditional probability is high
for different u0 and v0; the lowest one is 77.1% for v0 = 4 GiB
and u0 = 0.25 GiB. This shows that a user-written block is
highly likely to have a short lifespan if its invalidated block
also has a short lifespan. In particular, the conditional prob-
ability is higher if v0 is smaller (i.e., the invalidated blocks
have shorter lifespans), implying a more accurate estimation
of the lifespan of the user-written block.

Figure 8(b) next shows the conditional probability for vary-
ing v0 and α , where we fix u0 = 1 GiB. Note that for α = 0,
the Zipf distribution reduces to a uniform distribution. Over-
all, the conditional probability increases with α (i.e., more
skewed). For example, for α = 1, the conditional probability
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Figure 8: Inferring BITs of user-written blocks: Pr(u≤ u0 | v≤ v0)
versus v0 and α .
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Figure 9: Inferring BITs of user-written blocks: Boxplots of Pr(u≤
u0 | v≤ v0) for different u0 and v0 in real-world workloads.

is at least 87.1%. However, for α = 0, the conditional proba-
bility is only 9.5%. This indicates that the high accuracy of
lifespan estimation only holds under skewed workloads.

Trace analysis. We use the block-level I/O traces from Al-
ibaba Cloud (§2.3) to validate if the conditional probability
remains high in real-world workloads. To compute the condi-
tional probability, we first find the set of user-written blocks
that invalidate old blocks with v≤ v0. Then the conditional
probability is the fraction of blocks with u ≤ u0 in the set.
We vary both v0 and u0 as different percentages of the write
WSS to examine different conditional probabilities. Figure 9
shows the boxplots of the conditional probabilities over all
volumes for different u0 and v0. In general, the conditional
probability remains high in most of the volumes. For example,
for v0 being 40% of write WSS, the medians of the condi-
tional probabilities are in the range of 77.8-90.9%, and the
75th percentiles are in the range of 84.3-97.6%. Also, the
conditional probability tends to be higher for a smaller v0.

3.3 Inferring BITs of GC-Rewritten Blocks
We further show via both mathematical and trace analyses
the effectiveness of SepBIT in estimating the BITs of GC-
rewritten blocks based on the residual lifespans. Recall from
§3.1 that SepBIT estimates the residual lifespan of a GC-
rewritten block using its age, so the estimated BIT of the GC-
rewritten block is equal to the current GC write time plus the
estimated residual lifespan. However, characterizing directly
GC-rewritten blocks is non-trivial, as it depends on the actual
GC policy (e.g., when GC is triggered and which segments
are selected for GC) (§2.1). Instead, we model GC-rewritten
blocks based on user-written blocks. If a user-written block
has a lifespan above a certain threshold, we assume that it
is rewritten by GC and treat it as a GC-rewritten block with
an age equal to the threshold. We can then apply a similar



analysis for user-written blocks as in §3.2.
We define the following notations. As each GC-rewritten

block is a user-written block before being rewritten by GC,
we identify each GC-rewritten block by its corresponding
user-written block with sequence number b. Let u, g, and r
be its lifespan, age, and residual lifespan, respectively, such
that u = g+ r; each of the variables is measured in units of
blocks. We claim that r has a higher probability to be small
with a smaller g. To validate the claim, let g0 and r0 (both in
units of blocks) be the thresholds for the age and the residual
lifespan, respectively. We examine the conditional probability
of u≤ g0 + r0 given the condition that u≥ g = g0 subject to
a workload of different skewness. The conditional probability
specifies the fraction of GC-rewritten blocks whose residual
lifespans are shorter than r0 among all GC-rewritten blocks
with age g0 (note that the GC-rewritten blocks are modeled as
user-written blocks with lifespans above g0). If the conditional
probability is higher for a smaller g0 subject to a fixed r0, then
our claim holds.
Mathematical analysis. We examine the following condi-
tional probability (see derivation in our technical report [39]):

Pr(u≤ g0 + r0 | u≥ g0) =
Pr(g0 ≤ u≤ g0 + r0)

Pr(u≥ g0)

=
∑

n
i=1 pi · ((1− pi)

g0 − (1− pi)
g0+r0)

∑
n
i=1 pi · (1− pi)g0

.

As in §3.2, we use the Zipf distribution and fix n = 10×
218 unique LBAs. We study how the conditional probability
Pr(u≤ g0 + r0 | u≥ g0) varies across g0, r0, and α .

Figure 10(a) first shows the conditional probability for vary-
ing g0 and r0, where we fix α = 1. We focus on a large value
of g0 of up to 32 GiB since we target long-lived blocks. We
also vary r0 up to 8 GiB. Overall, for a fixed r0, the conditional
probability decreases as g0 increases. For example, given that
r0 = 8 GiB, the probability with g0 = 2 GiB is 41.2%, while
the probability for g0 = 32 GiB drops to 14.9%. This vali-
dates our claim that GC-rewritten blocks with different ages
are expected to have different residual lifespans. Thus, we
can distinguish the GC-rewritten blocks of different residual
lifespans based on their ages.

Figure 10(b) further shows the conditional probability for
varying g0 and α , where we fix r0 = 8 GiB. For a small α , the
conditional probability has a limited difference for varying v,
while the difference becomes more significant as α increases.
For example, for α = 0 (i.e., the uniform distribution), there
is no difference varying g0; for α = 0.2, the difference of the
conditional probability between g0 = 2 GiB and g0 = 32 GiB
is only 3.5%, while the difference for α = 1 is 26.4%. This
indicates that our claim holds under skewed workloads, and
we can better distinguish the GC-rewritten blocks of different
residual lifespans under more skewed workloads.
Trace analysis. We also use block-level I/O traces from Al-
ibaba Cloud (§2.3) to examine the conditional probability in
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real-world workloads. We first identify the set of blocks with
u ≥ g0 in the workload, and then compute the conditional
probability as a fraction of blocks with u≤ g0 + r0 in the set.
We vary both r0 and g0 as different percentages of the write
WSS. Figure 11 depicts the boxplots of the conditional prob-
abilities over all volumes for different g0 and r0. For a fixed
r0, the conditional probabilities have significant differences
for varying g0. For example, if we fix r0 as 1.6× of write
WSS and g0 increases from 0.8× to 6.4× of write WSS, the
median probabilities drop from 90.0% to 14.5%.

3.4 Implementation Details
Threshold selection. We assign blocks into different classes
by their estimated BITs with multiple thresholds: for user-
written blocks, we define a lifespan threshold for separating
short-lived blocks and long-lived blocks; for GC-rewritten
blocks, we need multiple age thresholds to separate them
by ages (§3.1). We configure the thresholds via the segment
lifespan of a segment, defined as the number of user-written
bytes in the workload since the segment is created (i.e., the
time when the first block is appended to the segment) until
it is reclaimed by GC. Specifically, we monitor the average
segment lifespan, denoted by `, among a fixed number of
recently reclaimed segments in Class 1. For each user-written
block, if it invalidates an old block with a lifespan less than `,
we write it to Class 1; otherwise, we write it to Class 2. For
GC-rewritten blocks, we set the age thresholds as multiples
of ` (see below).

Algorithmic details. Algorithm 1 shows the pseudo-code of
SepBIT, which consists of three functions: GarbageCollect,
UserWrite, and GCWrite. Each class always corresponds to
one open segment. If an open segment is full, it becomes
a sealed segment, and SepBIT creates a new open segment



Algorithm 1 SepBIT

1: t = 0; `=+∞; `tot = 0; nc = 0, where t is the global timestamp
2: function GarbageCollect( )
3: Select a segment S by selection algorithm
4: if S is from Class 1 then
5: nc = nc +1, `tot = `tot +(t−S.creation time)
6: end if
7: if nc = 16 then
8: `= `tot/nc; nc = 0; `tot = 0
9: end if

10: for each valid block b in S do
11: GCWrite(b)
12: end for
13: end function
14: function UserWrite(b)
15: Find lifespan v of the invalidated block b′ due to b
16: if v < ` then
17: Append b to open segment of Class 1
18: else
19: Append b to open segment of Class 2
20: end if
21: t = t +1
22: end function
23: function GCWrite(b)
24: if b is from Class 1 then
25: Append b to open segment of Class 3
26: else
27: g = t−b.last user write time
28: If g ∈ [0,4`), append b to open segment of Class 4
29: If g ∈ [4`,16`), append b to open segment of Class 5
30: If g ∈ [16`,+∞), append b to open segment of Class 6
31: end if
32: end function

within the same class. SepBIT initializes the average segment
lifespan `=+∞, which is updated on-the-fly. It also tracks
a global timestamp t, which records the sequence number of
the current user-written block.
GarbageCollect is triggered by a GC operation accord-

ing to the GC policy (§2.1). It performs GC and monitors
the runtime information of the reclaimed segments. It selects
a segment S for GC based on the selection algorithm (e.g.,
Greedy or Cost-Benefit (§2.1)). It sums up the lifespans of col-
lected segments from Class 1 as `tot , and computes the average
lifespan `= `tot/nc for every fixed number nc (e.g., nc = 16
in our current implementation) of reclaimed segments.
UserWrite processes each user-written block b. It first

computes the lifespan v of the invalidated old block b′. If v
is less than `, UserWrite appends b (which is treated as a
short-lived block) to the open segment of Class 1; otherwise,
it appends b (which is treated as a long-lived block) to the
open segment of Class 2.
GCWrite processes each GC-rewritten block that corre-

sponds to some user-written block b. If b is originally stored
in Class 1, GCWrite appends b to the open segment of Class 3;
otherwise, GCWrite appends b to one of the open segments

of Classes 4-6 based on the age of b. Currently, we config-
ure the age thresholds as three ranges, [0,4`), [4`,16`), and
[16`,+∞), for Classes 4-6, respectively, based on our eval-
uation findings. Nevertheless, we have also experimented
with different numbers of classes and thresholds [39], and we
observe only marginal differences in WA.
Memory usage. SepBIT only stores the last user write time
of each block as the metadata alongside the block on disk,
without maintaining a mapping from every LBA to its last user
write time in memory. Putting metadata alongside a block is
feasible, as SSDs typically associate a small spare region (e.g.,
of size 64 bytes) with each flash page for storing metadata.
Specifically, for user-written blocks, SepBIT only needs to
know whether the lifespan of an invalidated block is shorter
than a threshold. It thus suffices for SepBIT to track only
the recently written LBAs. In our current implementation
(written in C++), SepBIT maintains a first-in-first-out (FIFO)
queue to record recently written LBAs. It dynamically adjusts
the queue length according to the value `. If the FIFO queue
is full, each insert of an element will dequeue one element
from the queue. If ` increases, the FIFO queue allows more
inserts without dequeueing any element; if ` decreases, the
FIFO queue dequeues two elements for each insert until the
number of elements drops below `. If the LBA exists in the
FIFO queue and its user write time is within the recent ` user
writes, SepBIT writes it into Class 1. To efficiently query
the FIFO queue, SepBIT creates a std::map structure in the
C++ standard template library to record each unique LBA
in the FIFO queue and its latest queue position. When we
enqueue the LBA of a newly written block into the FIFO
queue, we insert or update the LBA with its current queue
position in the std::map structure; when we dequeue an
LBA from the FIFO queue, we remove the LBA from the
std::map structure if its recorded queue position is equal to
the dequeued one.

For GC-rewritten blocks, SepBIT retrieves them during GC
and examines the user write time directly from the metadata,
so as to assign the GC-rewritten block to the corresponding
class without any memory overhead incurred.
Prototype. We prototype a log-structured block storage sys-
tem that realizes SepBIT and existing data placement schemes.
We choose to deploy our prototype on zoned storage [4],
whose append-only interfaces favor log-structured storage
deployment. Specifically, our prototype runs on an emulated
zoned storage backend based on ZenFS [3] (due to the lack of
a real zoned storage device, we currently emulate the zoned
storage backend using Intel Optane Persistent Memory [2]).
Each segment in the prototype is a one-to-one mapping to
a ZoneFile, the basic unit in the zoned storage backend in
ZenFS. Then ZenFS stores ZoneFiles in different zones with-
out incurring device-level GC. For the metadata and the FIFO
queue in SepBIT, the prototype stores them in separate files
and accesses them using mmap for memory efficiency; for
other existing data placement schemes, the prototype stores



all metadata in memory. When the prototype triggers GC (at
the system level), it reads only valid blocks from storage and
rewrites the blocks into different segments.

The reasons of choosing emulated zoned storage based on
ZenFS in our prototype are three-fold. First, zoned storage has
a similar storage abstraction to Pangu (§1), as both of them
support append-only writes and large-size append-only units
(e.g., up to hundreds of MiB). Second, emulated zoned storage
provides minimal external interference, making the perfor-
mance evaluation reproducible; in contrast, the performance
of traditional SSDs can be easily disturbed by device-level
GC. Finally, ZenFS is a lightweight user-space zone-aware
file system that readily supports zoned storage.

4 Evaluation
4.1 Data Placement Schemes

We compare SepBIT with eight existing temperature-based
data placement schemes, namely Dynamic dAta Clustering
(DAC) [12], SFS [27], MultiLog (ML) [35], extent-based iden-
tification (ETI) [33], MultiQueue (MQ) [42], Sequentiality,
Frequency, and Recency (SFR) [42], Fading Average Data
Classifier (FADaC) [20], and WARCIP [43]. Note that these
existing schemes are mainly designed for mitigating the flash-
level WA in SSDs, yet they are also applicable for general log-
structured storage. Take DAC [12] as an example. DAC asso-
ciates each LBA with a temperature-based counter (quantified
based on the write count) and writes blocks to the segments
of different temperature levels. Each user write promotes
the LBA to a hotter segment while each GC write demotes
the LBA to a colder segment. Other temperature-based data
placement schemes follow the similar idea of DAC. Specif-
ically, the above designs adopt different metrics to measure
block temperatures, such as access frequencies (in ML [35],
MQ [42], and ETI [33]), recency (in FADaC [20]), hotness
(in SFS [27]), access counts (in DAC [12]), sequentiality (in
SFR [42]), and update intervals (in WARCIP [43]).

We also consider three baseline strategies.
• NoSep appends any written blocks (either user-written

blocks or GC-rewritten blocks) to the same open segment.
• SepGC [37] separates written blocks by user-written blocks

and GC-rewritten blocks, and writes them into two different
open segments.

• Future knowledge (FK) assumes that the BIT of each
written block is known in advance. For a written block
(either a user-written block or a GC-rewritten block), if its
invalidation will occur within t bytes since the written time,
we write the block to the d t

se-th open segment, where s is
the segment size (in bytes). Given the limited number of
open segments, FK uses the last open segment to store all
user-written blocks and GC-rewritten blocks if their BITs
do not belong to the prior open segments. We annotate the
lifespan of each block in the traces in advance, so that we
can compute the BITs during evaluation.

Note that FK represents an oracular baseline that leverages
future knowledge for placement decisions. It is identical to
the ideal scheme (§2.2) if there are unlimited memory and
storage budgets. Otherwise, with limited memory and storage
budgets, it applies future knowledge to group a subset of
blocks in a limited number of segments, and applies trivial
data placement for the remaining blocks. Thus, FK represents
both the ideal data placement scheme that has no memory
and storage constraints and the trivial data placement scheme
with the memory and storage constraints; the latter serves the
baseline in our experiments.

By default, we configure six classes (each containing one
open segment) for data placement for all schemes, except
for NoSep, SepGC, and ETI. For NoSep, we configure one
class for all written blocks; for SepGC, we configure two
classes, one for user-written blocks and one for GC-rewritten
blocks; for ETI, we configure two classes for user-written
blocks and one class for GC-rewritten blocks. For MQ, SFR,
and WARCIP, as they focus on separating user-written blocks
only, we configure five classes for user-written blocks and
the remaining class for GC-rewritten blocks. For DAC, SFS,
ML, FADaC, and FK, since they do not differentiate user-
written blocks and GC-rewritten blocks, we let them use all
six classes for all written blocks. We adopt the default settings
as described in the original papers of the existing schemes.

4.2 Results
Summary of findings. Our major findings include:
• SepBIT achieves the lowest WA among all data placement

schemes (except FK) for different segment selection al-
gorithms (Exp#1), different segment sizes (Exp#2), and
different GP thresholds (Exp#3).

• We show that SepBIT provides accurate BIT inference
(Exp#4).

• We provide a breakdown analysis on SepBIT, and show that
it achieves a low WA by separating each set of user-written
blocks and GC-rewritten blocks independently (Exp#5).

• SepBIT achieves the lowest WA in the Tencent Cloud traces
(Exp#6).

• SepBIT shows high WA reduction for highly skewed work-
loads (Exp#7).

• We provide a memory overhead analysis and show that
SepBIT achieves low memory overhead for a majority of
the volumes (Exp#8).

• Our prototype evaluation shows that SepBIT achieves the
highest throughput in a majority of the volumes (Exp#9).

Default configuration. Our default GC policy uses Cost-
Benefit [30, 31] for segment selection and fixes the segment
size and the GP threshold for triggering GC as 512 MiB and
15%, respectively; in Exp#1-Exp#3, we vary each of the con-
figurations for evaluation. For real-world workloads, we use
the Alibaba Cloud traces except for Exp#5.
Exp#1 (Impact of segment selection). We compare SepBIT
with existing data placement schemes using Greedy [30] and
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Figure 12: Exp#1 (Impact of segment selection).

Cost-Benefit [30, 31] for segment selection in GC (§2.1).
Figures 12(a) and 12(b) depict the overall WA across all 186

volumes under Greedy and Cost-Benefit, respectively. With
separation in data placement, SepBIT reduces the overall
WA of NoSep by 28.5% and 39.8% under Greedy and Cost-
Benefit, respectively. More importantly, SepBIT achieves
the lowest WA compared with all existing data placement
schemes (except FK). It reduces the overall WA of SepGC
and the eight state-of-the-art data placement schemes (i.e.,
excluding NoSep and FK) by 8.6-15.9% and 9.1-20.2% under
Greedy and Cost-Benefit, respectively. Compared with FK,
the overall WA of SepBIT is 13.5% and 3.1% higher under
Greedy and Cost-Benefit, respectively. In short, SepBIT is
highly efficient in WA mitigation under real-world workloads.
Note that some data placement schemes even show a higher
WA than SepGC, which performs simple separation of user-
written blocks and GC-rewritten blocks, mainly because they
fail to effectively group blocks with similar BITs (§2.4).

Figures 12(c) and 12(d) show the boxplots of per-volume
WAs over all 186 volumes under Greedy and Cost-Benefit,
respectively (we omit outliers of NoSep with very high WAs).
SepBIT has the lowest 75th percentiles (1.61 and 1.36) among
all existing data placement schemes (except FK) under Greedy
and Cost-Benefit, while the second lowest one is DAC (1.64
and 1.50), respectively. This shows that SepBIT effectively
reduces WAs in individual volumes with diverse workloads. In
particular, Cost-Benefit is more effective in the WA reduction
of SepBIT than Greedy, as the gap of the 75th percentiles
between SepBIT and the second lowest one increases from
1.8% in Greedy to 9.4% in Cost-Benefit. Compared with FK,
for 75th percentiles, SepBIT has 23.6% and 12.9% higher
WA under Greedy and Cost-Benefit, respectively.

Exp#2 (Impact of segment sizes). We vary the segment size
from 64 MiB to 512 MiB. For fair comparisons, we fix the
amount of data (both valid and invalid data) to be retrieved
in each GC operation as 512 MiB, meaning that a GC op-
eration collects eight, four, two, and one segment(s) for the
segment sizes of 64 MiB, 128 MiB, 256 MiB, and 512 MiB,
respectively. We focus on comparing NoSep, SepGC, WAR-

CIP, SepBIT, and FK, as they show the lowest WAs among
existing data placement for various segment sizes. We present
the complete results in our technical report [39].

Figures 13 depicts the overall WA versus the segment size.
Overall, using a smaller segment size yields a lower WA, as
a GC operation can perform more fine-grained selection of
segments for more efficient space reclamation. Again, Sep-
BIT achieves the lowest WA compared with all existing data
placement schemes; for example, its WAs are 5.5%, 8.2%, and
10.0% lower than WARCIP for the segment sizes of 64 MiB,
128 MiB, and 256 MiB, respectively. Interestingly, SepBIT
even has a lower WA (by 3.9-5.7%) than FK when the seg-
ment size is in the range of 64 MiB to 256 MiB. The reason
is that FK currently groups blocks of close BITs in five open
segments, while the last open segment stores all blocks (we
now configure six classes in total) (§4.1). If the segment size
is smaller, FK can only group fewer blocks in the limited num-
ber of open segments, so it becomes less effective of grouping
blocks of close BITs.

Exp#3 (Impact of GP thresholds). We vary the GP thresh-
olds from 10% to 25%. We again focus on comparing the
overall WAs of NoSep, SepGC, WARCIP, SepBIT, and FK
as in Exp#2. Figure 14 shows the overall WA versus the GP
threshold. A larger GP threshold has a lower WA in general,
as it is easier for a GC operation to select segments with high
GPs. SepBIT still shows the lowest WA. It has 5.0-13.8%
lower WAs than WARCIP for different GP thresholds. Com-
pared with FK, SepBIT has comparable WAs with differences
smaller than 1.8%, for different GP thresholds.

Exp#4 (BIT inference analysis). We study the effectiveness
of the BIT inference in SepBIT. Note that SepBIT does not
explicitly compute the estimated BIT of a block, but instead
assigns blocks into classes corresponding to different ranges
of estimated BITs (§3.4). To examine the effectiveness of
BIT inference, our intuition is that each valid block that is
rewritten during GC indicates that we incorrectly infer its BIT
and places it into an incorrect segment. Thus, we can examine
the GP of each collected segment to estimate the inference
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accuracy, such that a higher GP implies more accurate infer-
ence. We use the Cost-Benefit selection algorithm and fix
the segment size and GP for triggering GC as 512 MiB and
15%, respectively. We study NoSep, SepGC, WARCIP, and
SepBIT (WARCIP has the second lowest WA). We aggregate
the collected segments during GC for all 186 volumes.

Figure 15 depicts the cumulative distributions of collected
segments across different GPs for different schemes. The
median GPs of the collected segments for NoSep, SepGC,
WARCIP, and SepBIT are 32.3%, 51.6%, 52.9%, and 61.5%,
respectively. SepBIT has the highest GPs, implying that it
also has the highest accuracy in inferring BITs. WARCIP only
shows a slightly higher GP of the collected segments than
SepGC, so its WA reduction over SepGC is marginal.

Exp#5 (Breakdown analysis). We analyze how different
components of SepBIT contribute to WA reduction. Recall
that SepBIT separates written blocks into the user-written
blocks and GC-rewritten blocks, and further separates each set
of user-written blocks and GC-rewritten blocks independently.
In our analysis, we consider NoSep (i.e., without separation),
SepGC (i.e., separating written blocks into the user-written
blocks and GC-rewritten blocks), and two variants:
• UW: It further separates user-written blocks based on

SepGC, but without separating GC-rewritten blocks. It
maintains three classes: Classes 1 and 2 store short-lived
blocks and long-lived blocks as in SepBIT, respectively,
while Class 3 stores all GC-rewritten blocks.

• GW: It further separates GC-rewritten blocks based on
SepGC, but without separating user-written blocks. It main-
tains four classes: Class 1 stores all user-written blocks, and
Classes 2-4 store GC-rewritten blocks as in Classes 4-6 of
SepBIT.
Figure 16(a) shows the overall WAs of different data place-

ment schemes. UW and GW reduce WA by 35.2% and 36.7%
compared with NoSep, respectively; they also reduce WA

by 4.8% and 7.0% compared with SepGC, respectively. The
findings show that more fine-grained separation of each set
of user-written blocks and GC-rewritten blocks brings fur-
ther WA reduction. Also, SepBIT reduces WA by 7.0% and
4.9% compared with UW and GW, respectively, meaning that
SepBIT can combine the benefits of UW and GW.

Figure 16(b) further shows the cumulative distributions of
the WA reductions of UW, GW, and SepBIT compared with
SepGC across all volumes. UW, GW, and SepBIT can reduce
the WA of most of the volumes. The 75th percentiles of reduc-
tions of UW and GW are 11.4% and 6.9%, respectively, and
their highest WA reductions are 43.3% and 24.5%, respec-
tively. By combining UW and GW, the 75th percentile of the
WA reductions of SepBIT compared with SepGC improves
to 19.3% with the highest WA reduction as 44.1%.

Exp#6 (Results on the Tencent Cloud traces). We validate
the effectiveness of SepBIT on the Tencent Cloud traces [46].
We pre-process the traces the same as for the Alibaba Cloud
traces (§2.3) and select 271 out of 4,995 volumes. We run
all the schemes as in Exp#1, using Cost-Benefit for segment
selection and fixing the segment size and the GP threshold as
512 MiB and 15%, respectively.

Figure 17 depicts the overall WA and the per-volume WA
across all 271 volumes. Among all existing data placement
schemes, SepBIT achieves the lowest overall WA. Its over-
all WA is 2.5-21.3% lower than those of the eight existing
schemes and 1.1% higher than that of FK. Compared with
the second lowest scheme DAC, SepBIT has similar 50th
and 75th percentiles of per-volume WA, and reduces the 90th
percentile of per-volume WA from 2.09 to 1.97.

Exp#7 (Impact of workload skewness). We study how Sep-
BIT works in workloads of different skewness. We set the
selection algorithm as Greedy instead of Cost-Benefit, since
Cost-Benefit also leverages the workload skewness to reduce
WA and we want to exclude its impact from our analysis.

We inspect the skewness of each volume in the Alibaba
Cloud traces, and analyze the correlation between the per-
volume skewness and the WA reduction percentage of SepBIT
over NoSep. We also present the results for synthetic work-
loads in our technical report [39]. Since not all real-world
workloads have good fitness to a Zipf distribution [45], we de-
scribe the per-volume skewness according to how write traffic
aggregates in the most frequently updated blocks. Specifically,
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Figure 17: Exp#6 (Results on the Tencent Cloud traces).

Skewness α 0 0.2 0.4 0.6 0.8 1
Pct. (%) 20 27.6 38.1 52.4 71.1 89.5

Table 1: The percentage of write traffic over top-20% blocks in Zipf
workloads of different skewness.

we compute the percentage of aggregated write traffic over the
top 20% frequently written blocks. To show the relationship
between the percentage of aggregated writes and the skewness
factor of the Zipf distribution, Table 1 shows the percentage
of write traffic over the top 20% frequently written blocks and
the corresponding skewness factor α; note that the numbers
are generated using 10 GiB of write WSS.

Figure 18 shows the results. Each point represents one
volume. The x-axis is the percentage of aggregated write
traffic over top 20% frequently written blocks and the y-axis
is the WA reduction of SepBIT over NoSep. We see a positive
correlation between the percentage of aggregated write traffic
and the WA reduction (we also find that the p-value is smaller
than 0.01 for the Pearson correlation coefficient 0.75, meaning
that the positive correlation is statistically significant). For the
volumes with percentages of aggregated write traffic larger
than 80%, SepBIT reduces the WA by at least 38.0% with a
maximum reduction of 76.7%.

Exp#8 (Memory overhead analysis). We analyze the mem-
ory overhead of SepBIT using the Alibaba Cloud traces. Re-
call that SepBIT tracks only the unique LBAs inside the FIFO
queue (§3.4), instead of maintaining the mappings for all
LBAs in the write working set. We report the memory over-
head reduction of SepBIT as one minus the ratio of the num-
ber of unique LBAs in the FIFO queue to the number of
unique LBAs in the write working set. To quantify the reduc-
tion, for each volume, we collect all values of the number of
unique LBAs in the FIFO queue at runtime when ` (§3.4) is
updated. To avoid bias due to the cold start of trace replay,
for each volume, we exclude the beginning 10% of the values.
We also collect the number of unique LBAs at the end of the
traces. We consider two cases, namely (i) the worst case and
(ii) the snapshot case. In the worst case, we use the maximum
number of unique LBAs in the FIFO queue for all volumes;
it assumes that each volume has its peak number of unique
LBAs in the FIFO queue and incurs the most memory. In the
snapshot case, we use the number of unique LBAs at the end
of the traces, representing a snapshot of the system status.

From our analysis, we find that in the worst case, SepBIT
reduces the overall memory overhead by 44.8%, while in the
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snapshot case, SepBIT reduces the overall memory overhead
by 71.8%. To calculate the actual memory overhead, suppose
that the mapping for each LBA has 8 bytes, in which both
the LBA and the FIFO position are of size 4 bytes each (a
4-byte LBA can represent an address space of 232× 212 =
16 TiB for 4-KiB blocks). Since the aggregated write WSS
of the 186 volumes is 20.3 TiB (§2.3), SepBIT reduces the
overall memory overhead from 20.3 · 240

212 · 8 = 41.6 GiB to
41.6 · (1−71.8%) = 11.7 GiB.

Figure 19 further depicts the cumulative distributions of the
memory overhead reductions across volumes under both the
worst case and the snapshot case. In the worst case, SepBIT
reduces the memory overhead by more than 72.3% in half of
the volumes and the highest memory overhead reduction is
99.5%; in the snapshot case, the median reduction is 93.1%
with the highest reduction as 99.7%. In the snapshot case,
the 25th, 50th, and 75th percentiles of the number of unique
LBAs across volumes are 99 K, 1,063 K, and 6,190 K, respec-
tively, while the 25th, 50th, 75th percentiles of the number
of total LBAs in the FIFO queue across volumes are 398 K,
2,242 K, and 8,857 K, respectively. The reason of the differ-
ences among volumes is their different degrees of skewness.
The volumes with higher skewness see more aggregated traf-
fic patterns, and hence the number of recently updated LBAs
is much smaller compared with the write WSS.

Exp#9 (Prototype evaluation). We deploy our log-structured
block storage system prototype (§3.4) on a machine equipped
with an Intel Xeon Silver 4215 CPU, 96 GiB DDR4 RAM,
and 4×128 GiB Intel Optane Persistent Memory modules.
The machine runs Ubuntu 20.04.2 LTS with kernel 5.4.0.

Due to the limited storage capacity in our testbed machine,
we focus on 20 volumes whose write traffic ranks the top
31-50 among the 186 volumes in the Alibaba Cloud traces.
Their write traffic ranges from 0.82 TiB to 2.82 TiB, and their
WAs under NoSep range from 1.00 to 4.96. Specifically, 9
volumes have their WAs less than 1.1, while 7 volumes have
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Figure 20: Exp#9 (Prototype evaluation).

their WAs greater than 3.0.
Also, our evaluation rate-limits user writes while GC is

running due to the capacity constraint. The reason is that a GC
operation removes the invalid blocks only after rewriting all
valid blocks. If we issue user writes at full speed while GC is
running, the storage space may run out. Thus, we limit the rate
of user writes as 40 MiB/s while GC is running; otherwise,
we issue user writes at full speed. We measure the write
throughput (i.e., the number of user-written bytes divided by
the total time for replaying each volume).

We compare SepBIT with NoSep, DAC, and WARCIP,
based on our previous experiments that DAC and WARCIP
perform the best among existing schemes and NoSep serves
as the baseline. We configure the segment selection algo-
rithm, the segment size, and the GP threshold as Cost-Benefit,
512 MiB, and 15%, respectively.

Figures 20(a) and 20(b) show the boxplots of the abso-
lute write throughput and the normalized write throughput
of SepBIT (w.r.t. NoSep, DAC, and WARCIP) in individual
volumes for different schemes, respectively. SepBIT achieves
the highest throughput for the 25th and 50th percentiles, at
556.1 MiB/s and 859.4 MiB/s, which are 28.3% and 20.4%
higher than the second best, respectively.

For the 75th percentile, the absolute throughput of SepBIT
is 6.9%, 5.2%, and 3.0% lower than those of NoSep, DAC,
and WARCIP, respectively (Figure 20(a)). The reason is that
such volumes (with top-25% throughput) have low WAs (less
than 1.1) and hence are less affected by GC. Compared with
other schemes, SepBIT spends extra time to access the FIFO
queue (§3.4) and has slightly degraded throughput.

5 Related Work
GC in SSDs. We evaluated several existing data placement
schemes (§4.1) for mitigating the WA of flash-level GC in
SSDs. Other data placement schemes build on the use of pro-
gram contexts [19] or the prediction of block temperature
based on neural networks [44]. Some empirical studies evalu-
ate the data placement algorithms on an SSD platform [22],
or characterize how real-world I/O workloads affect GC per-
formance [41]. In particular, Yadgar et al. [41] also investi-
gate the impact of the number of separated classes in data
placement based on the temperature-based data scheme Mul-
tiLog [35]. In contrast, SepBIT builds on the BIT for data
placement, backed by the empirical studies from real-world
I/O traces. ML-DT [8] uses neural networks to predict the

block death time. Compared with ML-DT, SepBIT infers
BITs only with the last user write time in a simpler manner.

Besides data placement, existing studies propose segment
selection algorithms to reduce the WA of flash-level GC. In
addition to Greedy and Cost-Benefit (§2.1), Cost-Age-Times
[11] considers the cleaning cost, data age, and flash erasure
counts in segment selection. Windowed Greedy [17], Random-
Greedy [24], and d-choices [36] are variants of Greedy in
segment selection. Desnoyers [14] models the WA of different
segment selection algorithms and hot-cold data separation.
SepBIT can work in conjunction with those algorithms.

GC in file systems. Several studies examine the GC perfor-
mance for log-structured file systems. Matthew et al. [26]
improve the GC performance by adapting GC to the system
and workload behaviors. SFS [27] separates blocks by hotness
(i.e., write frequency divided by age). Some studies reduce
WA using file system semantics in data placement; for exam-
ple, WOLF [38] groups blocks by files or directories, while
hFS [47] and F2FS [21] separate data and metadata. Extend-
ing SepBIT with file system awareness is a future work.

GC for RAID and distributed storage. Some studies ad-
dress the GC performance issues in RAID and distributed
storage, such as reducing the WA of Log-RAID systems [13]
and mitigating the interference between GC and user writes
via GC scheduling in RAID arrays [19, 34]. RAMCloud [31]
targets persistent distributed in-memory storage. It proposes
two-level cleaning to maximize memory utilization by coor-
dinating GC operations in memory and disk backends. It also
corrects the original Cost-Benefit algorithm [30] for accurate
segment selection. Our work focuses on data placement for
WA mitigation and is orthogonal to those studies.

6 Conclusion
We propose SepBIT, a novel data placement scheme that mit-
igates WA caused by GC in log-structured storage by group-
ing blocks with similar estimated BITs. Inspired from the
ideal data placement that minimizes WA (i.e., WA=1) us-
ing future knowledge of BITs, SepBIT leverages the skewed
write patterns of real-world workloads to infer BITs. It sepa-
rates written blocks into user-written blocks and GC-rewritten
blocks and performs fine-grained separation in each set of
user-written blocks and GC-rewritten blocks. To group blocks
with similar BITs, it infers the BITs of user-written blocks and
GC-rewritten blocks by estimating their lifespans and residual
lifespans, respectively. Evaluation on production traces shows
that SepBIT achieves the lowest WA compared with eight
state-of-the-art data placement schemes.
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