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Abstract

Modern distributed key-value (KV) stores adopt replication
for fault tolerance by distributing replicas of KV pairs across
nodes. However, existing distributed KV stores often manage
all replicas in the same index structure, thereby leading to
significant I/O costs beyond the replication redundancy. We
propose a notion called replica decoupling, which decouples
the storage management of the primary and redundant copies
of replicas, so as to not only mitigate the I/O costs in index-
ing, but also provide tunable performance. In particular, we
design a novel two-layer log that enables tunable ordering
for the redundant copies to achieve balanced read/write per-
formance. We implement a distributed KV store prototype,
DEPART, atop Cassandra. Experiments show that DEPART
outperforms Cassandra in all performance aspects under var-
ious consistency levels and parameter settings. Specifically,
under the eventual consistency setting, DEPART achieves up
to 1.43x, 2.43x, 2.68x, and 1.44x throughput for writes,
reads, scans, and updates, respectively.

1 Introduction

Key-value (KV) stores serve as essential building blocks in
the storage infrastructure of modern data-intensive applica-
tions, such as web search [14, 31], social networking [57],
photo stores [10], and cloud storage [25,37]. To support large-
scale usage, KV stores are often deployed in a distributed
manner by storing the data objects (in the form of KV pairs)
across multiple nodes. Examples of distributed KV stores in-
clude BigTable [14], HBase [3], Dynamo [25], HyperDex [28],
Cassandra [37], TiKV [50], and Riak [54].

Failures become prevalent in any large-scale deployment,
so providing fault tolerance for distributed KV stores is criti-
cal. Replication remains the commonly used fault tolerance
mechanism in modern distributed KV stores (including the ex-
amples listed above [3, 14,25,28,37,50,54]). Specifically, for
each KV pair issued by a user write, replication makes multi-
ple exact copies (called replicas) and distributes the replicas
across different nodes, so as to tolerate any node failure.

One subtlety is that each node internally stores all repli-
cas in the same index structure; we call such an approach
uniform indexing. For example, we have examined the code-
bases of various open-source distributed KV stores, including
HBase [3], HyperDex [28], Cassandra [37], TiKV [50], and
ScyllaDB [60], and they all adopt uniform indexing for replica

management. In particular, they keep all replicas originated
from different nodes in a log-structured-merged tree (LSM-
tree) [48], a multi-level tree structure that supports efficient
reads and writes of KV pairs and maintains sorted KV pairs in
each level for efficient scans (or range queries) to consecutive
ranges of KV pairs. They either build on local LSM-tree KV
stores (e.g., HyperDex uses HyperLevelDB [27] and TiKV
uses RocksDB [29]), or implement their own LSM-tree struc-
tures (e.g., in HBase and Cassandra).

Uniform indexing is simple to implement for replica man-
agement, but it also significantly degrades both the write and
read performance. First, the LSM-tree performs frequent com-
paction operations that rewrite the currently stored KV pairs
to maintain their sorted order in each level. Storing all repli-
cas in the same LSM-tree exacerbates the write amplification
beyond the replication redundancy. For example, when repli-
cation is disabled, the write amplifications of Cassandra and
TiKV are 6.5 x and 13.8 x, respectively; however, under triple
replication, the write amplifications reach 25.7x and 50.9x in
Cassandra and TiKYV, respectively, incurring more than three
times in write amplification (§3.1). Also, as reading a KV
pair needs to search multiple levels in the LSM-tree, uniform
indexing amplifies the search space and exacerbates the read
amplification as well. For example, under triple replication,
the read amplification of Cassandra reaches 34.6x (§3.1).

Our insight is that instead of putting all replicas in the same
index structure, if we use different index structures for man-
aging the storage of different types of replicas, we not only
mitigate the read/write amplifications by reducing the size
of the index structure for each type of replicas, but also en-
able flexible storage management to adapt to different design
trade-offs. We make a case by proposing replica decoupling,
which decouples the storage management of the replicas of
each KV pair based on the primary copy (i.e., the main replica
of the KV pair) and the redundant copies (i.e., the remaining
replicas of the KV pair aside the primary copy). We use the
LSM-tree to manage the primary copies only, so as to preserve
the design features of the LSM-tree but in a more lightweight
manner; meanwhile, we use simpler but tunable index struc-
tures for the redundant copies to balance the read and write
performance depending on the performance requirements.

In this paper, we design replica decoupling in DEPART,
a novel distributed KV store that decouples the storage man-
agement of primary and redundant copies for fault tolerance.
DEPART builds on Cassandra [37]. It supports lightweight



differentiation of the primary and redundant copies of repli-
cas on the critical I/O path, while keeping the existing data
organization and configurable consistency features of Cas-
sandra. While managing the primary copies in the LSM-tree,
DEPART proposes a novel two-layer log to manage the re-
dundant copies with tunable ordering for balanced read and
write performance. Its idea is to issue batched writes for the
redundant copies into an append-only global log for high
write performance. It further splits the global log into multi-
ple local logs. In particular, the ordering of KV pairs in each
local log is tunable by a single parameter to balance the read
and write performance for the redundant copies; for example,
given a high read (or write) consistency level (i.e., the number
of replicas to be read (or written) in a successful operation;
see §2.3), the two-layer log can be tuned to favor for high
read (or write) performance. The two-layer log also improves
failure recovery performance, by organizing the KV pairs
by different key ranges and limiting a recovery operation to
access only the relevant range of KV pairs. Our contributions
are summarized as follows.

* We analyze two state-of-the-art distributed KV stores, Cas-
sandra and TiKV, and reveal their performance limitations
due to uniform indexing for replicas.

* We design DEPART, which realizes replica decoupling and
has several key design features: (i) lightweight differentia-
tion of primary and redundant copies, (ii) a two-layer log
design with tunable ordering of redundant copies, and (iii)
a fast failure recovery implementation via parallelization.

* We implement DEPART atop Cassandra v3.11.4 [2]. Exper-
iments show that DEPART outperforms Cassandra in vari-
ous settings. For example, for the case of eventual consis-
tency, DEPART achieves 1.43x,2.43%,2.68%, and 1.44x
throughput gains over Cassandra in writes, reads, scans, and
updates, respectively. DEPART also maintains its read and
write performance gains under various consistency level
configurations.

The source code of our DEPART prototype is available at:
https://github.com/ustcadsl/depart.

2 Background

We use Cassandra [37] (which serves as the baseline for our
DEPART design) as an example to describe the background
of a distributed KV store, including its storage architecture,
I/0 workflows, and consistency management.

2.1 Storage Architecture

Data organization. A distributed KV store partitions KV
pairs across a cluster of nodes. In Cassandra, the KV pairs
are partitioned based on consistent hashing [33], which has
also been adopted by other production distributed KV stores
[25,41,54,60]. Consistent hashing associates the locations
of all nodes with a hash ring and maps each KV pair deter-
ministically to a node. Specifically, we consider a distributed
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Figure 1: Storage architecture in Cassandra.

KV store with n physical nodes, each of which is associated
with v virtual nodes. It divides the hash ring into n X v ranges,
each of which covers one of the virtual nodes. For example,
as shown in Figure 1, there are n = 5 physical nodes (i.e., Ny
to N) with v = 2 virtual nodes each. The hash ring contains
2 x 5 =10 ranges, say (0—10), (11 —20), ---, (91 — 100).
Each of the ranges is associated with the nearest virtual node
in the clockwise direction in the hash ring and the correspond-
ing physical node; for example, both ranges (0 — 10) and
(51 —60) are assigned to Ny. For each KV pair, consistent
hashing hashes the key to a location in the hash ring (e.g.,
using MurmurHash [6] in Cassandra). The KV pair is then
stored in the corresponding physical node that is associated
with the range.

Replication is commonly used in modern distributed KV
stores [3, 14,25,28,37,50] for fault tolerance, by distributing
the replicas of each KV pair across different nodes to pro-
tect against node failures. In Cassandra, replicas are stored
in a sequence of nodes along the clockwise direction in the
hash ring denoted by N;, N(i 1) mod n> N(i+2) modn» ***» Where
0<i<n—1andN; (i.e., the first node in the node sequence)
is the node to which the KV pair is hashed based on consistent
hashing. We refer to the replica that is stored in N; as the pri-
mary copy, while referring to the remaining replicas that are
stored in the successive physical nodes along the clockwise
direction in the hash ring as the redundant copies.

Internal storage with the LSM-tree. Each node internally
manages KV pairs with some index structure. In particular,
the LSM-tree [48] is one of the most commonly used index
structures in distributed KV stores, including Cassandra and
others [3,20,28,41,50,60]. An LSM-tree KV store organizes
KV pairs in a multi-level tree and keeps KV pairs sorted by
keys in each level, so as to support efficient reads, writes,
and scans. As shown in Figure 1, the LSM-tree KV store
maintains a tree-based index structure with multiple levels
(denoted by Lg,Lq,---) with an increasing capacity, in which
each level stores the KV pairs in units of files called SS7a-
bles. It first appends the written KV pairs into an on-disk
write-ahead log (WAL), and inserts them into an in-memory
MemTable. When the MemTable is full, the LSM-tree KV
store turns the MemTable to an immutable MemTable, which
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is flushed to the lowest level Ly as an SSTable. When a lower
level reaches a capacity limit, the LSM-tree KV store merges
the KV pairs at the lower level into the next higher level via
compaction. To keep the KV pairs in each level sorted, a com-
paction operation first reads the KV pairs from both levels,
merges the sorted KV pairs, and writes back the sorted KV
pairs. Thus, compaction incurs extra I/Os during writes, lead-
ing to write amplification. Also, since KV pairs are not sorted
across different levels, reading a KV pair needs to search
from the lowest level L to the higher levels, leading to read
amplification. Both write and read amplifications are shown
to cause significant performance degradations in LSM-tree
KV stores [12,43,51].

2.2 1/0 Workflows

Write workflow. Writing a KV pair in Cassandra works as
follows. A client first randomly selects and connects to one
of the nodes, called the coordinator and sends it the KV pair.
The coordinator determines the nodes in which the primary
and redundant copies are stored, based on consistent hashing.
It then forwards the KV pairs to the nodes.

Read workflow. Reading a KV pair in Cassandra is similar
to writing a KV pair and works as follows. The client first
selects and contacts a coordinator. It issues the read request to
the coordinator, which finds the nodes in which the replicas
(regardless of primary and redundant copies) of the KV pair
are stored. For load balancing, the coordinator prefers to read
the KV pair from the nodes with low latencies, determined by
the dynamic snitching module [5]. It then returns the KV pair
to the client.

2.3 Consistency Management

Cassandra supports different consistency modes, e.g., strong
consistency and eventual consistency. They are configured by
tuning the replication factor (denoted by k), as well as the
read consistency level (RCL) and the write consistency level
(WCL). The replication factor k is defined as the total number
of replicas for fault tolerance. RCL and WCL are defined as
the minimum numbers of replicas (regardless of primary or
redundant copies) to be read and written by the coordinator
to acknowledge the successful read and write operations, re-
spectively. Both RCL and WCL are set as an integer from one
to k. If WCL+-RCL> k, then strong consistency is provided;
if WCL+RCL < k, then eventual consistency is provided. By
default, both WCL and RCL are set to one in Cassandra.

3 Replica Decoupling

To motivate replica decoupling, we describe the limitations
of uniform indexing for managing all replicas in internal
storage management (§3.1). We also describe the naive replica
decoupling designs to motivate our DEPART design (§3.2).
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Figure 2: Write amplifications of no-replication (“No”), double
replication (“double”), and triple replication (“triple”) in Cassandra
and TiKV.

3.1 Uniform Indexing and its Limitations

Recall from §1 that existing distributed KV stores (e.g., [3,28,
37,50]) mainly adopt uniform indexing, in which all replicas
(including all primary and redundant copies) designated for
each node are managed under the same index structure. We
show that uniform indexing, rather than the extra writes from
replication, is the main cause of significantly exacerbating
both the write and read amplifications of the LSM-tree.

Limitation #1: Write amplification aggravation. With uni-
form indexing, each node treats all replicas as the regular KV
pairs and stores them in the same LSM-tree without distinc-
tion (Figure 1). To show how it exacerbates the write ampli-
fication, we evaluate the write amplifications of two open-
source distributed KV stores, Cassandra (v3.11.4) [2] and
TiKV (release 4.0) [50]. Specifically, we deploy Cassandra
and TiKV on a 5-node cluster with their default settings (de-
tailed in §5). We configure a client machine to issue the writes
of 300 M KV pairs of size 1 KiB each to the cluster that ini-
tially has empty storage. We consider no-replication (k = 1),
double replication (k = 2), and triple replication (k = 3). Fig-
ure 2(a) shows that no-replication incurs a write amplification
of 6.5 x for Cassandra, due to the compaction overhead caused
by the LSM-tree. However, for triple replication, the write am-
plification increases to 25.7 X, which is around 4 x the write
amplification of no-replication. We also observe a similar
trend for TiKV, where the write amplification increases from
13.8x to 50.9x (i.e., 3.7 x increase).

Also, as the KV store size increases, the write amplification
increases more significantly and shows a super-linear trend.
The reason is that a larger KV store size increases the number
of levels in the LSM-tree, leading to higher compaction over-
head and a larger write amplification. We configure a client
machine to issue the writes of 100 M, 300 M, and 600 M KV
pairs of size 1 KiB each to the initially empty cluster. Here,
we focus on Cassandra. Figure 2(b) shows the write amplifi-
cations of Cassandra for different KV store sizes. For a larger
data store, the increase of the write amplification under triple
replication compared to no replication also becomes larger.
For example, triple replication has 3.4 x write amplification
compared to no replication under 100 M KV pairs, and be-
comes 4.5 x under 600 M KV pairs. This super-linear trend
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Figure 3: Read amplifications of no-replication (“No”), double repli-
cation (“double”), and triple replication (“triple”) in Cassandra and
TiKV.

also implies that a larger KV store size can limit the scalability
of uniform indexing.

Limitation #2: Read amplification aggravation. Uniform
indexing also severely exacerbates the read amplification. The
main reason is that all replicas are stored in the same LSM-
tree, thereby enlarging the search space of KV pairs. We
evaluate the read amplifications of Cassandra and TiKV as in
the above settings, while a client machine issues 30 M reads
to the existing 300 M KV pairs of size 1 KiB each that have
already been stored. Figure 3(a) shows that for Cassandra, the
read amplification increases from 7.8 X in no-replication to
34.6x in triple replication (i.e., 4.4 X increase). We observe a
similar trend for TiK'V.

In addition, we study the impact of the KV store size on
the read amplification. Here, we focus on Cassandra. We first
issue the writes of 100 M, 300 M, and 600 M KV pairs of size
1 KiB each to the initially empty cluster, followed by issuing
30M reads to the existing KV pairs. Figure 3(b) shows a
super-linear increase for the read amplification as the KV
store size increases for Cassandra.

3.2 Motivation

Our analysis in §3.1 shows that uniform indexing exacerbates
both write and read amplifications, as it is costly to manage
all replicas within a single LSM-tree. This motivates us to
explore the potentials of replica decoupling, which decouples
the primary and redundant copies of replicas and manage
them in separate index structures. We first consider two naive
replica decoupling approaches, and then motivate our design.

Naive approaches. A simple replica decoupling approach is
to deploy two LSM-trees, one for primary copies and one for
all redundant copies. However, the LSM-tree for redundant
copies still has a large size (especially for a large replication
factor), while not all redundant copies are accessed in each
I/0O operation. For example, to recover a single-node failure
under triple replication, only half of the redundant copies on
average are accessed. Thus, there are extra I/Os for searching
the whole LSM-tree for a subset of redundant copies.
Another simple replica decoupling approach is to manage
k LSM-trees (k is the replication factor) for k replicas derived
from each KV pair. For example, for Cassandra with triple

replication, node N; receives the redundant copies whose cor-
responding primary copies are stored in nodes N;_1) mod
and N(;_2) modn (Where 0 <7/ <n—1 and n is the number of
physical nodes). Then we use three LSM-trees in node NV;, one
of which stores the primary copies and the other two store the
redundant copies from nodes N(;_1) modn a0d N(;_2) mod ns
respectively.

However, maintaining multiple LSM-trees incurs both sig-
nificant memory and I/O overheads. Since each LSM-tree
has its own MemTable and immutable MemTable, the mem-
ory overhead amplifies by k times for the replication factor
k. Specifically, if the MemTable size is m MiB and the clus-
ter size is n, the memory cost of Cassandra is m x n MiB
as each node maintains a single LSM-tree. However, when
using kK LSM-trees in each node, the memory cost becomes
k x m x n MiB, which is k times that in Cassandra. Note that
if we reduce the MemTable size for each LSM-tree to limit
the memory overhead, it degrades the efficiency of flushing
the MemTable to disk, thereby degrading the user write per-
formance [7, 8].

Also, each LSM-tree incurs its own compaction overhead
for maintaining the fully-sorted ordering in each level. Thus,
the compaction overhead is still significant and the com-
paction operations of multiple LSM-trees in the same node
compete for the disk bandwidth, and hence the overall I/O
performance is compromised. Our evaluation (Exp#l in §5.2)
shows that replica decoupling with multiple LSM-trees only
brings limited performance gains over uniform indexing, even
though the replicas are managed by different LSM-trees.

Our approach. Recall that the LSM-tree always maintains
the fully-sorted ordering in each level. Using a single LSM-
tree for all replicas in uniform indexing, or using multiple
LSM-trees for replica decoupling, may favor high read per-
formance, but both of them incur substantial high compaction
overhead that degrades write performance. In particular, dif-
ferent consistency levels imply different performance require-
ments for the reads and writes issued to the replicas, such
that a high read (or write) consistency level requires high read
(or write) performance for the replicas. This motivates us
to design a new storage management solution that supports
tunable ordering for replica decoupling, so as to balance the
read and write performance.

4 DEPART Design

We present DEPART, a distributed KV store that builds on
Cassandra to realize replica decoupling by separating the
storage management of primary and redundant copies. We
introduce its architecture (§4.1) and elaborate its design tech-
niques (§4.2-§4.5).

4.1 Overall Architecture

DEPART decouples the storage management of primary and
redundant copies to achieve high performance. It manages
the primary copies in the LSM-tree, while managing the re-
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Figure 4: DEPART architecture.

dundant copies in a novel two-layer log, whose ordering of
redundant copies is tunable depending on the performance
requirements. Keeping only the primary copies in the LSM-
tree maintains the design features of the LSM-tree for reads,
writes, and scans, but in a more lightweight manner as the
LSM-tree size is now significantly smaller without the re-
dundant copies. Also, the tunable ordering of the two-layer
log allows balanced read and write performance for different
settings of consistency levels.

Figure 4 depicts the architecture of DEPART. Note that
DEPART only modifies the internal storage module of each
Cassandra node, but preserves the inter-node management in
Cassandra (e.g., consistent hashing for data organization and
consistency management). In summary, DEPART addresses
several design challenges via a number of techniques.

* Lightweight replica differentiation. DEPART differenti-
ates the primary and redundant copies in the storage module
of each node for separate management. Its replica differen-
tiation is lightweight based on simple hash computations,
and incurs limited overhead on the critical I/O path (§4.2).

* Two-layer log design. DEPART manages the redundant
copies with a two-layer log, so as to achieve fast writes
and efficient recovery. It first appends redundant copies to
a global log as sequential batched writes. It then splits the
global log into multiple local logs in background (§4.3).

* Tunable ordering. DEPART further provides a tunable
ordering scheme for the two-layer log design to adjust the
degree of ordering of the redundant copies with a single
parameter, so as to balance the read and write performance
for accessing the redundant copies (§4.4).

* Parallel recovery. DEPART uses a parallel recovery
scheme that reads and writes the primary and redundant
copies in parallel during recovery, so as to achieve high
recovery performance (§4.5).

4.2 Replica Differentiation

DEPART differentiates the written KV pairs in the storage
module of each node as primary or redundant copies. Figure 5
depicts the replica differentiation workflow. Recall that the
coordinator forwards k replicas of a KV pair to a sequence
of k nodes along the clockwise direction in the hash ring,
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Figure 5: Replica differentiation in DEPART.

where the key of the KV pair is hashed to the first node in the
node sequence (§2). When a node, say N, receives one of the
replicas of the KV pair from the coordinator, it performs the
same hash computation (i.e., MurmurHash [6] in Cassandra)
on the key of the replica and determines the node to which
the key is hashed. If the resulting node is the same as N itself,
then N is the first node in the node sequence and we refer
to the replica as a primary copy; otherwise, we refer to the
replica as a redundant copy.

Each node maintains a write-ahead log (WAL) and a
MemTable for the LSM-tree (for primary copies) and the two-
layer log (for redundant copies). After a node differentiates
whether the KV pair is a primary copy or a redundant copy, it
writes the KV pair to the corresponding WAL and MemTable
and acknowledges the coordinator. When the MemTable is
full and becomes immutable, the node flushes the immutable
MemTable to either the LSM-tree or the two-layer log.

The logic of replica differentiation is lightweight, as it
requires one extra hash computation in each storage node
in the critical I/O path (and k extra computations in total
for the replication factor k). Our experiments show that the
differentiation time is less than 0.4% of the total write time
(Exp#5 in §5.2).

4.3 Two-layer Log Design

Each node maintains a two-layer log, which is designed for
the management of redundant copies with the following de-
sign features. First, it supports fast writes for the redundant
copies, even though the number of redundant copies is much
larger than that of primary copies and increases with the repli-
cation factor. Second, it supports tunable ordering to adapt to
different consistency levels (§4.4). Third, it supports efficient
parallel recovery of any failed nodes by allowing fast reads to
the redundant copies in parallel.

Figure 6 shows the architecture of the two-layer log in each
node. Upon receiving the replicas, a node first issues sequen-
tial batched writes for the redundant copies into a global log.
A background thread continuously retrieves the redundant
copies from the global log and splits them into multiple local
logs. We elaborate the global log and local log designs below.

Append-only global log. To enable fast writes, each node
writes all redundant copies of KV pairs (flushed from the
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[ Local log ] [ Local log ]

immutable MemTable) to an append-only global log. All re-
dundant copies are grouped in units of segments and appended
to the head of the global log as sequential batched writes. Note
that the global log only stores all redundant copies without
maintaining any extra index structure. Thus, it achieves high
write performance for the redundant copies.

Keeping all redundant copies in the global log achieves
high write performance, but poses two issues. First, the re-
covery performance degrades. For the redundant copies in
the global log, their corresponding primary copies may re-
side in different nodes. When a node failure happens, only
part of the redundant copies in the global log (i.e., the redun-
dant copies whose corresponding primary copies reside in the
failed node) are needed for recovery. Thus, recovery incurs
only partial access to the global log, thereby incurring lots of
random I/Os. Second, the garbage collection cost increases.
As new KV pairs are appended to the log head, invalid (or
stale) KV pairs cannot be overwritten and hence they occupy
lots of space. This incurs large storage overhead, especially in
update-intensive workloads. Garbage collection can be used
to reduce the storage cost by continuously reclaiming the free
space of invalid KV pairs from the log tail, but it inevitably
introduces large amount of extra I/Os to read segments from
the log tail and write back the valid KV pairs to the log head.

Splitting into local logs. To enable fast recovery, DEPART
maintains a background thread to continuously split the global
log into multiple local logs, each of which keeps only the
redundant copies whose corresponding primary copies are
stored in the same node. This allows the recovery of any failed
node to access only the local log associated with the failed
node. Note that each node only needs to maintain k — 1 local
logs (recall that & is the replication factor), since consistent
hashing distributes the replicas in a sequence of nodes along
the clockwise direction in the hash ring and each node only
stores a redundant copy from up to k — 1 nodes.

The splitting operation works as follows. It first retrieves a
configurable number of segments, collectively called a split,
from the tail of the global log. It then reorganizes a split of
redundant copies into multiple sub-splits, each of which con-
tains only the redundant copies whose corresponding primary
copies reside in the same node. It finally writes back each
sub-split into a separate local log in an append-only manner,
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Figure 7: Range-based grouping within local logs.

and issues the writes to different local logs in parallel.

During splitting, DEPART also discards any invalid KV
pairs in the selected segments. Thus, it does not trigger
garbage collection explicitly; instead, it realizes garbage col-
lection in the splitting operation to save the extra I/Os.

For each redundant copy, each node needs to determine
the node in which its corresponding primary copy resides. It
can be feasibly done locally within a node based on replica
differentiation (§4.2).

Range-based grouping within local logs. While splitting
the global log into multiple local logs alleviates the recovery
and garbage collection overhead, the benefit remains limited
since the ranges of a hash ring stored in each node are not nec-
essarily contiguous (e.g., in Figure 1, Node Ny stores ranges
[0,10] and [51,60]). Recovering any range of KV pairs only
needs to access the redundant copies for the range, so it still
causes partial accesses to a local log and issues random 1/Os.

We enhance each local log by managing KV pairs with
range-based grouping. Figure 7 shows the idea of range-based
grouping. Each local log is further divided into multiple range
groups, each of which corresponds to a range in the hash ring.
Note that different range groups within each local log have no
overlaps in keys, so they can be managed independently. For
example, for Node N, in Figure 7, the local log LOGy stores
the redundant copies whose corresponding primary copies
reside in Node Ny. As Node Ny has two ranges, [0,10] and
[51,60], LOGy now contains two range groups, each of which
holds the redundant copies for [0,10] and [51,60], respectively.
Range-based grouping can be realized by comparing the keys
(or their hashes) with the boundary of each range in the hash
ring based on consistent hashing (§2.1). It still ensures that the
writes to each range group in a local log are performed in an
append-only, batched manner. The number of range groups in
a local log, and hence the number of ranges in Cassandra, are
configurable by the parameter num_tokens [2]. Range-based
grouping improves the recovery performance by accessing
only the KV pairs in the corresponding range groups without
accessing all KV pairs in the whole local log.

Under range-based grouping, when writing KV pairs from
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the global log to the local logs during a splitting operation,
DEPART further sorts all KV pairs by keys for each range
before storing the KV pairs in a range group in the local
logs; we call the sorted KV pairs for a range in a splitting
operation a sorted run. Thus, each range group may store
multiple sorted runs, while different sorted runs in the same
range group may have overlaps in keys. Managing the range
groups by sorted runs makes tunable ordering feasible (§4.4).

Reads from the two-layer log. To read a KV pair from the
two-layer log, DEPART first checks the segments in the
global log one by one, starting with the latest one. Note that
the internal structure of each segment is similar to that of
SSTables in the LSM-tree, so DEPART first reads the meta-
data from the segment and reads the corresponding KV pair
according to the offset in the metadata. If the KV pair is not
found in the global log, then DEPART searches the corre-
sponding range group, located by comparing the key with the
boundary keys of the range groups. Since each range group
contains multiple sorted runs and KV pairs within the sorted
run are fully sorted, DEPART searches from the latest to the
oldest sorted run, and uses binary search to find the key within
a sorted run.

4.4 Tunable Ordering

Recall that each range group in a local log may contain multi-
ple sorted runs, and the KV pairs across the sorted runs within
arange group are not fully sorted. If a range group contains
too many sorted runs, the read performance for the redundant
copies will degrade, especially for high read consistency lev-
els where both primary and redundant copies are accessed in
a read operation (§2.3). Thus, we extend the two-layer log
with a tunable ordering scheme, in which users can configure
a single parameter to adjust the degree of ordering of each
range group for different consistency requirements.
DEPART adjusts the degree of ordering across multiple
sorted runs with a user-configurable threshold S, which is a
positive integer that controls the maximum number of sorted
runs being allowed to exist in each range group. Figure 8
shows the idea of the tunable ordering scheme. For each new
sorted run generated from a splitting operation, DEPART first
checks if the existing number of sorted runs in a range group
reaches the threshold. If not, it appends the new sorted run
from the splitting operation directly to the range group; other-
wise, it merge-sorts the new sorted run with the existing ones
into a single sorted run. The merge-sort operation is similar
to the compaction operation in the LSM-tree, including three
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Figure 9: Parallel recovery in DEPART.

steps: (i) it reads all existing sorted runs from the range group;
(ii) it merges all KV pairs in the new sorted run and the exist-
ing sorted runs, and if there exist multiple KV pairs with the
same key in different sorted runs, it keeps only the KV pair
in the latest sorted run and discards the older ones; and (iii)
it writes back all merged KV pairs into the range group. We
consider two special cases for different values of S.

* Case 1: S = 1. In this case, each range group always sorts
the incoming sorted run with the currently stored sorted
run, and hence all KV pairs are sorted. Thus, each local log
resembles a single-level LSM-tree.

 Case 2: S approaches infinity. In this case, DEPART always
appends the new sorted run into a range group without any
merge-sorting with any existing sorted runs.

To set an appropriate value of S, we note that S determines
the trade-off between the read and write performance. A small
S favors the read performance by keeping a small number of
sorted runs in a range group. It also maintains the storage
efficiency by discarding the invalid KV pairs in merge-sort
operations. However, it incurs a large merge-sort overhead
that degrades the write performance. Thus, to support a sys-
tem setting with the high read consistency level under read-
dominant workloads, we should set a high degree of ordering
with a small S to benefit reads; otherwise, we should decrease
the degree of ordering by increasing the value of S to benefit
writes. We also evaluate the impact of different values of S via
experiments, and we recommend a default setting, S = 20, that
can effectively balance the read and write performance under
different consistency configurations (see Exp#8 in §5.2).

4.5 Parallel Recovery

For fast recovery of any failed node, DEPART proposes a par-
allel recovery scheme that exploits the benefit of decoupling
the storage management of primary and redundant copies.
We first review the recovery process in the current Cassandra
implementation. Cassandra currently does not have a central-
ized node to monitor data loss and coordinate data recovery.
Instead, it maintains a Merkle tree [4, 47] in each node to
detect data inconsistency among multiple copies. Note that
Merkle trees are also used by other consistent-hashing-based
distributed KV stores, such as Dynamo [25] and Riak [54].



A Merkle tree is a binary hash tree, in which each leaf node
stores the hash value of a range of KV pairs, while each non-
leaf node stores the hash value of its child nodes. If a KV
pair is lost, the replicas of the KV pair become inconsistent
as detected by the Merkle trees across the nodes that store
the replicas, so Cassandra triggers a recovery process. Specif-
ically, the recovery process has three steps: (i) building a
Merkle tree for each range of KV pairs in each node; (ii)
comparing the Merkle trees of the same range of KV pairs
in different nodes to identify any inconsistent range of KV
pairs (which implies data loss); and (iii) reconstructing any
inconsistent range by retrieving the range of KV pairs from
a non-failed node and sending the range of KV pairs to the
recovered node.

DEPART parallelizes the read and write processes for re-
covering multiple ranges of KV pairs for fast recovery. Its
parallel recovery process is based on the recovery workflow
in Cassandra, as shown in Figure 9. Suppose that we recover
the lost data of a failed node at node Ny. First, each node in
DEPART retrieves the KV pairs from the LSM-tree and the
two-layer log, and builds its own Merkle tree (note that the
Merkle tree in N is initially empty) (Step 1). Ny compares the
Merkle trees and identifies the missing KV pairs (Step 2). To
recover the lost KV pairs, each surviving node (e.g., node N;
in Figure 9) issues parallel reads to the primary and redundant
copies with two threads, and similarly the new node (i.e., Ny)
retrieves the KV pairs from other surviving nodes and issues
parallel writes for the primary and redundant copies with two
threads. Such multi-threading is feasible as the primary and
redundant copies are stored in different index structures.

5 Evaluation

DEPART builds on the codebase of Cassandra v3.11.4 [2]
by implementing replica decoupling in the storage module
of each node. Our DEPART prototype itself contains 6.9 K
LoC, while the modification to Cassandra contains 1.9 K LoC.
Note that Cassandra v3.11.4 contains about 206.2 K LoC.
To demonstrate the benefits of the two-layer log design in
DEPART, we also implement the naive replica decoupling
approach that simply stores replicas in multiple LSM-trees,
which we refer to as mLSM (§3.2).

We conduct testbed experiments to demonstrate the effi-
ciency of DEPART. We compare our DEPART prototype
with Cassandra (v3.11.4), which performs uniform indexing
for all replicas, mLSM. We address the following questions.

* How is the overall performance of DEPART compared
with Cassandra and mLSM under different settings, e.g.,
the microbenchmark performance in different types of KV
operations, the performance under different consistency
configurations and different replication factors, as well as
the performance under YCSB core workloads [21,22]?
(Experiments 1-4)

* What are the performance breakdowns of DEPART and
Cassandra? (Experiment 5)

* What is the performance of DEPART when a node failure
occurs? (Experiments 6-7)

* How does the performance of DEPART vary across param-
eter settings, including the ordering degree S, the store sizes,
and the numbers of storage nodes? (Experiments 8-10)

5.1 Setup

Testbed. We conduct all experiments on a local cluster of
multiple machines, each of which has two 12-core Intel(R)
Xeon(R) CPU E5-2650 v4 @ 2.20 GHz, 32 GiB RAM, and
a 500 GiB Samsung 860 EVO SATA SSD. All machines are
interconnected via a 10 Gb/s Ethernet switch. Each machine
runs CentOS 7.6.1810, with the 64-bit Linux kernel 3.10.0 and
the Ext4 file system. We use one machine to simulate multiple
clients via a thread pool, while the remaining machines serve
as storage nodes.

Workloads. We generate workloads with YCSB [21,22], a
general-purpose cloud system benchmark tool. By default,
we focus on 1 KiB KV pairs with 24-byte keys, and generate
requests based on the Zipf distribution with the default Zipfian
constant 0.99. We deploy YCSB on the client machine and set
the number of client threads as 50, while each client thread
issues a workload from YCSB.

Default settings. We configure five storage nodes in the clus-
ter and triple replication to deploy Cassandra and DEPART.
Before each experiment, the cluster has empty storage. By
default, we set (WCL=1, RCL=1) (i.e., the default setting in
Cassandra), which corresponds to eventual consistency. We
also study the impact of different consistency levels (Exper-
iments 1 and 2). Both Cassandra and DEPART use the de-
fault dynamic snitching module [5] to choose the fastest
nodes for serving reads, so as to load-balance reads across
different replicas. For the parameter num_tokens [2], which
determines the number of range groups, we use the default
value 256 as in Cassandra.

For DEPART, we set the MemTable size to be the same as
that of Cassandra (160 MiB by default), and the segment size
in the global log to be the same as the MemTable size. Since
DEPART keeps an extra MemTable for the two-layer log, we
increase the row_cache size of Cassandra by 160 MiB for
fair comparisons. For the two-layer log, we set the data size
of each split operation as 20 segments (around 3 GiB) and set
S as 20 to achieve balanced read and write performance. We
keep the other parameter settings in Cassandra unchanged.

We plot the average results over five runs, with error bars
showing the standard deviation.

5.2 Results

Experiment 1 (Performance in KV operations). We first
compare the performance of Cassandra, mLSM, and DEPART
in different KV operations, including writes (i.e., writing new
KV pairs), reads (i.e., reading existing KV pairs), scans (i.e.,
reading existing consecutive KV pairs), and updates (i.e.,
updating existing KV pairs). We configure the client machine
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Figure 10: Exp#1 (Performance in KV operations).

to first randomly write 200 M KV pairs. It then issues the
following requests in order: (i) 20 M reads, (ii) 2M scans
(each scan contains one seek () to locate the first key and
then iterates with 100 next () ’s), and (iii) 200 M updates. We
also consider two settings of consistency levels: (i) (WCL=3,
RCL=1) (i.e., strong consistency) and (ii) (WCL=1, RCL=1)
(i.e., eventual consistency).

Figure 10 shows the throughput and latency results. First,
DEPART improves the overall performance over Cassan-
dra in all cases. For (WCL=3, RCL=1), DEPART increases
the throughput of writes, reads, scans, and updates to 1.42x,
2.29%,2.22x, and 1.45x, respectively; it reduces the aver-
age write latency, average read latency, 99-th percentile write
latency, and 99-th percentile read latency by 29%, 58%, 39%,
and 41%, respectively. For (WCL=1, RCL=1), DEPART im-
proves the throughput of writes, reads, scans, and updates to
1.43x,2.43x,2.68x, and 1.44 %, respectively; it reduces the
average write latency, average read latency, 99-th percentile
write latency, and 99-th percentile read latency by 30%, 59%,
41%, and 48%, respectively. The latency results for scans and
updates are similar and we omit the results here. The main
reasons of the performance improvements of DEPART are
two-fold. First, for reads, DEPART only searches the LSM-
tree or the specific range group in the two-layer log within
a node, thereby greatly reducing the search space. Second,
for writes, DEPART mitigates the compaction overhead in
the LSM-tree, which now keeps the primary copies only. The
two-layer log also has limited merge-sort overhead by having
a large value of the ordering degree S.

Second, mLSM notably improves the read performance,
but only shows marginal improvements on writes. Specifi-
cally, compared with Cassandra, it increases the throughput of
writes, reads, scans, and updates to 1.18-1.20x, 2.11-2.20x,
1.85-2.0x, and 1.15-1.20x, respectively. It also reduces the
average write latency, average read latency, 99-th percentile
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Figure 11: Exp#1 (Read and write amplifications).

write latency, and 99-th percentile read latency by 15-17%,
53-56%, 16-18%, and 34-41%, respectively. The reason is that
mLSM still triggers frequent compaction operations, which
compete for disk bandwidth and degrade the write perfor-
mance. For example, the total compaction sizes of Cassandra
and mLSM are 3.46 TiB and 2.72 TiB, respectively, and the
total compaction and merge-sort size of DEPART is 1.65 TiB
(i.e., compared with Cassandra, mLSM only reduces the total
compaction size by 21%, but DEPART reduces it by 52%).
We next compare the storage and memory costs of Cassan-
dra, mLSM, and DEPART. After the end of the update phase,
the KV store sizes are 613.5 GiB for Cassandra, 611.3 GiB
for mLSM, and 654.8 GiB for DEPART. DEPART incurs
6.7% additional storage overhead compared with Cassandra,
since each range group allows at most § = 20 sorted runs in
our default setting and contains invalid KV pairs before being
merge-sorted. To measure the memory overhead, we note that
the MemTable size varies over time (up to the 160 MiB limit)
as the KV pairs are continuously inserted into a MemTable
and flushed to disk when the MemTable is full. Thus, we
measure the total memory usage of the MemTables every five
seconds and obtain the average results. The total memory
usage of mLSM is 335.7 MiB, which is 3.7x that of Cas-
sandra (90.4 MiB), as each LSM-tree maintains a MemTable.
However, DEPART only costs 183.9 MiB, which is 2.0x
that of Cassandra, since DEPART only maintains one extra
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MemTable for the two-layer log. Note that the total memory
usage of mLSM increases with the replication factor, while
that of DEPART remains unaffected.

Finally, we compare the read/write amplifications (i.e., the
ratios between the amounts of system reads/writes and the
amounts of the user reads/writes) of Cassandra, mLSM, and
DEPART. Figure 11 shows the results. Compared with Cas-
sandra, mLSM reduces the read and write amplifications by
up to 40% and 24%, respectively, while DEPART reduces the
read and write amplifications by up to 53% and 52%, respec-
tively. Note that the performance gain of DEPART is simi-
lar under both consistency levels, so we focus on (WCL=1,
RCL=1) in the following experiments (except Exp#2 and 8).

Experiment 2 (Performance under different consistency
configurations). We evaluate the performance under dif-
ferent consistency configurations. In particular, for strong
consistency, we consider additional configurations for WCL
and RCL under triple replication that satisfy the condition
WCL+RCL>3, including (WCL=2, RCL=2) and (WCL=1,
RCL=3).

Figure 12 shows the results. DEPART consistently im-
proves the throughput of writes, reads, scans, and updates over
Cassandra under different consistency configurations. Specifi-
cally, for (WCL=2, RCL=2), DEPART increases the through-
put of writes, reads, scans, and updates to 1.43x, 1.70x,
1.38x, and 1.44 x, respectively. For (WCL=1, RCL=3), DE-
PART increases the throughput of writes, reads, scans, and
updates to 1.44x, 1.72x, 1.62x, 1.45x%, respectively. DE-
PART also consistently improves the throughput of writes
and updates over mLSM. Note that the write performance
gains of DEPART over Cassandra stay nearly the same under
different consistency configurations, since the index struc-
tures of both Cassandra and DEPART remain unchanged
under triple replication.

However, the read performance gains of DEPART over
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Figure 13: Exp#3 (Performance under different replication factors).

Cassandra become smaller, and DEPART’s read performance
is worse than mLSM for RCL>2. In this case, each read
request needs to access at least two replicas successfully, so
the redundant copies in the two-layer log must be searched.
As the redundant copies in the two-layer log are not fully
sorted, the performance is slower than reading the primary
copies in the LSM-tree. Nevertheless, DEPART still achieves
faster reads than Cassandra, as it searches for less data than
Cassandra. Also, mLSM keeps redundant copies being fully
sorted in each level, so it achieves higher read performance
than DEPART. On the other hand, for RCL=1, each read
only needs to access one replica for a successful operation.
Most of the reads are routed to their primary copies, whose
read latency is smaller than that of the redundant copies as
determined by the dynamic snitching module (§2.2). Thus,
the read performance gains under RCL=1 are higher than
those under RCL>2 in general.

Experiment 3 (Performance under different replication
factors). We evaluate the performance of DEPART by vary-
ing the replication factor k from 3 to 5. We configure the
client machine to first randomly write 200 M KV pairs and
then issue 20 M reads.

Figure 13 shows the throughput results of writes and reads
versus the replication factor. Compared with Cassandra, DE-
PART increases the throughput of writes and reads to 1.43-
1.59x and 2.43-3.61 x, respectively. Also, DEPART achieves
a higher throughput gain for a larger replication factor. The
main reasons are two-fold. First, for reads, DEPART either
reads primary copies from the LSM-tree or reads redundant
copies from the two-layer log; for the latter, it only searches
the global log and the corresponding range group in the two-
layer log. Thus, the read performance of DEPART is less af-
fected by the number of replicas. However, Cassandra stores
all replicas in a single LSM-tree and its reads need to traverse
the whole LSM-tree. Its read performance drops significantly
as the replication factor increases. Second, for writes, DE-
PART implements replica decoupling and manages the re-
dundant copies in range groups. When the number of replicas
increases, the compaction cost in the LSM-tree remains un-
changed and the merge-sort cost in the two-layer log increases
only slightly. However, Cassandra stores all replicas in the
single LSM-tree and the compaction cost increases signifi-
cantly as the number of replicas increases. Combining both
reasons, the performance gain of DEPART becomes larger
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for a higher replication factor.

Similar to DEPART, mLSM also consistently improves the
throughput of writes and reads over Cassandra under differ-
ent replication factors. When the replication factor increases
to k =4 and k =5, its read performance is even better than
DEPART. The main reason is that mLSM only searches the
corresponding LSM-tree that is fully sorted in each level
regardless of the replication factor, but DEPART keeps re-
dundant copies in the two-layer log that is not fully sorted
under the default setting. Note that we can tune the degree
of ordering of the two-layer log to further increase the read
performance. Furthermore, the memory usage of DEPART
remains 2 x that of Cassandra, but that of mLSM increases to
5x when the replication factor increases to k = 5.

Experiment 4 (YCSB performance). We compare Cassan-
dra, mLSM, and DEPART using the six YCSB core work-
loads [21,22], namely A (50% reads, 50% writes), B (95%
reads, 5% writes), C (100% reads), D (95% reads, 5% writes),
E (95% scans, 5% writes), and F (50% reads, 50% read-
modify-writes). The client machine first randomly writes
200M KV pairs to the cluster before running each of the
six YCSB core workloads. Each workload consists of 100 M
operations, except for Workload E, which contains 10 M op-
erations with each scan involving 100 next ()’s.

Figure 14 shows the results. DEPART outperforms Cassan-
dra under all workloads. Specifically, it increases the through-
put to 1.4-2.1x under read-dominant Workloads B-D, 1.6-
2.2x under write-dominant Workloads A and F, and 2.4 x
under scan-dominant Workload E. With replica decoupling
and the two-layer log design, DEPART reduces the com-
paction overhead of the LSM-tree during writes and reduces
the search space during reads, so it improves both read and
write performance simultaneously. On the other hand, mLSM
also outperforms Cassandra under all workloads due to replica
decoupling. However, DEPART further improves the perfor-
mance of mLLSM, as the latter incurs large compaction over-
head.

Experiment 5 (Time breakdown for reads/writes). We
show the time breakdown for both read and write processes
in Cassandra and DEPART. We configure the client machine
to first load 200 M KV pairs, followed by issuing 20 M reads.
The read process comprises the reads to the MemTable, the
cache (including the row_cache and key_cache), the index
block of an SSTable (e.g., the Bloom filters and offsets), and
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the data block in the SSTable. Note that each segment in the
two-layer log is treated as an SSTable here. The write process
comprises writes to the WAL, writes to the MemTable, flush-
ing the MemTable, the compaction of the LSM-tree, and the
merge-sorts of the two-layer log (in DEPART only).

Figure 15 shows the time breakdown for reads and writes.
For reads, most of the read time is for reading the index blocks
of SSTables in both Cassandra and DEPART, since reading a
KV pair needs to check the Bloom filter in the index block in
each LSM-tree level to determine if the KV pair exists, and
reads the data block from the SSTable according to the offset
in the index block only if it does. Overall, DEPART reduces
the time costs of reading the index blocks and the data blocks
of SSTables by 56% and 45%, respectively. The reasons are
two-fold. First, DEPART stores only the primary copies in the
LSM-tree, so the number of SSTables in the LSM-tree greatly
decreases. Also, DEPART manages the redundant copies in
range groups, so the number of reads for locating a KV pair
decreases as well.

For writes, DEPART reduces the time costs of writes to
the WAL and writes to the MemTable by 28% and 37%, re-
spectively, as DEPART writes primary and redundant copies
in parallel. DEPART also greatly reduces the compaction
overhead by reducing the LSM-tree size; for example, its
compaction time is only 30.7% of Cassandra’s. Furthermore,
the merge-sort time of the two-layer log in DEPART is only
21.4% of the compaction time in Cassandra. Thus, the to-
tal time of compaction and merge-sorts in DEPART is only
52.1% of the compaction time in Cassandra.

Experiment 6 (Recovery performance). We evaluate the re-
covery performance on recovering a failed node. We consider
different write sizes, by configuring the client machine to ran-
domly write 20 M, 50 M, and 100 M KV pairs to the cluster.
We then crash one node, by killing the KV store process with
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Figure 17: Exp#7 (Performance when a node crashes).

the “kill -s processID” command and removing all its
data with the “rm -r data” command. Finally, we restart the
KV store process on the same node and call the “nodetool
repair -full keyspacename” command for recovery.

Figure 16(a) shows the total recovery time. Cassandra takes
8.9, 26.9, and 72.4 minutes to recover 20 M, 50 M, and 100 M
KV pairs, respectively, while DEPART only takes 4.1, 15.4,
and 45.2 minutes, respectively. Overall, DEPART reduces
the recovery time of Cassandra by 38-54%. The main reason
is that DEPART repairs primary and redundant copies in
parallel, and scans much less data during recovery due to
replica decoupling.

Figure 16(b) also shows the breakdown results of the recov-
ery time for repairing 50 M and 100 M KV pairs. We consider
different steps: Build MTs (i.e., building Merkle trees for
all nodes), Compare MTs (i.e., comparing all Merkle trees),
Receive& Write (i.e., receiving repaired data from other nodes
and writing data to disk), and Others (i.e., other operations
in recovery). DEPART reduces the time costs of Build MTs
and Receive&Write by nearly a half compared to Cassandra
through parallelizing the read/write processes to the primary
and redundant copies.

Experiment 7 (Performance when a node crashes). We
evaluate the read, write and update performance when a node
crashes and before it is repaired. The client machine first ran-
domly writes 100 M KV pairs to the cluster and we manually
crash one node as in Experiment 6. We then issue 20 M reads,
100 M writes, and 100 M updates.

Figure 17(a) shows the throughput under a node failure.
Compared with Cassandra, DEPART increases the throughput
of reads, writes, and updates to 1.69x, 1.59x, and 1.55x%, re-
spectively. The main reason is that DEPART always searches
much less data than Cassandra, even though it reads the redun-
dant copies from the two-layer log. Also, DEPART always
improves write performance under both normal and failure
modes.

We also evaluate the degraded read performance in different
cases: (i) the node repair is not yet triggered, (ii) the node
repair is in progress, and (iii) the two-layer log for redundant
copies in each node supports a higher degree of ordering
by decreasing the threshold S (§4.4) from the default value
20 to 5. Figure 17(b) shows the degraded read throughput.
When node repair is not triggered or is in progress, DEPART
improves the throughput of degraded reads to 1.69x and

S Write thpt (KOPS)  Read thpt (KOPS)
1 37.2 42.3
10 57.2 31.5
20 64.7 23.1
— o0 78.4 7.6
Cassandra 45.4 154

Table 1: Exp#8 (Impact of the ordering degree ).

1.75 %, respectively, since DEPART always searches much
less data compared to uniform indexing in Cassandra. Also,
when the two-layer log has a higher degree of ordering (e.g.,
with a smaller threshold S), the degraded read performance
gains of DEPART become larger, because it is more efficient
to read the KV pairs in the two-layer log that with a high
degree of ordering.

Experiment 8 (Impact of the ordering degree S). We eval-
uate the write and read performance under different settings
of the ordering degree S in DEPART, so as to show how
DEPART can balance the read and write performance gains
for the redundant copies by tuning the value of S. The client
machine first randomly writes 200 M KV pairs to the cluster,
followed by issuing 20 M reads. Here, we use the consis-
tency configuration (WCL=2, RCL=2), so that the redundant
copies must be accessed for each successful read.

Table 1 shows the results. For DEPART, if S = 1, the two-
layer log reduces to a two-level LSM-tree, so it achieves the
highest read throughput as the KV pairs are fully sorted, but
the write throughput is the least due to the frequent merge-
sorts for maintaining a single sorted run in each range group in
the local logs. As we increase S (e.g., S is 10 or 20), the order-
ing of the two-layer log is relaxed and hence the merge-sort
overhead becomes smaller, so the write throughput increases.
As we set S to be a sufficiently large value, the two-layer log
reduces to the append-only log, so the write throughput is the
highest, but the read throughput is the least. Note that when
Sis 1, 10, or 20, DEPART still maintains higher throughput
in both writes and reads than Cassandra, even though there
exists a performance trade-off between writes and reads in
DEPART.

Experiment 9 (Impact of different KV store sizes). We
now evaluate the impact of different KV store sizes. We vary
the data size written by the client from 200 M to 400 M KV
pairs (i.e., the total amount of primary and redundant copies
increases from 600 GiB to 1200 GiB under triple replication).
Figure 18 shows the throughput of writes and reads under dif-
ferent KV store sizes. Compared with Cassandra, DEPART
improves the write and read throughput by 1.43-1.52x and
2.43-2.95 %, respectively. Also, the performance gains of DE-
PART increase as the KV store size increases, as DEPART
alleviates the write and read amplifications via replica decou-
pling, but Cassandra aggravates the write and read amplifica-
tions via uniform indexing.

To better show the scalability of the two-layer log design
under different KV store sizes, we also evaluate the com-
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paction time of the LSM-tree and the merge-sort time of the
two-layer log in DEPART, and compare them with the com-
paction time in Cassandra. When the KV store size increases
from 200 M to 400 M KV pairs, the compaction time in Cas-
sandra increases 2.3 x, while the total time of compaction and
merge-sort operations in DEPART only increases 1.9x. In
particular, the ratio of the merge-sort time in DEPART to the
compaction time in Cassandra drops from 21.4% to 18.7%,
and the ratio of the compaction time in DEPART to the com-
paction time in Cassandra drops from 30.7% to 25.2%. Thus,
DEPART scales well as the KV store grows.

Experiment 10 (Impact of different numbers of nodes).
We evaluate the performance of DEPART when the cluster
contains more nodes. We vary the number of nodes as 5, 8§,
and 10. We configure the client machine to issue the writes of
200 M, 320 M, and 400 M KV pairs, respectively, so that each
node contains the same amount of data. After the writes, we
configure the client machine to issue 20M, 32 M, and 40 M
reads, respectively.

Figure 19 shows the throughput results of write and read op-
erations. Compared with Cassandra, DEPART increases the
throughput of writes and reads to 1.35-1.43x and 2.26-2.43 %,
respectively. DEPART maintains its performance gains over
Cassandra via replica decoupling, regardless of the cluster
size. Thus, DEPART achieves good scalability as the cluster
size increases.

6 Related Work

Local LSM-tree KV stores. A number of studies optimize
the read and write performance of local LSM-tree KV stores
that run on single machines. Read performance can be im-
proved by Bloom filter optimization [23,38], adaptive caching
[65], and scan optimization with succinct tries [68], while
write performance can be improved by compaction optimiza-
tion [24,32,55,56], the fragmented LSM-tree [51], KV sepa-

ration [12,36,43], I/O scheduling optimization [8], memory
structure optimization [9], and a mix of optimization tech-
niques for memory-disk-log components [7]. Our work fo-
cuses on the replica management in distributed KV stores,
and is compatible with the above optimization techniques for
local LSM-tree KV stores in individual nodes.

Distributed KV stores. Distributed KV stores can be classi-
fied into in-memory KV caches [42, 53] and persistent stores
[1-3,41,50]. Optimization efforts for in-memory KV stores
include lock-free and cache-friendly designs for high concur-
rency and throughput [13,30,40], erasure coding designs for
memory efficiency [66,67], self-tuning data placement [49],
size-aware sharding for tail latency reduction [26], adaptive
load balancing [16], secondary indexing [34], stretched Reed-
Solomon coding [35], as well as hot spot optimization [15].
For distributed persistent KV stores, prior studies propose of-
fline index construction for bulk loading [57], adaptive replica
selection [52], multi-get scheduling [58], auto-tuning of tail
latency optimization [39], load balancing [11], performance
optimization via cost-benefit analysis with workload predic-
tion [45], and optimizations of data placement and controlled
migration [63, 64]. Persistent KV stores mostly adopt the
LSM-tree in the storage layer to store all KV pairs. In con-
trast, DEPART proposes replica decoupling in distributed
LSM-tree KV stores for efficient replica management.

Replica management. Prior studies improve the replication
of distributed KV stores via efficient replica placement. Early
studies include chain replication [61, 62] and its extension
[44], low-cost wide-area replication [17], and dynamic hierar-
chical replication for data grids [46]. Copyset [19] and tiered
replication [18] focus on maintaining high storage reliability.
Replex [59] supports efficient queries on multiple keys. Our
work focuses on the replica management within each storage
node, while being compatible with the upper-layer replica
placement policies.

7 Conclusion

We propose DEPART, which builds on a novel replica man-
agement scheme, replica decoupling, for distributed KV stores.
DEPART uses a novel two-layer log design with tunable or-
dering to efficiently manage the redundant copies for different
read and write performance requirements. Our DEPART pro-
totype significantly outperforms Cassandra in different types
of KV operations and maintains its performance gains for
different consistency levels and parameter settings.
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