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Device and Sector Failures 

 Storage systems susceptible to both device and sector failures 

• Device failure: data loss in an entire device 

• Sector failure: data loss in a sector 
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Annual sector failure rate  

[Bairavasundaram et al., 

SIGMETRICS ’07] 

Annual disk failure rate 

[Pinheiro et al., FAST’07] 

Burstiness of sector failures  

[Schroeder et al., FAST ’10] 
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(c) Sector failure bursts can 

be long (> 5) 
(b) Sector failures can be more 

frequent than disk failures 

(a) Annual disk failure rate: 

1~10% 



Erasure Coding 

 Erasure coding: adds redundancy to data 

 (N,K) systematic MDS codes 

• Encodes K data pieces to create N-K parity pieces 

• Stripes the N pieces across disks 

• Any K out of N pieces can recover original K data pieces and the 

N-K parity pieces  fault tolerance 

 Three erasure coding schemes: 

• Traditional RAID and erasure codes (e.g., Reed-Solomon codes) 

• Intra-Device Redundancy (IDR) 

• Sector-Disk (SD) codes 
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Mixed Failure Scenario 

 Consider an example failure scenario with 

• m=1 entirely failed device, and  

• m′=2 partially failed devices with 1 and 3 sector failures 
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Question: How can we efficiently tolerate such a 

mixed failure scenario via erasure coding? 



Traditional RAID and Erasure Codes 

Overkill to use 2 parity devices to tolerate 

m′=2 partially failed devices 

• Device-level tolerance only 
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5 data devices 

3 parity devices to tolerate 

• m=1 entirely failed device 

• m′=2 partially failed devices  



Intra-Device Redundancy (IDR) 

Still overkill to add parity sectors per data device 
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3 parity sectors per data device 

to tolerate a sector failure burst 

of length 3 

m=1 parity  

device 

[Dholakia et al., TOS 2008] 



Sector-Disk (SD) Codes 

Simultaneously tolerate  

• m entirely failed devices 

• s failed sectors (per stripe) in partially failed devices 

Construction currently limited to s ≤ 3 

 

 

 

 

 How to tolerate our mixed failure scenario? 

• m=1 entirely failed device, and  

• m′=2 partially failed devices with 1 and 3 sector failures 
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[Plank et al., FAST ’13, TOS’14] 

s parity sectors 

m parity devices 



Sector-Disk (SD) Codes 

Such an SD code is unavailable 
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s=4 global parity sectors to 

tolerate any 4 sector failures 

m=1 parity  

device 

[Plank et al., FAST ’13, TOS’14] 



Our Work 

Construct a general, space-efficient family of 

erasure codes to tolerate both device and 

sector failures 

a) General: without any restriction on  

• size of a storage array, 

• number of tolerable device failures, or 

• number of tolerable sector failures 

b) Space-efficient:  

• number of global parity sectors = number of sector failures 

(like SD codes) 
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STAIR  

Codes 



Key Ideas of STAIR Codes 

 Sector failure coverage vector e 

• Defines a pattern of how sector failures occur, rather than how 

many sector failures would occur 

 

 Code structure based on two encoding phases 

• Each phase builds on an MDS code 

 

 Two encoding methods: upstairs and downstairs encoding 

• Reuse computed parity results in encoding 

• Provide complementary performance gains 
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Sector Failure Coverage Vector 

SD codes define s  

• Tolerate any combination of s sector failures per stripe 

• Currently limited to s ≤ 3   

STAIR codes define sector failure coverage vector 

e = (e0, e1, e2, …, em′-1 )  

• Bounds # of partially failed devices m′ 

• Bounds # of sector failures per device el (0 ≤ l ≤ m′ -1) 

•  el = s 

• Rationale: sector failures come in small bursts  

 Can define small m′ and reasonable size el for bursts  
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Sector Failure Coverage Vector 

 Set e=(1, 3):  

• At most 2 devices (aside entirely failed devices) have sector failures 

• One device has at most 3 sector failures, and  

• Another one has at most 1 sector failure 
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Parity Layout 
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e=(1, 3) global parity sectors 

 Q: How to generate the e=(1, 3) global parity sectors and 

the m=1 parity device?  

m=1 parity  

device 

 A: Use two MDS codes Crow and Ccol 



Two Encoding Phases 
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Phase 1 

Phase 2 

m=1 parity 

device 

e=(1, 3) global parity sectors 

Crow: data  parity devices + 

intermediate parities 
 

Ccol: intermediate parities  

global parity sectors 

Q: How to keep the global parity sectors inside a stripe? 



Two Encoding Phases 
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m=1 parity 

device 

e=(1, 3) outside 

global parity sectors 

e=(1, 3) inside  

global parity sectors 

 A: set outside global parity sectors as zeroes; 

reconstruct inside global parity sectors 

Phase 1 

Phase 2 



Augmented Rows 
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 Q: How do we compute inside parity sectors?  

• A: Augment a stripe 

 Encode each column with Ccol  to form augmented rows 

• Generate virtual parities in augmented rows 

 Each augmented row is a codeword of Crow  



Upstairs Encoding 

 Idea: Generate parities in upstairs direction 
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Can be generalized as upstairs decoding 

for recovering failures 



Upstairs Encoding 

 Detailed steps: 

18 Crow: (10,7) code       Ccol: (7,4) code 
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Upstairs Encoding 
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Upstairs Encoding 
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Upstairs Encoding 
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Upstairs Encoding 

 Detailed steps: 

29 Crow: (10,7) code       Ccol: (7,4) code 



Upstairs Encoding 

 Detailed steps: 

30 Crow: (10,7) code       Ccol: (7,4) code 



Upstairs Encoding 

 Detailed steps: 

31 Crow: (10,7) code       Ccol: (7,4) code 

Notes: parity computations reuse 

previously computed parities 



Downstairs Encoding 
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 Cannot be generalized for decoding 

 Another idea: Generate parities in downstairs direction 



Downstairs Encoding 
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 Detailed steps: 

Crow: (10,7) code       Ccol: (7,4) code 



Downstairs Encoding 
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 Detailed steps: 
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Downstairs Encoding 
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Downstairs Encoding 
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Downstairs Encoding 
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 Detailed steps: 

Crow: (10,7) code       Ccol: (7,4) code 



Crow: (10,7) code       Ccol: (7,4) code 

Downstairs Encoding 
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 Detailed steps: 

Like upstairs encoding, parity computations reuse 

previously computed parities 



Choosing Encoding Methods 

The two methods are 

complementary 

 Intuition: 

• Choose upstairs 

encoding for large m′ 

• Choose downstairs 

encoding for small m′ 

Details in paper 
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e=(1, 3) with m′=2 
m′=2 

Upstairs 

Downstairs 



Evaluation 

 Implementation 

• Built on libraries Jerasure [Plank, FAST’09] and GF-Complete [Plank, FAST’13] 

 

 Testbed machine:  

• Intel Core i5-3570 CPU 3.40GHz with SSE4.2 

 

 Comparisons with RS codes and SD codes 

• Storage saving 

• Encoding/decoding speeds 

• Update cost 
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Storage Space Saving 

 STAIR codes save               devices compared to traditional 

erasure codes using device-level fault tolerance 

• s = # of tolerable sector failures 

• m′ = # of partially failed devices 

• r = chunk size 

41 
As r increases, # of devices saved  m′ 



Encoding Speed 

42 

 Encoding speed of STAIR codes is on order of 1000MB/s 

 STAIR codes improve encoding speed of SD codes by 

100%, due to parity reuse 

 Similar results for decoding 

n = number of devices 

r=16 (sectors per chunk) 



Update Cost 
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n=16 (devices) and r=16 (sectors per chunk) 

 Higher update penalty than traditional codes, due to 

global parity sectors 

 Good for systems with rare updates (e.g., backup) or 

many full-stripe writes (e.g., SSDs) 

(Update penalty: average # of updated parity sectors for updating a data sector) 

[Plank et al., FAST ’13, TOS’14] 



Conclusions 

STAIR codes: a general family of erasure codes 

for tolerating both device and sector failures in a 

space-efficient manner 

 

Complementary upstairs encoding and 

downstairs encoding with improved encoding 

speed via parity reuse 

 

Open source STAIR Coding Library (in C): 

• http://ansrlab.cse.cuhk.edu.hk/software/stair 
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