
1

STAIR Codes:

A General Family of Erasure Codes

for Tolerating Device and Sector Failures

in Practical Storage Systems

Mingqiang Li and Patrick P. C. Lee

The Chinese University of Hong Kong

FAST ’14

Device and Sector Failures

 Storage systems susceptible to both device and sector failures

• Device failure: data loss in an entire device

• Sector failure: data loss in a sector

2

Annual sector failure rate

[Bairavasundaram et al.,

SIGMETRICS ’07]

Annual disk failure rate

[Pinheiro et al., FAST’07]

Burstiness of sector failures

[Schroeder et al., FAST ’10]

×
 %

×
 1

e+
0
9
 f

o
r

5
0
0
G

B
 d

is
k

s
(c) Sector failure bursts can

be long (> 5)
(b) Sector failures can be more

frequent than disk failures

(a) Annual disk failure rate:

1~10%

Erasure Coding

 Erasure coding: adds redundancy to data

 (N,K) systematic MDS codes

• Encodes K data pieces to create N-K parity pieces

• Stripes the N pieces across disks

• Any K out of N pieces can recover original K data pieces and the

N-K parity pieces fault tolerance

 Three erasure coding schemes:

• Traditional RAID and erasure codes (e.g., Reed-Solomon codes)

• Intra-Device Redundancy (IDR)

• Sector-Disk (SD) codes

3

Mixed Failure Scenario

 Consider an example failure scenario with

• m=1 entirely failed device, and

• m′=2 partially failed devices with 1 and 3 sector failures

4

Question: How can we efficiently tolerate such a

mixed failure scenario via erasure coding?

Traditional RAID and Erasure Codes

Overkill to use 2 parity devices to tolerate

m′=2 partially failed devices

• Device-level tolerance only
5

5 data devices

3 parity devices to tolerate

• m=1 entirely failed device

• m′=2 partially failed devices

Intra-Device Redundancy (IDR)

Still overkill to add parity sectors per data device

6

3 parity sectors per data device

to tolerate a sector failure burst

of length 3

m=1 parity

device

[Dholakia et al., TOS 2008]

Sector-Disk (SD) Codes

Simultaneously tolerate

• m entirely failed devices

• s failed sectors (per stripe) in partially failed devices

Construction currently limited to s ≤ 3

 How to tolerate our mixed failure scenario?

• m=1 entirely failed device, and

• m′=2 partially failed devices with 1 and 3 sector failures

7

[Plank et al., FAST ’13, TOS’14]

s parity sectors

m parity devices

Sector-Disk (SD) Codes

Such an SD code is unavailable

8

s=4 global parity sectors to

tolerate any 4 sector failures

m=1 parity

device

[Plank et al., FAST ’13, TOS’14]

Our Work

Construct a general, space-efficient family of

erasure codes to tolerate both device and

sector failures

a) General: without any restriction on

• size of a storage array,

• number of tolerable device failures, or

• number of tolerable sector failures

b) Space-efficient:

• number of global parity sectors = number of sector failures

(like SD codes)

9

STAIR

Codes

Key Ideas of STAIR Codes

 Sector failure coverage vector e

• Defines a pattern of how sector failures occur, rather than how

many sector failures would occur

 Code structure based on two encoding phases

• Each phase builds on an MDS code

 Two encoding methods: upstairs and downstairs encoding

• Reuse computed parity results in encoding

• Provide complementary performance gains

10

Sector Failure Coverage Vector

SD codes define s

• Tolerate any combination of s sector failures per stripe

• Currently limited to s ≤ 3

STAIR codes define sector failure coverage vector

e = (e0, e1, e2, …, em′-1)

• Bounds # of partially failed devices m′

• Bounds # of sector failures per device el (0 ≤ l ≤ m′ -1)

• el = s

• Rationale: sector failures come in small bursts

 Can define small m′ and reasonable size el for bursts

11

Sector Failure Coverage Vector

 Set e=(1, 3):

• At most 2 devices (aside entirely failed devices) have sector failures

• One device has at most 3 sector failures, and

• Another one has at most 1 sector failure

12

Parity Layout

13

e=(1, 3) global parity sectors

 Q: How to generate the e=(1, 3) global parity sectors and

the m=1 parity device?

m=1 parity

device

 A: Use two MDS codes Crow and Ccol

Two Encoding Phases

14

Phase 1

Phase 2

m=1 parity

device

e=(1, 3) global parity sectors

Crow: data parity devices +

intermediate parities

Ccol: intermediate parities

global parity sectors

Q: How to keep the global parity sectors inside a stripe?

Two Encoding Phases

15

m=1 parity

device

e=(1, 3) outside

global parity sectors

e=(1, 3) inside

global parity sectors

 A: set outside global parity sectors as zeroes;

reconstruct inside global parity sectors

Phase 1

Phase 2

Augmented Rows

16

 Q: How do we compute inside parity sectors?

• A: Augment a stripe

 Encode each column with Ccol to form augmented rows

• Generate virtual parities in augmented rows

 Each augmented row is a codeword of Crow

Upstairs Encoding

 Idea: Generate parities in upstairs direction

17

Can be generalized as upstairs decoding

for recovering failures

Upstairs Encoding

 Detailed steps:

18 Crow: (10,7) code Ccol: (7,4) code

Upstairs Encoding

 Detailed steps:

19 Crow: (10,7) code Ccol: (7,4) code

Upstairs Encoding

 Detailed steps:

20 Crow: (10,7) code Ccol: (7,4) code

Upstairs Encoding

 Detailed steps:

21 Crow: (10,7) code Ccol: (7,4) code

Upstairs Encoding

 Detailed steps:

22 Crow: (10,7) code Ccol: (7,4) code

Upstairs Encoding

 Detailed steps:

23 Crow: (10,7) code Ccol: (7,4) code

Upstairs Encoding

 Detailed steps:

24 Crow: (10,7) code Ccol: (7,4) code

Upstairs Encoding

 Detailed steps:

25 Crow: (10,7) code Ccol: (7,4) code

Upstairs Encoding

 Detailed steps:

26 Crow: (10,7) code Ccol: (7,4) code

Upstairs Encoding

 Detailed steps:

27 Crow: (10,7) code Ccol: (7,4) code

Upstairs Encoding

 Detailed steps:

28 Crow: (10,7) code Ccol: (7,4) code

Upstairs Encoding

 Detailed steps:

29 Crow: (10,7) code Ccol: (7,4) code

Upstairs Encoding

 Detailed steps:

30 Crow: (10,7) code Ccol: (7,4) code

Upstairs Encoding

 Detailed steps:

31 Crow: (10,7) code Ccol: (7,4) code

Notes: parity computations reuse

previously computed parities

Downstairs Encoding

32

 Cannot be generalized for decoding

 Another idea: Generate parities in downstairs direction

Downstairs Encoding

33

 Detailed steps:

Crow: (10,7) code Ccol: (7,4) code

Downstairs Encoding

34

 Detailed steps:

Crow: (10,7) code Ccol: (7,4) code

Downstairs Encoding

35

 Detailed steps:

Crow: (10,7) code Ccol: (7,4) code

Downstairs Encoding

36

 Detailed steps:

Crow: (10,7) code Ccol: (7,4) code

Downstairs Encoding

37

 Detailed steps:

Crow: (10,7) code Ccol: (7,4) code

Crow: (10,7) code Ccol: (7,4) code

Downstairs Encoding

38

 Detailed steps:

Like upstairs encoding, parity computations reuse

previously computed parities

Choosing Encoding Methods

The two methods are

complementary

 Intuition:

• Choose upstairs

encoding for large m′

• Choose downstairs

encoding for small m′

Details in paper

39

e=(1, 3) with m′=2
m′=2

Upstairs

Downstairs

Evaluation

 Implementation

• Built on libraries Jerasure [Plank, FAST’09] and GF-Complete [Plank, FAST’13]

 Testbed machine:

• Intel Core i5-3570 CPU 3.40GHz with SSE4.2

 Comparisons with RS codes and SD codes

• Storage saving

• Encoding/decoding speeds

• Update cost

40

Storage Space Saving

 STAIR codes save devices compared to traditional

erasure codes using device-level fault tolerance

• s = # of tolerable sector failures

• m′ = # of partially failed devices

• r = chunk size

41
As r increases, # of devices saved m′

Encoding Speed

42

 Encoding speed of STAIR codes is on order of 1000MB/s

 STAIR codes improve encoding speed of SD codes by

100%, due to parity reuse

 Similar results for decoding

n = number of devices

r=16 (sectors per chunk)

Update Cost

43

n=16 (devices) and r=16 (sectors per chunk)

 Higher update penalty than traditional codes, due to

global parity sectors

 Good for systems with rare updates (e.g., backup) or

many full-stripe writes (e.g., SSDs)

(Update penalty: average # of updated parity sectors for updating a data sector)

[Plank et al., FAST ’13, TOS’14]

Conclusions

STAIR codes: a general family of erasure codes

for tolerating both device and sector failures in a

space-efficient manner

Complementary upstairs encoding and

downstairs encoding with improved encoding

speed via parity reuse

Open source STAIR Coding Library (in C):

• http://ansrlab.cse.cuhk.edu.hk/software/stair

44

