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Abstract

Practical storage systems often adopt erasure codes to
tolerate device failures and sector failures, both of which
are prevalent in the field. However, traditional erasure
codes employ device-level redundancy to protect against
sector failures, and hence incur significant space over-
head. Recent sector-disk (SD) codes are available only
for limited configurations due to the relatively strict as-
sumption on the coverage of sector failures. By making a
relaxed but practical assumption, we construct a general
family of erasure codes called STAIR codes, which effi-
ciently and provably tolerate both device and sector fail-
ures without any restriction on the size of a storage array
and the numbers of tolerable device failures and sector
failures. We propose the upstairs encoding and down-
stairs encoding methods, which provide complementary
performance advantages for different configurations. We
conduct extensive experiments to justify the practical-
ity of STAIR codes in terms of space saving, encod-
ing/decoding speed, and update cost. We demonstrate
that STAIR codes not only improve space efficiency over
traditional erasure codes, but also provide better compu-
tational efficiency than SD codes based on our special
code construction.

1 Introduction
Mainstream disk drives are known to be susceptible to
both device failures [25,37] and sector failures [1, 36]: a
device failure implies the loss of all data in the failed
device, while a sector failure implies the data loss in
a particular disk sector. In particular, sector failures
are of practical concern not only in disk drives, but
also in emerging solid-state drives as they often appear
as worn-out blocks after frequent program/erase cycles
[8, 14, 15, 43]. In the face of device and sector failures,
practical storage systems often adopt erasure codes to
provide data redundancy [32]. However, existing erasure
codes often build on tolerating device failures and pro-
vide device-level redundancy only. To tolerate additional
sector failures, an erasure code must be constructed with
extra parity disks. A representative example is RAID-6,
which uses two parity disks to tolerate one device fail-
ure together with one sector failure in another non-failed

device [21, 39]. If the sector failures can span a num-
ber of devices, the same number of parity disks must be
provisioned. Clearly, dedicating an entire parity disk for
tolerating a sector failure is too extravagant.

To tolerate both device and sector failures in a space-
efficient manner, sector-disk (SD) codes [27, 28] and the
earlier PMDS codes [5] (which are a subset of SD codes)
have recently been proposed. Their idea is to introduce
parity sectors, instead of entire parity disks, to tolerate a
given number of sector failures. However, the construc-
tions of SD codes are known only for limited configu-
rations (e.g., the number of tolerable sector failures is
no more than three), and some of the known construc-
tions rely on exhaustive searches [6, 27, 28]. An open is-
sue is to provide a general construction of erasure codes
that can efficiently tolerate both device and sector fail-
ures without any restriction on the size of a storage array,
the number of tolerable device failures, or the number of
tolerable sector failures.

In this paper, we make the first attempt to develop such
a generalization, which we believe is of great theoretical
and practical interest to provide space-efficient fault tol-
erance for today’s storage systems. After carefully ex-
amining the assumption of SD codes on failure cover-
age, we find that although SD codes have relaxed the as-
sumption of the earlier PMDS codes to comply with how
most storage systems really fail, the assumption remains
too strict. By reasonably relaxing the assumption of SD
codes on sector failure coverage, we construct a general
family of erasure codes called STAIR codes, which effi-
ciently tolerate both device and sector failures.

Specifically, SD codes devote s sectors per stripe to
coding, and tolerate the failure of any s sectors per stripe.
We relax this assumption in STAIR codes by limiting
the number of devices that may simultaneously contain
sector failures, and by limiting the number of simulta-
neous sector failures per device. The new assumption
of STAIR codes is based on the strong locality of sector
failures found in practice: sector failures tend to come
in short bursts, and are concentrated in small address
space [1, 36]. Consequently, as shown in §2, STAIR
codes are constructed to protect the sector failure cov-
erage defined by a vector e, rather than all combinations
of s sector failures.



With the relaxed assumption, the construction of
STAIR codes can be based on existing erasure codes.
For example, STAIR codes can build on Reed-Solomon
codes (including standard Reed-Solomon codes [26, 30,
34] and Cauchy Reed-Solomon codes [7, 33]), which
have no restriction on code length and fault tolerance.

We first define the notation and elaborate how the sec-
tor failure coverage is formulated for STAIR codes in §2.
Then the paper makes the following contributions:

• We present a baseline construction of STAIR codes.
Its idea is to run two orthogonal encoding phases
based on Reed-Solomon codes. See §3.
• We propose an upstairs decoding method, which

systematically reconstructs the lost data due to both
device and sector failures. The proof of fault toler-
ance of STAIR codes follows immediately from the
decoding method. See §4.
• Inspired by upstairs decoding, we extend the con-

struction of STAIR codes to regularize the code
structure. We propose two encoding methods: up-
stairs encoding and downstairs encoding, both of
which reuse computed parity results in subsequent
encoding. The two encoding methods provide com-
plementary performance advantages for different
configuration parameters. See §5.
• We extensively evaluate STAIR codes in terms of

space saving, encoding/decoding speed, and update
cost. We show that STAIR codes achieve signif-
icantly higher encoding/decoding speed than SD
codes through parity reuse. Most importantly, we
show the versatility of STAIR codes in supporting
any size of a storage array, any number of tolerable
device failures, and any number of tolerable sector
failures. See §6.

We review related work in §7, and conclude in §8.

2 Preliminaries
We consider a storage system with n devices, each of
which has its storage space logically segmented into a
sequence of continuous chunks (also called strips) of the
same size. We group each of the n chunks at the same
position of each device into a stripe, as depicted in Fig-
ure 1. Each chunk is composed of r sectors (or blocks).
Thus, we can view the stripe as a r × n array of sectors.
Using coding theory terminology, we refer to each sec-
tor as a symbol. Each stripe is independently protected
by an erasure code for fault tolerance, so our discussion
focuses on a single stripe.

Storage systems are subject to both device and sector
failures. A device failure can be mapped to the failure
of an entire chunk of a stripe. We assume that the stripe
can tolerate at most m (< n) chunk failures, in which
all symbols are lost. In addition to device failures, we
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Figure 1: A stripe for n = 8 and r = 4.

assume that sector failures can occur in the remaining
n − m devices. Each sector failure is mapped to a lost
symbol in the stripe. Suppose that besides the m failed
chunks, the stripe can tolerate sector failures in at most
m′ (≤ n − m) remaining chunks, each of which has a
maximum number of sector failures defined by a vector
e = (e0, e1, · · · , em′−1). Without loss of generality, we
arrange the elements of e in monotonically increasing
order (i.e., e0 ≤ e1 ≤ · · · ≤ em′−1). For example, sup-
pose that sector failures can only simultaneously appear
in at most three chunks (i.e., m′ = 3), among which at
most one chunk has two sector failures and the remain-
ing have one sector failure each. Then, we can express
e = (1, 1, 2). Also, let s =

∑m′−1
i=0 ei be the total num-

ber of sector failures defined by e. Our study assumes
that the configuration parameters n, r, m, and e (which
then determines m′ and s) are the inputs selected by sys-
tem practitioners for the erasure code construction.

Erasure codes have been used by practical storage sys-
tems to protect against data loss [32]. We focus on a
class of erasure codes with optimal storage efficiency
called maximum distance separable (MDS) codes, which
are defined by two parameters η and κ (< η). We de-
fine an (η, κ)-code as an MDS code that transforms κ
symbols into η symbols collectively called a codeword
(this operation is called encoding), such that any κ of
the η symbols can be used to recover the original κ un-
coded symbols (this operation is called decoding). Each
codeword is encoded from κ uncoded symbols by mul-
tiplying a row vector of the κ uncoded symbols with a
κ × η generator matrix of coefficients based on Galois
Field arithmetic. We assume that the (η, κ)-code is sys-
tematic, meaning that the κ uncoded symbols are kept
in the codeword. We refer to the κ uncoded symbols as
data symbols, and the η − κ coded symbols as parity
symbols. We use systematic MDS codes as the build-
ing blocks of STAIR codes. Examples of such codes are
standard Reed-Solomon codes [26, 30, 34] and Cauchy
Reed-Solomon codes [7, 33].



Given parameters n, r,m, and e (and hencem′ and s),
our goal is to construct a STAIR code that tolerates both
m failed chunks and s sector failures in the remaining
n−m chunks defined by e. Note that some special cases
of e have the following physical meanings:

• If e = (1), the corresponding STAIR code is equiv-
alent to a PMDS/SD code with s = 1 [5, 27, 28]. In
fact, the STAIR code is a new construction of such
a PMDS/SD code.
• If e = (r), the corresponding STAIR code has the

same function as a systematic (n, n−m− 1)-code.
• If e = (ε, ε, · · · , ε) with m′ = n − m and some

constant ε < r, the corresponding STAIR code
has the same function as an intra-device redundancy
(IDR) scheme [10, 11, 36] that adopts a systematic
(r, r − ε)-code.

We argue that STAIR codes can be configured to pro-
vide more general protection than SD codes [6, 27, 28].
One major use case of STAIR codes is to protect against
bursts of contiguous sector failures [1, 36]. Let β be
the maximum length of a sector failure burst found in
a chunk. Then we should set e with its largest element
em′−1 = β. For example, when β = 2, we may set e
as our previous example e = (1, 1, 2), or a weaker and
lower-cost e = (1, 2). In some extreme cases, some disk
models may have longer sector failure bursts (e.g., with
β > 3) [36]. Take β = 4 for example. Then we can
define e = (1, 4), so that the corresponding STAIR code
can tolerate a burst of four sector failures in one chunk to-
gether with an additional sector failure in another chunk.
In contrast, such an extreme case cannot be handled by
SD codes, whose current construction can only tolerate
at most three sector failures in a stripe [6, 27, 28]. Thus,
although the numbers of device and sector failures (i.e.,
m and s, respectively) are often small in practice, STAIR
codes support a more general coverage of device and sec-
tor failures, especially for extreme cases.

STAIR codes also provide more space-efficient protec-
tion than the IDR scheme [10, 11, 36]. To protect against
a burst of β sector failures in any data chunk of a stripe,
the IDR scheme requires β additional redundant sectors
in each of the n −m data chunks. This is equivalent to
setting e = (β, β, · · · , β) with m′ = n − m in STAIR
codes. In contrast, the general construction of STAIR
codes allows a more flexible definition of e, where m′

can be less than n−m, and all elements of e except the
largest element em′−1 can be less than β. For example, to
protect against a burst of β = 4 sector failures for n = 8
and m = 2 (i.e., a RAID-6 system with eight devices),
the IDR scheme introduces a total of 4 × 6 = 24 redun-
dant sectors per stripe; if we define e = (1, 4) in STAIR
codes as above, then we only introduce five redundant
sectors per stripe.

3 Baseline Encoding
For general configuration parameters n, r, m, and e, the
main idea of STAIR encoding is to run two orthogonal
encoding phases using two systematic MDS codes. First,
we encode the data symbols using one code and obtain
two types of parity symbols: row parity symbols, which
protect against device failures, and intermediate parity
symbols, which will then be encoded using another code
to obtain global parity symbols, which protect against
sector failures. In the following, we elaborate the encod-
ing of STAIR codes and justify our naming convention.

We label different types of symbols for STAIR codes
as follows. Figure 2 shows the layout of an exemplary
stripe of a STAIR code for n = 8, r = 4, m = 2,
and e = (1, 1, 2) (i.e., m′ = 3 and s = 4). A stripe
is composed of n − m data chunks and m row parity
chunks. We also assume that there are m′ intermedi-
ate parity chunks and s global parity symbols outside the
stripe. Let di,j , pi,k, p′i,l, and gh,l denote a data symbol, a
row parity symbol, an intermediate parity symbol, and a
global parity symbol, respectively, where 0 ≤ i ≤ r− 1,
0 ≤ j ≤ n −m − 1, 0 ≤ k ≤ m − 1, 0 ≤ l ≤ m′ − 1,
and 0 ≤ h ≤ el − 1.

Figure 2 depicts the steps of the two orthogonal encod-
ing phases of STAIR codes. In the first encoding phase,
we use an (n+m′, n−m)-code denoted by Crow (which
is an (11,6)-code in Figure 2). We encode via Crow each
row of n−m data symbols to obtain m row parity sym-
bols andm′ intermediate parity symbols in the same row:
Phase 1: For i = 0, 1, · · · , r − 1,

di,0, di,1, · · · , di,n−m−1
Crow=⇒pi,0, pi,1, · · · , pi,m−1,

p′i,0, p
′
i,1, · · · , p′i,m′−1,

where C
=⇒ describes that the input symbols on the left

are used to generate the output symbols on the right us-
ing some code C. We call each pi,k a “row” parity symbol
since it is only encoded from the same row of data sym-
bols in the stripe, and we call each p′i,l an “intermediate”
parity symbol since it is not actually stored but is used in
the second encoding phase only.

In the second encoding phase, we use a (r+em′−1, r)-
code denoted by Ccol (which is a (6,4)-code in Figure 2).
We encode via Ccol each chunk of r intermediate parity
symbols to obtain at most em′−1 global parity symbols:
Phase 2: For l = 0, 1, · · · ,m′ − 1,

p′0,l, p
′
1,l, · · · , p′r−1,l

Ccol=⇒
em′−1︷ ︸︸ ︷

g0,l, g1,l, · · · , gel−1,l, ∗, · · · , ∗,

where “∗” represents a “dummy” global parity symbol
that will not be generated when el < em′−1, and we
only need to compute the “real” global parity symbols
g0,l, g1,l, · · · , gel−1,l. The intermediate parity symbols
will be discarded after this encoding phase. Note that
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Figure 2: Exemplary configuration: a STAIR code stripe for n = 8, r = 4, m = 2, and e = (1, 1, 2) (i.e., m′ = 3 and
s = 4). Throughout this paper, we use this configuration to explain the operations of STAIR codes.

each gh,l is in essence encoded from all the data symbols
in the stripe, and thus we call it a “global” parity symbol.

We point out that Crow and Ccol can be any systematic
MDS codes. In this work, we implement both Crow and
Ccol using Cauchy Reed-Solomon codes [7, 33], which
have no restriction on code length and fault tolerance.

From Figure 2, we see that the logical layout of global
parity symbols looks like a stair. This is why we name
this family of erasure codes STAIR codes.

In the following discussion, we use the exemplary con-
figuration in Figure 2 to explain the detailed operations
of STAIR codes. To simplify our discussion, we first as-
sume that the global parity symbols are kept outside a
stripe and are always available for ensuring fault toler-
ance. In §5, we will extend the encoding of STAIR codes
when the global parity symbols are kept inside the stripe
and are subject to both device and sector failures.

4 Upstairs Decoding
In this section, we justify the fault tolerance of STAIR
codes defined by m and e. We introduce an upstairs de-
coding method that systematically recovers the lost sym-
bols when both device and sector failures occur.

4.1 Homomorphic Property
The proof of fault tolerance of STAIR codes builds on
the concept of a canonical stripe, which is constructed
by augmenting the existing stripe with additional virtual
parity symbols. To illustrate, Figure 3 depicts how we
augment the stripe of Figure 2 into a canonical stripe. Let
d∗h,j and p∗h,k denote the virtual parity symbols encoded
with Ccol from a data chunk and a row parity chunk, re-
spectively, where 0 ≤ j ≤ n−m− 1, 0 ≤ k ≤ m− 1,
and 0 ≤ h ≤ em′−1−1. Specifically, we use Ccol to gen-
erate virtual parity symbols from the data and row parity
chunks as follows:

For j = 0, 1, · · · , n−m− 1,

d0,j , d1,j , · · · , dr−1,j
Ccol=⇒ d∗0,j , d

∗
1,j , · · · , d∗em′−1−1,j ;

and for k = 0, 1, · · · ,m− 1,

p0,k, p1,k, · · · , pr−1,k
Ccol=⇒ p∗0,k, p

∗
1,k, · · · , p∗em′−1−1,k.

The virtual parity symbols d∗h,j’s and p∗h,k’s, along with
the real and dummy global parity symbols, form em′−1
augmented rows of n + m′ symbols. To make our dis-
cussion simpler, we number the rows and columns of the
canonical stripe from 0 to r + em′−1 − 1 and from 0 to
n+m′ − 1, respectively, as shown in Figure 3.

Referring to Figure 3, we know that the upper r rows
of n + m′ symbols are codewords of Crow. We argue
that each of the lower em′−1 augmented rows is in fact
also a codeword of Crow. We call this the homomorphic
property, since the encoding of each chunk in the col-
umn direction preserves the coding structure in the row
direction. We formally prove the homomorphic property
in Appendix. We use this property to prove the fault tol-
erance of STAIR codes.

4.2 Proof of Fault Tolerance

We prove that for a STAIR code with configuration pa-
rameters n, r, m, and e, as long as the failure pattern
is within the failure coverage defined by m and e, the
corresponding lost symbols can always be recovered (or
decoded). In addition, we present an upstairs decoding
method, which systematically recovers the lost symbols
for STAIR codes.

For a stripe of the STAIR code, we consider the worst-
case recoverable failure scenario where there are m
failed chunks (due to device failures) and m′ additional
chunks that have e0, e1, · · · , em′−1 lost symbols (due to
sector failures), where 0 < e0 ≤ e1 ≤ · · · ≤ em′−1. We
prove that all the m′ chunks with sector failures can be
recovered with global parity symbols. In particular, we
show that these m′ chunks can be recovered in the order
of e0, e1, · · · , em′−1. Finally, the m failed chunks due to
device failures can be recovered with row parity chunks.
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0 to 10, respectively, for ease of presentation.
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Figure 4: Upstairs decoding based on the canonical stripe in Figure 3.

4.2.1 Example

We demonstrate via our exemplary configuration how we
recover the lost data due to both device and sector fail-
ures. Figure 4 shows the sequence of our decoding steps.
Without loss of generality, we logically assign the col-
umn identities such that the m′ chunks with sector fail-
ures are in Columns n − m − m′ to n − m − 1, with
e0, e1, · · · , em′−1 lost symbols, respectively, and the m
failed chunks are in Columns n−m to n− 1. Also, the
sector failures all occur in the bottom of the data chunks.
Thus, the lost symbols form a stair, as shown in Figure 4.

The main idea of upstairs decoding is to recover the
lost symbols from left to right and bottom to top. First,
we see that there are n−m−m′ = 3 good chunks (i.e.,
Columns 0-2) without any sector failure. We encode via
Ccol (which is a (6,4)-code) each such good chunk to ob-
tain em′−1 = 2 virtual parity symbols (Steps 1-3). In
Row 4, there are now six available symbols. Thus, all the
unavailable symbols in this row can be recovered using
Crow (which is a (11,6)-code) due to the homomorphic
property (Step 4). Note that we only need to recover the
m′ = 3 symbols that will later be used to recover sector
failures. Column 3 (with e0 = 1 sector failure) now has
four available symbols. Thus, we can recover one lost
symbol and one virtual parity symbol using Ccol (Step
5). Similarly, we repeat the decoding for Column 4 (with
e1 = 1 sector failure) (Step 6). We see that Row 5 now
contains six available symbols, so we can recover one un-
available virtual parity symbol (Step 7). Then Column 5
(with e2 = 2 sector failures) now has four available sym-

Steps Detailed Descriptions
1 d0,0, d1,0, d2,0, d3,0 ⇒ d∗0,0, d

∗
1,0

2 d0,1, d1,1, d2,1, d3,1 ⇒ d∗0,1, d
∗
1,1

3 d0,2, d1,2, d2,2, d3,2 ⇒ d∗0,2, d
∗
1,2

4 d∗0,0, d
∗
0,1, d

∗
0,2, g0,0, g0,1, g0,2 ⇒ d∗0,3, d

∗
0,4, d

∗
0,5

5 d0,3, d1,3, d2,3, d∗0,3 ⇒ d3,3, d∗1,3
6 d0,4, d1,4, d2,4, d∗0,4 ⇒ d3,4, d∗1,4
7 d∗1,0, d

∗
1,1, d

∗
1,2, d

∗
1,3, d

∗
1,4, g1,2 ⇒ d∗1,5

8 d0,5, d1,5, d∗0,5, d
∗
1,5 ⇒ d2,5, d3,5

9 d0,0, d0,1, d0,2, d0,3, d0,4, d0,5 ⇒ p0,1, p0,2
10 d1,0, d1,1, d1,2, d1,3, d1,4, d1,5 ⇒ p1,1, p1,2
11 d2,0, d2,1, d2,2, d2,3, d2,4, d2,5 ⇒ p2,1, p2,2
12 d3,0, d3,1, d3,2, d3,3, d3,4, d3,5 ⇒ p3,1, p3,2

Table 1: Upstairs decoding: detailed steps for the exam-
ple in Figure 4. Steps 4, 7, and 9-12 use Crow, while
Steps 1-3, 5-6, and 8 use Ccol.

bols, so we can recover two lost symbols (Step 8). Now
all chunks with sector failures are recovered. Finally, we
recover the m = 2 lost chunks row by row using Crow
(Steps 9-12). Table 1 lists the detailed decoding steps of
our example in Figure 4.

4.2.2 General Case

We now generalize the steps of upstairs decoding.
(1) Decoding of the chunk with e0 sector failures: It

is clear that there are n − (m +m′) good chunks with-
out any sector failure in the stripe. We use Ccol to en-
code each such good chunk to obtain em′−1 virtual par-
ity symbols. Then each of the first e0 augmented rows
must now have n−m available symbols: n− (m+m′)



virtual parity symbols that have just been encoded and
m′ global parity symbols. Since an augmented row is a
codeword of Crow due to the homomorphic property, all
the unavailable symbols in this row can be recovered us-
ing Crow. Then, for the column with e0 sector failures, it
now has r available symbols: r − e0 good symbols and
e0 virtual parity symbols that have just been recovered.
Thus, we can recover the e0 sector failures as well as the
em′−1−e0 unavailable virtual parity symbols using Ccol.

(2) Decoding of the chunk with ei sector failures
(1 ≤ i ≤ m′ − 1): If ei = ei−1, we repeat the decod-
ing for the chunk with ei−1 sector failures. Otherwise, if
ei > ei−1, each of the next ei − ei−1 augmented rows
now has n − m available symbols: n − (m + m′) vir-
tual parity symbols that are first recovered from the good
chunks, i virtual parity symbols that are recovered while
the sector failures are recovered, and m′ − i global par-
ity symbols. Thus, all the unavailable virtual parity sym-
bols in these ei−ei−1 augmented rows can be recovered.
Then the column with ei sector failures now has r avail-
able symbols: r − ei good symbols and ei virtual parity
symbols that have been recovered. This column can then
be recovered using Ccol. We repeat this process until all
the m′ chunks with sector failures are recovered.

(3) Decoding of the m failed chunks: After all the m′

chunks with sector failures are recovered, the m failed
chunks can be recovered row by row using Crow.

4.3 Decoding in Practice
In §4.2, we describe an upstairs decoding method for the
worst case. In practice, we often have fewer lost symbols
than the worst case defined by m and e. To achieve effi-
cient decoding, our idea is to recover as many lost sym-
bols as possible via row parity symbols. The reason is
that such decoding is local and involves only the symbols
of the same row, while decoding via global parity sym-
bols involves almost all data symbols within the stripe.
In our implementation, we first locally recover any lost
symbols using row parity symbols whenever possible.
Then, for each chunk that still contains lost symbols, we
count the number of its remaining lost symbols. Next, we
globally recover the lost symbols with global parity sym-
bols using upstairs decoding as described in §4.2, except
those in the m chunks that have the most lost symbols.
These m chunks can be finally recovered via row parity
symbols after all other lost symbols have been recovered.

5 Extended Encoding: Relocating Global
Parity Symbols Inside a Stripe

We thus far assume that there are always s available
global parity symbols that are kept outside a stripe. How-
ever, to maintain the regularity of the code structure and
to avoid provisioning extra devices for keeping the global
parity symbols, it is desirable to keep all global parity

symbols inside a stripe. The idea is that in each stripe,
we store the global parity symbols in some sectors that
originally store the data symbols. A challenge is that
such inside global parity symbols are also subject to both
device and sector failures, so we must maintain their
fault tolerance during encoding. In this section, we pro-
pose two encoding methods, namely upstairs encoding
and downstairs encoding, which support the construc-
tion of inside global parity symbols, while preserving the
homomorphic property and hence the fault tolerance of
STAIR codes. These two encoding methods produce the
same values for parity symbols, but differ in computa-
tional complexities for different configurations. We show
how to deduce parity relations from the two encoding
methods, and also show that the two encoding methods
have complementary performance advantages for differ-
ent configurations.

5.1 Two New Encoding Methods
5.1.1 Upstairs Encoding

We let ĝh,l (0 ≤ l ≤ m′ − 1 and 0 ≤ h ≤ el − 1) be an
inside global parity symbol. Figure 5 illustrates how we
place the inside global parity symbols. Without loss of
generality, we place them at the bottom of the rightmost
data chunks, following the stair layout. Specifically, we
choose the m′ = 3 rightmost data chunks in Columns 3-
5 and place e0 = 1, e1 = 1, and e2 = 2 global parity
symbols at the bottom of these data chunks, respectively.
That is, the original data symbols d3,3, d3,4, d2,5, and
d3,5 are now replaced by the inside global parity symbols
ĝ0,0, ĝ0,1, ĝ0,2, and ĝ1,2, respectively.

To obtain the inside global parity symbols, we ex-
tend the upstairs decoding method in §4.2 and propose
a recovery-based encoding approach called upstairs en-
coding. We first set all the outside global parity symbols
to be zero (see Figure 5). Then we treat all m = 2 row
parity chunks and all s = 4 inside global parity symbols
as lost chunks and lost sectors, respectively. Now we “re-
cover” all inside global parity symbols, followed by the
m = 2 row parity chunks, using the upstairs decoding
method in §4.2. Since all outside global parity symbols
are set to be zero, we need not store them. The homomor-
phic property, and hence the fault tolerance property, re-
main the same as discussed in §4. Thus, in failure mode,
we can still use upstairs decoding to reconstruct lost sym-
bols. We call this encoding method “upstairs encoding”
because the parity symbols are encoded from bottom to
top as described in §4.2.

5.1.2 Downstairs Encoding

In addition to upstairs encoding, we present a different
encoding method called downstairs encoding, in which
we generate parity symbols from top to bottom and right
to left. We illustrate the idea in Figure 6, which depicts
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Figure 5: Upstairs encoding: we set outside global parity symbols to be zero and reconstruct the inside global parity
symbols using upstairs decoding (see §4.2).
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Figure 6: Downstairs encoding: we compute the parity symbols from top to bottom and right to left.

the sequence of generating parity symbols. We still set
the outside global parity symbols to be zero. First, we
encode via Crow the n − m = 6 data symbols in each
of the first r − em′−1 = 2 rows (i.e., Rows 0 and 1) and
generate m+m′ = 5 parity symbols (including two row
parity symbols and three intermediate parity symbols)
(Steps 1-2). The rightmost column (i.e., Column 10)
now has r = 4 available symbols, including the two in-
termediate parity symbols that are just encoded and two
zeroed outside global parity symbols. Thus, we can re-
cover em′−1 = 2 intermediate parity symbols using Ccol
(Step 3). We can generate m + m′ = 5 parity sym-
bols (including one inside global parity symbol, two row
parity symbols, and two intermediate parity symbols) for
Row 2 using Crow (Step 4), followed by em′−2 = 1 and
em′−3 = 1 intermediate parity symbols in Columns 9
and 8 using Ccol, respectively (Steps 5-6). Finally, we
obtain the remaining m + m′ = 5 parity symbols (in-
cluding three global parity symbols and two row parity
symbols) for Row 3 using Crow (Step 7). Table 2 shows
the detailed steps of downstairs encoding for the example
in Figure 6.

In general, we start with encoding via Crow the rows
from top to bottom. In each row, we generate m + m′

symbols. When no more rows can be encoded because
of insufficient available symbols, we encode via Ccol the
columns from right to left to obtain new intermediate
parity symbols (initially, we obtain em′−1 symbols, fol-
lowed by em′−2 symbols, and so on). We alternately
encode rows and columns until all parity symbols are

Steps Detailed Descriptions

1 d0,0, d0,1, d0,2, d0,3, d0,4, d0,5 ⇒ p0,0, p0,1,
p′0,0, p

′
0,1, p

′
0,2

2 d1,0, d1,1, d1,2, d1,3, d1,4, d1,5 ⇒ p1,0, p1,1,
p′1,0, p

′
1,1, p

′
1,2

3 p′0,2, p
′
1,2, g0,2 = 0, g1,2 = 0 ⇒ p′2,2, p

′
3,2

4 d2,0, d2,1, d2,2, d2,3, d2,4, p′2,2 ⇒ ĝ0,2, p2,0, p2,1,
p′2,0, p

′
2,1

5 p′0,1, p
′
1,1, p

′
2,1, g0,1 = 0 ⇒ p′3,1

6 p′0,0, p
′
1,0, p

′
2,0, g0,0 = 0 ⇒ p′3,0

7 d3,0, d3,1, d3,2, p′3,0, p
′
3,1, p

′
3,2 ⇒ ĝ0,0, ĝ0,1, ĝ1,2,

p3,0, p3,1

Table 2: Downstairs decoding: detailed steps for the ex-
ample in Figure 6. Steps 1-2, 4, and 7 use Crow, while
Steps 3 and 5-6 use Ccol.

formed. We can generalize the steps as in §4.2.2, but
we omit the details in the interest of space.

It is important to note that the downstairs encoding
method cannot be generalized for decoding lost symbols.
For example, referring to our exemplary configuration,
we consider a worst-case recoverable failure scenario in
which both row parity chunks are entirely failed, and the
data symbols d0,3, d1,4, d2,2, and d3,2 are lost. In this
case, we cannot recover the lost symbols in the top row
first, but instead we must resort to upstairs decoding as
described in §4.2. Upstairs decoding works because we
limit the maximum number of chunks with lost symbols
(i.e., at mostm+m′). This enables us to first recover the
leftmost virtual parity symbols of the augmented rows
first and gradually reconstruct lost symbols. On the other
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hand, we do not limit the number of rows with lost sym-
bols in our configuration, so the downstairs method can-
not be used for general decoding.

5.1.3 Discussion
Note that both upstairs and downstairs encoding methods
always generate the same values for all parity symbols,
since both of them preserve the homomorphic property,
fix the outside global parity symbols to be zero, and use
the same schemes Crow and Ccol for encoding.

Also, both of them reuse parity symbols in the inter-
mediate steps to generate additional parity symbols in
subsequent steps. On the other hand, they differ in en-
coding complexity, due to the different ways of reusing
the parity symbols. We analyze this in §5.3.

5.2 Uneven Parity Relations
Before relocating the global parity symbols inside a
stripe, each data symbol contributes tom row parity sym-
bols and all s outside global parity symbols. However,
after relocation, the parity relations become uneven. That
is, some row parity symbols are also contributed by the
data symbols in other rows, while some inside global
parity symbols are contributed by only a subset of data
symbols in the stripe. Here, we discuss the uneven par-
ity relations of STAIR codes so as to better understand
the encoding and update performance of STAIR codes in
subsequent analysis.

To analyze how exactly each parity symbol is gener-
ated, we revisit both upstairs and downstairs encoding
methods. Recall that the row parity symbols and the in-
side global parity symbols are arranged in the form of
stair steps, each of which is composed of a tread (i.e.,
the horizontal portion of a step) and a riser (i.e., the ver-
tical portion of a step), as shown in Figure 7. If upstairs
encoding is used, then from Figure 4, the encoding of
each parity symbol does not involve any data symbol
on its right. Also, among the columns spanned by the
same tread, the encoding of parity symbols in each col-
umn does not involve any data symbol in other columns.
We can make similar arguments for downstairs encoding.
If downstairs encoding is used, then from Figure 6, the
encoding of each parity symbol does not involve any data
symbol below it. Also, among the rows spanned by the
same riser, the encoding of parity symbols in each row
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Figure 8: The data symbols that contribute to parity sym-
bols p2,0, ĝ0,1, and p1,1, respectively.

does not involve any data symbol in other rows.
As both upstairs and downstairs encoding methods

generate the same values of parity symbols, we can com-
bine the above arguments into the following property of
how each parity symbol is related to data symbols.

Property 1 (Parity relations in STAIR codes): In a
STAIR code stripe, a (row or inside global) parity sym-
bol in Row i0 and Column j0 (where 0 ≤ i0 ≤ r − 1
and n − m − m′ ≤ j0 ≤ n − 1) depends only on the
data symbols di,j’s where i ≤ i0 and j ≤ j0. Moreover,
each parity symbol is unrelated to any data symbol in any
other column (row) spanned by the same tread (riser).

Figure 8 illustrates the above property. For example,
p2,0 depends only on the data symbols di,j’s in Rows 0-2
and Columns 0-5. Note that ĝ0,1 in Column 4 is unrelated
to any data symbol in Column 3, which is spanned by
the same tread as Column 4. Similarly, p1,1 in Row 1 is
unrelated to any data symbol in Row 0, which is spanned
by the same riser as Row 1.

5.3 Encoding Complexity Analysis
We have proposed two encoding methods for STAIR
codes: upstairs encoding and downstairs encoding. Both
of them alternately encode rows and columns to obtain
the parity symbols. We can also obtain parity symbols
using the standard encoding approach, in which each par-
ity symbol is computed directly from a linear combina-
tion of data symbols as in classical Reed-Solomon codes.
We now analyze the computational complexities of these
three methods for different configuration parameters of
STAIR codes.

STAIR codes perform encoding over a Galois Field,
in which linear arithmetic can be decomposed into
the basic operations Mult XORs [31]. We define
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Figure 9: Numbers of Mult XORs (per stripe) of the three encoding methods for STAIR codes versus different e’s
when n = 8, m = 2, and s = 4.

Mult XOR(R1,R2, α) as an operation that first mul-
tiplies a region R1 of bytes by a w-bit constant α in
Galois Field GF (2w), and then applies XOR-summing
to the product and the target region R2 of the same
size. For example, Y = α0 · X0 + α1 · X1

can be decomposed into two Mult XORs (assuming
Y is initialized as zero): Mult XOR(X0,Y, α0) and
Mult XOR(X1,Y, α1). Clearly, fewer Mult XORs im-
ply a lower computational complexity. To evaluate the
computational complexity of an encoding method, we
count its number of Mult XORs (per stripe).

For upstairs encoding, we generate m · r row parity
symbols and s virtual parity symbols along the row di-
rection, as well as s inside global parity symbols and
(n − m) · em′−1 − s virtual parity symbols along the
column direction. Its number of Mult XORs (denoted
by Xup) is:

Xup =

row direction︷ ︸︸ ︷
(n−m)× (m · r + s) +

column direction︷ ︸︸ ︷
r × [(n−m) · em′−1].

(1)
For downstairs encoding, we generate m · r row parity

symbols, s inside global parity symbols, and m′ · r − s
intermediate parity symbols along the row direction, as
well as s intermediate parity symbols along the column
direction. Its number of Mult XORs (denoted byXdown)
is:

Xdown =

row direction︷ ︸︸ ︷
(n−m)×

[
(m+m′) · r

]
+

column direction︷ ︸︸ ︷
r × s . (2)

For standard encoding, we compute the number of
Mult XORs by summing the number of data symbols
that contribute to each parity symbol, based on the prop-
erty of uneven parity relations discussed in §5.2.

We show via a case study how the three encoding
methods differ in the number of Mult XORs. Figure 9
depicts the numbers of Mult XORs of the three encod-
ing methods for different e’s in the case where n = 8,
m = 2, and s = 4. Upstairs encoding and downstairs en-
coding incur significantly fewer Mult XORs than stan-
dard encoding most of the time. The main reason is that

both upstairs encoding and downstairs encoding often
reuse the computed parity symbols in subsequent encod-
ing steps. We also observe that for a given s, the num-
ber of Mult XORs of upstairs encoding increases with
em′−1 (see Equation (1)), while that of downstairs en-
coding increases withm′ (see Equation (2)). Since larger
m′ often implies smaller em′−1, the value of m′ often
determines which of the two encoding methods is more
efficient: when m′ is small, downstairs encoding wins;
when m′ is large, upstairs encoding wins.

In our encoding implementation of STAIR codes, for
given configuration parameters, we always pre-compute
the number of Mult XORs for each of the encoding
methods, and then choose the one with the fewest
Mult XORs.

6 Evaluation
We evaluate STAIR codes and compare them with other
related erasure codes in different practical aspects, in-
cluding storage space saving, encoding/decoding speed,
and update penalty.

6.1 Storage Space Saving
The main motivation for STAIR codes is to tolerate si-
multaneous device and sector failures with significantly
lower storage space overhead than traditional erasure
codes (e.g., Reed-Solomon codes) that provide only
device-level fault tolerance. Given a failure scenario de-
fined by m and e, traditional erasure codes need m+m′

chunks per stripe for parity, while STAIR codes need
only m chunks and s symbols (where m′ ≤ s). Thus,
STAIR codes save r×m′−s symbols per stripe, or equiv-
alently, m′ − s

r devices per system. In short, the saving
of STAIR codes depends on only three parameters s, m′,
and r (where s and m′ are determined by e).

Figure 10 plots the number of devices saved by STAIR
codes for s ≤ 4, m′ ≤ s, and r ≤ 32. As r increases,
the number of devices saved is close to m′. The saving
reaches the highest when m′ = s.

We point out that the recently proposed SD codes
[27,28] are also motivated for reducing the storage space
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Figure 10: Space saving of STAIR codes over traditional erasure codes in terms of s, m′, and r.

over traditional erasure codes. Unlike STAIR codes, SD
codes always achieve a saving of s − s

r devices, which
is the maximum saving of STAIR codes. While STAIR
codes apparently cannot outperform SD codes in space
saving, it is important to note that the currently known
constructions of SD codes are limited to s ≤ 3 only
[6,27,28], implying that SD codes can save no more than
three devices. On the other hand, STAIR codes do not
have such limitations. As shown in Figure 10, STAIR
codes can save more than three devices for larger s.

6.2 Encoding/Decoding Speed
We evaluate the encoding/decoding speed of STAIR
codes. Our implementation of STAIR codes is writ-
ten in C. We leverage the GF-Complete open source li-
brary [31] to accelerate Galois Field arithmetic using In-
tel SIMD instructions. Our experiments compare STAIR
codes with the state-of-the-art SD codes [27, 28]. At the
time of this writing, the open-source implementation of
SD codes encodes stripes in a decoding manner without
any parity reuse. For fair comparisons, we extend the
SD code implementation to support the standard encod-
ing method mentioned in §5.3. We run our performance
tests on a machine equipped with an Intel Core i5-3570
CPU at 3.40GHz with SSE4.2 support. The CPU has a
256KB L2-cache and a 6MB L3-cache.

6.2.1 Encoding

We compare the encoding performance of STAIR codes
and SD codes for different values of n, r, m, and s. For
SD codes, we only consider the range of configuration
parameters where s ≤ 3, since no code construction is
available outside this range [6, 27, 28]. In addition, the
SD code constructions for s = 3 are only available in the
range n ≤ 24, r ≤ 24, and m ≤ 3 [27, 28]. For STAIR
codes, a single value of s can imply different configura-
tions of e (e.g., see Figure 9 in §5.3), each of which has
different encoding performance. Here, we take a conser-
vative approach to analyze the worst-case performance
of STAIR codes, that is, we test all possible configura-
tions of e for a given s and pick the one with the lowest
encoding speed.

Note that the encoding performance of both STAIR

codes and SD codes heavily depends on the word size
w of the adopted Galois Field GF (2w), where w is of-
ten set to be a power of 2. A smaller w often means a
higher encoding speed [31]. STAIR codes work as long
as n+m′ ≤ 2w and r + em′−1 ≤ 2w. Thus, we choose
w = 8 since it suffices for all of our tests. However, SD
codes may choose among w = 8, w = 16, and w = 32,
depending on configuration parameters. We choose the
smallest w that is feasible for the SD code construction.

We consider the metric encoding speed, defined as
the amount of data encoded per second. We construct
a stripe of size roughly 32MB in memory as in [27, 28].
We put random bytes in the stripe, and divide the stripe
into r × n sectors, each mapped to a symbol. We obtain
the averaged results over 10 runs.

Figures 11(a) and 11(b) present the encoding speed re-
sults for different values of nwhen r = 16 and for differ-
ent values of r when n = 16, respectively. In most cases,
the encoding speed of STAIR codes is over 1000MB/s,
which is significantly higher than the disk write speed
in practice (note that although disk writes can be paral-
lelized in disk arrays, the encoding operations can also be
parallelized with modern multi-core CPUs). The speed
increases with both n and r. The intuitive reason is that
the proportion of parity symbols decreases with n and r.
Compared to SD codes, STAIR codes improve the en-
coding speed by 106.03% on average (in the range from
29.30% to 225.14%). The reason is that STAIR codes
reuse encoded parity information in subsequent encoding
steps by upstairs/downstairs encoding (see §5.3), while
such an encoding property is not exploited in SD codes.

We also evaluate the impact of stripe size on the en-
coding speed of STAIR codes and SD codes for given n
and r. We fix n = 16 and r = 16, and vary the stripe
size from 128KB to 512MB. Note that a stripe of size
128KB implies a symbol of size 512 bytes, the standard
sector size in practical disk drives. Figure 12 presents
the encoding speed results. As the stripe size increases,
the encoding speed of both STAIR codes and SD codes
first increases and then drops, due to the mixed effects
of SIMD instructions adopted in GF-Complete [31] and
CPU cache. Nevertheless, the encoding speed advantage
of STAIR codes over SD codes remains unchanged.
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Figure 12: Encoding speed of STAIR codes and SD codes for different stripe sizes when n = 16 and r = 16.

6.2.2 Decoding

We measure the decoding performance of STAIR codes
and SD codes in recovering lost symbols. Since the de-
coding time increases with the number of lost symbols
to be recovered, we consider a particular worst case in
which the m leftmost chunks and s additional symbols
in the following m′ chunks defined by e are all lost. The
evaluation setup is similar to that in §6.2.1, and in partic-
ular, the stripe size is fixed at 32MB.

Figures 13(a) and 13(b) present the decoding speed re-
sults for different nwhen r = 16 and for different r when
n = 16, respectively. The results of both figures can
be viewed in comparison to those of Figures 11(a) and
11(b), respectively. Similar to encoding, the decoding
speed of STAIR codes is over 1000MB/s in most cases
and increases with both n and r. Compared to SD codes,
STAIR codes improve the decoding speed by 102.99%
on average (in the range from 1.70% to 537.87%).

In practice, we often have fewer lost symbols than the
worst case (see §4.3). One common case is that there are
only failed chunks due to device failures (i.e., s = 0), so
the decoding of both STAIR and SD codes is identical

to that of Reed-Solomon codes. In this case, the decod-
ing speed of STAIR/SD codes can be significantly higher
than that of s = 1 for STAIR codes in Figure 13. For ex-
ample, when n = 16 and r = 16, the decoding speed
increases by 79.39%, 29.39%, and 11.98% for m = 1, 2,
and 3, respectively.

6.3 Update Penalty

We evaluate the update cost of STAIR codes when data
symbols are updated. For each data symbol in a stripe
being updated, we count the number of parity symbols
being affected (see §5.2). Here, we define the update
penalty as the average number of parity symbols that
need to be updated when a data symbol is updated.

Clearly, the update penalty of STAIR codes increases
with m. We are more interested in how e influences the
update penalty of STAIR codes. Figure 14 presents the
update penalty results for different e’s when n = 16 and
s = 4. For different e’s with the same s, the update
penalty of STAIR codes often increases with em′−1. In-
tuitively, a larger em′−1 implies that more rows of row
parity symbols are encoded from inside global parity
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Figure 13: Decoding speed of STAIR codes and SD codes for different combinations of n, r, m, and s.
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Figure 15: Update penalty of STAIR codes, SD codes, and Reed-Solomon (RS) codes when n = 16 and r = 16.
For STAIR codes, we plot the error bars for the maximum and minimum update penalty values among all possible
configurations of e.

symbols, which are further encoded from almost all data
symbols (see §5.2).

We compare STAIR codes with SD codes [27,28]. For
STAIR codes with a given s, we test all possible config-
urations of e and find the average, minimum, and max-
imum update penalty. For SD codes, we only consider
s between 1 and 3. We also include the update penalty
results of Reed-Solomon codes for reference. Figure 15
presents the update penalty results when n = 16 and

r = 16 (while similar observations are made for other
n and r). For a given s, the range of update penalty of
STAIR codes covers that of SD codes, although the aver-
age is sometimes higher than that of SD codes (same for
s = 1, by 7.30% to 14.02% for s = 2, and by 10.47% to
23.72% for s = 3). Both STAIR codes and SD codes
have higher update penalty than Reed-Solomon codes
due to more parity symbols in a stripe, and hence are suit-
able for storage systems with rare updates (e.g., backup



or write-once-read-many (WORM) systems) or systems
dominated by full-stripe writes [27, 28].

7 Related Work
Erasure codes have been widely adopted to provide fault
tolerance against device failures in storage systems [32].
Classical erasure codes include standard Reed-Solomon
codes [34] and Cauchy Reed-Solomon codes [7], both
of which are MDS codes that provide general construc-
tions for all possible configuration parameters. They are
usually implemented as systematic codes for storage ap-
plications [26,30,33], and thus can be used to implement
the construction of STAIR codes. In addition, Cauchy
Reed-Solomon codes can be further transformed into ar-
ray codes, whose encoding computations purely build on
efficient XOR operations [33].

In the past decades, many kinds of array codes have
been proposed, including MDS array codes (e.g., [2–4,9,
12,13,20,22,29,41,42]) and non-MDS array codes (e.g.,
[16, 17, 23]). Array codes are often designed for specific
configuration parameters. To avoid compromising the
generality of STAIR codes, we do not suggest to adopt
array codes in the construction of STAIR codes. More-
over, recent work [31] has shown that Galois Field arith-
metic can be implemented to be extremely fast (some-
times at cache line speeds) using SIMD instructions in
modern processors.

Sector failures are not explicitly considered in tradi-
tional erasure codes, which focus on tolerating device-
level failures. To cope with sector failures, ad hoc
schemes are often considered. One scheme is scrub-
bing [24, 36, 38], which proactively scans all disks and
recovers any spotted sector failure using the underlying
erasure codes. Another scheme is intra-device redun-
dancy [10, 11, 36], in which contiguous sectors in each
device are grouped together to form a segment and are
then encoded with redundancy within the device. Our
work targets a different objective and focuses on con-
structing an erasure code that explicitly addresses sector
failures.

To simultaneously tolerate device and sector failures
with minimal redundancy, SD codes [27, 28] (includ-
ing the earlier PMDS codes [5], which are a subset of
SD codes) have recently been proposed. As stated in
§1, SD codes are known only for limited configurations
and some of the known constructions rely on extensive
searches. A relaxation of the SD property has also been
recently addressed as a future work in [27], which as-
sumes that each row has no more than a given number
of sector failures. It is important to note that the relax-
ation of [27] is different from ours, in which we limit the
maximum number of devices with sector failures and the
maximum number of sector failures that simultaneously
occur in each such device. It turns out that our relaxation

enables us to derive a general code construction. Another
similar kind of erasure codes is the family of locally re-
pairable codes (LRCs) [18, 19, 35]. Pyramid codes [18]
are designed for improving the recovery performance for
small-scale device failures and have been implemented
in archival storage [40]. Huang et al.’s and Sathiamoor-
thy et al.’s LRCs [19, 35] can be viewed as generaliza-
tions of Pyramid codes and are recently adopted in com-
mercial storage systems. In particular, Huang et al.’s
LRCs [19] achieve the same fault tolerance property as
PMDS codes [5], and thus can also be used as SD codes.
However, the construction of Huang et al.’s LRCs is lim-
ited to m = 1 only. To our knowledge, STAIR codes
are the first general family of erasure codes that can effi-
ciently tolerate both device and sector failures.

8 Conclusions
We present STAIR codes, a general family of erasure
codes that can tolerate simultaneous device and sec-
tor failures in a space-efficient manner. STAIR codes
can be constructed for tolerating any numbers of device
and sector failures subject to a pre-specified sector fail-
ure coverage. The special construction of STAIR codes
also makes efficient encoding/decoding possible through
parity reuse. Compared to the recently proposed SD
codes [5, 27, 28], STAIR codes not only support a much
wider range of configuration parameters, but also achieve
higher encoding/decoding speed based on our experi-
ments.

In future work, we explore how to correctly configure
STAIR codes in practical storage systems based on em-
pirical failure characteristics [1, 25, 36, 37].

The source code of STAIR codes is available at
http://ansrlab.cse.cuhk.edu.hk/software/stair.
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Appendix: Proof of Homomorphic Property
We formally prove the homomorphic property described
in §4.1. We state the following theorem.

Theorem 1 In the construction of the canonical stripe
of STAIR codes, the encoding of each chunk in the col-
umn direction via Ccol is homomorphic, such that each



augmented row in the canonical stripe is a codeword of
Crow.

Proof: We prove by matrix operations. We define the
matrices D = [di,j ]r×(n−m), P = [pi,k]r×m, and P′ =
[p′i,l]r×m′ . Also, we define the generator matrices Grow

and Gcol for the codes Crow and Ccol, respectively, as:

Grow =
(
I(n−m)×(n−m) | A(n−m)×(m+m′)

)
,

Gcol =
(
Ir×r | Br×em′−1

)
,

where I is an identity matrix, and A and B are the sub-
matrices that form the parity symbols. The upper r rows
of the stripe can be expressed as follows:

(D | P | P′) = D ·Grow.

The lower em′−1 augmented rows are expressed as fol-
lows:(

(D | P | P′)T ·B
)T

= BT · (D ·Grow)

=
(
BT ·D

)
·Grow

We can see that each of the lower em′−1 rows can be
calculated using the generator matrix Grow, and hence
is a codeword of Crow. �


