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Abstract

Many modern storage systems adopt erasure coding to

provide data availability guarantees with low redun-

dancy. Log-based storage is often used to append new

data rather than overwrite existing data so as to achieve

high update efficiency, but introduces significant I/O

overhead during recovery due to reassembling updates

from data and parity chunks. We propose parity logging

with reserved space, which comprises two key design

features: (1) it takes a hybrid of in-place data updates

and log-based parity updates to balance the costs of up-

dates and recovery, and (2) it keeps parity updates in a

reserved space next to the parity chunk to mitigate disk

seeks. We further propose a workload-aware scheme to

dynamically predict and adjust the reserved space size.

We prototype an erasure-coded clustered storage system

called CodFS, and conduct testbed experiments on dif-

ferent update schemes under synthetic and real-world

workloads. We show that our proposed update scheme

achieves high update and recovery performance, which

cannot be simultaneously achieved by pure in-place or

log-based update schemes.

1 Introduction

Clustered storage systems are known to be susceptible to

component failures [17]. High data availability can be

achieved by encoding data with redundancy using either

replication or erasure coding. Erasure coding encodes

original data chunks to generate new parity chunks, such

that a subset of data and parity chunks can sufficiently

recover all original data chunks. It is known that era-

sure coding introduces less overhead in storage and write

bandwidth than replication under the same fault toler-

ance [37, 47]. For example, traditional 3-way replica-

tion used in GFS [17] and Azure [8] introduces 200%

of redundancy overhead, while erasure coding can re-

duce the overhead to 33% and achieve higher availabil-

ity [22]. Today’s enterprise clustered storage systems

[14, 22, 35, 39, 49] adopt erasure coding in production to

reduce hardware footprints and maintenance costs.

For many real-world workloads in enterprise servers

and network file systems [2, 30], data updates are dom-
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inant. There are two ways of performing updates: (1)

in-place updates, where the stored data is read, modified,

and written with the new data, and (2) log-based updates,

where updates are inserted to the end of an append-only

log [38]. If updates are frequent, in-place updates intro-

duce significant I/O overhead in erasure-coded storage

since parity chunks also need to be updated to be con-

sistent with the data changes. Existing clustered stor-

age systems, such as GFS [17] and Azure [8] adopt log-

based updates to reduce I/Os by sequentially appending

updates. On the other hand, log-based updates introduce

additional disk seeks to the update log during sequen-

tial reads. This in particular hurts recovery performance,

since recovery makes large sequential reads to the data

and parity chunks in the surviving nodes in order to re-

construct the lost data.

This raises an issue of choosing the appropriate up-

date scheme for an erasure-coded clustered storage sys-

tem to achieve efficient updates and recovery simultane-

ously. Our primary goal is to mitigate the network trans-

fer and disk I/O overheads, both of which are potential

bottlenecks in clustered storage systems. In this paper,

we make the following contributions.

First, we provide a taxonomy of existing update

schemes for erasure-coded clustered storage systems. To

this end, we propose a novel update scheme called parity

logging with reserved space, which uses a hybrid of in-

place data updates and log-based parity updates. It miti-

gates the disk seeks of reading parity chunks by putting

deltas of parity chunks in a reserved space that is allo-

cated next to their parity chunks. We further propose

a workload-aware reserved space management scheme

that effectively predicts the size of reserved space and

reclaims the unused reserved space.

Second, we build an erasure-coded clustered stor-

age system CodFS, which targets the common update-

dominant workloads and supports efficient updates and

recovery. CodFS offloads client-side encoding computa-

tions to the storage cluster. Its implementation is extensi-

ble for different erasure coding and update schemes, and

is deployable on commodity hardware.

Finally, we conduct testbed experiments using syn-

thetic and real-world traces. We show that our CodFS

prototype achieves network-bound read/write perfor-



mance. Under real-world workloads, our proposed par-

ity logging with reserved space gives a 63.1% speedup of

update throughput over pure in-place updates and up to

10× speedup of recovery throughput over pure log-based

updates. Also, our workload-aware reserved space man-

agement effectively shrinks unused reserved space with

limited reclaim overhead.

The rest of the paper proceeds as follows. In §2, we

analyze the update behaviors in real-world traces. In §3,

we introduce the background of erasure coding. In §4,

we present different update schemes and describe our ap-

proach. In §5, we present the design of CodFS. In §6, we

present testbed experimental results. In §7, we discuss

related work. In §8, we conclude the paper.

2 Trace Analysis

We study two sets of real-world storage traces collected

from large-scale storage server environments and char-

acterize their update patterns. Motivated by the fact that

enterprises are considering erasure coding as an alterna-

tive to RAID for fault-tolerant storage [40], we choose

these traces to represent the workloads of enterprise stor-

age clusters and study the applicability of erasure coding

to such workloads. We want to answer three questions:

(1) What is the average size of each update? (2) How

common do data updates happen? (3) Are updates fo-

cused on some particular chunks?

2.1 Trace Description

MSR Cambridge traces. We use the public block-level

I/O traces of a storage cluster released by Microsoft Re-

search Cambridge [30]. The traces are captured on 36

volumes of 179 disks located in 13 servers. They are

composed of I/O requests, each specifying the times-

tamp, the server name, the disk number, the read/write

type, the starting logical block address, the number of

bytes transferred, and the response time. The whole

traces span a one-week period starting from 5PM GMT

on 22nd February 2007, and account for the workloads

in various kinds of deployment including user home di-

rectories, project directories, source control, and media.

Here, we choose 10 of the 36 volumes for our analy-

sis. Each of the chosen volumes contains 800,000 to

4,000,000 write requests.

Harvard NFS traces. We also use a set of NFS traces

(DEAS03) released by Harvard [13]. The traces capture

NFS requests and responses of a NetApp file server that

contains a mix of workloads including email, research,

and development. The whole traces cover a 41-day pe-

riod from 29th January 2003 to 10th March 2003. Each

NFS request in the traces contains the timestamp, source

and destination IP addresses, and the RPC function. De-

pending on the RPC function, the request may contain

optional fields such as file handler, file offset and length.
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Figure 1: Distribution of update size in MSR Cambridge

traces.

No. of Writes 172702071

WSS (GB) 174.73

Updated WSS (%) 68.39

Update Writes (%) 91.56

No. of Accessed Files 2039724

Updated Files (%) 12.10

Avg. Update Size Per Request (KB) 10.58

Table 1: Properties of Harvard DEAS03 NFS traces.

While the traces describe the workloads of a single NFS

server, they have also been used in trace-driven analysis

for clustered storage systems [1, 20].

2.2 Key Observations

Updates are small. We study the update size, i.e.,

the number of bytes accessed by each update. Figure 1

shows the average update size ranges of the MSR Cam-

bridge traces. We see that the updates are generally small

in size. Although different traces show different update

size compositions, all updates occurring in the traces are

smaller than 512KB. Among the 10 traces, eight of them

have more than 60% of updates smaller than 4KB. Sim-

ilarly, the Harvard NFS traces comprise small updates,

with average size of only 10.58KB, as shown in Table 1.

Updates are common. Unsurprisingly, updates are

common in both storage traces. We analyze the write

requests in the traces and classify them into two types:

first-write, i.e., the address is first accessed, and update,

i.e., the address is re-accessed. Table 1 shows the results

of the Harvard NFS traces. Among nearly 173 million

write requests, more than 91% of them are updates. Ta-

ble 2 shows the results of the MSR Cambridge traces. All

the volumes show more than 90% of updates among all

write requests, except for the print server volume prn1.

We see limited relationship between the working set size

(WSS) and the intensity of writes. For example, the

project volume proj0 has a small WSS, but it has much

more writes than the source control volume src22 that

has a large WSS.

Update coverage varies. Although data updates are

common in all traces, the coverage of updates varies.

We measure the update coverage by studying the frac-



Vol-

ume

Workload

Type

No. of

Writes

WSS

(GB)

Updated

WSS(%)

Update

Writes(%)

src22 Source control 805955 20.17 99.57 99.68

mds0 Media server 1067061 3.09 29.27 95.77

rsrch0 Research 1300030 0.36 69.53 97.41

usr0 Home directory 1333406 2.44 42.54 96.08

web0 Web/SQL server 1423458 7.26 37.25 96.23

ts0 Terminal server 1485042 0.91 49.84 95.65

stg0 Web staging 1722478 6.31 21.04 97.82

hm0 HW monitor 2575568 2.31 73.16 93.21

prn1 Print server 2769610 80.9 18.55 73.43

proj0 Project directory 3697143 3.16 56.67 98.89

Table 2: Properties of MSR Cambridge traces: (1) num-

ber of writes shows the total number of write requests;

(2) working set size refers to the size of unique data ac-

cessed in the trace; (3) percentage of updated working set

size refers to the fraction of data in the working set that is

updated at least once; and (4) percentage of update writes

refers to the fraction of writes that update existing data.

tion of WSS that is updated at least once throughout the

trace period. For example, from the MSR Cambridge

traces in Table 2, the src22 trace shows a 99.57% of up-

dated WSS, while updates in the mds0 trace only cover

29.27% of WSS. In other words, updates in the src22

trace span across a large number of locations in the work-

ing set, while updates in the mds0 trace are focused on

a smaller set of locations. The variation in update cover-

age implies the need of a dynamic mechanism to improve

update efficiency.

3 Background: Erasure Coding

We provide the background details of an erasure-coded

storage system considered in this work. We refer read-

ers to the tutorial [33] for the essential details of erasure

coding in the context of storage systems.

We consider an erasure-coded storage cluster with M
nodes (or servers). We divide data into segments and ap-

ply erasure coding independently on a per-segment basis.

We denote an (n, k)-code as an erasure coding scheme

defined by two parameters n and k, where k < n. An

(n, k)-code divides a segment into k equal-size uncoded

chunks called data chunks, and encodes the data chunks

to form n − k coded chunks called parity chunks. We

assume n < M , and have the collection of n data and

parity chunks distributed across n of the M nodes in the

storage cluster. We consider Maximum Distance Separa-

ble erasure coding, i.e., the original segment can be re-

constructed from any k of the n data and parity chunks.

Each parity chunk can be in general encoded by com-

puting a linear combination of the data chunks. Math-

ematically, for an (n, k)-code, let {γij}1≤i≤n−k,1≤j≤k

be a set of encoding coefficients for encoding the k
data chunks {D1, D2, · · · , Dk} into n− k parity chunks

{P1, P2, · · · , Pn−k}. Then, each parity chunk Pi (1 ≤

i ≤ n − k) can be computed by: Pi =
∑k

j=1
γijDj ,

where all arithmetic operations are performed in the Ga-

lois Field over the coding units called words.

The linearity property of erasure coding provides an

alternative to computing new parity chunks when some

data chunks are updated. Suppose that a data chunk Dl

(for some 1 ≤ l ≤ k) is updated to another data chunk

D′
l. Then each new parity chunk P ′

i (1 ≤ i ≤ n− k) can

be computed by:

P ′
i =

k
∑

j=1,j 6=l

γijDj + γilD
′
l = Pi + γil(D

′
l −Dl).

Thus, instead of summing over all data chunks, we com-

pute new parity chunks based on the change of data

chunks. The above computation can be further gener-

alized when only part of a data chunk is updated, but a

subtlety is that a data update may affect different parts of

a parity chunk depending on the erasure code construc-

tion (see [33] for details). Suppose now that a word of

Dl at offset o is updated, and the word of Pl at offset

ô needs to be updated accordingly (where o and ô may

differ). Then we can express:

P ′
i (ô) = Pi(ô) + γil(D

′
l(o)−Dl(o)),

where P ′
i (ô) and Pi(ô) denote the words at offset ô of

the new parity chunk P ′
i and old parity chunk Pi, respec-

tively, and D′
l(o) and Dl(o) denote the words at offset

o of the new data chunk D′
l and old data chunk Dl, re-

spectively. In the following discussion, we leverage this

linearity property in parity updates.

4 Parity Updates

Data updates in erasure-coded clustered storage systems

introduce performance overhead, since they also need to

update parity chunks for consistency. We consider a de-

ployment environment where network transfer and disk

I/O are performance bottlenecks. Our goal is to design a

parity update scheme that effectively mitigates both net-

work transfer overhead and number of disk seeks.

We re-examine existing parity update schemes that fall

into two classes: the RAID-based approaches and the

delta-based approaches. We then propose a novel parity

update approach that assigns a reserved space for keep-

ing parity updates.

4.1 Existing Approaches

4.1.1 RAID-based Approaches

We describe three classical approaches of parity updates

that are typically found in RAID systems [10, 45].

Full-segment writes. A full-segment write (or full-

stripe write) updates all data and parity chunks in a seg-

ment. It is used in a large sequential write where the



write size is a multiple of segment size. To make a full-

segment write work for small updates, one way is to pack

several updates into a large piece until a full segment can

be written in a single operation [28]. Full-segment writes

do not need to read the old data or parity chunks, and

hence achieve the best update performance.

Reconstruct writes. A reconstruct write first reads all

the chunks from the segment that are not involved in the

update. Then it computes the new parity chunks using

the read chunks and the new chunks to be written, and

writes all data and parity chunks.

Read-modify writes. A read-modify write leverages the

linearity of erasure coding for parity updates (see §3). It

first reads the old data chunk to be updated and all the

old parity chunks in the segment. It then computes the

change between the old and new data chunks, and applies

the change to each of the parity chunks. Finally, it writes

the new data chunk and all new parity chunks to their

respective locations.

Discussion. Full-segment writes can be implemented

through a log-based design to support small updates, but

logging has two limitations. First, we need an efficient

garbage collection mechanism to reclaim space by re-

moving stale chunks, and this often hinders update per-

formance [41]. Second, logging introduces additional

disk seeks to retrieve the updates, which often degrades

sequential read and recovery performance [27]. On

the other hand, both reconstruct writes and read-modify

writes are traditionally designed for a single host deploy-

ment. Although some recent studies implement read-

modify writes in a distributed setting [15, 51], both ap-

proaches introduce significant network traffic since each

update must transfer data or parity chunks between nodes

for parity updates.

4.1.2 Delta-based Approaches

Another class of parity updates, called the delta-based

approaches, eliminates redundant network traffic by only

transferring a parity delta which is of the same size as

the modified data range [9, 44]. A delta-based approach

leverages the linearity of erasure coding described in §3.

It first reads the range of the data chunk to be modified

and computes the delta, which is the change between old

and new data at the modified range of the data chunk, for

each parity chunk. It then sends the modified data range

and the parity deltas computed to the data node and all

other parity nodes for updates, respectively. Instead of

transferring the entire data and parity chunks as in read-

modify writes, transferring the modified data range and

parity deltas reduces the network traffic and is suitable

for clustered storage. In the following, we describe some

delta-based approaches proposed in the literature.

Full-overwrite (FO). Full-overwrite [4] applies in-place

updates to both data and parity chunks. It merges the old

data and parity chunks directly at specific offsets with the

modified data range and parity deltas, respectively. Note

that merging each parity delta requires an additional disk

read of old parity chunk at the specific offset to compute

the new parity content to be written.

Full-logging (FL). Full-logging saves the disk read

overhead of parity chunks by appending all data and par-

ity updates. That is, after the modified data range and

parity deltas are respectively sent to the corresponding

data and parity nodes, the storage nodes create logs to

store the updates. The logs will be merged with the orig-

inal chunks when the chunks are read subsequently. FL

is used in enterprise clustered storage systems such as

GFS [17] and Azure [8].

Parity-logging (PL). Parity-logging [24, 43] can be re-

garded as a hybrid of FO and FL. It saves the disk read

overhead of parity chunks and additionally avoids merg-

ing overhead on data chunks introduced in FL. Since data

chunks are more likely to be read than parity chunks,

merging logs in data chunks can significantly degrade

read performance. Hence, in PL, the original data chunk

is overwritten in-place with the modified data range,

while the parity deltas are logged at the parity nodes.

Discussion. Although the delta-based approaches re-

duce network traffic, they are not explicitly designed to

reduce disk I/O. Both FL and PL introduce disk frag-

mentation and require efficient garbage collection. The

fragmentations often hamper further accesses of those

chunks with logs. Meanwhile, FO introduces additional

disk reads for the old parity chunks on the update path,

compared with FL and PL. Hence, to take a step further,

we want to address the question: Can we reduce the disk

I/O on both the update path and further accesses?

4.2 Our Approach

We propose a new delta-based approach called parity-

logging with reserved space (PLR), which further mit-

igates fragmentation and reduces the disk seek overhead

of PL in storing parity deltas. The main idea is that the

storage nodes reserve additional storage space next to

each parity chunk for keeping parity deltas. This ensures

that each parity chunk and its parity deltas can be sequen-

tially retrieved. While the idea is simple, the challenging

issues are to determine (1) the appropriate amount of re-

served space to be allocated when a parity chunk is first

stored and (2) the appropriate time when unused reserved

space can be reclaimed to reduce the storage overhead.

4.2.1 An Illustrative Example

Figure 2 illustrates the differences of the delta-based ap-

proaches in §4.1.2 and PLR, using a (3,2)-code as an

example. The incoming data stream describes the se-

quence of operations: (1) write the first segment with



Figure 2: Illustration on different parity update schemes.

data chunks a and b, (2) update part of a with a’, (3)

write a new segment with data chunks c and d, and fi-

nally (4) update parts of b and c with b’ and c’, respec-

tively. We see that FO performs overwrites for both data

updates and parity deltas; FL appends both data updates

and parity deltas according to the incoming order; PL

performs overwrites for data updates and appends parity

deltas; and PLR appends parity deltas in reserved space.

Consider now that we read the up-to-date chunk b.

FL incurs a disk seek to the update b’ when rebuild-

ing chunk b, as b and b’ are in discontinuous physical

locations on disk. Similarly, PL also incurs a disk seek to

the parity delta ∆b when reconstructing the parity chunk

a+b. On the other hand, PLR incurs no disk seek when

reading the parity chunk a+b since its parity deltas ∆a
and ∆b are all placed in the contiguous reserved space

following the parity chunk a+b.

4.2.2 Determining the Reserved Space Size

Finding the appropriate reserved space size is challeng-

ing. If the space is too large, then it wastes storage space.

On the other hand, if the space is too small, then it cannot

keep all parity deltas.

A baseline approach is to use a fixed reserved space

size for each parity chunk, where the size is assumed to

be large enough to fit all parity deltas. Note that this

baseline approach can introduce significant storage over-

head, since different segments may have different up-

date patterns. For example, from the Harvard NFS traces

shown in Table 1, although 91.56% of write requests are

updates, only around 12% of files are actually involved.

This uneven distribution implies that fixing a large, con-

stant size of reserved space can imply unnecessary space

wastage.

For some workloads, the baseline approach may re-

serve insufficient space to hold all deltas for a parity

chunk. There are two alternatives to handle extra deltas,

either logging them elsewhere like PL, or merging exist-

ing deltas with the parity chunk to reclaim the reserved

space. We adopt the merge alternative since it preserves

Algorithm 1: Workload-aware Reserved Space Management

1 reserved←DEFAULT_SIZE

2 while true do

3 sleep(period)
4 foreach chunk in parityChunkSet do

5 utility← getUtility(chunk)
6 size← computeShrinkSize(utility)
7 doShrink(size, chunk)
8 doMerge(chunk)

the property of no fragmentation in PLR.

To this end, we propose a workload-aware reserved

space management scheme that dynamically adjusts and

predicts the reserved space size. The scheme has three

main parts: (1) predicting the reserved space size of each

parity chunk using the measured workload pattern for the

next time interval, (2) shrinking the reserved space and

releasing unused reserved space back to the system, and

(3) merging parity deltas in the reserved space to each

parity chunk. To avoid introducing small unusable holes

of reclaimed space after shrinking, we require that both

the reserved space size and the shrinking size be of mul-

tiples of the chunk size. This ensures that an entire data

or parity chunk can be stored in the reclaimed space.

Algorithm 1 describes the basic framework of our

workload-aware reserved space management. Initially,

we set a default reserved space size that is sufficiently

large to hold all parity deltas. Shrinking and prediction

are then executed periodically on each storage node. Let

S be the set of parity chunks in a node. For every time

interval t and each parity chunk p ∈ S , let rt(p) be the

reserved space size and ut(p) be the reserved space util-

ity. Intuitively, ut(p) represents the fraction of reserved

space being used. We measure ut(p) at the end of each

time interval t using exponential weighted moving aver-

age in getUtility:

ut(p) = α
use(p)

rt(p)
+ (1− α)ut−1(p),



where use(p) returns the reserved space size being used

during the time interval, rt(p) is the current reserved

space size for chunk p, and α is the smoothing factor.

According to the utility, we decide the unnecessary space

size c(p) that can be reclaimed for the parity chunk p in

computeShrinkSize. Here, we aggressively shrink

all unused space c(p) and round it down to be a multiple

of the chunk size:

c(p) =

⌊

(1− ut(p))rt(p)

ChunkSize

⌋

× ChunkSize.

The doShrink function attempts to shrink the size

c(p) from the current reserved space rt(p). Thus, the

reserved space rt+1(p) for p at time interval t+ 1 is:

rt+1(p) = rt(p)− c(p).

If a chunk has no more reserved space after shrinking

(i.e., rt+1(p) = 0), any subsequent update requests to

this chunk are applied in-place as in FO.

Finally, the doMerge function merges the deltas in

the reserved space to the parity chunk p after shrinking

and resets use(p) to zero. Hence we free the parity chunk

from carrying any deltas to the next time interval, which

could further reduce the reserved space size. The merge

operations performed here are off the update path and

have limited impact on the overall system performance.

The above workload-aware design of reserved space

management is simple and can be replaced by a more

advanced design. Nevertheless, we find that this simple

heuristic works well enough under real-world workloads

(see §6.3.2).

5 CodFS Design

We design CodFS, an erasure-coded clustered storage

system that implements the aforementioned delta-based

update schemes to support efficient updates and recovery.

5.1 Architecture

Figure 3 shows the CodFS architecture. The metadata

server (MDS) stores and manages all file metadata, while

multiple object storage devices (OSDs) perform coding

operations and store the data and parity chunks. The

MDS also plays a monitor role, such that it keeps track of

the health status of the OSDs and triggers recovery when

some OSDs fail. A CodFS client can access the storage

cluster through a file system interface.

5.2 Work Flow

CodFS performs erasure coding on the write path as il-

lustrated in Figure 3. To write a file, the client first splits

the file into segments, and requests the MDS to store

the metadata and identify the primary OSD for each seg-

ment. The client then sends each segment to its primary

OSD, which encodes the segment into k data chunks and

Figure 3: CodFS architecture.

n − k parity chunks for some pre-specified parameters

n and k. The primary OSD stores a data chunk locally,

and distributes the remaining n−1 chunks to other OSDs

called the secondary OSDs for the segment. The identi-

ties of the secondary OSDs are assigned by the MDS to

keep the entire cluster load-balanced. Both primary and

secondary OSDs are defined in a logical sense, such that

each physical OSD can act as a primary OSD for some

segments and a secondary OSD for others.

To read a segment, the client first queries MDS for the

primary OSD. It then issues a read request to the primary

OSD, which collects one data chunk locally and k − 1
data chunks from other secondary OSDs and returns the

original segment to the client. In the normal state where

no failure occurs, the primary OSD only needs the k data

chunks of the segment for rebuilding.

CodFS adopts the delta-based approach for data up-

dates. To update a segment, the client sends the modified

data with the corresponding offsets to the segment’s pri-

mary OSD, which first splits the update into sub-updates

according to the offsets, such that each sub-update targets

a single data chunk. The primary OSD then sends each

sub-update to the OSD storing the targeted data chunk.

Upon receiving a sub-update for a data chunk, an OSD

computes the parity deltas and distributes them to the

parity destinations. Finally, both the updates and parity

deltas are saved according to the chosen update scheme.

CodFS switches to degraded mode when some OSDs

fail (assuming the number of failed OSDs is tolerable).

The primary OSD coordinates the degraded operations

for its responsible segments. If the primary OSD of a

segment fails, CodFS promotes another surviving sec-

ondary OSD of the segment to be the primary OSD.

CodFS supports degraded reads and recovery. To issue a

degraded read to a segment, the primary OSD follows the

same read path as the normal case, except that it collects

both data and parity chunks of the segment. It then de-

codes the collected chunks and returns the original seg-

ment. If an OSD failure is deemed permanent, CodFS

can recover the lost chunks on a new OSD. That is, for

each segment with lost chunks, the corresponding pri-

mary OSD first reconstructs the segment as in degraded

reads, and then writes the lost chunk to the new OSD.

Our current implementation of degraded reads and re-



covery uses the standard approach that reads k chunks

for reconstruction, and it works for any number of failed

OSDs no more than n − k. Nevertheless, our design is

also compatible with efficient recovery approaches that

read less data under single failures (e.g., [25, 50]).

5.3 Issues

We address several implementation issues in CodFS and

justify our design choices.

Consistency. CodFS provides close-to-open consis-

tency [21], which offers the same level of consistency

as most Network File Systems (NFS) clients. Any open

request to a segment always returns the version following

the previous close request. CodFS directs all reads and

writes of a segment through the corresponding primary

OSD, which uses a lock-based approach to serialize the

requests of all clients. This simplifies consistency imple-

mentation.

Offloading. CodFS offloads the encoding and recon-

struction operations from clients. Client-side encoding

generates more write traffic since the client needs to

transmit parity chunks. Using the primary OSD design

limits the fan-outs of clients and the traffic between the

clients and the storage cluster. In addition, CodFS splits

each file into segments, which are handled by different

primary OSDs in parallel. Hence, the computational

power of a single OSD will not become a bottleneck

on the write path. Also, within each OSD, CodFS uses

multi-threading to pipeline and parallelize the I/O and

encoding operations, so as to mitigate the overhead in

encoding computations.

Metadata Management. The MDS stores all metadata

in a key-value database built on MongoDB [29]. CodFS

can configure a backup MDS to serve the metadata oper-

ations in case the main MDS fails, similar to HDFS [5].

Caching. CodFS adopts simple caching techniques to

boost the entire system performance. Each CodFS client

is equipped with an LRU cache for segments so that fre-

quent updates of a single segment can be batched and

sent to the primary OSD. The LRU cache also favors fre-

quent reads of a single segment, to avoid fetching the

segment from the storage cluster in each read. We do not

consider specific write mitigation techniques (e.g., lazy

write-back and compression) or advanced caches (e.g.,

distributed caching or SSDs), although our system can

be extended with such approaches.

Segment Size. CodFS supports flexible segment size

from 16MB to 64MB and sets the default at 16MB. This

size is chosen to fully utilize both the network bandwidth

and disk throughput, as shown in our experiments (see

§6.1). Smaller segments lead to more disk I/Os and de-

grade the write throughput, while larger segments cannot

fully leverage the I/O parallelism across multiple OSDs.

5.4 Implementation Details

We design CodFS based on commodity configurations.

We implement all the components including the client

and the storage backend in C++ on Linux. CodFS lever-

ages several third-party libraries for high-performance

operations, including: (1) Threadpool [46], which man-

ages a pool of threads that parallelize I/O and encoding

operations, (2) Google Protocol Buffers [18], which se-

rialize message communications between different enti-

ties, (3) Jerasure [32], which provides interfaces for effi-

cient erasure coding implementation, and (4) FUSE [16],

which provides a file system interface for clients.

We design the OSD via a modular approach. The Cod-

ing Module of each OSD provides a standard interface

for implementation of different coding schemes. One can

readily extend CodFS to support new coding schemes.

The Storage Module inside each OSD acts as an abstract

layer between the physical disk and the OSD process.

We store chunk updates and parity deltas according to

the update scheme configured in the Storage Module.

By default, CodFS uses the PLR scheme. Each OSD

is equipped with a Monitor Module to perform garbage

collection in FL and PL and reserved space shrinking and

prediction in PLR.

We adopt Linux Ext4 as the local filesystem of each

OSD to support fast reserved space allocation. We pre-

allocate the reserved space for each parity chunk using

the Linux system call fallocate, which marks the al-

located blocks as uninitialized. Shrinking of the reserved

space is implemented by invoking fallocate with the

FALLOC_FL_PUNCH_HOLE flag. Since we allocate or

shrink the reserved space as a multiple of chunk size, we

avoid creating unusable holes in the file system.

6 Evaluation

We evaluate different parity update schemes through our

CodFS prototype. We deploy CodFS on a testbed with

22 nodes of commodity hardware configurations. Each

node is a Linux machine running Ubuntu Server 12.04.2

with kernel version 3.5. The MDS and OSD nodes are

each equipped with Intel Core i5-3570 3.4GHz CPU,

8GB RAM and two Seagate ST1000DM003 7200RPM

1TB SATA harddisk. For each OSD, the first harddisk is

used as the OS disk while the entire second disk is used

for storing chunks. The client nodes are equipped with

Intel Core 2 Duo 6420 2.13GHz CPU, 2GB RAM and

a Seagate ST3160815AS 7200RPM 160GB SATA hard-

disk. Each node has a Gigabit Ethernet card installed and

all nodes are connected via a Gigabit full-duplex switch.

6.1 Baseline Performance

We derive the achievable aggregate read/write through-

put of CodFS and analyze its best possible performance.

Suppose that the encoding overhead can be entirely
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Figure 4: Aggregate read/write throughput of CodFS us-

ing the RDP code with (n, k) = (6, 4).

masked by our parallel design. If our CodFS prototype

can effectively mitigate encoding overhead and evenly

distribute the operations among OSDs, then it should

achieve the theoretical throughput.

We define the notation as follows. Let M be the total

number of OSDs in the system, and let Bin and Bout be

the available inbound and outbound bandwidths (in net-

work or disk) of each OSD, respectively. Each encoding

scheme can be described by the parameters n and k, fol-

lowing the same definitions in §3.

We derive the effective aggregate write throughput

(denoted by Twrite). Each primary OSD, after encod-

ing a segment, stores one chunk locally and distributes

n− 1 chunks to other secondary OSDs. This introduces

an additional (n − 1)/k times of segment traffic among

the OSDs. Similarly, for the effective aggregate read

throughput (denoted by Tread), each primary OSD col-

lects (k− 1) chunks for each read segment from the sec-

ondary OSDs. It introduces an additional (k−1)/k times

of segment traffic. Thus, Twrite and Tread are given by:

Twrite =
M ×Bin

1 + n−1

k

, Tread =
M ×Bout

1 + k−1

k

.

We evaluate the aggregate read/write throughput of

CodFS, and compare the experimental results with our

theoretical results. We first conduct measurements on

our testbed and find that the effective disk and network

bandwidths of each node are 144MB/s and 114.5MB/s,

respectively. Thus, the nodes are network-bound, and we

set Bin =Bout = 114.5MB/s in our model. We config-

ure CodFS with one node as the MDS and M nodes as

OSDs, where 6≤M≤10. We consider the RAID-6 RDP

code [12] with (n, k) = (6, 4). The coded chunks are

distributed over the M OSDs. We have 10 other nodes

in the testbed as clients that transfer streams of segments

simultaneously.

Figure 4 shows the aggregate read/write throughput

of CodFS versus the number of OSDs for different seg-

ment sizes from 8MB to 64MB. We see that the through-

put results match closely with the theoretical results, and
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Figure 5: Throughput of CodFS under different update

schemes.

the throughput scales linearly with the number of OSDs.

For example, when M = 10 OSDs are used, CodFS

achieves read and write throughput of at least 580MB/s

and 450MB/s, respectively.

We also evaluate the throughput results of CodFS con-

figured with the Reed-Solomon (RS) codes [34]. We ob-

serve that both RDP and RS codes have almost identi-

cal throughput, although RS codes have higher encod-

ing overhead [32]. The reason is that CodFS masks the

encoding overhead through parallelization. We do not

present the results here in the interest of space.

6.2 Evaluation on Synthetic Workload

We now evaluate the four delta-based parity update

schemes (i.e., FO, FL, PL, and PLR) using our CodFS

prototype under a synthetic workload. Unless otherwise

stated, we use the RDP code [12] with (n, k) = (6, 4),
16MB segment size, and the same cluster configura-

tion as in §6.1. We measure the sequential write, ran-

dom write, sequential read, and recovery performance of

CodFS using IOzone [23]. For PLR, we use the baseline

approach described in §4.2.2 and fix the size of reserved

space to 4MB, which is equal to the chunk size in our

configuration. We trigger a merge operation to reclaim

the reserved space when it becomes full. Before running

each test, we format the chunk partition of each OSD

to restore the OSD to a clean state, and drop the buffer

cache in all OSDs to ensure that any difference in perfor-

mance is attributed to the update schemes.

We note that an update to a data chunk in RDP [12]

involves more updates to parity chunks than in RS codes

(see [33] for illustration), and hence generates larger-size

parity deltas. This triggers more frequent merge opera-

tions as the reserved space becomes full faster.



FO FL PL PLR

Synthetic
Data 0 29.41 0 0

Parity 0 117.66 117.66 0

Table 3: Average non-contiguous fragments per chunk

(Favg) after random writes for synthetic workload.

6.2.1 Sequential Write Performance

Figure 5a shows the aggregate sequential write through-

put of CodFS under different update schemes, in which

all clients simultaneously write 2GB of segments to the

storage cluster. As expected, there is only negligible dif-

ference in sequential write throughput among the four

update schemes as the experiment only writes new data.

6.2.2 Random Write Performance

We use IOzone to simulate intensive small updates, in

which we issue uniform random writes with 128KB

record length to all segments uploaded in §6.2.1. In total,

we generate 16MB of updates for each segment, which is

four times of the reserved space size in PLR. Thus, PLR

performs at least four merge operations per parity chunk

(more merges are needed if the coding scheme triggers

the updates of multiple parts of a parity chunk for each

data update). Figure 5b shows the numbers of I/Os per

second (IOPS) of the four update schemes. Results show

that FO performs the worst among the four, with at least

21.0% fewer IOPS than the other three schemes. This

indicates that updating both the data and parity chunks

in-place incurs extra disk seeks and parity read over-

head, thereby significantly degrading update efficiency.

The other three schemes give similar update performance

with less than 4.1% difference in IOPS.

6.2.3 Sequential Read Performance

Sequential read and recovery performance are affected

by disk fragmentation in data and parity chunks. To mea-

sure fragmentation, we define a metric Favg as the aver-

age number of non-contiguous fragments per chunk that

are read from disk to rebuild the up-to-date chunk. Em-

pirically, Favg is found by reading the physical block ad-

dresses of each chunk in the underlying file system of

the OSDs using the filefrag -v command which is

available in the e2fsprogs utility. For each chunk, we

obtain the number of non-contiguous fragments by an-

alyzing its list of physical block addresses and lengths.

We then take the average over the chunks in all OSDs.

Table 3 shows the value of Favg measured after ran-

dom writes in §6.2.2. Both FO and PLR have Favg = 0
as they either store updates and deltas in-place or in a

contiguous space next to their parity chunks. FL is the

only scheme that contains non-contiguous fragments for

data chunks, and it has Favg = 29.41 in the synthetic

benchmark. Logging parity deltas introduces higher

level of disk fragmentation. On average, both FL and

PL produce 117.66 non-contiguous fragments per par-

ity chunk in the synthetic benchmark. We see that Favg

of parity chunks is about 4× that of data chunks. This

conforms to our RDP configuration with (n, k) = (6, 4)
since each segment consists of four data chunks and

modifying each of them once will introduce a total of

four parity deltas to each parity chunk.

Figure 5c shows a scenario which we execute a se-

quential read after intensive random writes. We measure

the aggregate sequential read throughput under different

update schemes. In this experiment, all clients simulta-

neously read the segments after performing the updates

described in §6.2.2.

Since CodFS only reads data chunks when there are

no node failures, no performance difference in sequen-

tial read is observed for FO, PL and PLR. However, the

sequential read performance of FL drops by half when

compared with the other three schemes. This degrada-

tion is due to the combined effect of disk seeking and

merging overhead for data chunk updates. The result

also agrees with the measured level of disk fragmenta-

tion shown in Table 3 where FL is the only scheme that

contains non-contiguous fragments for data chunks.

6.2.4 Recovery Performance

We evaluate the recovery performance of CodFS under a

double failure scenario, and compare the results among

different update schemes. We trigger the recovery proce-

dure by sending SIGKILL to the CodFS process in two

of the OSDs. We measure the time between sending the

kill signal and receiving the acknowledgement from the

MDS reporting all data from the failed OSDs are recon-

structed and redistributed among the available OSDs.

Figure 5d shows the measured recovery throughput for

different update schemes. FO is the fastest in recovery

and achieves substantial difference in recovery through-

put (up to 4.5×) compared with FL due to the latter

suffering from merging and disk seeking overhead for

both data and parity chunks. By keeping data chunks

updates in-place, PL achieves a modest increase in re-

covery throughput compared with FL. We also see the

benefits of PLR for keeping delta updates next to their

parity chunks. PLR gains a 3× improvement on average

in recovery throughput when compared with PL.

6.2.5 Reserved Space versus Update Efficiency

We thus far evaluate the parity update schemes under the

same coding parameters (n, k). Since PLR trades stor-

age space for update efficiency, we also compare PLR

with other schemes that use the reserved space for stor-

age. Here, we set the reserved space size to be equal to

the chunk size in PLR with (n, k) = (6, 4). This implies

that a size of two extra chunks is reserved per segment.

For FO, FL, and PL, we substitute the reserved space
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Figure 6: Throughput comparison under the same stor-

age overhead using Cauchy RS codes with various (n, k).

with either two data chunks or two parity chunks. We

realize the substitutions with erasure coding using two

coding parameters: (n, k) = (8, 6) and (n, k) = (8, 4),
which in essence store two additional data chunks, and

two additional parity chunks over (n, k) = (6, 4), re-

spectively. Since RDP requires n−k = 2, we choose the

Cauchy RS code [7] as the coding scheme. We also fix

the chunk size to be 4MB, so we ensure that each coded

segment in all 7 configurations takes 32MB of storage

including data, parity, and reserved space.

Figure 6 shows the performance of random writes and

recovery under the same synthetic workload described

in §6.2.2. Results show that the (8, 4) schemes perform

significantly worse than the (8, 6) schemes in random

writes, since having more parity chunks implies more

parity updates. Also, we see that FO (8, 6) is slower

than PLR (6, 4) by at least 20% in terms of IOPS, in-

dicating that allocating more data chunks does not nec-

essarily boost update performance. Results of recovery

agree with those in §6.2.4, i.e., both FO and PLR give

significantly higher recovery throughput than FL and PL.

6.2.6 Summary of Results

We make the following observations from our synthetic

evaluation. First, although our configuration has twice as

many data chunks as parity chunks, updating data chunks

in-place in PL does not help much in recovery through-

put. This implies that the time spent on reading and

rebuilding parity chunks dominates the recovery perfor-

mance. Second, as shown in Table 3, both FO and PLR

do not produce disk seeks. Thus, we can attribute the

difference in recovery throughput between FO and PLR

solely to the merging overhead for parity updates. We

see that PLR incurs less than 9.2% in recovery through-

put on average compared with FO. We regard this as a

reasonable trade-off since recovery itself is a less com-

mon operation than random writes.

6.3 Evaluation on Real-world Traces

Next, we evaluate CodFS by replaying the MSR Cam-

bridge and Harvard NFS traces analyzed in §2.

6.3.1 MSR Cambridge Traces

To limit the experiment duration, we choose 10 of the

36 volumes for evaluating the update and recovery per-

formance. We choose the traces with the number of

write requests between 800, 000 and 4, 000, 000. Also, to

demonstrate that our design does not confine to a specific

workload, the traces we select for evaluation all come

from different types of servers.

We first pre-process the traces as follows. We adjust

the offset of each request accordingly so that the off-

set maps to the correct location of a chunk. We ensure

that the locality of requests to the chunks is preserved.

If there are consecutive requests made to a sequence of

blocks, they will be combined into one request to pre-

serve the sequential property during replay.

We configure CodFS to use 10 OSDs and split the

trace evenly to distribute replay workload among 10
clients. We first write the segments that cover the whole

working set size of the trace. Each client then replays the

trace by writing to the corresponding offset of the preal-

located segments. We use RDP [12] with (n, k) = (6, 4)
and 16MB segment size.

Update Performance. Figure 7 shows the aggregate

number of writes replayed per second. To perform a

stress test, we ignore the original timestamps in the traces

and replay the operations as fast as possible. First, we

observe that traces with a smaller coverage (as indicated

by the percentage of updated WSS in Table 2) in general

results in higher IOPS no matter which update scheme is

used. For example, the usr0 trace with 13.08% updated

WSS shows more than 3× update performance when

compared with the src22 trace with 99.57% updated

WSS. This is due to a more effective client LRU cache

when the updates are focused on a small set of chunks.

The cache performs write coalescing and reduces the

number of round-trips between clients and OSDs. Sec-

ond, we see that the four schemes exhibit similar be-

haviour across traces. FL, PL and PLR show compa-

rable update performance. This leads us to the same

implication as in §6.2.2 that the dominant factor influ-

encing update performance is the overhead in parity up-

dates. Therefore, the three schemes that use a log-based

design for parity chunks all perform significantly better

than FO. On average, PLR is 63.1% faster than FO.

Recovery Performance. Figure 8 shows the recovery

throughput in a two-node failure scenario. We see that

in all traces, FL and PL are slower than FO and PLR

in recovery. Also, PLR outperforms FL and PL more

significantly in traces where there is a large number of

writes and Favg is high. For example, the measured

Favg for the proj0 trace is 45.66 and 182.6 for data and

parity chunks, respectively, and PLR achieves a remark-

able 10× speedup in recovery throughput over FL. On
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Figure 8: Recovery throughput in a double failure sce-

nario after replaying the selected MSR Cambridge traces

under different update schemes.

the other hand, PLR performs the worst in the src22

trace, where Favg is only 0.73 and 2.82 for data and par-

ity chunks, respectively. Nevertheless, it still manages to

give an 11.7% speedup over FL.

6.3.2 Evaluation of Reserved Space

We evaluate our workload-aware approach in managing

the reserved space size (see §4.2.2). We use the Harvard

NFS traces, whose 41-day span provides long enough

duration to examine the effectiveness of shrinking, merg-

ing, and prediction. We calculate the reserved space stor-

age overhead using the following equation, which is de-

fined as the additional storage space allocated by the re-

served space compared with the original working set size

without any reserved space:

Γ =

∑

ReservedSpaceSize
∑

(DataSize+ ParitySize)
.

A low Γ means that the reserved space is small compared

with the total size of all data and parity chunks.

Using the above metric, we evaluate our workload-

aware framework used in PLR by simulating the Harvard

NFS traces. We set the segment size to 16MB and use

the Cauchy RS code [7] with (n, k) = (10, 8). Here, we

compare our workload-aware approach with three base-

line approaches, in which we fix the reserved space size

to 2MB, 8MB, and 16MB without any adjustment.

We consider two variants of our workload-aware ap-

proach. The shrink+merge approach executes the shrink-

ing operation at 00:00 and 12:00 on each day, followed

by a merge operation on each chunk. The shrink only

approach is identical to the shrink+merge approach in

shrinking, but does not perform any merge operation af-

ter shrinking (i.e., it does not free the space occupied

by the parity deltas). On the first day, we initialize the

reserved space to 16MB. We follow the framework de-

scribed in §4.2.2 and set the smoothing factor α = 0.3.

Simulation Results. Figure 9 shows the value of Γ un-

der the three different approaches by simulating the 41-

day Harvard traces. The 2MB, 8MB, and 16MB base-

line approaches give Γ = 0.2, 0.8, and 1.6, respectively,

throughout the entire trace since they never shrink the re-

served space. The values of Γ for both workload-aware

variants drop quickly in the first week of trace and then

gradually stabilize. At the end of the trace, the shrink

only approach has Γ of about 0.36. With merging, the

shrink+merge approach further reduces Γ to 0.12. Γ is

lower than that of the 2MB baseline, as around 13% of

parity chunks end up with zero reserved space size.

Aggressive shrinking may increase the number of

merge operations. We examine such an impact by show-

ing the average number of merges per 1000 writes in Fig-

ure 10. A lower value implies lower write latency since

fewer writes are stalled by merge operations. We make

a few key observations from this figure. First, the 16MB

baseline gives the best results among all strategies, since

it keeps the largest reserved space than other baselines

and workload-aware approaches throughout the whole

period. On the contrary, using a fixed reserve space

that is too small increases the number of merges signif-

icantly. This effect is shown by the 2MB baseline. Sec-

ond, the performance of the workload-aware approaches

matches closely with the 8MB and 16MB baseline ap-

proaches most of the time. Day 30-40 is an exception

in which the two workload-aware approaches perform

significantly more merges than the 16MB baseline ap-

proach. This reflects the penalty of inaccurate predic-

tion when the reserved space is not large enough to han-

dle the sudden bursts in updates. Third, although the

shrink+merge approach has a lower reserved space stor-

age overhead, it incurs more penalty than the shrink only

approach in case of a misprediction. However, we ob-

serve that on average less than 1% of writes are stalled by

a merge operation regardless of which approach is used

(recall that the merge is performed every 1000 writes).

Thus, we expect that there is very little impact of merg-

ing on the performance in PLR.

6.3.3 Summary of Results

We show that PLR achieves efficient updates and re-

covery. It significantly improves the update through-
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Figure 9: Reserved space overhead under different shrink

strategies in the Harvard trace.
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Figure 10: Average number of merges per 1000 writes

under different shrink strategies in the Harvard trace.

put of FO and the recovery throughput of FL. We also

evaluate our workload-aware approach on reserved space

management. We show that the shrink+merge approach

can reduce the reserved space storage overhead by more

than half compared to the 16MB baseline approach, with

slight merging penalty to reclaim space.

7 Related Work

Quantitative analysis shows that erasure coding con-

sumes less bandwidth and storage than replication with

similar system durability [37, 47]. Several studies

adopt erasure coding in distributed storage systems.

OceanStore [26, 36] combines replication and erasure

coding for wide-area network storage. TotalRecall [6]

applies replication or erasure coding to different files dy-

namically according to the availability level predicted by

the system. Ursa Minor [1] focuses on cluster storage

and encodes files of heterogeneous types based on the

failure models and access patterns. Panasas [49] per-

forms client-side encoding on a per-file basis. Ticker-

TAIP [9], PARAID [48] and Pergamum [44] offload the

parity computation to the storage array. Azure [22] and

Facebook [39] propose efficient erasure coding schemes

to speed up degraded reads. We complement the above

studies by improving update efficiency and recovery per-

formance in erasure-coded clustered storage.

Log-structured File System (LFS) [38] first proposes

to append updates sequentially to disk to improve write

performance. Zebra [19] extends LFS for RAID-like dis-

tributed storage systems by striping logs across servers.

Self-tuning LFS [27] exploits workload characteristics

to improve I/O performance. Clustered storage systems,

such as GFS [17] and Azure [8], also adopt the LFS de-

sign for the write-once read-many workload. The more

recent work Gecko [42] uses a chained-log design to

reduce disk I/O contention of LFS in RAID storage.

CodFS handles updates differently from LFS, in which it

performs in-place updates to data and log-based updates

to parity chunks. It also allocates reserve space for parity

logging to further mitigate disk seeks. The above studies

(including CodFS) focus on disk backends and commod-

ity hardware, while the LFS design is also adopted in

other types of emerging storage media, such as SSDs [3]

and DRAM storage [31].

Parity logging [11, 43] has been proposed to mitigate

the disk seek overhead in parity updates. It accumulates

parity updates for each parity region in a log and flushes

updates to the parity region when the log is full. The

parity and log regions can be distributed across all disks

[43]. On the other hand, CodFS reserves log space next

to each parity chunk so as to reduce disk seeks due to

frequent small writes. It extends the prior parity logging

approaches by allowing future shrinking of the reserved

space based on the workload.

8 Conclusions

Our key contribution is the parity logging with reserved

space (PLR) scheme, which keeps parity updates next

to the parity chunk to mitigate disk seeks. We also pro-

pose a workload-aware scheme to predict and adjust the

reserved space size. To this end, we build CodFS, an

erasure-coded clustered storage system that achieves ef-

ficient updates and recovery. We evaluate our CodFS

prototype using both synthetic and real-world traces and

show that PLR improves update and recovery perfor-

mance over pure in-place and log-based updates. In fu-

ture work, we plan to (1) evaluate other metrics (e.g.,

latency) of different parity update schemes, (2) evalu-

ate the impact of the shrinking and merging operations

on throughput and latency, and (3) explore a more ro-

bust design of reserved space management. The source

code of CodFS is available for public-domain use on

http://ansrlab.cse.cuhk.edu.hk/software/codfs.
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