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Abstract—Solid-state drive (SSD) failures are likely to cause
system-level failures leading to downtime, enabling SSD failure
prediction to be critical to large-scale SSD deployment. Existing
SSD failure prediction studies are mostly based on customized
SSDs with proprietary monitoring metrics, which are difficult
to reproduce. To support general SSD failure prediction of
different drive models and vendors, this paper proposes Wear-
out-updating Ensemble Feature Ranking (WEFR) to select the
SMART attributes as learning features in an automated and
robust manner. WEFR combines different feature ranking results
and automatically generates the final feature selection based
on the complexity measures and the change point detection of
wear-out degrees. We evaluate our approach using a dataset
of nearly 500 K working SSDs at Alibaba. Our results show
that the proposed approach is effective and outperforms related
approaches. We have successfully applied the proposed approach
to improve the reliability of cloud storage systems in production
SSD-based data centers. We release our dataset for public use.

I. INTRODUCTION

Maintaining storage reliability is critical for large-scale
data centers. As solid-state drives (SSDs) have become the
mainstream building blocks in large-scale data centers, the
storage reliability of data centers depends on the reliability
of SSDs. However, large-scale SSD deployment is often
challenged by prevalent SSD failures. Traditional redundancy
protection schemes, such as replication and RAID, are often
adopted to tolerate prevalent SSD failures. To complement
the traditional redundancy protection schemes, we explore the
SSD failure prediction with machine learning techniques as a
proactive fault tolerance mechanism.

In the literature, many prior studies [3], [6], [10], [15]–
[17], [20], [34] have investigated the failure prediction for
hard disk drives (HDDs) based on SMART (Self-Monitoring
Analysis and Reporting Technology) logs. Nevertheless, due
to the complicated characteristics of SSDs [11], [18], [19],
[21], [24], [25], [33], only a few studies [1], [17], [23],
[24] predict the failure prediction for SSDs based on the
proprietary attributes at Google, which may be inapplicable
for general production environments. Thus, it is essential to
study general SSD failure prediction using SMART logs in
large-scale production environments.

The prerequisite of general SSD failure prediction is feature
selection, which aims to select the effective learning features.
In particular, some learning features are weakly correlated
to failures and bring noises into the failure prediction. Such
uncorrelated learning features may decrease the prediction
accuracy. Thus, we need to select the effective learning features
and filter out uncorrelated ones.

However, there exist some challenges of feature selection
for SSD failure prediction. First, heterogeneity [13] arises in
modern data centers due to the deployment of heterogeneous
SSDs in terms of drive models, capacity, reliability, etc,
meaning that one feature selection approach may not be
applicable for all drive models. Our evaluation also shows
that no single feature selection approach can always select the
best set of learning features for SSD failure prediction across all
drive models (Section V-B). Second, various feature selection
approaches may select different sets of learning features (see
details in Section III-B). How to find an effective set of learning
features for prediction is still an open issue. Third, most existing
studies [1], [3], [17] select learning features based on statistical
analysis, without considering the characteristics of SSDs.

This motivates us to explore a general feature selection
approach for SSD failure prediction. In this paper, we propose
Wear-out-updating Ensemble Feature Ranking (WEFR) as a
general approach to select learning features for SSD failure pre-
diction. WEFR combines various feature selection approaches
to achieve robust feature selection. It adopts complexity
measures to automate feature selection across various drive
models. It also updates the selected features by considering
the wear-out degree of SSDs. To summarize, this paper makes
the following contributions:

• We motivate our work via a measurement study on a dataset
of nearly 500 K SSDs from six drive models in SSD-based
data centers at Alibaba. We find that the learning features
have different correlations with SSD failures across different
drive models, and various feature selection approaches select
different sets of learning features. Also, the selected learning
features vary with the wear-out degree for a drive model.

• We propose WEFR, which selects the SMART attributes
as learning features in an automated and robust manner
and updates the selected features with the wear-out degree.
WEFR can be used for large-scale SSD failure prediction of
different drive models and vendors.

• We conduct trace-driven evaluation on WEFR using our
dataset of nearly 500 K SSDs at Alibaba. WEFR improves
the F0.5-score by 10% and the precision by 22% compared to
no feature selection. It also improves the F0.5-score by 4-6%
and the precision by 10-14% compared to existing feature
selection approaches, with comparable runtime performance.

Our dataset (including SMART logs and trouble tick-
ets) is now made available at https://github.com/alibaba-
edu/dcbrain/tree/master/ssd smart logs.

https://github.com/alibaba-edu/dcbrain/tree/master/ssd_smart_logs
https://github.com/alibaba-edu/dcbrain/tree/master/ssd_smart_logs


SMART attribute name MA1 MA2 MB1 MB2 MC1 MC2
Raw Read Error Rate (RER) 7 7 7 7 3 3
Reallocated Sectors Count (RSC) 3 3 3 3 3 3
Power-On Hours (POH) 3 3 3 3 3 3
Power Cycle Count (PCC) 3 3 3 3 3 3
Program Fail Count (PFC) 3 3 3 3 3 3
Erase Fail Count (EFC) 3 3 3 3 3 3
Media Wearout Indicator (MWI) 3 3 3 3 3 3
Power Loss Protection Failure (PLP) 3 3 7 7 7 7
Unexpected Power Loss Count (UPL) 3 3 7 7 3 3
Available Reserved Space (ARS) 3 3 3 3 3 3
Downshift Error Count (DEC) 7 3 3 3 3 3
End-to-End error (ETE) 3 3 3 3 3 3
Reported Uncorrectable Errors (UCE) 3 3 3 3 3 3
Command Timeout (CMDT) 3 7 7 7 3 3
Enclosure Temperature (ET) 3 3 3 3 3 3
Airflow Temperature (AFT) 3 3 3 3 3 3
Reallocated Event Count (REC) 3 7 7 7 3 3
Current Pending Sector Count (PSC) 3 3 3 3 3 3
Offline Scan Uncorrectable Error (OCE) 3 7 7 7 3 3
UDMA CRC Error Count (CEC) 3 3 3 3 3 3
Total LBAs Written (TLW) 7 3 3 7 7 7
Total LBAs Read (TLR) 7 3 3 7 7 7

TABLE I: Overview of SMART attributes (3 means an attribute is
included in the drive model; 7 means otherwise).

II. BACKGROUND

We introduce our data collection methodology and review
the failure prediction and feature selection approaches.

A. Data Collection

We collect data from five SSD-based data centers at Alibaba.
The dataset covers a population of nearly 500 K SSDs of
six drive models from three vendors over a two-year span
from January 2018 to December 2019. We refer to the three
vendors as MA, MB, and MC, and each vendor includes two
drive models (denoted by a number after vendors). Our dataset
includes two data types: SMART logs and trouble tickets.

SMART logs. SMART is a widely adopted tool for monitoring
the statistics of disk drive status (called attributes). SMART
attributes are vendor-specific. Each of them has both raw and
normalized numerical values (denoted by “ R” and “ N” after
the SMART attribute names, respectively). We collect SMART
attributes for each SSD on a daily basis. Table I shows an
overview of the collected SMART attributes for each drive
model. The dataset spans 22 SMART attributes in total.

Trouble tickets. Our maintenance system deploys monitoring
daemons on each server to perform rule-based detection
periodically for checking abnormal behaviors and failures. Once
detecting abnormal behaviors and failures, the maintenance
system generates failure reports (called trouble tickets). Each
trouble ticket records the drive ID and the timestamp of the
failure occurrence. The dataset covers 7 K trouble tickets of
SSD failures in total.

Summary of statistics. Table II shows the basic statistics in
our dataset, including the flash technology, the percentage of
SSDs in the whole SSD population, the percentage of SSD
failures in the whole SSD failures, and the annualized failure
rates (AFRs) [21]. We define the AFR as [11], [13], [21]:
AFR(%) = f×365×100

n1+n2+...+ntwo−year
, where f is the total number of

Drive model Flash technology Total% Failures% AFR (%)
MA1 MLC 10.0% 20.9% 2.36%
MA2 MLC 25.7% 8.5% 0.46%
MB1 MLC 8.9% 15.7% 2.52%
MB2 MLC 10.4% 6.0% 0.71%
MC1 TLC 40.4% 37.8% 3.29%
MC2 TLC 4.6% 11.2% 3.92%

TABLE II: Summary of statistics. “Total%” represents the percentage
of SSDs in the whole SSD population; “Failures%” represents the
percentage of SSD failures in the whole SSD failures.

SSD failures reported in the trouble tickets and ni is the number
of operational SSDs on day i over the two-year span. The AFRs
of TLC SSDs are higher than that of MLC SSDs.

B. Failure Prediction

We formulate SSD failure prediction as an offline classifica-
tion problem to predict whether an SSD will fail within a future
period of time (e.g., within the next 30 days). We view raw and
normalized values of each SMART attribute as two learning
features and call a vector of learning features the input variables.
We view the drive status as an indicator variable (called the
target variable) (0 means healthy and 1 means failed). We
regard the learning features and the drive status for an SSD on
each day as a sample. We refer to the samples corresponding
to the occurrences of failed SSDs and healthy SSDs as positive
samples and negative samples, respectively. The workflow of
offline failure prediction includes data preprocessing, feature
selection, feature generation, training the prediction model,
validating the prediction model, and prediction.

C. Feature Selection Approaches

We consider five state-of-the-art feature selection approaches
for SSD failure prediction.
• Pearson correlation [14] measures the linear relationship

between learning features and the target variable.
• Spearman correlation [29] measures the monotonic relation-

ship between learning features and the target variable (not
only linear relationships). It is used by the prior work [1]
for SSD failure prediction.

• J-index [8] uses classification tasks to measure the ability of
a learning feature to classify classes of the target variable
correctly. It is used by the prior work [16] for predicting
HDD failures.

• Random forest [4] provides feature importance evaluation,
which measures the degree of reduction of classification
accuracy after adding noises to a learning feature. A feature
with a higher feature importance score has a greater impact on
the HDD failure prediction accuracy [28]. Random forest is
also used by the prior work [21] for predicting SSD failures.

• XGBoost [5] also provides feature importance evaluation,
which measures the number of splits for training all boosted
trees with a learning feature and the average gain of using
the feature in trees.

III. FEATURE IMPORTANCE CHARACTERIZATION

We measure the feature importance for SSD failure prediction
(Section III-A), the feature importance using different feature



MA1 MA2 MB1 MB2 MC1 MC2
Feature Score Feature Score Feature Score Feature Score Feature Score Feature Score

Top 3
PLP N 0.218 POH R 0.104 ARS N 0.326 REC N 0.303 OCE R 0.168 UCE R 0.663
PLP R 0.217 PLP R 0.092 RSC N 0.246 POH R 0.214 UCE R 0.146 OCE R 0.203
MWI N 0.185 TLR R 0.078 DEC R 0.167 UCE N 0.201 CMDT R 0.030 CMDT R 0.021

Last 3
CMDT N 0.001 PSC N 0.001 CEC N 0.001 EFC R 0.001 ETE N 0.001 ARS N 0.001

PSC R 0.001 RSC N 0.001 PFC R 0.001 TLR R 0.001 ARS N 0.001 REC R 0.001
PSC N 0.001 PSC R 0.001 EFC R 0.001 POH N 0.001 ETE R 0.001 CEC R 0.001

TABLE III: Top and last three important learning features for predicting failures by ranking feature importance scores of Random Forest.

Rank Pearson Spearman J-index Random Forest XGBoost
1 OCE R OCE R OCE R OCE R UCE R
2 POH R UCE R ARS R UCE R OCE R
3 ARS R RER R RER R CMDT R RSC R
4 RSC N ARS N UCE R ARS R RER R
5 ARS N RSC R OCE N OCE R OCE N

TABLE IV: Rankings of the top five important features for MC1
with the five feature selection approaches.

selection approaches (Section III-B), and the feature importance
for different wear-out degrees (Section III-C).

A. Feature Importance for SSD Failure Prediction

Recall in Section II-B that we regard the raw or normalized
value of each SMART attribute as a learning feature. We
refer to the effectiveness of learning features for predicting
SSD failures as feature importance. We calculate the feature
importance scores of all learning features using Random Forest
feature importance evaluation [4] (Section II).

Table III shows the top and last three important learning
features to predict SSD failures for each drive model. In
addition to the important learning features, we observe that
there also exist trivial ones (e.g., the feature importance scores
of PSC N and PSC R are only 0.001 for MA1 and MA2).
Such trivial learning features may decrease the SSD prediction
accuracy as noises. Thus, feature selection is necessary for
predicting SSD failures.

B. Feature Importance using Different Selection Approaches

We measure the feature importance with the five state-of-the-
art feature selection approaches (Section II) to examine whether
the selected features are different across feature selection
approaches. We focus on the drive model MC1, which has the
most numerous SSDs and failures.

Table IV shows that the rankings of the top five important
learning features for MC1 vary across feature selection ap-
proaches. The finding also holds for the other drive models (not
shown in the table). Such different rankings bring the following
issues: (i) Which feature selection approach is more effective
for SSD failure prediction? (ii) How many important features
should we select? We will provide an automated and robust
feature selection method to address the issues (Section IV).

C. Feature Importance with Different Wear-out Degrees

As read/write workloads are correlated with SSD failures
via the media wear-out [21], we study the relationship between
the wear-out degree and SSD failures. To quantify the wear-out
degree, we use MWI N, which indicates the percentage of the
remaining erase cycles for an SSD; a lower MWI N means a
higher wear-out degree. To reflect the failure probability for
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Fig. 1: Relationships between the survival rate and MWI N. Green
points are change points detected using the Bayesian change point
detection.

different wear-out degrees, we define the survival rate on a
value of MWI N as the ratio between the number of survival
SSDs (healthy SSDs) at the end of our dataset and the total
number of all SSDs (including failed SSDs) on the value of
MWI N. We measure the survival rate on each value in the
range of MWI N.

Figure 1 shows the relationships between the survival rate
and MWI N for the six drive models. We observe that the
survival rate changes with MWI N for MA1, MA2, MC1,
and MC2, while it does not show an obvious trend for MB1
and MB2 due to a small range. Specifically, the survival rate
decreases as MWI N decreases for MA1, MA2, and MC1,
while for MC2, with the decrease of MWI N, the survival rate
first increases to around 70 of MWI N and then decreases due
to some problems of firmware which are gradually fixed. It
shows that SSD characteristics may change with the wear-out
degree. Thus, the feature importance may also change with
different values of MWI N.

Before we justify whether the feature importance changes
with different values of MWI N, we first need to address
how to detect the significant changes of the survival rate
(i.e., changes of failure probability) impacted by MWI N. We
identify the changes of the survival rate using the Bayesian
change point detection [7]. Specifically, we regard the survival



Drive
model MWI N Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

MA1 Low MWI N PLP N PLP R POH R REC R
High PLP N PLP R REC R RSC N RSC R

MA2 Low POH R PLP R MWI N TLR R PLP N
High PLP R POH R TLR R PLP N POH R

MC1 Low OCE R POH R UCE R MWI N CMDT R
High OCE R UCE R CMDT R PCC R AFT N

MC2 Low UCE R OCE R POH R CMDT R MWI N
High UCE R OCE R CMDT R RSC R AFT N

TABLE V: Feature ranking results using Random Forest feature
importance evaluation under different groups of MWI N.

rates corresponding to each value in the range of MWI N
as a sequence, and compute the change probability (i.e., the
posterior distribution of the sequence up to a survival rate given
the sequence before the point) of each survival rate. Given
the sequence of change probabilities, we use the z-score (i.e.
the number of standard deviations from the mean of change
probabilities), which we set as ±2.5 of the standard deviation
with the confidence level of 98.76%, to measure if the change
is significant. If we detect multiple change points, we select
the point with the most significant change.

We again use Figure 1 to show the change points of survival
rates with MWI N. We find that for MA1, MA2 and MC1,
the survival rates of MWI N have a significant change point
between 20 and 45 of MWI N, while for MC2, the change
point is at 72 of MWI N. For MB1 and MB2, there are no
change points due to a small range of MWI N.

We next divide SSDs into two groups of different values of
MWI N by the threshold of MWI N corresponding to the most
significant change point, and examine the feature importance
with different groups of MWI N. Table V shows that the top
five important features among all learning features vary across
the different groups of MWI N for the four drive models (no
change points for MB1 and MB2). MWI N and POH R are
more important for the groups with low MWI N values than
those with high MWI N values. This observation indicates
that MWI N has greater impact on predicting SSD failures
with low MWI N values. Also, we should update the learning
features when predicting SSD failures with different MWI N
for drive models.

IV. WEAR-OUT-UPDATING ENSEMBLE FEATURE RANKING

We propose Wear-out-updating Ensemble Feature Ranking
(WEFR), a practical feature ranking method to select learning
features among SMART attributes in an automated and robust
manner, so as to generalize SSD failure prediction for different
models and vendors. WEFR addresses the following challenges
in feature selection for SSD failure prediction:
• Robust feature selection. Different feature selection ap-

proaches may select different learning features (Sec-
tion III-B). Also, a feature selection approach is not always
the optimal for various drive models. Thus, WEFR should
combine feature selection approaches to select features in a
robust manner.

• Automated feature selection. The effectiveness of SMART
attributes as learning features varies, and hence the optimal
number of selected features, vary across drive models. Thus,

Algorithm 1 Wear-out-updating Ensemble Feature Ranking
1: Input learning features of all SMART attributes
2: Initialize preliminary feature selection approaches
3: for Each preliminary feature selection approach do
4: Calculate the ranking of learning features
5: end for
6: Remove the rankings with large deviations from others
7: Obtain the final rankings by the mean of rankings
8: Determine the feature count and select final learning features
9: Detect change points for survival rate of MWI N

10: if Change point occurs for survival rate of MWI N then
11: Divide SSDs into high MWI N and low MWI N groups
12: for Each MWI N group do
13: Repeat Lines 3-8 and update learning features
14: end for
15: end if
16: Output learning features (for each MWI N group if any)

WEFR should determine the number of selected features
automatically for different drive models.

• Updating feature selection. The selected features vary
across SSDs with different wear-out degrees (Section III-C).
Also, the wear-out degrees of SSDs increase with time. Thus,
WEFR should select learning features for SSDs with different
values of MWI N and update the selected features over time.

A. Workflow Overview

Algorithm 1 shows the workflow of WEFR. Specifically, it
takes the learning features of SMART attributes from the same
drive model as inputs. It performs preliminary feature selection
with common feature selection approaches and ranks learning
features with feature importance. To prevent the bias of some
methods (i.e., ineffective feature selection), it removes the
rankings with large deviations from others and obtains the final
rankings by the mean of rankings (Lines 1-7) (Section IV-B).
It automatically determines the feature count based on the
final rankings and selects the final learning features (Line 8)
(Section IV-C). If it detects change points for the survival rate
of MWI N, it updates the selected features for the SSD groups
with different groups of MWI N (Lines 9-15) (Section IV-D).
Finally, it outputs the learning features for all SSDs in the
same drive model or for each group of MWI N (Line 16).

B. Preliminary Feature Selection

Given all learning features of SMART attributes for a drive
model, WEFR performs preliminary feature selection with
common feature selection approaches. In our case, WEFR uses
the five state-of-the-art feature selection approaches (Section II)
to calculate the rankings of features. As the rankings of features
for some feature selection approaches may substantially differ
from other feature selection approaches, it is necessary to check
and remove such outliers of rankings automatically.

WEFR first examines the similarity between the rankings
from two feature selection approaches with the Kendall Tau
rank distance [31]. Specifically, it defines the rankings of all
learning features for two feature selection approaches A and B
as RA and RB, respectively. For a pair of two distinct learning
features i and j, it uses an indicator variable Θi, j(RA,RB) to



indicate whether the orders of rankings of i and j are the same
in RA and RB (i.e., the ranking of i is smaller/larger than that
of j in both RA and RB) (0 means the same or 1 otherwise).
It measures the Kendall Tau rank distance (denoted by D)
between RA and RB by D(RA,RB) = ∑i, j Θi, j(RA,RB) for all
pairs of distinct learning features.

WEFR next examines the outliers of rankings for different
feature selection approaches. Specifically, it computes D for
all pairs of two feature selection approaches and calculates the
mean of D (denoted by D̄) for one feature selection approach
between its rankings and those of the others. If D̄ for a feature
selection approach has a 1.96× standard deviation (i.e., with
the 95% confidence level) from the mean of D̄ over all feature
selection approaches, it regards the rankings of the feature
selection approach as outliers and discards its rankings. It
finally takes the mean of the remaining rankings for each
learning feature as the final rankings.

C. Automated Feature Selection

Recall that the trivial learning features may decrease the
prediction accuracy for SSD failures (Section III-A). WEFR
needs to determine the feature count automatically and select
learning features based on the final rankings.

Before determining the feature count automatically, WEFR
first measures the effectiveness of a learning feature to classify
different classes (failed and healthy SSDs) by applying the
ensemble of complexity measures [26]. Specifically, WEFR
computes the complexity measures for each learning feature
using three complexity measure approaches individually, in-
cluding the maximum Fisher’s discriminant ratio [32], volume
of overlap region [12], and maximum feature efficiency [2]
(denoted by F1, F2, and F3, respectively). It defines the ensemble
of the three complexity measure approaches as F , where F =
1/F1+F2+1/F3

3 [26]. It calculates the final complexity measure for
each learning feature (denoted by e) by e = α ·F +(1−α) ·ξ ,
where α is a parameter in the interval [0,1] (set α = 0.75 [26])
and ξ is the percentage of scanned learning features from top
to bottom in the final rankings over all learning features (see
details below).

WEFR then determines the feature count and selects the
learning features by applying the approach in [27]. Specifi-
cally, it defines a partial cumulative complexity measure of
the scanned learning features as Ep := Ep + e and a total
cumulative complexity measure as E := E + Ep. It scans
each learning feature from top to bottom in the final rank-
ings. It initializes Ep and E by calculating them iteratively
over the top log2(# all learning features) learning features
(by default, we select these learning features due to their
high rankings [27]). For each learning feature after the
top log2(# all learning features) ones, it first updates Ep and
compares Ep with the current E. If Ep < E, it updates E and
continues to repeat the process for the next learning feature;
otherwise, it breaks the loop and outputs the number of learning
features before the last scanned learning feature (i.e., the
determined feature count denoted by n). Finally, it selects
the top n learning features from the final rankings.

D. Updating Feature Selection

WEFR updates the selected features with changes of MWI N.
It detects the change points of the survival rate using the
Bayesian change point detection [7] and divides SSDs into
the different groups of MWI N with the threshold of MWI N
(i.e., the change point of the survival rate corresponding to
MWI N) (Section III-C). It periodically checks the change
points of MWI N (one week in our case) and updates the
selected features for each group of MWI N with the above
processes (Sections IV-B and IV-C).

V. EVALUATION

We evaluate via trace-driven experiments the effectiveness
of WEFR on both the prediction accuracy of SSD failures and
system performance. We summarize our findings as follows:
• Overall, WEFR improves the prediction accuracy compared

to no feature selection and the five state-of-the-art feature
selection approaches across the six drive models. (Exp#1)

• WEFR automatically determines the optimal number of
selected features for SSD failure prediction. (Exp#2)

• WEFR improves the prediction accuracy compared to without
updating selected features for different groups of MWI N.
(Exp#3)

• The runtime of WEFR is comparable to those of the state-
of-the-art feature selection approaches. (Exp#4)

A. Methodology

We divide the 24-month samples, including positive and
negative samples, of our dataset (Section II) into the training
and testing phases by time. Specifically, we divide the last
three months into three non-overlapping testing phases, and
use the months before each testing phase as the training phase
(i.e., we use the first 21, 22, and 23 months as the training
phases for the 22th, 23th, and 24th month as the testing phases,
respectively). In the training phase, we set the ratio of training
period length to validation period length as 8:2 (by day). In
the training period, we select learning features and train the
prediction model for each drive model, while in the validation
period, we validate the effectiveness of the trained prediction
model. We use Random Forest [4] as the prediction model, as
also evaluated by prior studies [17], [21]. We set the number
of trees in Random Forest as 100 and the maximum depth
of trees as 13. In each testing phase, we predict the status of
SSDs within the next 30 days on a daily basis.

In addition to the original features selected from the SMART
attributes, we generate statistical features for each original
feature including the maximum, minimum, mean, standard
deviation, difference between the maximum and minimum, and
weighted moving average within three-day and seven-day time
windows. In total, each sample comprises 64 to 200 learning
features, varied across the six drive models.

Metrics. We evaluate the prediction accuracy of WEFR with
the following metrics:
• Precision: The fraction of correctly predicted failed SSDs

over all (correctly and falsely) predicted failed SSDs.



Methods MA1 MA2 MB1 MB2 MC1 MC2 All drive models
P R F0.5 P R F0.5 P R F0.5 P R F0.5 P R F0.5 P R F0.5 P R F0.5

No feature selection 50% 37% 47% 39% 32% 37% 58% 34% 51% 60% 32% 51% 37% 18% 30% 39% 19% 32% 49% 22% 39%
Pearson correlation 63% 37% 55% 58% 32% 50% 69% 34% 57% 71% 32% 57% 40% 18% 32% 43% 19% 34% 59% 22% 44%
Spearman correlation 56% 37% 51% 49% 32% 44% 75% 34% 61% 78% 32% 61% 46% 18% 35% 46% 19% 36% 61% 22% 45%
J-index 59% 37% 53% 52% 32% 46% 74% 34% 60% 77% 32% 60% 47% 18% 35% 42% 19% 34% 62% 22% 45%
Random Forest 58% 37% 52% 53% 32% 47% 65% 34% 55% 75% 32% 59% 49% 18% 36% 49% 19% 37% 57% 22% 43%
XGBoost 58% 37% 52% 57% 32% 49% 71% 34% 58% 84% 32% 63% 38% 18% 31% 41% 19% 33% 56% 22% 43%
WEFR 63% 37% 55% 57% 32% 49% 75% 34% 61% 85% 32% 64% 49% 18% 36% 52% 19% 38% 71% 22% 49%

TABLE VI: Exp#1 (Effectiveness of robust feature selection). “All drive models” represents the overall prediction accuracy of the six drive
models.

• Recall: The fraction of correctly predicted failed SSDs over
all actual failed SSDs.

• F0.5-score: (1+0.52)×Precision×Recall
0.52×Precision+Recall .

From our practical experience, once an SSD is predicted as
failed (regardless of correctly or falsely), administrators will
decommission the SSD for further inspection. Thus, we use
the F0.5-score, instead of the F1-score, to weigh the precision
twice as important as the recall, since the cost of replacing
a healthy SSD that is falsely predicted as a failure (i.e., low
precision) is higher than that of missing a failed SSD that is
falsely predicted as a healthy SSD (i.e., low recall). Also, we
evaluate the prediction accuracy based on the first time when
an SSD is predicted as failed.

B. Results

Exp#1 (Effectiveness of robust feature selection). We com-
pare the prediction accuracy of WEFR with no feature selection
(i.e., using all learning features) and the five state-of-the-art
feature selection approaches (Section II-C). For the five state-
of-the-art feature selection approaches, we tune the percentage
of selected features linearly from 10% to 100% to find the
highest prediction accuracy.

Table VI shows that WEFR improves the precision and F0.5-
score, subject to a fixed recall, by 13% (8%), 18% (12%), 17%
(10%), 25% (13%), 12% (6%), and 13% (6%) for MA1, MA2,
MB1, MB2, MC1, and MC2, respectively, compared to no
feature selection. Overall, WEFR improves the precision (F0.5-
score) by 22% (10%) compared to no feature selection for all
drive models, confirming the importance of feature selection
for SSD failure prediction (Section III-A).

Table VI also shows that WEFR generally improves the pre-
cision and F0.5-score for the six drive models compared to the
five state-of-the-art feature selection approaches. Specifically,
with a fixed recall, WEFR improves the F0.5-score by 4-6%
and the precision by 10-14% compared to the five feature
selection approaches. WEFR outperforms the other feature
selection approaches for MA1, MB1, MB2, MC1, and MC2
from three different vendors. For MA2, the difference of F0.5-
score between WEFR and the best result (50% of F0.5-score
from the Pearson correlation) is only 1%. The reason of the
robust performance of WEFR is that WEFR avoids the bias
of a single feature selection approach by combining different
feature selection approaches.

We observe that the five feature selection approaches
cannot always perform the best for SSD failure prediction of
different drive models and vendors. For example, the Spearman

correlation achieves the highest F0.5-score (61%) for MB1.
However, for MA1, the F0.5-score of the Spearman correlation
is lower than that of the other approaches. Also, we observe
that Random Forest has a close prediction accuracy to WEFR
for MC1 and MC2, but a lower F0.5-score than WEFR for
MB1 or MB2 by at least 5%. Thus, it is critical to combine
various feature selection approaches to achieve robust feature
selection for heterogeneous drive models.

Exp#2 (Effectiveness of automated feature selection). We
evaluate the effectiveness of automated feature selection in
WEFR and compare it with using a fixed percentage of selected
features (varied linearly increasing from 10% to 100%).

Figure 2 shows that the F0.5-score of WEFR is always
higher than or equal to the highest F0.5-score when fixing
the percentage of selected features for the six drive models.
Specifically, the percentages of selected features automatically
determined by WEFR are 31%, 34%, 28%, 26%, 63%,
and 28% for MA1, MA2, MB1, MB2, MC1, and MC2,
respectively, which are close to the percentages of selected
features corresponding to the highest F0.5-score when fixing
the percentage of selected features. Note that using automated
feature selection is also more flexible than tuning for the
appropriate percentage of selected features in production.

Exp#3 (Effectiveness of updating feature selection). To
evaluate the effectiveness of the wear-out-updating component
in WEFR, we compare WEFR with and without updating
feature selection for SSD failure prediction on MA1, MA2,
MC1, and MC2 (recall that there is no change point of the
survival rate for MWI N for MB1 and MB2 (Section III-C)).
Note that WEFR without updating feature selection (i.e., WEFR
(No update)) means skipping Lines 10-15 in Algorithm 1.

Table VII shows that WEFR improves the precision and
F0.5-score with updating selected features for MA1, MA2,
MC1, and MC2 compared to no updating feature selection.
Specifically, WEFR improves the precision (F0.5-score) by 6%
(4%), 4% (2%), 5% (2%), and 6% (2%) in MA1, MA2, MC1
and MC2, respectively, compared to WEFR (No update). For
SSDs with low MWI N, WEFR improves the precision (F0.5-
score) by 13% (9%), 12% (8%), 13% (6%), and 13% (6%) for
MA1, MA2, MC1 and MC2, respectively, compared to WEFR
(No update). It confirms that feature importances vary with
MWI N and it is necessary to update the selected features
with MWI N. The differences of F0.5-score between WEFR
and WEFR (No update) for high MWI N are insignificant and
within 1% (not shown in Table VII).
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Fig. 2: Exp#2 (Effectiveness of automated feature selection). Larger isolated points represent WEFR; smaller points on lines represent WEFR
using a fixed percentage of selected features.

Model Metrics WEFR (No update) WEFR
All Low All Low

MA1
Precision (%) 57% 48% 63% 61%

Recall (%) 37% 37% 37% 37%
F0.5-score (%) 51% 45% 55% 54%

MA2
Precision (%) 53% 43% 57% 55%

Recall (%) 32% 32% 32% 32%
F0.5-score (%) 47% 40% 49% 48%

MC1
Precision (%) 44% 36% 49% 49%

Recall (%) 18% 18% 18% 18%
F0.5-score (%) 34% 30% 36% 36%

MC2
Precision (%) 46% 37% 52% 50%

Recall (%) 19% 19% 19% 19%
F0.5-score (%) 36% 31% 38% 37%

TABLE VII: Exp#3 (Effectiveness of updating feature selection).
“WEFR (No update)” represents WEFR without updating selected
features with MWI N; “All” represents all SSDs and “Low” represents
SSDs with low MWI N only.

Exp#4 (Runtime of the state-of-the-art feature selection ap-
proaches and WEFR). We evaluate the runtime performance
of the state-of-the-art feature selection approaches and WEFR
using MC1 (i.e., the drive model with the largest population)
on a local server. The local server has two 2.6 GHz eight-
core Intel(R) Xeon(R) E5-2650 CPUs, 256 GB RAM, and LSI
RAID of HDDs with 8 TB in total. For Random Forest and
XGBoost, we use 100 trees and enable multi-threading with
32 threads; for WEFR, we execute the state-of-the-art feature
selection approaches in parallel.

Table VIII shows the average runtimes of the state-of-the-
art feature selection approaches and WEFR with MC1 over
20 rounds. We observe that the Spearman correlation is the
slowest approach among the state-of-the-art approaches and
takes 20.4 s to select features. As WEFR executes the state-of-
the-art feature selection approaches in parallel, the runtime of
WEFR is close to that of the slowest one (i.e., the Spearman
correlation). Thus, the runtime of WEFR is comparable with
those of the state-of-the-art feature selection approaches.

VI. RELATED WORK

Our work is mainly related to two lines of studies, feature
selection and failure prediction. For feature selection, Botezatu
et al. [3] select features based on statistical measures for HDD
failure prediction. Gaber et al. [9] adopt machine learning
methods to extract SMART attributes to predict HDD failures.
Narayanan et al. [21] apply permutation feature ranking to
identify important features based on the prediction accuracy.

Methods Pearson Spearman J-index Random Forest XGBoost WEFR
Runtime 4.2 s 20.4 s 8.4 s 3.1 s 5.2 s 22.9 s

TABLE VIII: Exp#4 (Runtime of the state-of-the-art feature selection
approaches and WEFR).

Xu et al. [34] prune non-predictive features based on SMART
attributes and system-level features for HDDs. Lu et al. [16]
apply J-index [8] to select learning features among SMART
attributes, locations, and workloads for HDD failure prediction.

Many studies focus on HDD failure prediction [3], [6], [10],
[15], [22], [30], while limited studies focus on SSD failure
prediction [1], [17], [21], [23]. For example, Mahdisoltani et
al. [17] and Alter et al. [1] predict sector errors and SSD
failures, respectively, based on customized SSDs at Google.
Sarkar et al. [23] predict SSD failures based on the learning
features from firmware functions. Narayanan et al. [21] study
the important features in SMART logs for predicting SSD
failures using Random Forest. The differences between our
work and the prior studies are as follows. First, we focus on
robust feature selection for generalizing SSD failure prediction
on various drive models. Second, we determine the number
of selected features automatically across the drive models.
Third, we consider SSD characteristics (i.e., wear-out degree)
to update the selected features for the groups with different
wear-out degrees.

VII. CONCLUSION

In this paper, we propose Wear-out-updating Ensemble
Feature Ranking (WEFR), a general practical feature selection
method to select learning features from SMART attributes
in an automated and robust manner, for predicting SSD
failures across different drive models and vendors. WEFR
combines different feature selection approaches for robust
feature selection, determines the number of selected features
automatically, and updates the selected features with the
changes of wear-out degrees of SSDs. Our evaluation with the
real-world dataset of nearly 500 K SSDs in production shows
that WEFR generally improves the prediction accuracy across
six drive models. Our dataset is released for public validation.
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