
Rekeying for Encrypted Deduplication Storage

Jingwei Li1,∗, Chuan Qin1, Patrick P. C. Lee1, and Jin Li2

1Department of Computer Science and Engineering, The Chinese University of Hong Kong
2School of Computer Science and Educational Software, Guangzhou University

lijw1987@gmail.com, {cqin,pclee}@cse.cuhk.edu.hk, lijin@gzhu.edu.cn

Abstract—Rekeying refers to an operation of replacing an
existing key with a new key for encryption. It renews security
protection, so as to protect against key compromise and enable
dynamic access control in cryptographic storage. However, it
is non-trivial to realize efficient rekeying in encrypted dedupli-
cation storage systems, which use deterministic content-derived
encryption keys to allow deduplication on ciphertexts. We design
and implement REED, a rekeying-aware encrypted deduplication
storage system. REED builds on a deterministic version of
all-or-nothing transform (AONT), such that it enables secure
and lightweight rekeying, while preserving the deduplication
capability. We propose two REED encryption schemes that
trade between performance and security, and extend REED for
dynamic access control. We implement a REED prototype with
various performance optimization techniques. Our trace-driven
testbed evaluation shows that our REED prototype maintains
high performance and storage efficiency.

I. INTRODUCTION

Data explosion has raised a scalability challenge to cloud
storage management. For example, Aberdeen Research [25]
reports that the average size of backup data for a medium-
size enterprise is 285TB, and meanwhile, faces an annual
growth rate of about 24-27%. Deduplication is one plausible
solution that makes storage management scalable. Its idea is to
eliminate the storage of redundant messages that have identical
content, by keeping only one message copy and referring other
redundant messages to the copy through small-size pointers.
Deduplication is shown to effectively reduce storage space for
some workloads, such as backup data [54]. It has also been
deployed in today’s commercial cloud storage services (e.g.,
Dropbox, Google Drive, Bitcasa, Mozy, and Memopal) for
saving maintenance costs [34].

To protect against content leakage of outsourced data,
cloud users often want to store encrypted data in the cloud.
Traditional symmetric encryption is incompatible with dedupli-
cation: it assumes that users encrypt messages with their own
distinct keys, and hence identical messages of different users
will lead to distinct ciphertexts and prohibit deduplication.
To enable encrypted duplication storage (i.e., encrypting the
stored data while preserving the deduplication capability),
Bellare et al. [18] define a cryptographic primitive called
message-locked encryption (MLE), which derives the encryp-
tion key from the message itself through a uniform derivation
function, so that the same message deterministically returns
the same ciphertext through symmetric encryption. One well-
known instantiation of MLE is convergent encryption (CE)
[28], which uses the cryptographic hash of the message content
as the derivation function. In fact, implementations of MLE

∗Jingwei Li is now with Center for Cyber Security, University of Electronic
Science and Technology of China. This work was done when he was with the
Chinese University of Hong Kong.

and CE have been extensively deployed and evaluated in
encrypted deduplication storage systems (e.g., [9], [10], [17],
[24], [52], [57]).

However, existing encrypted deduplication storage systems
do not address rekeying, an operation that replaces an existing
key with a new key so as to renew security protection. Rekey-
ing is critical not only for protecting against key compromise
that has been witnessed in real-life accidents [26], [37], [53],
but also for enabling dynamic access control to revoke unau-
thorized users from accessing data in cryptographic storage
[14], [30], [36], [43]. However, realizing efficient rekeying
in encrypted deduplication storage is challenging. Since the
encryption key of each message in MLE is obtained from
a deterministic derivation function (e.g., a hash function), if
we renew the key by renewing the derivation function, then
any newly stored message encrypted by the new key can no
longer be deduplicated with the existing identical message;
if we re-encrypt all existing messages with the new key
obtained from the renewed derivation function, then there will
be tremendous performance overheads for processing large
quantities of messages.

This paper presents REED, a rekeying-aware encrypted
deduplication storage system that aims for secure and
lightweight rekeying, while preserving content similarity for
deduplication. REED augments MLE with the idea of all-or-
nothing transform (AONT) [47], which transforms a secret into
a package, such that the secret cannot be recovered without
knowing the entire package. REED encrypts a small part of
the package with a key that is subject to rekeying, while the
remaining large part of the package is generated from a deter-
ministic variant of AONT [38] to preserve content similarity.
We show that this approach enables secure and lightweight
rekeying, and simultaneously, allows deduplication. The con-
tributions of this paper are summarized as follows.

First, we propose two encryption schemes for REED,
namely basic and enhanced, that trade between performance
and security. Both schemes enable lightweight rekeying, while
the enhanced scheme is resilient against key leakage through
a more expensive encryption than the basic scheme.

Second, we extend REED with dynamic access control. We
demonstrate how REED integrates existing primitives, namely
ciphertext-policy attribute-based encryption (CP-ABE) [19]
and key regression [30], so as to control the access privileges
to different files.

Third, we implement a proof-of-concept REED prototype.
Our REED prototype leverages various performance optimiza-
tion techniques, such as batching, caching, and parallelization,
to mitigate computational and I/O overheads.

Finally, we conduct extensive trace-driven evaluation on

pclee
Cross-Out

pclee
Sticky Note
duplication --> deduplication

our REED prototype in a LAN testbed. REED shows
lightweight rekeying. For example, it only takes 3.4s to re-
encrypt an 8GB file with a new key (in active revocation).
It also maintains a storage saving of 98.6% in a real-world
dataset.

The remainder of the paper proceeds as follows. Section II
motivates the need of rekeying for encrypted deduplication
storage. Section III defines our threat model and security
goals. Section IV presents the design of REED, and Section V
presents its implementation details. Section VI presents our
testbed experimental results. Section VII reviews related work,
and finally, Section VIII concludes the paper.

II. BACKGROUND AND MOTIVATION

A. Encrypted Deduplication Storage

Deduplication exploits content similarity to achieve storage
efficiency. Each message is identified by a fingerprint, com-
puted as a cryptographic hash of the content of the message.
We assume that two messages are identical (distinct) if their
fingerprints are identical (distinct), and that the fingerprint
collision of two distinct messages has a negligible probability
in practice [20]. Deduplication stores only one copy of iden-
tical messages, and refers any other identical message to the
copy using a small-size pointer. This paper focuses on chunk-
level deduplication, which divides file data into fixed-size or
variable-size chunks, and removes duplicates at the granularity
of chunks. In this paper, we use the terms “messages” and
“chunks” interchangeably to refer to the data units operated
by deduplication.

Message-locked encryption (MLE) [18] is a cryptographic
primitive that provides confidentiality guarantees for dedupli-
cation storage. It applies symmetric encryption to encrypt a
message with a key called the MLE key that is derived from the
message itself, so as to produce a deterministic ciphertext. Two
identical (distinct) messages will lead to identical (distinct)
ciphertexts, so deduplication remains plausible. A special case
of MLE is convergent encryption (CE) [28], which directly
uses the message’s fingerprint as the MLE key.

However, MLE (including CE) is inherently vulnerable
to brute-force attacks, and achieves security only for unpre-
dictable messages [18]. Specifically, suppose that a target
message is known to be drawn from a finite space. Then an
adversary can sample all messages, derive the MLE key of each
message, and compute the corresponding ciphertexts. If one
of the computed ciphertexts equals the ciphertext of the target
message, then the adversary can deduce the target message.

To address the unpredictability assumption, DupLESS [17]
implements server-aided MLE. It uses a dedicated key manager
to generate an MLE key for a message based on the mes-
sage’s fingerprint and additionally a system-wide secret that
is independent of the message content. If the key manager
is secure, then the ciphertexts appear to be derived from a
random key space, and this provides confidentiality guarantees
even for predictable messages. Even if the key manager
is compromised, DupLESS still preserves confidentiality for
unpredictable messages. To make MLE key generation ro-
bust, DupLESS introduces two mechanisms. First, it uses the
oblivious pseudo-random function (OPRF) [31] to “blind” a

fingerprint that is to be processed by the key manager, such
that the key manager can return the MLE key without knowing
the original fingerprint. Second, the key manager rate-limits the
key generation requests to protect against brute-force attacks.

In this work, we focus on encrypted deduplication storage
based on MLE. Like DupLESS, we maintain a dedicated key
manager that is responsible for MLE key generation, thereby
resisting brute-force attacks.

B. Rekeying

We define rekeying as the generic process of updating an
existing old key to a new key in encrypted storage, such that the
old key will be revoked, and all subsequently stored files will
be encrypted by the new key. We argue that rekeying is critical
for renewing security protection for encrypted deduplication
storage in two aspects: key protection and access revocation.

Key protection: There have been real-life cases that indicate
how adversaries make key compromise plausible through var-
ious system vulnerabilities, such as design flaws [26], [37],
[50] and programming errors [53]. These threats also apply
to storage systems, since adversaries can compromise file
encryption keys and recover all encrypted files. In addition to
key compromise, every cryptographic key in use is associated
with a lifetime, and required to be replaced, once the key
reaches the end of its lifetime [15]. Rekeying is thus critical
to immediately update the compromised or expired keys, so
that the stored files remain protected by the new keys.

Since deduplication implies the sharing of data across
multiple files and users, rekeying in encrypted deduplication
storage is more critical than traditional encrypted storage
without deduplication. In particular, the security of a message
depends on its MLE key. The leakage of the MLE key may
imply the compromise of multiple files that share the message.

Access revocation: Organizations increasingly outsource
large-scale projects to cloud storage providers for efficient
management. We consider a special case in genome research.
Genome researchers increasingly leverage cloud services for
genome data storage due to the huge volume of genome
datasets [51]. Some cloud services, such as Google Genomics
[2] and Amazon [5], have also set up specific platforms for
organizing and analyzing genome information. With dedupli-
cation, the storage of genome data can be significantly reduced,
for example, by 83% in real deployment [4]. However, some
genome datasets, such as those produced by disease sequenc-
ing projects, are potentially identifiable and must be protected.
Thus, dataset owners must properly protect the deduplicated
genome data with encryption and multiple dimensions of ac-
cess control [41]. When a researcher leaves a genome project,
it is necessary to revoke the researcher’s access privilege to
the genome data.

Rekeying can be used to revoke users’ access rights by re-
encrypting ciphertexts (e.g., the genome data in the previous
example) with new keys and making old keys inactive. There
are two revocation approaches for existing stored data [14]:
(i) lazy revocation, in which re-encryption of a stored file
is deferred until the next update to the file, and (ii) active
revocation, in which the stored files are immediately re-
encrypted with the new key for up-to-date protection, at the
expense of incurring additional performance overheads.

C. Challenges

Enabling rekeying in encrypted deduplication storage is a
non-trivial issue. MLE keys are often derived from messages
via a global key derivation function, such as a hash function
in CE [28] or a keyed pseudo-random function in DupLESS
[17]. A straightforward rekeying approach is to update the key
derivation function directly. However, this approach compro-
mises deduplication. Specifically, a new message cannot be
deduplicated with the existing identical message, because the
messages are now encrypted with different MLE keys derived
from different derivation functions. If we re-encrypt all existing
messages with new MLE keys, it incurs significant overheads.

There are possible rekeying approaches, but we argue
that they have limitations. One approach is based on layered
encryption [10]. Each deduplicated message is first encrypted
with its MLE key, and the MLE key is further encrypted with
a master key associated with each user. The security now
builds on the master key. Rekeying can simply be done by
updating the master key, and re-encrypting the MLE key with
the new master key. This approach does not change the MLE
key, so any new message can be deduplicated with the existing
identical message. Its drawback is that every ciphertext remains
encrypted by the same MLE key. If an MLE key is leaked, then
the corresponding message can be identified. Another approach
is proxy re-encryption [13], which transforms a ciphertext
encrypted with an old key into another ciphertext encrypted
with a new key. However, proxy re-encryption is a public-
key primitive and is inefficient when encrypting large-size
messages. To this end, we pose the following question: how to
enable secure and lightweight rekeying, while preserving the
deduplication capability?

III. OVERVIEW

REED is a rekeying-aware encrypted deduplication storage
system designed for a single enterprise or organization in
which multiple users want to outsource storage to a remote
third-party cloud provider. We target the workloads that have
high content similarity, such as backup or genome data (see
Section II-B), so that deduplication can effectively remove
duplicates and improve storage efficiency.

REED aims to achieve secure and lightweight rekeying,
while preserving deduplication. In particular, it enables dy-
namic access control by controlling which group of users can
access a file. It supports both lazy and active revocations (see
Section II-B); for the latter, the stored files can be re-encrypted
with low overheads.

A. Architecture

Figure 1 presents an overview of the architecture of REED.
REED follows a client-server architecture. In each user ma-
chine, we deploy a REED client (or client for short) as a
software layer that provides a secure interface for a user to
access and manage files in remote storage. To perform uploads,
the client takes a file (e.g., a snapshot of a file system folder) as
an input from its co-located user machine. It divides the file
data into chunks, encrypts them, and uploads the encrypted
chunks to the cloud. We assume that the file has a sufficiently
large size (e.g., GB scale), and can be divided into a large
number of chunks of small sizes (e.g., KB scale).

Storage

Backend

Server

Server

Server

……

……

Client

File

File

Key

Manager Cloud

User

User

Chunk ……

Chunk ……

Client

Internet

Fig. 1. REED architecture.

As in DupLESS [17], REED deploys a key manager,
which provides an interface for a client to access MLE keys
for encrypted storage. Each client communicates with the
key manager to perform necessary cryptographic operations.
We implement server-aided MLE as in DupLESS to protect
all chunks, including predictable and unpredictable ones (see
Section II-A). This work considers a single key manager, while
our design can be generalized for multiple key managers for
improved availability [29].

REED performs server-side deduplication. In the cloud,
we deploy a REED server (or server for short) for storage
management. The server maintains a fingerprint index that
keeps track of all chunks that have been uploaded to the cloud.
For a given received chunk, the server checks by fingerprint if
the chunk has already been uploaded by the same or a different
client. If the chunk is new, it stores the chunk and inserts the
chunk fingerprint to the index. Finally, the server stores the
encrypted chunks and metadata in the storage backend of the
cloud. For example, if we choose Amazon’s cloud services,
we can rent an EC2 virtual machine for a REED server, and
use S3 as the storage backend.

B. Threat Model

We consider an honest-but-curious adversary that aims to
learn the content of the files in outsourced storage. The adver-
sary can take the following actions. First, it can compromise
the cloud (including any hosted server and the storage backend)
to have full access to all stored chunks and keys. Also, it can
collude with a subset of unauthorized or revoked clients, and
attempt to learn the files that are beyond the access scope of the
colluded clients. Furthermore, it can monitor the activities of
the clients, identify the MLE keys returned by the key manager,
and extract the files owned by the monitored clients.

Our threat model makes the following assumptions. We
assume the communication between a client and the key
manager is encrypted and authenticated (e.g., using SSL/TLS),
so as to defend against any eavesdropping activity in the
network. Each client and the key manager adopt oblivious
key generation [17], so that the key manager cannot infer the
fingerprint information and learn the message content. We also
assume that the key manager is deployed in a fully protected
zone, and an adversary cannot compromise or gain access to
the key manager.

We do not consider the threat in which an adversary
launches on-line brute force attacks from a compromised client
against the key manager, since the key manager can rate-limit
the query rate of each client [17]. REED can be deployed in
conjunction with remote data checking [12], [35] to efficiently

check the integrity of outsourced files against malicious cor-
ruptions. Since REED performs server-side deduplication, it
does not introduce any side channel in deduplication [33], [34].

To this end, REED focuses on two main security goals.
First, REED ensures confidentiality, such that chunk contents
are kept secret against any honest-but-curious adversary (e.g.,
any unauthorized user or cloud). In addition, REED prevents
revoked users from accessing any new file or update. Second,
REED ensures integrity, such that when a client downloads a
chunk, it can check if it is intact or corrupted.

IV. REED DESIGN

A. Main Idea

REED builds security simultaneously on two types of
symmetric keys: a file-level secret key per file (or file key for
short) and a chunk-level MLE key for each chunk (or MLE key
for short). During rekeying, REED only needs to renew the
file key, while the MLE keys of all chunks remain unchanged.
We argue that this rekeying approach achieves our security
goals (see Section III-B), while preserving deduplication ef-
fectiveness and allowing lightweight re-encryption in active
revocation (see Section IV-C).

REED uses all-or-nothing transform (AONT) [47] as the
underlying cryptographic primitive. AONT is an unkeyed,
randomized encryption mode that transforms a message into a
ciphertext called the package, which has the property that it is
computationally infeasible to be reverted back to the original
message without knowing the entire package. The original
AONT design prohibits deduplication, since its transformation
takes a random key as an input to construct a package. Thus,
REED uses convergent AONT (CAONT) [38], which replaces
the random key with a deterministic message-derived key
to construct a package. This ensures that identical messages
always lead to the same package.

REED augments CAONT to enable rekeying. Our insight is
to achieve security by sacrificing a slight degradation of storage
efficiency. The idea of REED is based on AONT-based secure
deletion [42], which makes the entire package unrecoverable
by securely removing a small part of a package. REED extends
the idea to make it applicable for rekeying. Specifically, REED
generates a CAONT package with the MLE key as an input,
and encrypts a small part of the package, called the stub [42],
with the file key. Thus, the entire package is now protected
by both the file key and the MLE key. Since the stub size
is small (e.g., 64 bytes, or 0.78%, for an 8KB chunk in our
implementation), we mitigate the re-encryption overhead. In
addition, we can still apply deduplication to the remaining
large part of the package, called the trimmed package, so as
to maintain storage efficiency.

In the following, we first design two rekeying-aware en-
cryption schemes on a per-chunk basis (see Section IV-B),
followed by enabling REED with dynamic access control on
a per-file basis.

B. Encryption Schemes

We propose the basic and enhanced encryption schemes for
REED. The basic scheme is more efficient, but is vulnerable to
the leakage of an MLE key. On the other hand, the enhanced

scheme protects against the leakage of an MLE key, while
introducing an additional encryption step. In the following, we
first explain the basics of AONT [47] and its variant CAONT
[38], followed by how the basic and enhanced encryption
schemes build on CAONT.

All-or-nothing transform (AONT): AONT [47] works as
follows. It transforms a message M to a package denoted by
(C, t), where C and t are called the head and tail, respectively.
Specifically, it first selects a random encryption key K and
generates a pseudo-random mask G(K) = E(K,S), where
E(·) denotes a symmetric key encryption function (e.g., AES-
256) and S is a publicly known block with the same size as
M . It then computes C = M ⊕G(K), where ‘⊕’ is the XOR
operator, and also computes t = H(C)⊕K, where H(·) is the
hash function (e.g., SHA-256). Note that the resulting package
has a larger size than the original message M by the size of
t. To recover the original message M , suppose that the whole
package (C, t) is known. We first compute K = H(C) ⊕ t,
followed by computing M = C ⊕ E(K,S).

CAONT [38] follows the same paradigm of AONT, but
replaces the random encryption key K by a deterministic
cryptographic hash h = H(M) derived from the message
M . This preserves content similarity of packages for identical
messages, thereby making deduplication plausible. Another
feature of CAONT is that it allows integrity checking without
padding. Specifically, after the package is reverted, the integrity
can be verified by computing the hash value of M and
checking if it equals h.

Basic encryption: The basic encryption scheme leverages
CAONT [38] to generate both the trimmed package and the
stub, as shown in Figure 2. In particular, we make two
modifications to CAONT. The first modification is to replace
the cryptographic hash key in CAONT [38] by the corre-
sponding MLE key KM generated by the key manager. The
rationale is that we use the MLE key to achieve security even
for predictable chunks through server-aided MLE [17] (see
Section II-A). However, we now cannot use the hash key for
integrity checking as in CAONT. Thus, the second modification
is to append a publicly known, fixed-size canary c to M [46]
for CAONT, so that the integrity of M can be checked.

The basic encryption scheme is detailed as follows. We
first concatenate an input chunk M with the canary c to form
(M ||c), and compute the pseudo-random mask G(KM) =
E(KM , S), where KM is the MLE key obtained from the
key manager and S is the publicly known block with the
same size of (M ||c). We compute the package head C =
(M ||c) ⊕ G(KM), where ⊕ is the XOR operator, and the
package tail t = KM ⊕ H(C). We generate the stub by
trimming the last few bytes (e.g., 64 bytes) from the package
(C, t), and leave the remaining part as the trimmed package.
Finally, we encrypt the stub with the file key. Reconstruction
of a message works reversely, and we omit details here.

Enhanced encryption: One limitation of the basic encryption
scheme is that it is vulnerable to the compromise of the MLE
key. Specifically, an adversary can monitor the MLE keys
generated by the key manager at a compromised client (see
Section III-B). If an MLE key is revealed, the adversary can
recover the pseudo-random mask and XOR the mask with the
trimmed package to extract a majority part of the chunk.

Chunk

C

KM XOR t

MLE Key

c

M

H T
rim

m
ed

 P
ack

ag
e

S
tu

b

CAONT

M

G

XOR

Fig. 2. Basic encryption of REED.

Chunk

E

KM

MLE Key

MM

H h XOR
t

C1

C1

C2

KMKM

MLE CAONT

T
rim

m
ed

 P
ack

ag
e

S
tu

b

G
Self

XOR

XOR

Fig. 3. Enhanced encryption of REED.

We propose the enhanced encryption scheme, which pro-
tects against the compromise of its MLE key. Figure 3 shows
the workflow of the enhanced encryption, which first applies
MLE to form a ciphertext, followed by applying CAONT
[38] to the MLE ciphertext. The rationale is that even if
an adversary obtains the MLE key, it still cannot recover
original chunk because the MLE ciphertext is now protected
by CAONT.

The enhanced encryption scheme is detailed as follows.
First, we encrypt an input chunk M with the MLE key
KM as in traditional MLE, and obtain the ciphertext C1.
We then transform the concatenation C1||KM based on the
original CAONT [38]. We can now use the hash key h =
H(C1||KM), instead of the MLE key used in the basic en-
cryption scheme, to transform the package. This eliminates the
security dependence on the MLE key. Formally, we compute
the hash key h = H(C1||KM) and the pseudo-random mask
G(h) = E(h, S), where S is a publicly known block with
the same size as C1||KM , and computes the package head
C2 = (C1||KM)⊕ G(h).

Since the hash key h allows integrity checking [38], we
can generate the tail t with a self-XOR operation for efficiency
[42], instead of using the cryptographic hash as in the basic
encryption scheme (see Figure 2). Specifically, we evenly
divide C2 into a set of fixed-size pieces, each with the same
size as h. We then XOR all the pieces as well as h to compute
the tail t. Note that the self-XOR result cannot be predicted
without knowing the entire content of C2. Finally, we obtain
the trimmed package and the stub from (C2, t).

To reconstruct M , we first reconstruct (C2, t) from the
trimmed package and the stub. We evenly divide C2 into fixed-
size pieces, each with the same size as t, and compute h by
XOR-ing the pieces and t. We then recover C1||KM = C2 ⊕
G(h), and check the integrity by comparing H(C1||KM) and
h. We finally compute M = D(KM , C1), where D(·) is the
decryption function.

C. Dynamic Access Control

REED supports dynamic access control by associating each
file with a policy, which provides a specification of which users
are authorized or revoked to access the file. Our policy-based
design builds on two well-known cryptographic primitives:
ciphertext policy attribute-based encryption (CP-ABE) [19]
and key regression [30]. REED integrates both primitives to

File Key

Key State

Hash

File Encryption

MLE Key

Key Regression

Private Derivation

Key

ABE Encryption

File Decryption

ABE Decryption

Private Access

Key

Client

Server

Fig. 4. REED generates a file key from the hash of a key state. The key
state is derived from key regression. Its access is protected by CP-ABE.

generate the corresponding file key, as shown in Figure 4. We
elaborate the details as follows.

Access control: REED defines policies based on CP-APE
[19]. In CP-ABE, each policy is represented in the form of an
access tree, in which each non-leaf node represents a Boolean
gate (e.g., AND or OR), while each leaf node represents an
attribute that defines or classifies some user property (e.g.,
the department that a user belongs to, the employee rank, the
contract duration, etc.). Each user is given a private key that
corresponds to a set of attributes. If a user’s attributes satisfy
the access tree, his private key can decrypt the ciphertext.

Our current design of REED treats each attribute as a
unique identifier for each user. We issue each user with a CP-
ABE private key, called the private access key, related to the
identifier. We define the policy of each file as an access tree that
connects the identifiers of all authorized users with an OR gate.
Thus, any authorized user can decrypt the ciphertext, which
we use to protect the file key (see the rekeying discussion
below). Note that we can define more attributes and a more
sophisticated access tree structure for better access control.

Rekeying: REED supports both lazy and active revocations for
rekeying. In lazy revocation, REED builds on key regression
[30], which is a serial key derivation scheme for generating dif-
ferent versions of keys. Specifically, key regression introduces

a sequence of key states, such that the current key state can
derive the previous key states, but it cannot derive any future
key state. Thus, an authorized user can access all previous key
states, and the corresponding files, by using only the current
key state; meanwhile, a user revoked from the current key state
cannot access any new file that is protected by a future key
state. Key regression is designed for lazy revocation (which
defers file re-encryption until the next update), since it allows
an authorized user to access the not-yet-updated files through
the previous key states.

REED implements lazy revocation using the RSA-based
key regression scheme [30]. We assign each user with a unique
pair of public-private keys called the derivation keys, such that
the private derivation key is used to generate new key states
for the files owned by the user, while the public derivation
key is used to derive the previous key states. The file key will
be obtained by generating a cryptographic hash of the current
key state. Each key state refers to a policy, and it will be
encrypted by CP-ABE associated with the authorized users. In
other words, any authorized user can retrieve the current key
state, and hence the file key, with his private access key.

REED implements active revocation following the same
paradigm as in lazy revocation, except that the files affected
by active revocation are immediately re-encrypted with the new
file key.

D. Operations

We now summarize the interactions among a client, a
server, the key manager, and the storage backend in REED
operations. We focus on three basic operations, including
upload, download, and rekeying.

Upload: To upload a file F , the client first picks a random
key state SF and hashes it into a (symmetric) file key κF . It
splits F into a set of chunks {M}, computes their fingerprints,
and runs the OPRF protocol [17] with the key manager to
obtain the MLE keys {KM} of these chunks. For each M , it
uses KM to transform a chunk into a trimmed package and a
stub, using either the basic or enhanced encryption scheme (see
Section IV-B). The stub will be further encrypted by the file
key κF . In addition, the client generates a file recipe, which
includes the file information such as the file pathname, file
size, and the total number of chunks. Furthermore, the client
encrypts SF using CP-ABE based on the policy of the file. Fi-
nally, the client uploads the following information to the REED
server1: (i) the trimmed packages and encrypted stubs for all
chunks, (ii) file recipe, and (iii) the encrypted key state SF and
the metadata that includes the policy information. The server
performs deduplication on the received trimmed packages. All
information will be stored at the storage backend.

Download: To download a file F , the client first retrieves the
encrypted key state SF and decrypts it with the private access
key. It then hashes SF to recover the file key κF . In addition, it
downloads all trimmed packages and encrypted stubs from the
storage backend, with the help of the REED server and the file
recipe. It decrypts the stubs via κF , and finally reconstructs
all chunks for F . Note that if the client detects any tampered
chunk, the reconstruction operation will abort.

1Note that we do not need to upload MLE keys, as they are not used in
decryption (see Section IV-B).

Rekeying: To rekey F with new access privileges, the client
(on behalf of the owner of F) retrieves SF and its metadata,
and decrypts SF with the private access key. It then generates a
new key state S′

F
based on key regression (see Section IV-C).

It encrypts S′

F
via CP-ABE based on a new policy (e.g., with

a new group of users). It finally uploads the encrypted S′

F
as

well as its metadata that describes the new policy information.
For active revocation, the client also downloads the stubs of
F , re-encrypts them with a new file key obtained by hashing
S′

F
, and finally uploads the re-encrypted stubs.

Discussion: Our current design and implementation focus on
the encryption and rekeying of file chunks, while we do not
address those of file metadata. We can obfuscate sensitive
metadata information, such as the file pathname, by encoding
it via a salted hash function. In addition, we perform rekeying
on a per-file basis, yet we can generalize rekeying for a group
of files. We pose these issues as future work.

E. Security Analysis

We now analyze the security of REED based on our
security goals (see Section III-B).

Confidentiality: We show how REED achieves confidentiality
at three levels. First, an adversary can access all trimmed
packages, encrypted stubs, and encrypted key states from a
compromised server. Since the adversary cannot compromise
any private access key and private derivation key, all trimmed
packages and encrypted stubs cannot be reverted. Thus, REED
achieves the same level of confidentiality like DupLESS [17]
(see Section II-A).

Second, an adversary can collude with revoked or unau-
thorized clients, through which the adversary can learn a set
of private derivation keys and private access keys. Due to the
protection of CP-ABE and key regression, these compromised
private keys cannot be used to decrypt the file key ciphertexts
beyond their access scopes. Without proper file keys, the
adversary cannot infer anything about the underlying chunks.
One special note is that a client may keep the MLE key (in
basic encryption) or the hash key (in enhanced encryption)
of a chunk in CAONT (see Figures 2 and 3, respectively) to
make the chunk accessible even after being revoked. However,
if the chunk is updated, the revoked client cannot learn any
information from the updated chunk because CAONT will use
a new MLE key or hash key to transform the updated chunk,
making the old one useless.

Finally, an adversary can monitor a subset of clients and
identify the MLE keys requested by them. The enhanced
encryption scheme of REED ensures confidentiality for unpre-
dictable chunks, even though the victim clients are authorized
to access these chunks. Specifically, the enhanced encryption
scheme builds an additional security layer with the file key.
Although the MLE key is compromised, as long as the file
key remains secure, the adversary cannot access the stub and
infer any useful information.

Integrity: Both the basic and enhanced encryption schemes of
REED ensure chunk-level integrity, such that any modification
of the trimmed package or the stub of a chunk can be detected.
In the basic encryption scheme, the MLE key can be reverted
as KM = H(C) ⊕ t (see Section IV-B). Since H(C) depends

on every bit of C [56], the modification of any part of the
package will lead to an incorrect KM . Thus, the client can
easily detect the modification by checking the canary padded
with the reverted chunk.

Using similar reasonings, the enhanced encryption scheme
also ensures the integrity of a chunk, such that a client per-
forms integrity checking by comparing if H(C1||KM) equals
h (see Section IV-B). One special note regarding the enhanced
scheme is that its use of the self-XOR operation may return
a correct hash key h even if the package is tampered. For
example, an intelligent adversary can divide C2 into fixed-size
pieces and flip the same bit position for an even number of
the pieces. On the other hand, a tampered package will be
reverted to a wrong input even with the correct hash key, and
its integrity violation can be caught by comparing it with h.

V. IMPLEMENTATION

We implement a REED prototype in C++. We extend the
open-source system CDStore [38] to support our rekeying
design. We also use OpenSSL 1.0.2a [3] and CP-ABE toolkit
[1] to implement the cryptographic operations in REED.

A. Entities

In the following, we describe the implementation details of
each entity in the REED architecture (see Figure 1).

Client: A client divides an input file into chunks in file
uploads. We support both fixed-size and variable-size chunking
schemes. We implement variable-size chunking using Rabin
fingerprinting [44], which takes the minimum, maximum, and
average chunk sizes as inputs. We fix the minimum and max-
imum chunk sizes at 2KB and 16KB, respectively, and vary
the average chunk size in our evaluation. In file downloads,
the client reassembles collected chunks into the original file.

The client implements both basic and enhanced encryption
schemes (and the corresponding decryption schemes). It also
implements the RSA-based key regression scheme [30] for
generating new key states during rekeying, and protects each
key state using CP-ABE (via the CP-ABE toolkit [1]). In
chunk encryption, the client transforms a chunk into a trimmed
package and a stub, in which we configure the stub size as
64 bytes for each chunk to resist brute-force attacks on the
stub yet preserving storage efficiency. We write the stubs of
all the chunks of the same file into a separate stub file, which
we encrypt with the corresponding file key. For both encryption
schemes, we set the fixed-size canary c to be 32 bytes of zeroes
for integrity checking.

Key manager: For key management, a client communicates
with the key manager via an SSL/TLS-based authentication
channel. The key generation follows the OPRF protocol of
DupLESS [17] to “blind” MLE key generation: (i) The key
manager is configured with a system-wide public/private key
pair, which we now generate based on 1024-bit RSA; (ii) The
client sends a blinded fingerprint of each chunk to the key
manager; (iii) The key manager computes an RSA signature on
the blinded fingerprint; and (iv) The client computes an RSA
signature verification and unblinds the result, which is hashed
to form the MLE key. Other approaches, such as blinded BLS
signatures [23], can be used to implement blinded MLE key
generation.

Server: A server can receive file data from multiple clients. It
performs deduplication on the trimmed packages received from
a client and checks if identical trimmed packages have already
been stored (by the same client or a different client), and only
stores unique trimmed packages in the storage backend. It
also keeps track of the deduplication metadata, including the
fingerprints of all trimmed packages for deduplication, as well
as the references to all trimmed packages and file recipes in
the storage backend for file retrieval.

Storage backend: We separate the storage of key information
and file data for better management. Specifically, we create two
stores at the storage backend: (i) the data store, which stores
the file data such as file recipes, trimmed packages, stub files,
and all related file metadata, and (ii) the key store, which stores
the key information such as encrypted key states.

B. Optimization

Our REED implementation leverages standard optimization
techniques for better performance.

Batching: We batch small requests to mitigate network and I/O
overheads. We note that if a client sends individual per-chunk
MLE key generation requests to the key manager, there will be
significant round-trip overheads, especially if we handle many
small-size chunks. We batch multiple per-chunk key generation
requests to reduce round-trip overheads. In addition, during file
uploads, a client batches multiple trimmed packages in an in-
memory buffer (currently we set its size as 4MB), and sends
the batched packages to the server when the buffer is full.
Furthermore, the server batches the unique trimmed packages
after deduplication into 4MB units before storing them in the
storage backend, so as to mitigate I/O overheads.

Caching: We note that MLE key generation leads to substan-
tial computational overhead, mainly because the key manager
uses the public-key-based OPRF protocol for key generation
[17]. The computational overhead is more prominent when
we generate MLE keys for small-size chunks. To reduce
the computational overhead of the key manager, our obser-
vation is that the adjacent uploads of a client often share
high content similarity. For example, when the client uploads
weekly backup snapshots of the same file system, the backup
snapshots may be very similar in content if there are only small
modifications to the file system. In this case, the client may
reuse the MLE keys for a large proportion of identical chunks
for the previous upload. Specifically, the client maintains a
least-recently-used cache (512MB by default) in memory for
holding the most recently generated MLE keys. It looks up
for the cached MLE keys before sending requests to the key
manager. Note that the caching approach introduces security
risks against the MLE keys, as the adversary can access the
cached MLE keys after compromising a client. Fortunately,
our enhanced encryption scheme resists the risk as it protects
against the leakage of MLE keys (see Section IV-B).

Parallelization: We exploit parallelization to improve perfor-
mance. First, each client parallelizes encryption and decryption
via multi-threading: it dispatches chunks to multiple threads,
each of which performs encryption and decryption on a subset
of chunks. In addition, we run separate servers to manage
both data store and key store in the storage backend, and use
multiple servers to manage the data store. A client divides each

trimmed package and stub file into multiple pieces and sends
each piece to a different server, which now processes only
smaller quantities of data. Furthermore, each client creates
multiple threads to connect to multiple servers, while each
server creates multiple threads to accept connections from
multiple clients.

VI. EVALUATION

We evaluate REED on a LAN testbed composed of multiple
machines, each of which is equipped with a quad-core 3.4GHz
Intel Core i5-3570, 7200RPM SATA hard disk, and 8GB RAM,
and installed with 64-bit Ubuntu 12.04.2 LTS. All machines
are connected via a 1Gb/s switch.

Our default setting of REED is as follows. We run one
REED client, one key manager, and five REED servers in dif-
ferent machines. We use multiple REED servers for improved
scalability (see Section V-B). In particular, four of the five
servers manage the data store, and the remaining one server
manages the key store. In practice, both the data store and
the key store should be deployed in a shared storage backend
(e.g., cloud storage); however, to remove the I/O overhead of
accessing the shared storage backend in our evaluation, we
simply have each server store information in its local hard
disk. In addition to the default setting, we describe additional
specific settings in each experiment, and also consider the case
where multiple clients are involved. We compile our programs
with g++ 4.8.1 with the -O3 option. For performance tests, we
present the average results over 10 runs. We do not include the
variance results in our plots, as they are generally very small
in our evaluation. In the following, we consider a synthetic
dataset and a real-world dataset to drive our evaluation.

A. Synthetic Data

We evaluate different REED operations through synthetic
data. Specifically, we generate a 2GB file of synthetic data
with globally unique chunks (i.e., the chunks have no duplicate
content). Before each experiment, we load the synthetic data
into memory to avoid generating any disk I/O overhead.

Experiment A.1 (MLE key generation performance): We
first measure the performance in MLE key generation between
the client and the key manager based on our default setting.
The client first creates chunks of the input 2GB file using
variable-size chunking based on Rabin fingerprinting with a
specified average chunk size. It then requests for MLE keys for
these chunks from the key manager. We measure the MLE key
generation speed, defined as the ratio of the file size (i.e., 2GB)
to the total time starting from when the client sends the blinded
fingerprints to the key manager for MLE keys until the client
obtains the MLE keys of all chunks from the key manager.
We focus on evaluating the impact of two parameters: (i) the
average chunk size and (ii) the batch size of key generation
requests (i.e., the number of per-chunk key generation requests
in a batch) (see Section V-B).

Figure 5(a) first shows the MLE key generation speed
versus the average chunk size, in which we fix the batch size
as 256 per-chunk key generation requests. We observe that the
speed increases with the average chunk size, mainly because
fewer chunks need to be processed. For example, when the

average chunk size is 16KB, the key generation speed reaches
17.64MB/s.

Figure 5(b) shows the MLE key generation speed versus
the batch size, in which we fix the average chunk size as
8KB. A larger batch size implies less round-trip overhead.
We observe that when the batch size goes beyond 256, the
key generation speed becomes steady (at about 12.5MB/s),
since the key manager is now saturated by key generation
requests and the speed is bounded by the computation of the
key manager.

Experiment A.2 (Encryption performance): We measure the
performance of both basic and enhanced encryption schemes.
Suppose that the client has created chunks with variable-size
chunking and obtained MLE keys from the key manager. We
also exploit multi-threading (see Section V-B) by configuring
the encryption module with two threads. We do not consider
more threads, mainly because our machines only have four
CPU cores and more threads will lead to contention. In
addition, our results indicate that two threads are sufficient
for achieving the required performance (see below). Here, we
measure the encryption speed, defined as the ratio of the file
size (i.e., 2GB) to the total time of encrypting all chunks into
trimmed packages and stubs.

Figure 6 shows the speeds of both basic and enhanced en-
cryption schemes versus the average chunk size. The through-
put of both encryption schemes increases with the average
chunk size, mainly because fewer chunks need to be processed.
The basic scheme is faster than the enhanced scheme, as
the enhanced scheme introduces an additional encryption (see
Section IV-B). For example, for the average chunk size 8KB,
the basic scheme has 203MB/s, 24% faster than 155MB/s in
the enhanced scheme. We observe that the encryption speeds
of both schemes are higher than the network speed (which
is now 1Gb/s), and hence the encryption speed is not the
performance bottleneck in REED. We further justify this claim
in Experiment A.3.

Experiment A.3 (Upload and download performance): We
now measure the upload and download performance of REED.
We first consider the case of a single client. We enable all
optimizations in the client (see Section V-B), including: (i)
setting the batch size as 256 per-chunk key generation requests,
(ii) turning on the key cache with size 512MB, (iii) using two
threads for encryption and decryption. The client first uploads
a 2GB file of unique data, followed by the same 2GB file
with identical content, and finally downloads the 2GB file. We
measure the upload speed as the ratio of the file size to the
total time of sending all file data to the servers (including the
chunking, key generation, encryption, and data transfer), and
the download speed as the ratio of the file size to the total
time starting from when the client issues a download request
until all original data is recovered.

Figure 7(a) shows the upload speeds under both encryption
schemes versus the average chunk size. For the first upload,
the upload speeds of both basic and enhanced encryption
schemes are relatively low, ranging from around 4MB/s (for
the 2KB chunk size) to 17MB/s (for the 16KB chunk size). The
upload speed is mainly bounded by the MLE key generation
speed (see Figure 5(a)). In the second upload, all the MLE
keys have been cached, and hence the upload speeds of

 0

 5

 10

 15

 20

2 4 8 16

S
p

ee
d

 (
M

B
/s

)

Average Chunk Size (KB)

(a) Varying chunk size

 0

 5

 10

 15

1 4 16 64 256 1024 4096

S
p
ee

d
 (

M
B

/s
)

Batch Size

(b) Varying batch size.

Fig. 5. Experiment A.1 (MLE key generation performance).

 0

 50

 100

 150

 200

 250

2 4 8 16

E
n

cr
y

p
ti

o
n

 S
p

ee
d

 (
M

B
/s

)

Average Chunk Size (KB)

Enhanced encryption
Basic encryption

Fig. 6. Experiment A.2 (Encryption performance).

 0

 30

 60

 90

 120

2 4 8 16

U
p

lo
ad

 S
p

ee
d

 (
M

B
/s

)

Average Chunk Size (KB)

Enhanced encryption (1st)
Basic encryption (1st)

Enhanced encryption (2nd)
Basic encryption (2nd)

(a) Upload speed

 0

 30

 60

 90

 120

 150

2 4 8 16

D
o

w
n

lo
ad

 S
p

ee
d

 (
M

B
/s

)

Average Chunk Size (KB)

Enhanced encryption
Basic encryption

(b) Download speed

 0

 100

 200

 300

 400

 500

1 2 3 4 5 6 7 8

U
p

lo
ad

 S
p

ee
d

 (
M

B
/s

)

Number of Clients

Upload (1st)
Upload (2nd)

(c) Aggregate upload speed

Fig. 7. Experiment A.3 (Upload and download performance).

both encryption schemes increase significantly, for example,
to 108.1MB/s and 107.2MB/s for the basic and enhanced
schemes, respectively, for the 16KB chunk size. We find that
the effective network speed in our LAN testbed is around
116MB/s, which is approximately reached by both encryption
schemes. Note that both encryption schemes have only minor
performance differences.

Figure 7(b) shows the download speeds under both encryp-
tion schemes versus the average chunk size. When the average
chunk size goes beyond 8KB, the download speeds of both
encryption schemes (e.g., 108.0MB/s for basic encryption and
106.6MB/s for enhanced encryption) approximate the effective
network speed.

We consider the case where multiple REED clients are
used. We vary the number of clients from one to eight,
and each client runs on a different machine. Here, we focus
on the aggregate upload performance under the enhanced
encryption scheme. Each client first uploads a 2GB file of
unique data, followed by uploading the same 2GB file with
identical content. Each client enables the same optimization
setting as the above single-client case. All clients perform
uploads simultaneously. We measure the aggregate upload
speed, defined as the ratio of the total amount of file data
(i.e., 2GB times the number of clients) to the total time when
all uploads are finished.

Figure 7(c) shows the aggregate upload speed versus the
number of clients. We see that the speed increases with the
number of clients. The performance of the first aggregate up-
load is bounded by the MLE key generation, while that of the
second aggregate upload takes advantage of the cached MLE
keys and now becomes bounded by the network bandwidth.

When there are eight clients, the second aggregate upload
speed reaches 374.9MB/s.

Experiment A.4 (Rekeying performance): We measure the
rekeying performance in both lazy and active revocation
schemes. Recall that the rekeying operation of REED requires
a CP-ABE decryption with the original policy and another
CP-ABE encryption with a new policy. REED treats each
policy as an access tree with an OR gate connecting all the
authorized user identifiers (see Section IV-C). This implies
that the CP-ABE decryption time is constant [19], while its
encryption time grows with the number of authorized users in
the new policy. Thus, we focus on evaluating the impact of
three parameters in the rekeying operation: (i) total number
of users, i.e., the number of authorized users in the original
policy; (ii) revocation ratio, the percentage of the number of
users to be revoked and removed from the access tree; and (iii)
file size, the size of the rekeyed file. We measure the rekeying
delay, defined as the total time of performing all rekeying steps
including: downloading and decrypting a key state, deriving a
new key state, encrypting and uploading the new key state,
and re-encrypting the stub file (for active revocation only).

Figure 8(a) shows the rekeying delay versus the total
number of users, while we fix the rekeyed file size at 2GB
and the revocation ratio at 20%. The rekeying delays of both
revocation schemes increase with the total number of users,
mainly because the CP-ABE encryption overhead increases
with a larger access tree. Nevertheless, the rekeying delays are
within three seconds in both revocation schemes. In particular,
lazy revocation is faster than active revocation by about 0.6s,
as it defers re-encryption process to the next file update.

Figure 8(b) shows the rekeying delay versus the revocation

 0

 1

 2

 3

 4

100 200 300 400 500

T
im

e
D

el
ay

 (
s)

Total Number of Users

Lazy revocation
Active revocation

(a) Varying the total number of users

 0

 1

 2

 3

 4

5 10 15 20 25 30 35 40 45 50

T
im

e
D

el
ay

 (
s)

Revocation Ratio (%)

Lazy revocation
Active revocation

(b) Varying the revocation ratio

 0

 1

 2

 3

 4

 5

1 2 4 8

T
im

e
D

el
ay

 (
s)

File Size (GB)

Lazy revocation
Active revocation

(c) Varying the file size

Fig. 8. Experiment A.4 (Rekeying performance).

ratio, while we fix the rekeyed file size at 2GB and the
total number of users at 500. With a larger revocation ratio,
the new policy has fewer authorized users, thereby reducing
the revocation time. When the revocation ratio is 50%, the
rekeying delays of the lazy and active revocation schemes are
1.44s and 2s, respectively.

Figure 8(c) shows the rekeying delay versus the size of the
rekeyed file, while we fix the total number of users at 500
and the revocation ratio at 20%. The rekeyed file size has no
impact on lazy revocation, in which the rekeying delay is kept
at 2.25s. For active revocation, as the file size increases, it
spends more time for transferring and re-encrypting the stub
file. Thus, the rekeying delay increases, for example, to 3.4s for
an 8GB file. Nevertheless, if we compare the rekeying delay of
active revocation with the time of transferring a whole file in
the network (e.g., at least 64s in a 1Gb/s network), the rekeying
delay is insignificant. Thus, the rekeying operation in REED
is lightweight in general.

B. Real-world Data

We now consider a real-world public dataset collected
by the File systems and Storage Lab (FSL) at Stony Brook
University [6]. The original FSL dataset contains daily backups
of the home directories of nine users in a shared file system,
and it lasts from 2011 to 2014. We focus on the Fslhomes

dataset in 2013, which comprises 147 daily snapshots from
January 22 to June 17, 2013. Each snapshot represents a daily
backup, represented by a collection of 48-bit fingerprints of
variable-size chunks with an average 8KB chunk size. The
dataset we consider accounts for a total of 56.20TB of pre-
deduplicated data.

Experiment B.1 (Storage overhead): We first measure the
storage overhead due to REED. Our goal is to show that
REED still maintains storage efficiency via deduplication, even
though it can only deduplicate part of a chunk (i.e., trimmed
package). We define three types of data: (i) logical data, the
original data before any encryption or deduplication; (ii) stub
data, the encrypted stub files being stored; (iii) physical data,
the trimmed packages being stored after deduplication. We
aggregate the data from all users and measure the total size
of each data type. Here, we do not consider the metadata
overhead, which is much less than that of the file data.

Figure 9(a) first shows the cumulative data sizes over the
number of days of storing daily backups of all users. Each
daily backup contains 290-680GB of logical data for all users,

yet the physical and stub data that REED actually stores after
deduplication accounts for only 5.52GB per day on average.
After 147 days, there is a total of 57,548GB of logical data,
and REED generates only 812GB of physical and stub data
after deduplication. It achieves a total saving of 98.6%. This
shows that we still maintain high storage efficiency through
deduplication.

Figure 9(b) compares the cumulative sizes of physical and
stub data after deduplication. The cumulative size of stub
data increases over days. After 147 days, there is 431.89GB
of physical data due to the unique trimmed packages, and
there is 380.14GB of stub data. Note that the stub data
cannot be deduplicated as it is encrypted by a renewable file
key. Nevertheless, deduplication effectively reduces the overall
storage space according to Figure 9(a).

Experiment B.2 (Trace-driven upload and download per-
formance): We evaluate upload and download speeds of a
single REED client using the real-world dataset, as opposed
to synthetic dataset in Experiment A.3. Since the dataset just
includes chunk fingerprints and chunk sizes, we reconstruct a
chunk by repeatedly writing its fingerprint to a spare chunk
until reaching the specified chunk size; this ensures that the
same (distinct) fingerprint returns the same (distinct) chunk.
The reconstructed chunk is treated as the output of chunking
module of the REED client. Thus, we do not include the
chunking time in this experiment.

The client uploads all daily backups (on behalf of all users),
followed by downloading them. Due to the large dataset, we
only run part of the dataset to reduce the evaluation time.
Specifically, we choose seven consecutive daily backups from
March 19 to March 25, 2013 for the nine users, covering a
total of 3.64TB of data before deduplication. We use the same
optimization setting as in Experiment A.3; in particular, we
enable the key cache in the client since the dataset has high
content similarity. We use the following order of the upload
sequence: we upload the backups of the first user day by day
through the client, followed by the second user, and so on.
Before uploading the backups of each user, we clear the key
cache. This ensures that different users will not share the same
key cache of the client.

Figure 10 shows the upload and download speeds over
days. The upload speed for the first day is around 13.1MB/s,
since all users need to contact the key manager and generate
MLE keys for most of the chunks. For the subsequent backups,
the upload speed increases significantly, as most of the MLE

10
1

10
2

10
3

10
4

10
5

10
6

 0 50 100 150

A
cc

u
m

u
la

te
d
 D

at
a

(G
B

)

Days

Physical + Stub data
Logical data

(a) Before and after deduplication

 0

 100

 200

 300

 400

 500

 0 50 100 150

A
cc

u
m

u
la

te
d

 D
at

a
(G

B
)

Days

Physical data
Stub data

(b) Physical and stub data

Fig. 9. Experiment B.1 (Storage overhead).

 0

 50

 100

 150

 1 2 3 4 5 6 7

S
p

ee
d

 (
M

B
/s

)

Days

Upload
Download

Fig. 10. Experiment B.2 (Trace-driven upload
and download performance).

keys have been cached in the client. Note that since the
dataset has a high deduplication rate, the upload speeds for
the subsequent backups are similar to that for the synthetic
data upload with identical content (see Figure 7(a)), and reach
around 105MB/s. However, the trace-driven download speed
is slightly lower than the synthetic one (see Figure 7(b)).
The reason is deduplication introduces chunk fragmentation
for subsequent backups [39], and the download speed will
gradually degrade. We do not address the chunk fragmentation
problem, which is beyond the scope of the work.

VII. RELATED WORK

Encrypted deduplication storage: Section II reviews MLE
[18] and DupLESS [17], which address the theoretical and
applied aspects of encrypted deduplication storage, respec-
tively. Bellare et al. [18] propose a theoretical framework
of MLE, and provide formal definitions of privacy and tag
consistency. The follow-up studies [7], [16] further examine
message correlation and parameter dependency of MLE.

On the applied side, convergent encryption (CE) [28]
has been implemented and experimented in various storage
systems (e.g., [9], [10], [24], [48], [52], [57]). DupLESS
[17] implements server-aided MLE. Duan [29] improves the
robustness of key management in DupLESS via threshold
signature [49]. Zheng et al. [58] propose a layer-level strategy
specifically for video deduplication. Liu et al. [40] propose
a password-authenticated key exchange protocol for MLE key
generation. ClearBox [11] enables clients to verify the effective
storage space that their data occupies after deduplication. CD-
Store [38] realizes CE in existing secret sharing algorithms by
replacing the embedded random seed with a message-derived
hash to construct shares. REED focuses on the applied aspect,
and complements the above designs by enabling rekeying in
encrypted deduplication storage.

Rekeying: Abdalla et al. [8] rigorously analyze key-derivation
methods, in which a sequence of subkeys is derived from a
shared master key so as to extend the lifetime of the master
key for secure communication. Follow-up studies examine key
derivation (in either key rotation or key regression) in content
distribution networks [14], [30], [36] and cloud storage [43].
A recent work [55] examines ciphertext re-encryption using
an approach similar to REED, in that it performs AONT on
files and updates a small piece from the AONT package, yet
it does not consider deduplication and has no prototype that
demonstrates the applicability. REED differs from the above

approaches by addressing the rekeying problem in encrypted
deduplication storage. REED also uses the key regression
scheme [30] in key derivation to enable lazy revocation.

REED is related to secure deletion (see detailed surveys
[27], [45]), which ensures that securely deleted data is perma-
nently inaccessible by anyone. Secure deletion can be achieved
through cryptographic deletion (e.g., [22], [42]), which se-
curely erases keys in order to make encrypted data unrecover-
able. REED builds on the AONT-based cryptographic deletion
[42] and preserves content similarity for deduplication. It
further allows lightweight dynamic access control.

Access control: Cryptographic primitives have been proposed
for enabling access control on encrypted storage, such as
broadcast encryption [21], proxy re-encryption [13], and ABE
[32]. REED builds on CP-ABE [19] to implement fine-grained
access control for encrypted deduplication storage.

VIII. CONCLUSION

We present REED, an encrypted deduplication storage
system that aims for secure and lightweight rekeying. The
core rekeying design of REED is to renew a key of a
deterministic all-or-nothing-transform (AONT) package. We
propose two encryption schemes for REED: the basic scheme
has higher encryption performance, while the enhanced scheme
is resilient against key leakage. We further extend REED
with dynamic access control by integrating both CP-ABE
and key regression primitives. We show the confidential-
ity and integrity properties of REED under our security
definitions. We implement a REED prototype, and con-
duct trace-driven evaluation in a LAN testbed to demon-
strate its performance and storage effectiveness. The source
code of our REED prototype is available for download at
http://ansrlab.cse.cuhk.edu.hk/software/reed.

ACKNOWLEDGMENTS

This work was supported in part by GRF CUHK413813
from HKRGC, Cisco University Research Program Fund
(CG#593822) from Silicon Valley Community Foundation,
Natural Science Foundation of Guangdong Province for Dis-
tinguished Young Scholars (2014A030306020), National Nat-
ural Science Foundation of China (61472091, 61572115),
Major Program for the Fundamental Research of Sichuan
(2016JY0007), and Distinguished Young Scholars Fund of De-
partment of Education of Guangdong Province (Yq2013126).

REFERENCES

[1] “CP-ABE toolkit,” http://acsc.cs.utexas.edu/cpabe/.

[2] “Google Genomics,” https://cloud.google.com/genomics/.

[3] “OpenSSL,” https://www.openssl.org.

[4] “Netapp deduplication helps duke institute for genome sciences
and policy reduce storage requirements for genomic informa-
tion by 83 percent,” http://www.netapp.com/us/company/news/press-
releases/news-rel-20081008.aspx, 2008.

[5] “Architecting for genomic data security and compliance in AWS,” 2014.

[6] “FSL traces and snapshots public archive,” http://tracer.filesystems.org/,
2014.

[7] M. Abadi, D. Boneh, I. Mironov, A. Raghunathan, and G. Segev,
“Message-locked encryption for lock-dependent messages,” in Proc. of

CRYPTO, 2013.

[8] M. Abdalla and M. Bellare, “Increasing the lifetime of a key: A
comparative analysis of the security of re-keying techniques,” in Proc.

of ASIACRYPT, 2000.

[9] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R.
Douceur, J. Howell, J. R. Lorch, M. Theimer, and R. P. Wattenhofer,
“Farsite: Federated, available, and reliable storage for an incompletely
trusted environment,” in Proc. of USENIX OSDI, 2002.

[10] P. Anderson and L. Zhang, “Fast and secure laptop backups with
encrypted de-duplication,” in Proc. of USENIX LISA, 2010.

[11] F. Armknecht, J.-M. Bohli, G. O. Karame, and F. Youssef, “Transparent
data deduplication in the cloud,” in Proc. of ACM CCS, 2015.

[12] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,
and D. Song, “Provable data possession at untrusted stores,” in Proc.

of ACM CCS, 2007.

[13] G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved proxy
re-encryption schemes with applications to secure distributed storage,”
ACM Trans. Inf. Syst. Secur., vol. 9, no. 1, pp. 1–30, Feb. 2006.

[14] M. Backes, C. Cachin, and A. Oprea, “Secure key-updating for lazy
revocation,” in Proc. of ESORICS, 2006.

[15] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid, “NIST Special
Publication 800-57 recommendation for key management,” National
Institute of Standards & Technology, Tech. Rep., July 2012.

[16] M. Bellare and S. Keelveedhi, “Interactive message-locked encryption
and secure deduplication,” in Proc. of PKC, 2015.

[17] M. Bellare, S. Keelveedhi, and T. Ristenpart, “DupLESS: Server-aided
encryption for deduplicated storage,” in Proc. of USENIX Security,
2013.

[18] ——, “Message-locked encryption and secure deduplication,” in Proc.

of EUROCRYPT, 2013.

[19] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in IEEE S&P, 2007.

[20] J. Black, “Compare-by-hash: a reasoned analysis,” in Proc. of USENIX

ATC, 2006.

[21] D. Boneh, C. Gentry, and B. Waters, “Collusion resistant broadcast en-
cryption with short ciphertexts and private keys,” in Proc. of CRYPTO,
2005.

[22] D. Boneh and R. Lipton, “A revocable backup system,” in Proc. of

USENIX Security, 1996.

[23] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil
pairing,” in Proc. of ASIACRYPT, 2001.

[24] L. P. Cox, C. D. Murray, and B. D. Noble, “Pastiche: Making backup
cheap and easy,” in Proc. of USENIX OSDI, 2002.

[25] D. Csaplar, “Building business resillience through active archiving,”
2011.

[26] Debian Security Advisory, “DSA-1571-1 openssl – predictable
random number generator,” https://www.debian.org/security/2008/dsa-
1571, May 2008.

[27] S. M. Diesburg and A.-I. A. Wang, “A survey of confidential data
storage and deletion methods,” ACM Comput. Surv., vol. 43, no. 1,
pp. 2:1–2:37, Dec. 2010.

[28] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and M. Theimer,
“Reclaiming space from duplicate files in a serverless distributed file
system,” in Proc. of IEEE ICDCS, 2002.

[29] Y. Duan, “Distributed key generation for encrypted deduplication:
Achieving the strongest privacy,” in Proc. of ACM CCSW, 2014.

[30] K. Fu, S. Kamara, and T. Kohno, “Key regression: Enabling efficient
key distribution for secure distributed storage,” in Proc. of NDSS, 2006.

[31] S. Goldwasser and M. Bellare, “Lecture notes on cryptography,” https:
//cseweb.ucsd.edu/∼mihir/papers/gb.html, July 2008.

[32] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryp-
tion for fine-grained access control of encrypted data,” in Proc. of ACM

CCS, 2006.
[33] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Proofs of

ownership in remote storage systems,” in Proc. of ACM CCS, 2011.
[34] D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Side channels in cloud

services: Deduplication in cloud storage,” IEEE Security & Privacy,
vol. 8, no. 6, pp. 40–47, 2010.

[35] A. Juels and B. S. Kaliski, Jr., “PORs: Proofs of retrievability for large
files,” in Proc. of ACM CCS, 2007.

[36] M. Kallahall, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu, “Plutus:
Scalable secure file sharing on untrusted storage,” in Proc. of USENIX

FAST, 2002.
[37] D. Kaminsky, “These are not the certs you’re looking for,”

http://dankaminsky.com/2011/08/31/notnotar/, Aug 2011.
[38] M. Li, C. Qin, and P. P. C. Lee, “CDStore: Toward reliable, secure,

and cost-efficient cloud storage via convergent dispersal,” in Proc. of

USENIX ATC, 2015.
[39] M. Lillibridge, K. Eshghi, and D. Bhagwat, “Improving restore speed

for backup systems that use inline chunk-based deduplication,” in Proc.

of USENIX FAST, 2013.
[40] J. Liu, N. Asokan, and B. Pinkas, “Secure deduplication of encrypted

data without additional independent servers,” in Proc. of ACM CCS,
2015.

[41] National Institutes of Health, “NIH security best practices for
controlled-access data subject to the NIH genomic data sharing policy,”
2015.

[42] Z. N. J. Peterson, R. Burns, J. Herring, A. Stubblefield, and A. D. Rubin,
“Secure deletion for a versioning file system,” in Proc. of USENIX

FAST, 2005.
[43] K. P. Puttaswamy, C. Kruegel, and B. Y. Zhao, “Silverline: toward data

confidentiality in storage-intensive cloud applications,” in Proc. of ACM

SoCC, 2011.
[44] M. O. Rabin, “Fingerprinting by random polynomials,” Center for

Research in Computing Technology, Harvard University. Tech. Report
TR-CSE-03-01, 1981.

[45] J. Reardon, D. Basin, and S. Capkun, “SoK: Secure data deletion,” in
Proc. of IEEE S&P, 2013.

[46] J. K. Resch and J. S. Plank, “AONT-RS: Blending security and
performance in dispersed storage systems,” in Proc. of USENIX FAST,
2011.

[47] R. L. Rivest, “All-or-nothing encryption and the package transform,” in
Proc. of FSE, 1997.

[48] P. Shah and W. So, “Lamassu: Storage-efficient host-side encryption,”
in Proc. of USENIX ATC, 2015.

[49] V. Shoup, “Practical threshold signatures,” in Proc. of EUROCRYPT,
2000.

[50] A. Sotirov, M. Stevens, J. Appelbaum, A. Lenstra, D. Molnar,
D. A. Osvik, and B. de Weger, “Md5 considered harmful today,”
http://www.win.tue.nl/hashclash/rogue-ca/, Dec 2008.

[51] L. D. Stein, “The case for cloud computing in genome informatics,”
Genome Biology, 2010.

[52] M. W. Storer, K. Greenan, D. D. Long, and E. L. Miller, “Secure data
deduplication,” in Proc. of ACM StorageSS, 2008.

[53] U.S. Computer Emergency Readiness Team, “OpenSSL
‘heartbleed’ vulnerability (CVE-2014-0160),” https://www.us-
cert.gov/ncas/alerts/TA14-098A, April 2014.

[54] G. Wallace, F. Douglis, H. Qian, P. Shilane, S. Smaldone, M. Cham-
ness, and W. Hsu, “Characteristics of backup workloads in production
systems,” in Proc. of USENIX FAST, 2012.

[55] D. Watanabe and M. Yoshino, “Key update mechanism for network
storage of encrypted data,” in Proc. of IEEE CloudCom, 2013.

[56] A. F. Webster and S. E. Tavares, “On the design of S-boxes,” in Proc.

of CRYPTO, 1985.
[57] Z. Wilcox-O’Hearn and B. Warner, “Tahoe: The least-authority filesys-

tem,” in Proc. of ACM StorageSS, 2008.
[58] Y. Zheng, X. Yuan, X. Wang, J. Jiang, C. Wang, and X. Gui, “Enabling

encrypted cloud media center with secure deduplication,” in Proc. of

ACM ASIACCS, 2015.

