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Abstract—To balance performance and storage efficiency,
modern clustered file systems (CFSes) often first store data with
random replication (i.e., distributing replicas across randomly
selected nodes), followed by encoding the replicated data with
erasure coding. We argue that random replication, while being
commonly used, does not take into account erasure coding
and hence will raise both performance and availability issues
to the subsequent encoding operation. We propose encoding-
aware replication, which carefully places the replicas so as to
(i) avoid cross-rack downloads of data blocks during encoding,
(ii) preserve availability without data relocation after encoding,
and (iii) maintain load balancing as in random replication. We
implement encoding-aware replication on HDFS, and show
via testbed experiments that it achieves significant encoding
throughput gains over random replication. We also show
via discrete-event simulations that encoding-aware replication
remains effective under various parameter choices in a large-
scale setting. We further show that encoding-aware replication
evenly distributes replicas as in random replication.

I. INTRODUCTION

Clustered file systems (CFSes) ensure data availability by

striping data with redundancy across different nodes in dif-

ferent racks. Two redundancy schemes are commonly used:

(i) replication, which creates identical replicas for each data

block, and (ii) erasure coding, which transforms original

data blocks into an expanded set of encoded blocks, such that

any subset with a sufficient number of encoded blocks can

reconstruct the original data blocks. Replication improves

read performance by load-balancing read requests across

multiple replicas. On the other hand, erasure coding provably

achieves higher fault tolerance than replication, while using

much less redundancy [31]. For example, traditional designs

of CFSes deploy 3-way replication [5, 14, 28], which incurs

3× storage overhead. Azure reportedly uses erasure coding

to reduce the storage overhead to 1.33×, leading to over

50% of operational cost saving for storage [17].

Recent studies [12, 17, 27] demonstrate the feasibility of

adopting erasure coding in production CFSes. To balance the

trade-off between performance and storage efficiency, CFSes

often perform asynchronous encoding [12]: data blocks are

first replicated when being stored, and are later encoded with

erasure coding in the background. Asynchronous encoding

maintains high read performance for new data via replication

and minimizes storage overhead for old data via erasure

coding. It simplifies deployment and error handling, and

hides performance degradation [12].

In this paper, we argue that the encoding operation (i.e.,

transforming replicas to erasure-coded blocks) is subject to

both performance and availability challenges. First, it may

need to retrieve data blocks stored in different racks to

generate encoded blocks. This will consume a substantial

amount of bandwidth across racks. Cross-rack bandwidth

is considered to be a scarce resource in CFSes [6, 9],

and is often over-subscribed by many nodes [1, 15]. Thus,

intensive cross-rack data transfers will degrade the perfor-

mance of normal foreground operations. Second, relocation

of encoded blocks may be needed to ensure the availability

requirement (e.g., rack-level fault tolerance) is fulfilled.

Although such relocation is rare in production [21], it is

still undesirable, since it not only introduces additional

cross-rack traffic, but also leaves a vulnerable period before

relocation is done.

Our observation is that when data blocks are first stored

with replication, replica placement plays a critical role in

determining both performance and availability of the sub-

sequent encoding operation. One replica placement policy

is random replication (RR) [7], whose idea is to store

replicas across randomly chosen nodes. RR is simple to

realize and has been used by HDFS [28], Azure [5], and the

DRAM-based storage system RAMCloud [22]. However, it

does not take into account the relations among the replicas

when encoding is performed. As we later show, RR brings

both performance and availability issues to the subsequent

encoding operation.

To this end, we propose encoding-aware replication

(EAR), which carefully determines the replica placements

of the data blocks that will later be encoded. The main

idea of EAR is that for each group of data blocks to be

encoded together, EAR keeps one replica of each data block

in the same rack, while storing the remaining replicas in

other racks by equivalently solving a maximum matching

problem. By doing so, EAR avoids downloading data blocks

from other racks for encoding, and avoids relocation of

encoded blocks after encoding. Thus, EAR reduces cross-

rack traffic due to the encoding operation. In addition, EAR

tries to randomly distribute replicas as in RR to maintain

load balancing.

In summary, we make the following contributions:

• We present EAR, a new replica placement algorithm

that addresses both performance and availability issues



of the encoding operation.

• We implement EAR on Facebook’s HDFS implemen-

tation [11], with only few modifications to the source

code of HDFS.

• We conduct testbed experiments on a 13-machine clus-

ter. We observe significant encoding throughput gains

of EAR over RR in different settings, and the gains can

reach over 100% in some cases. Also, EAR improves

write throughput by reducing network traffic. Further-

more, based on synthetic MapReduce workloads, we

find that the replica placement of EAR does not com-

promise performance before encoding.

• We conduct discrete-event simulations based on

CSIM 20 [8], and compare RR and EAR for various

parameter choices in a 400-node CFS. We show that

EAR can improve the encoding throughput of RR by

70% in many cases.

• We examine the replica distribution of EAR, and show

that it maintains load balancing in storage and read

requests as in RR.

The rest of the paper proceeds as follows. Section II

presents the problem setting and issues of RR. Section III

describes the design of EAR. Section IV presents the im-

plementation details of EAR on HDFS. Section V presents

our evaluation results. Section VI reviews related work, and

finally Section VII concludes the paper.

II. PROBLEM

In this section, we formalize the scope of the encoding

problem. We also motivate our work via an example.

A. System Model

Clustered file system (CFS) architecture: We consider

a CFS architecture, as shown in Figure 1, that stores files

over multiple storage nodes (or servers). We group the nodes

into racks (let R be the number of racks), such that different

nodes within the same rack are connected via the same top-

of-rack switch, while different racks are connected via a

network core. Cross-rack bandwidth is a scarce resource

[6, 9] and often over-subscribed [1, 15], so we assume that

cross-rack data transfer is the performance bottleneck in a

CFS architecture. We consider a CFS that uses append-only

writes and stores files as a collection of fixed-size blocks,

which form the basic read/write data units. Examples of such

a CFS includes GFS [14], HDFS [28], and Azure [5].

We motivate our study by examining the open-source

HDFS implementation by Facebook [11], which supports

erasure-coded storage based on HDFS-RAID [16]. Never-

theless, our discussion can be generalized for other CFSes.

Replication: Traditional CFS designs use r-way replica-

tion by storing r replicas for each block in different nodes,

where r = 3 is commonly used [5, 14, 28]. One common

replica placement policy is collectively called random repli-

cation (RR) [7], which is used by HDFS [28], Azure [5],
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Figure 1. Example of a CFS architecture.

and RAMCloud [22]. While the implementation of RR may

slightly vary across different CFSes, the main idea of RR

is to place replicas across randomly chosen nodes and racks

for load balancing, and meanwhile ensure node-level and

rack-level fault tolerance. In this paper, we assume that RR

follows the default replica placement policy of HDFS [28]:

it uses 3-way replication, such that the first replica is placed

on a node in a randomly chosen rack and the two other

replicas are replaced on different randomly chosen nodes

in a different rack. This protects against either a two-node

failure or a single-rack failure.

Erasure coding: Erasure coding is a redundancy al-

ternative that provably incurs less storage overhead than

replication under the same fault tolerance [31]. We consider

(n, k) erasure coding defined by two parameters n and k
(where k < n). It transforms k original uncoded blocks

(which we call data blocks) to create n−k additional coded

blocks (which we call parity blocks), such that any k out of

the n data and parity blocks can reconstruct all k original

data blocks. We call the collection of n data and parity

blocks to be a stripe, and typical erasure coding schemes

operate on each stripe independently. We assume systematic

erasure coding, which keeps the k data blocks in a stripe.

Examples of erasure coding schemes include Reed-Solomon

codes [26] and Cauchy Reed-Solomon codes [3].

Asynchronous encoding: Erasure-coded data is usually

generated asynchronously in the background (i.e., off the

write path) [12, 17, 27], in which all blocks are first

replicated when being written to a CFS, and the CFS later

transforms the replicas into erasure-coded data. We call the

transformation from replicas to erasure-coded data to be the

encoding operation. The CFS randomly selects a node to

perform the encoding operation for a stripe. The encoding

operation comprises three steps: (i) the node downloads one

replica of each of the k data blocks; (ii) it transforms the

downloaded blocks into n−k parity blocks and uploads the

parity blocks to other nodes; and (iii) it keeps one replica

of each data block and deletes other replicas.

Facebook’s HDFS implementation [11] performs asyn-

chronous encoding via a map-only MapReduce job, in which

multiple map tasks run on different nodes simultaneously,

and each map task performs encoding for a subset of stripes.



Thus, the encoding operation is parallelized at the stripe

level. We provide more implementation details in Section IV.

B. Issues of Random Replication (RR)

We elaborate how RR potentially harms both perfor-

mance and availability of the subsequent encoding opera-

tion. First, encoding may incur a lot of cross-rack traffic.

Facebook’s HDFS computes parity blocks for each stripe

by downloading and encoding a group of k data blocks

from HDFS. However, if the blocks are randomly placed

during replication, the encoding operation may have to

download data blocks from different racks. Second, encoding

may require block relocation to fulfill the fault-tolerance

requirement. For example, Facebook’s HDFS distributes n
blocks of each stripe across n racks to tolerate n − k rack

failures [21] (and we verify this feature in Facebook’s HDFS

implementation [11]). It periodically checks for the stripes

that violate the rack-level fault tolerance requirement (using

the PlacementMonitor module), and relocates the blocks if

needed (using the BlockMover module). We emphasize that

block relocation is rare in production CFSes [21], but if it

happens, it introduces additional cross-rack traffic. It also

leaves a vulnerable period before relocation is completed.

We illustrate the issues of RR via a motivating example.

Consider a CFS with 30 nodes evenly grouped into five racks

(i.e., six nodes per rack). Suppose that the CFS writes four

blocks, denoted by Blocks 1, 2, 3, and 4, with the default

3-way replication. It then encodes the file with (5, 4) erasure

coding, such that the erasure-coded stripe can tolerate a

single-node failure or a single-rack failure. Figure 2(a) shows

a possible replica layout of the four data blocks with RR

and the subsequent encoding operation. To encode the four

data blocks, suppose that a node in Rack 3 is chosen for

performing the encoding operation. The chosen node can

download Blocks 2, 3, and 4 from other nodes within the

same rack, but it needs to download Block 1 from either

Rack 1 or Rack 2 to compute parity block P . We call the

cross-rack transfer of a data block a cross-rack download.

We can check that even if we choose a node in another rack,

we cannot avoid a cross-rack download.

We further show via simple analysis that it is almost

inevitable to have cross-rack downloads in the encoding

operation. Suppose that RR uses 3-way replication and

places the replicas of each data block in two randomly

chosen racks. Thus, the probability that Rack i (1 ≤ i ≤ R)

contains a replica of a particular data block is 2
R . Given that

the replicas of k data blocks to be encoded into a stripe

are placed in the same way, the expected number of data

blocks stored in Rack i is 2×k
R . If we pick a random node

to perform encoding, the expected number of data blocks to

be downloaded from different racks is k − 2×k
R , which is

almost k if R is large.

The same example also shows the availability issue. After

we remove the remaining replicas (i.e., those crossed away
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Figure 2. Encoding of four data blocks under RR and EAR.

in Figure 2(a)), the failure of Rack 2 will result in data

loss. Either Block 2 or Block 4 in Rack 2 needs to be

relocated to Rack 5 to provide single-rack fault tolerance.

Such an availability issue is less likely to occur if R is larger,

because k data blocks are more likely to be scattered across

k different racks, yet it remains possible.

To summarize, this example shows that RR potentially

harms performance (i.e., a data block is downloaded from

a different rack) and availability (i.e., blocks need to be

relocated). The primary reason is that the replica layout of

each data block is independently determined, while the data

blocks are actually related when they are encoded together.

This motivates us to explore a different replica placement

policy that takes into account the subsequent encoding

operation. Figure 2(b) provides insights into the potential

gain of the revised replica placement policy, which we call

encoding-aware replication (EAR). When the CFS writes

the four data blocks with 3-way replication, we always keep

one replica in one of the racks (Rack 3 in this case). Thus, if

we choose a node in Rack 3 to perform encoding, we avoid

any cross-rack download. Also, after encoding, the erasure-

coded stripe provides single-rack fault tolerance without the

need of relocation. We elaborate the design of EAR in

Section III.

III. DESIGN

In this section, we present the design of EAR. EAR

imposes constraints on replica placement, so as to address

both performance and availability issues of the encoding

operation. EAR aims for the following design goals:

• Eliminating cross-rack downloads: The node that is

selected to perform encoding does not need to down-

load data blocks from other racks during the encoding

operation. Note that the node may have to upload parity

blocks to other racks in order to achieve rack-level fault

tolerance.



• Preserving availability: Both node-level and rack-level

fault tolerance requirements are fulfilled after the en-

coding operation, without the need of relocating any

data or parity block.

• Maintaining load balancing: EAR tries to randomly

place replicas as in RR for simplicity and load balanc-

ing [7], subject to the imposed constraints.

A. Eliminating Cross-Rack Downloads

Preliminary design: The reason why cross-rack down-

loads occur is that it is unlikely for a rack to contain at

least one replica of each of the k data blocks of a stripe.

Thus, we present a preliminary design of EAR, which jointly

determines the replica locations of k data blocks of the same

stripe. For each stripe, we ensure that each of the k data

blocks of the stripe must have at least one replica placed on

one of the nodes within a rack, which we call the core rack.

The preliminary EAR works as follows. When a CFS

stores each data block with replication, we ensure that the

first replica is placed in the core rack, while the remaining

replicas are randomly placed in other racks to provide rack-

level fault tolerance as in RR. Once the core rack has stored

k distinct data blocks, the collection of k data blocks is

sealed and becomes eligible for later encoding. When the

encoding operation starts, we first randomly select a node

in the core rack to perform encoding for the stripe. Then

the node can download all k data blocks within its rack, and

there is no cross-rack download. For example, in Figure 2(b),

Rack 3 is the core rack of the stripe, and Blocks 1 to 4 are

all within Rack 3 and can be used for encoding.

In practice, the CFS may issue writes from different nodes

and racks. We do not need to select a dedicated rack for all

stripes as the core rack. Instead, each rack in the CFS can be

viewed as a core rack for a stripe. For each data block to be

written, the rack that stores the first replica will become the

core rack that includes the data block for encoding. When

a rack accumulates k data blocks, the k data blocks can be

sealed for encoding. Thus, there are multiple core racks, each

handling the encoding of a stripe, at a time. On the other

hand, since stripes are encoded independently, our analysis

focuses on a single stripe, and hence a single core rack.

Availability violation: Our preliminary EAR only ensures

that one replica (i.e., the first replica) of each data block

resides in the core rack, but does not consider where the

remaining blocks are placed after the encoding operation

removes the redundant replicas. Thus, block relocation may

be needed after the encoding operation so as to maintain

rack-level fault tolerance. We elaborate the problem via a

simple example. Consider the case where we place three data

blocks via 3-way replication and then encode them using

(4, 3) erasure coding. We also require to tolerate any n−k =
1 rack failure. Suppose that after we place the first replica of

each data block in the core rack using the preliminary EAR,

we place the remaining two replicas in a randomly chosen
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Figure 3. Probability that a stripe violates rack-level fault tolerance.

rack different from the core rack, as in HDFS [28]. Then

the random rack selection for each data block may happen

to choose the same rack, meaning that the three replicas of

each data block are always placed in the same two racks (i.e.,

the core rack and the chosen rack). In this case, regardless

of how we delete redundant replicas, we must have a rack

containing at least two data blocks. If the rack fails, then

the data blocks become unavailable, thereby violating the

single-rack fault tolerance. In this case, block relocation is

necessary after encoding.

As opposed to RR, the preliminary EAR has a smaller

degree of freedom in placing replicas across racks. We argue

via analysis that the preliminary EAR actually has a very

high likelihood of violating rack-level fault tolerance and

hence triggering block relocation. Suppose that we store data

with 3-way replication over a CFS with R racks and later

encode the data with (n, k) erasure coding (where R ≥ n),

such that the first replicas of k data blocks are placed in the

core rack and the second and third replicas are placed in

one of the R − 1 non-core racks. Thus, there are a total of

(R−1)k ways to place the replicas of the k data blocks. We

also require to tolerate n−k rack failures after the encoding

operation as in Facebook [21].

Suppose that the second and third replicas of the k data

blocks span k−1 or k out of R−1 non-core racks (the former

case implies that the replicas of two of the data blocks reside

in the same rack). Then we can ensure that the k data blocks

span at least k racks (including the core rack). After we put

n−k parity blocks in n−k other racks, we can tolerate n−k
rack failures. Otherwise, if the second and third replicas of

the k data blocks span fewer than k − 1 racks, then after

encoding, we cannot tolerate n − k rack failures without

block relocation. Thus, the probability that a stripe violates

rack-level fault tolerance (denoted by f ) is:

f = 1−

(

R−1
k

)

× k! +
(

k
2

)(

R−1
k−1

)

× (k − 1)!

(R− 1)k
. (1)

Figure 3 plots f for different values of k and R using
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Equation (1). Note that k = 10 and k = 12 are chosen by

Facebook [27] and Azure [17], respectively. We see that the

preliminary EAR is highly likely to violate rack-level fault

tolerance (and hence requires block relocation), especially

when the number of racks is small (e.g., 0.97 for k = 12
and R = 16).

B. Preserving Availability

We now extend the preliminary EAR to preserve both

node-level and rack-level fault tolerance after the encoding

operation without the need of block relocation. Specifically,

we configure (n, k) erasure coding to tolerate n − k node

failures by placing n data and parity blocks of a stripe on

different nodes. Also, we configure a parameter c for the

maximum number of blocks of a stripe located in a rack.

Note that this implies that we require R ≥ n
c , so that a

stripe of n blocks can be placed in all R racks. Since a

stripe can tolerate a loss of n−k blocks, the CFS can tolerate

⌊n−k
c ⌋ rack failures. Our (complete) EAR is designed based

on (n, k) and c.
We illustrate the design via an example. We consider a

CFS with eight nodes evenly grouped into four racks (i.e.,

two nodes per rack). We write three data blocks using 3-

way replication, and later encode them with (4, 3) erasure

coding to tolerate a single node failure. We set c = 1, so as

to tolerate ⌊ 4−3
1 ⌋ = 1 rack failure.

We first map the replica locations of data blocks to a

bipartite graph as shown in Figure 4(a), with the vertices

on the left and on the right representing blocks and nodes,

respectively. We partition node vertices into the racks to

which the nodes belong. An edge connecting a block vertex

and a node vertex means that the corresponding block has a

replica placed on the corresponding node. Since each replica

is represented by an edge in the bipartite graph, the replicas

of data blocks that are kept (i.e., not deleted) after encoding

will form a set of edges. If the set is a maximum matching

of the bipartite graph (i.e., every replica is mapped to exactly

one node vertex) and no more than c edges from the set is

linked to vertices in one rack (i.e., each rack has at most

c data blocks), then we fulfill the rack-level fault tolerance

requirement. Later, we deliberately place the parity blocks

on the nodes that maintain rack-level fault tolerance by

S T S T S T
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maxFlow=0 maxFlow=1 maxFlow=2
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Figure 5. Illustration of EAR.

assigning parity blocks to the nodes of other racks that have

fewer than c blocks of the stripe.

To determine if a maximum matching exists, we convert

the problem to a maximum flow problem. We augment the

bipartite graph to a flow graph as shown in Figure 4(b), in

which we add source S, sink T , and the vertices representing

racks. S connects to every block vertex with an edge of

capacity one, meaning that each block keeps one replica

after encoding. Edges in the bipartite graph are mapped to

the edges with capacity one each. Each node vertex connects

to its rack vertex with an edge of capacity one, and each rack

vertex connects to T with an edge of capacity c (c = 1 in

this example), ensuring that each node stores at most one

block and each rack has at most c blocks after the encoding

operation. If and only if the maximum flow of the flow graph

is k, we can find a maximum matching and further determine

the replica placement.

C. Algorithm

Combining the designs in Sections III-A and III-B, we

propose an algorithm for EAR, which systematically places

replicas of data blocks. Its key idea is to randomly place the

replicas as in RR, while satisfying the constraints imposed

by the flow graph. Specifically, for the i-th data block (where

1 ≤ i ≤ k), we place the first replica on one of the nodes

in the core rack, and then randomly place the remaining

replicas on other nodes based on the specified placement

policy. For example, when using 3-way replication, we

follow HDFS [28] and place the second and third replicas on

two different nodes residing in a randomly chosen rack aside

the core rack (which holds the first replica). In addition, we

ensure that the maximum flow of the flow graph is i after

we place all replicas of the i-th data block.

Figure 5 shows how we place the replicas of each data

block for a given stripe. We first construct the flow graph

with the core rack (Step 1). We add the first and second data

blocks and add the corresponding edges in the flow graph

(Steps 2 and 3, respectively). If the maximum flow is smaller



than i (Step 4), we repeatedly generate another layout for

the replicas of the i-th data block until the maximum flow is

i (Step 5). Finally, the maximum matching can be obtained

through the maximum flow (Step 6).

The following theorem quantifies that the expected num-

ber of iterations for generating a qualified replica layout in

Step 5 is generally very small.

Theorem 1. Consider a CFS with R racks, each containing

a sufficiently large number of nodes. Under 3-way repli-

cation, the expected number of iterations (denoted by Ei)

that EAR finds a qualified replica layout for the i-th data

block, such that the maximum flow becomes i, is at most
R−1

R−1−⌊(i−1)/c⌋ , where 1 ≤ i ≤ k.

Proof (Sketch): Suppose that we have found a qualified

replica layout for the (i−1)-th data block, which makes the

maximum flow become i−1. Before finding a replica layout

for the i-th data block (where 1 ≤ i ≤ k), the number of

racks (excluding the core rack) that have stored c blocks (call

them full racks) is at most ⌊(i − 1)/c⌋. If (i) we place the

second and third replicas in the remaining R−1−⌊(i−1)/c⌋
non-full racks and (ii) the nodes that will store the replicas of

the i-th data block have not stored any replica of the previous

i − 1 data blocks, then the maximum flow will increase to

i. Condition (i) holds with probability 1 − ⌊(i−1)/c⌋
R−1 , and

condition (ii) holds with probability almost one if each rack

has a sufficiently large number of nodes. Thus, Ei is at most

[1− ⌊(i−1)/c⌋
R−1 ]−1.

Remarks: Ei increases with i and reaches the maximum

at i = k, but it is generally very small. For example, suppose

that a CFS has R = 20 racks and we set c = 1. Then for

the k-th data block, Ei is at most 1.9 for k = 10 (used by

Facebook [27]) and 2.375 for k = 12 (used by Azure [17]).

D. Discussion

To tolerate any n − k rack failures [21], we must place

n data and parity blocks of the same stripe in n different

racks. One performance issue is that in order to recover a

failed block, a node needs to download k blocks. Although

one block can be downloaded within the same rack, the

other k−1 blocks need to be downloaded from other racks.

This introduces high cross-rack recovery traffic, which is

undesirable [24].

We can reduce the number of racks where a stripe resides

in return for lower cross-rack recovery traffic, by setting

c > 1 to relax the requirement of tolerating n − k rack

failures. Specifically, we randomly pick R′ out of R racks

(where R′ < R) as target racks, such that all data and parity

blocks of every stripe must be placed in the target racks.

To construct a flow graph for EAR, we keep only the edges

from the target racks to the sink, but remove any edges from

other non-target racks to the sink. We run the EAR algorithm

(see Section III-C) and find the maximum matching. Note

that we require R′ ≥ n
c (see Section III-B).

Block RackNode

S T

target
racks

c=3

core
rack

Figure 6. Revised flow graph with target racks.

We elaborate it via an example. Suppose that we encode

three data blocks with (6, 3) erasure coding over a CFS with

R = 6 racks. If we only require single-rack fault tolerance

(i.e., c = n − k = 3), then we can choose R′ = 2 target

racks and construct the flow graph as shown in Figure 6.

Then we can ensure that after encoding, all data and parity

blocks are placed in the target racks.

IV. IMPLEMENTATION

We implement EAR as an extension to Facebook’s HDFS

[11]. In this section, we describe the implementation details.

A. Overview of Erasure Coding in HDFS

The original HDFS architecture [28] comprises a single

NameNode and multiple DataNodes, such that the NameN-

ode stores the metadata (e.g., locations) for HDFS blocks,

while the DataNodes store HDFS blocks. Facebook’s HDFS

implements erasure coding based on a middleware layer

called HDFS-RAID [16], which manages the erasure-coded

blocks on HDFS. On top of HDFS, HDFS-RAID adds

a new node called the RaidNode, which coordinates the

encoding operation. The RaidNode also periodically checks

for any lost or corrupted blocks, and activates recovery for

those blocks. Currently, Facebook’s HDFS supports inter-file

encoding, such that the data blocks of a stripe may belong

to different files.

HDFS-RAID executes encoding through MapReduce [9],

which uses a single JobTracker to coordinate multiple Task-

Trackers on MapReduce processing. To perform encoding,

the RaidNode first obtains metadata from the NameNode

and groups every k data blocks into stripes. It then submits

a map-only MapReduce job (without any reduce task) to

the JobTracker, which assigns multiple map tasks to run on

different TaskTrackers, each of which performs encoding

for a subset of stripes. For each stripe, the responsible

TaskTracker issues reads to k data blocks in parallel from

different DataNodes. Once all k data blocks are received,

the TaskTracker computes the parity blocks and writes them

to HDFS. Currently, we use the Reed-Solomon codes [26]

implemented by HDFS-RAID as our erasure coding scheme.

Finally, the replicas of the data blocks are deleted.



B. Integration

Figure 7 depicts how we modify HDFS to integrate EAR.

Our modifications are minor, and they can be summarized

in three aspects.

Our first modification is that we add the replica placement

algorithm of EAR into the NameNode. EAR returns the

following information: (i) which DataNodes the replicas of

a data block are to be stored, (ii) which data blocks are

encoded into the same stripe in the subsequent encoding

operation, and (iii) which replicas of a data block are to

be deleted after encoding while ensuring rack-level fault

tolerance. We implement a pre-encoding store in the Na-

meNode to keep track of each stripe and the list of data

block identifiers that belong to the stripe.

Our second modification is to modify how the RaidNode

instructs MapReduce to perform encoding of a stripe in the

core rack. To achieve this, we note that the MapReduce

framework provides an interface to specify which preferred

node to run a map task. Specifically, the RaidNode first

obtains the list of data block identifiers for each stripe

from the pre-encoding store. It then queries the NameNode

for the replica locations (in terms of the hostnames of the

DataNodes) of each data block. With the returned locations,

the RaidNode identifies the core rack of each stripe. When

the RaidNode initializes a MapReduce job for encoding, it

ensures that a map task encodes multiple stripes that have

a common core rack. This is done by attaching the map

function with a preferred node, which we choose to be one

of the nodes in the common core rack. In this case, the

JobTracker tries to schedule this map task to run on the

preferred node, or nearby nodes within the core rack, based

on locality optimization of MapReduce [9].

The above modifications still cannot ensure that the en-

coding operation is performed in the core rack, since all

nodes in the core rack may not have enough resources

to execute a map task for encoding and the JobTracker

assigns the map task to a node in another rack. This

leads to cross-rack downloads for the encoding operation.

Thus, our third modification is to modify the MapReduce

framework to include a Boolean flag in a MapReduce job to

differentiate if it is an encoding job. If the flag is true, then

the JobTracker only assigns map tasks to the nodes within

the core rack. Note that this modification does not affect

other non-encoding jobs.

V. EVALUATIONS

In this section, we present evaluation results for EAR. Our

evaluations comprise three parts: (i) testbed experiments,

in which we examine the practical deployment of EAR on

HDFS; (ii) discrete-event simulations, in which we evaluate

EAR in a large-scale setting subject to various parameter

choices, and (iii) load balancing analysis, in which we justify

EAR maintains load balancing as in RR.

NameNode
EAR

Pre-encoding store

JobTracker

map1

rack1

DataNode

TaskTracker

stripe 1: [block list]
stripe 2: [block list]
stripe 3: [block list]
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Figure 7. Integration of EAR into Facebook’s HDFS.

A. Testbed Experiments

We conduct testbed experiments on a 13-machine HDFS

cluster. Each machine has an Intel Core i5-3570 3.40GHz

quad-core CPU, 8GB RAM, and a Seagate ST1000DM003

7200RPM 1TB SATA disk, and runs Ubuntu 12.04. All

machines are interconnected via a 1Gb/s Ethernet switch.

One limitation is that our testbed is of a small scale.

Nevertheless, our testbed experiments provide insights into

how EAR performs in real deployment.

To mimic a CFS architecture as in Figure 1, we configure

each machine to reside in a rack by associating each machine

with a unique rack ID, such that one machine (called the

master) deploys the NameNode, RaidNode, and JobTracker,

and each of the remaining 12 machines (called the slaves)

deploy one DataNode and one TaskTracker. We have val-

idated that the network transfer over the 1Gb/s Ethernet

switch is the bottleneck in our testbed.

We fix the block size as 64MB, the default of HDFS.

Since each rack (machine) has only one DataNode in our

testbed, we use 2-way replication and distribute two replicas

of each data block in two racks (machines), so as to

provide single-rack fault tolerance as in the default HDFS

(see Section II-A). For each encoding job, we configure

the RaidNode to launch 12 map tasks. All our results are

averaged over five runs.

Experiment A.1 (Raw encoding performance): We first

study the raw encoding performance without write requests.

We consider (n, k) erasure coding with n = k+2, where k
ranges from 4 to 10. We write 96×k data blocks (i.e., 24GB

to 60GB of data) to HDFS with either RR or EAR. The

RaidNode then submits an encoding job to encode the data

blocks, and a total of 96 stripes are created. We evaluate

the encoding throughput, defined as the total amount of

data (in MB) to be encoded divided by the encoding time.

Figure 8(a) shows the encoding throughputs of RR and EAR

versus (n, k). The encoding throughputs increase with k for

both RR and EAR, as we generate proportionally fewer

parity blocks. If k increases from 4 to 10, the encoding
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Figure 8. Experiment A.1: Raw encoding performance of encoding 96
stripes. Each bar shows the minimum and maximum values over five runs,
represented by the endpoints of the error bars.

throughput gain of EAR over RR increases from 19.9% to

59.7%, mainly because more data blocks are downloaded

for encoding with a larger k.

We also compare the encoding throughputs of RR and

EAR under different network conditions. We group our 12

slave machines into six pairs. For each pair, one node sends

UDP packets to another node using the Iperf utility [18].

We consider different UDP sending rates, so that a higher

UDP sending rate implies less effective network bandwidth,

or vice versa. We fix (10, 8) erasure coding and re-run the

above write and encoding operations. Figure 8(b) shows

the encoding throughputs of RR and EAR versus the UDP

sending rate. The encoding throughput gain of EAR over

RR increases with the UDP sending rate (i.e., with more

limited network bandwidth). For example, the gain increases

from 57.5% to 119.7% when the UDP sending rate increases

from 0 to 800Mb/s. We expect that if a CFS is severely over-

subscribed [1, 15], the benefits of EAR will be prominent.

Experiment A.2 (Impact of encoding on write perfor-

mance): We now perform encoding while HDFS is serving

write requests. We study the performance impact on both

write and encoding operations. Specifically, we fix (10, 8)
erasure coding. We first write 768 data blocks, which will

later be encoded into 96 stripes. Then we issue a sequence of

write requests, each writing a single 64MB block to HDFS.

The arrivals of write requests follow a Poisson distribution

with rate 0.5 requests/s. To repeat our test for five runs, we

record the start time of each write request in the first run,

and regenerate the write requests at the same start times in

the following four runs. After we generate write requests

for 30s, we start the encoding operation for the 96 stripes.

We measure the response time of each write request and the

total encoding time.

Figure 9 plots the response times of the write requests

for both RR and EAR. Initially, when no encoding job

is running (i.e., before the time 30s), both RR and EAR

have similar write response times at around 1.4s. When

the encoding operation is running, EAR reduces the write
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Figure 9. Experiment A.2: Impact of encoding on write performance under
RR and EAR. The horizontal lines represent the average write response
time during encoding and the duration of the whole encoding operation.
For brevity, each data point represents the averaged write response time of
three consecutive write requests.

response time by 12.4% and the overall encoding time

by 31.6% when compared to RR. This shows that EAR

improves both write and encoding performance.

Experiment A.3 (Impact of EAR on MapReduce): We

study how EAR influences the performance of MapReduce

jobs before encoding starts. We use SWIM [30], a MapRe-

duce workload replay tool, to generate synthetic workloads

of 50 MapReduce jobs derived from a trace of a 600-node

Facebook production CFS in 2009. The generated workloads

specify the input, shuffle, and output data sizes of each

MapReduce job. Based on the workloads, we first write

the input data to HDFS using either RR or EAR. Then

we run MapReduce jobs on the input data, and write any

output data back to HDFS, again using either RR or EAR.

We configure each TaskTracker to run at most four map

tasks simultaneously. We measure the runtime of the whole

job, which includes a combination of reading and processing

input data from HDFS, shuffling data, and outputting final

results to HDFS.

Figure 10 shows the number of completed jobs versus

the elapsed time under either RR or EAR. We observe

very similar performance trends between RR and EAR.

This shows that EAR preserves MapReduce performance

on replicated data as RR.

B. Discrete-Event Simulations

We complement our testbed experiments by comparing

RR and EAR via discrete-event simulations in a large-scale

CFS architecture. We implement a C++-based discrete-event

CFS simulator using CSIM 20 [8]. Figure 11 shows our sim-

ulator design. The PlacementManager module decides how

to distribute replicas across nodes under RR or EAR during

replication and how to distribute data and parity blocks in

the encoding operation. The Topology module simulates the



0

10

20

30

40

50

0 1000 2000 3000

Time (s)

N
u

m
b

e
r 

o
f 

c
o

m
p

le
te

d
 j
o

b
s RR

EAR

Figure 10. Experiment A.3: Impact of EAR on MapReduce performance.
We observe similar performance trends between EAR and RR.
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Figure 11. Simulator overview.

CFS topology and manages both cross-rack and intra-rack

link resources. To complete a data transmission request,

the Topology module holds the corresponding resources for

some duration of the request subject to the specified link

bandwidth. We assume that a CFS topology only contains

nodes that store data (e.g., DataNodes of HDFS) and ex-

cludes the node that stores metadata (e.g., the NameNode

of HDFS), as the latter only involves a small amount of

data exchanges. The TrafficManager module generates three

traffic streams: write, encoding, and background traffic, and

feeds the streams simultaneously to the Topology module.

We simulate the write, encoding, and background traffic

streams as follows. We first assign a node to perform each

of the requests. For each write request, it receives replica

placement decisions from the PlacementManager module

and performs replication based on either RR or EAR. For

each encoding request, it first obtains the replica locations

of the data blocks for the stripe under RR or EAR from

the PlacementManager module. It then downloads the data

blocks and uploads the parity blocks. For each background

request, it transmits a certain amount of data to another node,

either in the same rack or a different rack.

Experiment B.1 (Simulator validation): We first val-

idate that our simulator can accurately simulate the per-

formance of both RR and EAR. We simulate our testbed

RR EAR
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Figure 12. Experiment B.1: Simulator validation.

Table I
EXPERIMENT B.1: VALIDATION OF WRITE RESPONSE TIMES.

RR EAR
Time (in seconds) testbed simulation testbed simulation

Without encoding 1.43 1.40 1.42 1.40

With encoding 2.45 2.35 2.13 2.04

with the same topology (12 racks with one DataNode each)

and the same link bandwidth (1Gb/s Ethernet). Using the

simulator, we replay the write and encode streams using the

same setting as in Experiment A.2, such that we encode

96 stripes with (10, 8) erasure coding after we issue write

requests for 30s. We obtain the averaged simulation results

from 30 runs with different random seeds and compare with

the results of the testbed experiments. Figure 12 shows the

cumulative number of encoded stripes versus the elapsed

time from the start of the encoding operations for both

testbed experiments and simulations. We observe that the

simulator precisely captures the encoding performance under

both RR and EAR.

Table I also shows the averaged write response times

in both testbed experiments and discrete-event simulations

when the write requests are carried out with and without

encoding in the background. We find that in all cases we

consider, the response time differences between the testbed

experiments and discrete-event simulations are less than

4.3%. Thus, our simulator also precisely captures write

performance.

Experiment B.2 (Impact of parameter choices): We

evaluate RR and EAR with our simulator in a large-scale

setting. We consider a CFS composed of R = 20 racks

with 20 nodes each, such that nodes in the same rack are

connected via a 1Gb/s top-of-rack switch, and all top-of-

rack switches are connected via a 1Gb/s network core. We

configure the CFS to store data with 3-way replication,

where the replicas are stored in two racks. The CFS then

encodes the data with (n, k) = (14, 10) erasure coding that

can tolerate 4-node or 4-rack failures, as in Facebook [21].

Although RR may require block relocation after encoding

to preserve availability, we do not consider this operation, so
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Figure 13. Experiment B.2: Impact of parameter choices on encoding and write performance under EAR and RR. Each plot denotes the normalized
throughput of EAR over RR.

the simulated performance of RR is actually over-estimated.

We create 20 encoding processes, each of which encodes

50 stripes. We also issue write and background traffic

requests, both of which follow a Poisson distribution with

rate 1 request/s. Each write request writes one 64MB block,

while each background traffic request generates an exponen-

tially distributed size of data with mean 64MB. We set the

ratio of cross-rack to intra-rack background traffic as 1:1.

We consider different parameter configurations. For each

configuration, we vary one parameter, and obtain the per-

formance over 30 runs with different random seeds. We

normalize the average throughput results of EAR over that

of RR for both encoding and write operations, both of which

are carried out simultaneously. We present the results in

boxplots and show the minimum, lower quartile, median,

upper quartile, maximum, and any outlier over 30 runs.

Figure 13(a) first shows the results versus k, while we fix

n − k = 4. A larger k implies less encoding redundancy.

It also means that the cross-rack downloads of data blocks

for encoding become more dominant in RR, so EAR brings

more performance gains. For example, when k = 12, the

encoding and write throughput gains of EAR over RR are

78.7% and 36.8%, respectively.

Figure 13(b) shows the results versus n − k, while we

fix k = 10. A larger n − k means more data redundancy

(i.e., parity blocks). On one hand, since the effective link

bandwidth drops, EAR brings improvements by reducing

cross-rack traffic. On the other hand, the gain of EAR over

RR is offset since both schemes need to write additional

parity blocks. The encoding throughput gain of EAR over

RR remains fairly stable at around 70%, yet the write

throughput gain of EAR over RR drops from 33.9% to

14.1%.

Figure 13(c) shows the results versus the link bandwidth

of all top-of-rack switches and network core. When the

link bandwidth is more limited, EAR shows higher perfor-

mance gains. The encoding throughput gain of EAR reaches

165.2% when the link bandwidth is only 0.2Gb/s. Note that

the encoding performance trend versus the link bandwidth

is consistent with that of Experiment A.1 obtained from

our testbed. The write throughput gain of EAR remains at

around 20%.

Figure 13(d) shows results versus the arrival rate of write

requests. A larger arrival rate implies less effective link

bandwidth. The encoding throughput gain of EAR over RR

increases to 89.1% when the write request rate grows to

4 requests/s, while the write throughput gain is between 25%

and 28%.

Recall that EAR can vary the rack-level fault tolerance by

the parameter c (see Section III-B). Here, we keep RR to

still provide tolerance against n− k rack failures, while we

vary the rack fault tolerance of EAR. Figure 13(e) shows

the throughput results versus the number of rack failures

tolerated in EAR. By tolerating fewer rack failures, EAR can
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keep more data/parity blocks in one rack, so it can further

reduce cross-rack traffic. The encoding and write throughput

gains of EAR over RR increase from 70.1% to 82.1% and

from 26.3% to 48.3%, respectively, when we reduce the

number of tolerable rack failures of EAR from four to one.

Finally, Figure 13(f) shows the throughput results versus

the number of replicas per data block. Here, we assume

that each replica is placed in a different rack, as opposed

to the default case where we put three replicas in two

different racks. Writing more replicas implies less effective

link bandwidth, but the gain of EAR is offset since RR now

downloads less data for encoding. The encoding throughput

gain of EAR over RR is around 70%, while the write

throughput gain decreases from 34.7% to 20.5% when the

number of replicas increases from two to eight.

C. Load Balancing Analysis

One major advantage of RR is that by distributing data

over a uniformly random set of nodes, the CFS achieves

both storage and read load balancing [7]. We now show

via Monte Carlo simulations that although EAR adds extra

restrictions to the random replica placement, it still achieves

a very similar degree of load balancing to RR. In particular,

we focus on rack-level load balancing, and examine how the

replicas are distributed across racks. We consider the replica

placement for a number of blocks on a CFS composed of

R = 20 racks with 20 nodes each. We use 3-way replication,

and the replicas are distributed across two racks as in HDFS

[28]. For EAR, we choose (14, 10) erasure coding. We

obtain the averaged results over 1,000 runs.

Experiment C.1 (Storage load balancing): We first ex-

amine the distribution of replicas across racks. We generate

the replicas for 1,000 blocks and distribute them under RR

or EAR. We then count the number of replicas stored in

each rack. Figure 14 shows the proportions of replicas of

RR and EAR in each rack (sorted in descending order of

proportions). We observe that both RR and EAR have very

similar distributions, such that the proportions of blocks

stored in each rack are 4.1∼5.9% for both RR and EAR.

Experiment C.2 (Read load balancing): We also exam-

ine the distribution of read requests across racks. Suppose

that the data blocks in File F are equally likely to be read,

and the read requests to a data block are equally likely to

be directed to one of the racks that contain a replica of the

block. We define a hotness index H = max1≤i≤20(L(i)),
where L(i) denotes the proportion of read requests to Rack i,
where 1 ≤ i ≤ 20. Intuitively, we want H to be small to

avoid hot spots. Figure 15 shows H versus the file size,

which we vary from 10 to 10,000 blocks. Both RR and

EAR have almost identical H .

VI. RELATED WORK

Erasure coding in CFSes: Researchers have extensively

studied the applicability of deploying erasure coding in

CFSes. Fan et al. [12] augments HDFS with asynchronous

encoding to significantly reduce storage overhead. Zhang et

al. [32] propose to apply erasure coding on the write path

of HDFS, and study the performance impact on various

MapReduce workloads. Li et al. [20] deploy regenerating

codes [10] on HDFS to enable multiple-node failure re-

covery with minimum bandwidth. Silberstein et al. [29]

propose lazy recovery for erasure-coded storage to reduce

bandwidth due to frequent recovery executions. Li et al. [19]

improve MapReduce performance on erasure-coded storage

by scheduling degraded-read map tasks carefully to avoid

bandwidth competition. Enterprises have also deployed era-

sure coding in production CFSes to reduce storage overhead,

with reputable examples including Google [13], Azure [17],

and Facebook [21, 27].

Some studies propose new erasure code constructions and

evaluate their applicability in CFSes. Local repairable codes

are a new family of erasure codes that reduce I/O during

recovery while limiting the number of surviving nodes to

be accessed. Due to the design simplicity, variants of local

repairable codes have been proposed and evaluated based on

an HDFS simulator [23], Azure [17], and Facebook [27].

Piggybacked-RS codes [24, 25] embed parity information

of one Reed-Solomon-coded stripe into that of the follow-

ing stripe, and provably reduce recovery bandwidth while

maintaining the storage efficiency of Reed-Solomon codes.

Note that Piggybacked-RS codes have also been evaluated

in Facebook’s clusters. Facebook’s f4 [21] protects failures

at different levels including disks, nodes, and racks, by com-

bining Reed-Solomon-coded stripes to create an additional

XOR-coded stripe.

The above studies (except the work [32]) often assume

asynchronous encoding, and focus on improving the appli-

cability of erasure coding after the replicated data has been

encoded. Our work complements these studies by examin-

ing the performance and availability of the asynchronous

encoding operation itself.

Replica placement in CFSes: Replica placement plays

a critical role in both performance and reliability of CFSes.

By constraining the placement of block replicas to smaller

groups of nodes, the block loss probability can be reduced



with multiple node failures [4, 7]. Scarlett [2] alleviates

hotspots by carefully storing replicas based on workload

patterns. Sinbad [6] identifies the variance of link capacities

in a CFS and improves write performance by avoiding

storing replicas on nodes with congested links. The above

studies mainly focus on replication-based storage, while

our work focuses on how replica placement affects the

performance and reliability of asynchronous encoding.

VII. CONCLUSIONS

Given the importance of deploying erasure coding in

cluster file systems (CFSes) to reduce storage footprints, this

paper studies the problem of encoding replicated data with

erasure coding in CFSes. We argue that random replication

(RR) brings both performance and availability issues to the

subsequent encoding operation. We thus present encoding-

aware replication (EAR) to take into account erasure coding.

EAR imposes constraints to the replica layout so as to

eliminate both cross-rack downloads and block relocation,

while attempting to place the replicas as uniformly random

as possible. We implement EAR on Facebook’s HDFS

and show its feasibility in real deployment. We conduct

extensive evaluations using testbed experiments, discrete-

event simulations, and load balancing analysis, and show that

EAR achieves throughput gains of both write and encoding

operations, while preserving the even replica distribution,

when compared to RR. In future work, we plan to study

the scenarios with heterogeneous workloads and hardware

resources. The source code of our EAR implementation is

available at http://ansrlab.cse.cuhk.edu.hk/software/ear.
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