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Abstract—Modern distributed storage systems provide large-
scale, fault-tolerant data storage. To reduce the probability of
data unavailability, it is important to recover the lost data of
any failed storage node efficiently. In practice, storage nodes
are of heterogeneous types and have different transmission
bandwidths. Thus, traditional recovery solutions that simply
minimize the number of data blocks being read may no longer
be optimal in a heterogeneous environment. We propose a
cost-based heterogeneous recovery (CHR) algorithm for RAID-
6-coded storage systems. We formulate the recovery problem
as an optimization model in which storage nodes are associated
with generic costs. We narrow down the solution space of the
model to make it practically tractable, while still achieving the
global optimal solution in most cases. We implement different
recovery algorithms and conduct testbed experiments on a real
networked storage system with heterogeneous storage devices.
We show that our CHR algorithm reduces the total recovery
time of existing recovery solutions in various scenarios.

Keywords-distributed storage system, RAID-6 codes, node
heterogeneity, failure recovery, experimentation

I. INTRODUCTION

Distributed storage systems provide a scalable platform

for storing massive data over multiple storage nodes, each

of which could be a physical storage server or network drive.

They have seen deployment in cloud storage (e.g., GFS

[8] and Dynamo [6]) and peer-to-peer backup storage (e.g.,

Wuala [26]). Since node failures are common [8], a storage

system ensures data availability typically by introducing

redundancy to data storage, for example, via replication

(e.g., in [6, 8]) or erasure coding (e.g., in [3, 15]). In

addition, to maintain the overall system reliability, it is

critical to recover node failures, i.e., to retrieve data from

existing surviving nodes and reconstruct the lost data in new

storage nodes. A key question is how to achieve efficient

recovery from node failures in distributed storage systems.

Different metrics can be used to measure the efficiency of

a recovery scheme. Since single-node failures are more often

than concurrent multi-node failures, prior studies mainly

focus on the recovery of a single-node failure. One metric of

efficient single-node failure recovery is to minimize the num-

ber of data blocks being read specifically for XOR-based

erasure codes (e.g., RDP [5], EVENODD [4], etc.), in which

encoding is based on XOR operations only. Prior studies

propose optimal recovery solutions for existing XOR-based

erasure codes RDP [27] and EVENODD [24], as well as

arbitrary XOR-based erasure codes [13].

On the other hand, extending the recovery solutions for

XOR-based erasure-coded storage systems to a heteroge-

neous environment remains an open problem. It is natural

for a storage system to be composed of heterogeneous types

of storage nodes, for example, due to system upgrades or

new node additions. In this case, the storage nodes within the

same system may have different capabilities. In a networked

setting, it is common that the transmission links that connect

different storage nodes may not receive the same bandwidth

and latency [18]. It is intuitive to retrieve fewer (or more)

data blocks from the surviving storage nodes with lower

(or higher) transmission bandwidths. Thus, existing recovery

solutions [13, 24, 27] that are based on minimizing the

number of data blocks being read may no longer provide an

efficient recovery solution for a heterogeneous environment.

The key motivation of this work is to define a new metric

of efficient recovery and develop the corresponding recovery

solution for XOR-based erasure coded storage systems, such

that the metric accounts for general distributed settings. It

is crucial that the number of blocks and which blocks to

be fetched from the surviving storage nodes must follow the

inherent rules of the specific coding scheme so as to recover

the failed node successfully.

The contributions of this paper are three-fold. First, we

formulate an optimization model that minimizes the to-

tal recovery cost of a single-node failure in a distributed

storage system with heterogeneous types of storage nodes.

Specifically, we focus on two RAID-6 codes: RDP [5] and

EVENODD [4], both of which tolerate two node failures

and have seen efficient single-node failure recovery solutions

(see [27, 24], respectively). Our main idea is to associate

each storage node with a cost component that quantifies the

overhead of downloading per unit of data from the storage

node, such that the cost component is generic and can be

defined differently according to the deployment scenario.

Second, we propose a simplified model that significantly

reduces the number of feasible solutions being traversed.

This enables us to solve the simplified model in a com-

putationally efficient manner, which is important for the



online recovery scenarios where the costs (e.g., transmission

latencies) of storage nodes need to be determined in an

on-demand fashion so as to accurately reflect the current

network conditions. To this end, we propose a cost-based

heterogeneous recovery (CHR) algorithm to solve for the

optimal solution under the simplified model. We emphasize

that the CHR algorithm addresses node heterogeneity, while

maintaining the correctness of the failed node recovery.

We show via simulations that our CHR algorithm achieves

the global optimal solution in most cases. Also, it reduces

the recovery costs of the conventional recovery approach

(which recovers each lost data block of the failed node

independently) and the hybrid recovery approach [27] by up

to 50% and 30%, respectively, in a heterogeneous setting.

Third, to show that our CHR algorithm can be feasibly

deployed in practice, we conduct testbed experiments on a

networked storage system [12] with heterogeneous storage

devices. As opposed to disk-based simulations [27], we

evaluate the performance of actual read/write operations

via real storage nodes during recovery. Our experimental

results validate the improvement of our CHR algorithm. For

example, compared to the conventional recovery approach

for RDP, the existing hybrid approach [27] reduces the total

recovery time by up to 20.78%, while our CHR algorithm

further reduces the total recovery time by up to 31.19%.

The remainder of the paper proceeds as follows. Section II

overviews existing recovery solutions for coded storage sys-

tems. Section III formulates our cost-based heterogeneous

recovery model and presents the algorithm and its simula-

tion analysis. Section IV presents the testbed experimental

results. Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Definitions

We consider a storage system with n physical storage

nodes (or disks). We partition the storage system into fixed-

size stripes, each of which is a two-dimensional array with

a fixed number of rows and n columns. Each column

corresponds to a unique storage node. Each stripe stores

a fixed number of symbols. A symbol refers to a fixed-size

block (or chunk) in a practical storage system. There are

two types of symbols: (i) data symbols, which hold the

original data, and (ii) parity symbols (or simply parities),

which encode the data symbols with the same stripe. A

parity set is a set of symbols containing a parity and the

corresponding data symbols encoded to form the parity.

B. RAID-6 Codes: RDP and EVENODD

Our work focuses on RAID-6 codes, which are erasure

codes that can tolerate any double-node failures. That is,

any n − 2 surviving nodes can be used to recover the

original data. There are many implementations of RAID-

6 codes. Here, we consider two of them: RDP [5] and

EVENODD [4]. They are all XOR-based erasure codes, such
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Figure 1. A stripe of RDP with p = 7.

that all parities are encoded from data symbols based on

XOR operations only. We specifically consider RDP and

EVENODD because they have the corresponding single-

node failure recovery solutions that minimize the number

of symbols being read per stripe (see [27, 24], respectively).

We will elaborate the single-node failure recovery problem

in Section II-C.

RDP [5] is one of the most important double-fault tolerant

RAID-6 codes. Its variant has seen deployment in commer-

cial applications [19]. Its encoding takes a (p− 1)× (p+1)
stripe (i.e., two-dimensional array), where p is a prime

number greater than 2. The first p− 1 columns in the array

store data symbols, while the last two store parities. It is

proven that RDP achieves optimality both in computations

and I/Os [5]. Figure 1 shows how RDP encoding works

for p = 7, where di,j is the i-th symbol in column j.

Node 6 contains all row parities, while Node 7 contains

all the diagonal parities. For example, let ⊕ denote the

bitwise-XOR operator. Then the row parity d0,6 = d0,0 ⊕
d0,1 ⊕ d0,2 ⊕ d0,3 ⊕ d0,4 ⊕ d0,5, and the diagonal parity

d0,7 = d0,0 ⊕ d5,2 ⊕ d4,3 ⊕ d3,4 ⊕ d2,5 ⊕ d1,6. It is easy

to verify that each data symbol belongs to exactly one row

parity set and one diagonal parity set [5].

EVENODD [4] is a predecessor of RDP. Its encoding takes

a (p−1)×(p+2) stripe, such that the first p columns store the

data symbols and the last two store parities. In EVENODD,

one parity node stores row parities and another parity node

stores diagonal parities, as in RDP. The only difference is

that EVENODD generally involves more XOR computations

than RDP in constructing parities.

C. Recovery of Single Node Failure

Since node failures are common in distributed storage

systems [8], recovering any node failures becomes crucial

to maintain the overall system reliability. In general, single-

node failures occur more frequently than concurrent multi-

node failures. To improve recovery performance, one funda-

mental requirement is to minimize the number of symbol

reads required for recovering a single-node failure. This

also corresponds to minimizing the amount of data being

transferred among storage nodes in a distributed/networked
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Figure 2. Two recovery approaches for RDP with p = 7.

storage system, in which network transmission bandwidth

can limit the recovery performance.

Here, we use RDP as an example to illustrate two recovery

approaches. To recover a single-node failure, the conven-

tional recovery approach is to recover each lost symbol in the

failed node independently [4, 5]. For example, Figure 2(a)

shows the conventional recovery approach when Node 0 fails

in RDP with p = 7 (i.e., 8 nodes). Each lost symbol in

Node 0 can be independently recovered by the corresponding

symbols in Nodes 1-6 in the same row. Thus, the total

number of symbol reads is 36. Another recovery approach is

called the hybrid recovery approach [27], whose main idea is

to read the symbols in a combination of rows and diagonals

that share the most common symbols. Figure 2(b) shows one

possible solution of the hybrid recovery approach. Some read

symbols can be used to recover more than one lost symbol.

The total number of symbols read for repairing Node 0

is reduced to 27 (i.e., by 25%), which is the minimum.

Note that [27] also extends the hybrid recovery approach

to balance the number of symbols being read among the

surviving nodes.

The key idea of the hybrid recovery approach is to

maximize the number of shared common symbols being read

from the surviving nodes. The hybrid recovery approach

proposed in [27] also applies to the optimal single-node

failure recovery in EVENODD as studied by [24].

Note that the hybrid recovery approach only addresses

the recovery of data symbols rather than parity symbols. As

shown in [27], each parity symbol needs to be recovered

from all of its encoding original data symbols. Thus, by a

single-node failure, we only assume the failure of a data

node that stores data symbols.

D. Related Work

We now review related work on the failure recovery in

distributed storage systems.

XOR-based erasure codes. In this work, we focus on

XOR-based erasure codes, where the encoding/decoding

operations are based on XOR operations. We assume that

during recovery, there is a centralized controller that reads

the required symbols from surviving nodes and reconstructs

the lost symbols in the new node, thereby making the

deployment feasible. For XOR-based RAID-6 codes, Xiang

et al. [27] and Wang et al. [24] show the optimal single-

node failure recovery solutions for RDP and EVENODD,

respectively. Wu et al. [25] describe an efficient failure

recovery approach for a new RAID-6 code that has the I/O

load-balancing property. For arbitrary XOR-based erasure

codes that can tolerate a general number of failures, Khan

et al. [13] propose an exhaustive approach for the single-

node failure recovery, while Zhu et al. [28] propose a greedy

heuristic to speed up the search for an efficient recovery

solution. However, existing recovery approaches for XOR-

based erasure codes focus on minimizing the number of

symbols being read from surviving nodes, but do not con-

sider the heterogeneity among storage nodes. Greenan et al.

[9] discuss the reliability of XOR-based erasure codes on

heterogeneous devices. They mainly focus on the placement

of data given the reliability costs of storage nodes, but do

not address the failure recovery problem. To our knowledge,

this is the first work that explicitly seeks to optimize failure

recovery for XOR-based erasure codes under heterogeneous

settings.

Regenerating codes. The recovery problem in distributed

storage system was first discussed in [7], in which a class

of codes called regenerating codes has been proposed to

achieve an optimal tradeoff between the amount of storage

space required for storing redundancy and the amount of

data traffic being transferred during the recovery process.

There are constructions of regenerating codes (e.g., [21, 23]).

Existing studies on regenerating codes mainly assume that

the same amount of data is retrieved from each surviving

node. However, in practical distributed storage systems,

the underlying networked environment may have different

transmission bandwidths and topologies. Thus, each storage

node will have different communication costs, leading to

different optimal recovery solutions.

Based on regenerating codes, Li et al. [18] study the

influence of network topologies on the recovery performance

and proposes a tree-structured data regeneration scheme to

reduce the communication overhead through exploiting the

heterogeneity in node bandwidths. Li et al. [17] propose a

pipelined regeneration approach that involves fewer surviv-

ing nodes during regeneration.

Regenerating codes (e.g., [7, 23]) typically require storage

nodes to be programmed with encoding capabilities so as

to generate encoded symbols on-the-fly during recovery.

This may complicate the deployment of a distributed storage

system in practice.

III. COST-BASED HETEROGENEOUS RECOVERY

In this section, we formulate the single-node failure

recovery problem via an optimization model that accounts

for node heterogeneity in a practical storage environment.

We argue that the formulated optimization model has a very



large solution space, making the model difficult to solve in

general. Thus, we propose an efficient cost-based hetero-

geneous recovery (CHR) algorithm to solve the problem,

and show via simulations that CHR can provide optimal

solutions in most cases.

To simplify our discussion, we focus on a storage system

based on RDP. We also show how our analysis can be

generalized for EVENODD.

A. Model Formulation

We consider an RDP-based distributed storage system

with p > 2. According to RDP, the storage system has

p + 1 nodes, denoted by V0, V1, . . . , Vp. Without loss of

generality, we let nodes Vp−1 and Vp store the row and

diagonal parities, respectively. Let Vk be the failed (data)

node, where 0 ≤ k ≤ p−2 (note that we focus on recovering

a failed data node only as discussed in Section II-C). Our

goal is to recover all lost symbols of Vk. Suppose that the

recovery operation reads yi symbols from node Vi (i 6= k)

per stripe. We associate a weight wi with node Vi, where wi

denotes the cost of reading one symbol from node Vi. Our

objective is to minimize the total recovery cost C, defined

as the sum of the costs of reading the symbols from all

surviving nodes (i.e., all nodes except Vk) per stripe. We

can formulate an optimization problem as follows:

Minimize C =
p
∑

i=0,i6=k

wiyi,

subject to the recovery condition that the lost symbols of Vk

per stripe can be recovered from the read symbols. Note that

different coding schemes have different recovery conditions.

For example, to satisfy the recovery condition in RDP, it is

necessary that (i)
∑

i6=k yi ≥
3(p−1)2

4 and (ii) p−1
2 ≤ yi ≤

p− 1 for all i 6= k [27]. We emphasize that satisfying only

these two necessary conditions does not suffice to recover a

failed node in RDP.

In general, the total recovery cost C can refer to different

physical meanings, depending on how weight wi is defined.

We show several examples of different interpretations of C.

• If wi = 1 for all i, then C represents the total num-

ber of symbols being read from surviving nodes, and

the optimization problem is reduced to the traditional

homogeneous setting that can be solved by hybrid

recovery [27].

• If wi denotes the inverse of the transmission bandwidth

of node Vi, then C represents the total amount of

transmission time to download the symbols from all

surviving nodes (assuming that each storage node is

accessed one-by-one).

• Many companies now outsource data storage to cloud

storage providers (e.g., Amazon S3 and Windows

Azure). To protect against cloud failures and avoid

vendor lock-ins, cloud clients may stripe data across

multiple cloud providers using erasure codes (e.g., in

[1, 2]) or regenerating codes (e.g., in [11]). We can

model wi as the monetary cost of migrating per unit of

data outbound from node Vi, which refers to a cloud

storage provider. Then C represents the total monetary

cost of migrating data from surviving nodes (or clouds).

Note that the weight information can be specified during

the system setup or obtained by probing the performance of

storage nodes from time to time. Note that in the latter case,

it is crucial that the optimization model is solved timely;

otherwise, the weight information may become outdated and

no longer accurate. This motivates us to look into an efficient

scheme to solve the optimization model, as discussed below.

B. Solving the Model

Given the optimization model, we propose several sim-

plification strategies to make the model tractable. Such

strategies lay the foundations of constructing our CHR

algorithm (see Section III-C).

Reformulating a simplified model. First we need to

determine a download distribution for which there ex-

ists a recovery strategy that can recover the failed

node successfully. Then given a download distribution

{y0, · · · yk−1, yk+1, · · · , yp}, it is necessary to determine

what exactly the symbols need to be retrieved. Here, we

reformulate the model based on recovery sequences [27]. A

recovery sequence {x0, x1, · · · , xp−2, xp−1} specifies how

each lost symbol (along the column) of a failed node Vk

is recovered, such that xi = 0 if di,k (the i-th symbol of

Vk) is recovered from the row parity sets, and xi = 1 if

di,k is recovered from the diagonal parity sets. Note that

dp−1,k lies in an imaginary row and is always recovered

from its row parity set, meaning that xp−1 = 0 for any

feasible recovery sequence. We point out that we include an

imaginary row into a recovery sequence so that we can easily

operate on a recovery sequence (see our Lemmas in the

following discussion). For example, referring to Figure 2, the

recovery sequences for the conventional and hybrid recovery

approaches for Node 0 are {0000000} and {1110000},

respectively. Since each lost symbol can be recovered from

either the row or diagonal parity sets, a recovery sequence

provides a feasible solution of single-node failure recovery.

The download distribution {y0, · · · yk−1, yk+1, · · · , yp}
and which symbols to be fetched can both be determined

by the corresponding recovery sequence. As proven in [27],

for a given recovery sequence {xi}0≤i≤p−1, the number of

symbols being read from node Vj for any j 6= k is given

by:

yj = (p− 1)− (

p−1
∑

i=0

xi −

p−1
∑

i=0

xix〈i+j−k〉p), (1)

where 〈i+ j − k〉p denotes (i+ j − k) modulo p.

We note that there are 2p−1 feasible recovery sequences

(note that xp−1 = 0). Instead of enumerating all feasible

recovery sequences, we assume that we narrow down our



search space by only considering the recovery sequences

that issue the minimum number of symbols being read for

recovery as returned by the hybrid recovery approach [27]

(we call such recovery sequences to be min-read recovery

sequences). In Section III-E, we show that with a very high

probability, one of the min-read recovery sequences is the

optimal solution that minimizes the total recovery cost.

By considering only the min-read recovery sequences, it

is shown in [27] that exactly (p−1)/2 symbols in the failed

node Vk will be recovered from the diagonal parity sets.

This implies that
∑p−1

i=0 xi = (p− 1)/2. Thus, Equation (1)

becomes:

yj = (p− 1)/2 +

p−1
∑

i=0

xix〈i+j−k〉p . (2)

By summing the weighted version of Equation (2), the

total recovery cost C is given by:

∑

j 6=k

wjyj =
∑

j 6=k

((p− 1)/2 +

p−1
∑

i=0

xix〈i+j−k〉p)wj

=
p− 1

2

∑

j 6=k

wj +
∑

j 6=k

p−1
∑

i=0

xix〈i+j−k〉pwj .

(3)

As p−1
2

∑

j 6=k wj is a constant value, we only need

to minimize the second term of Equation (3). Thus, we

reformulate the model as follows:

Minimize
∑

j 6=k

p−1
∑

i=0

xix〈i+j−k〉pwj

subject to

p−1
∑

i=0

xi = (p− 1)/2,

xi ∈ {0, 1} for i = 0, 1, · · · , p− 2,

xp−1 = 0.

(4)

Traversing unique recovery sequences. We have assumed

that we only consider the min-read recovery sequences.

However, there are still a large number of min-read recovery

sequences, since the number of min-read recovery sequences

is
(

p−1
(p−1)/2

)

(i.e., for the set of xi’s where i = 0, 1, · · · , p−2,

we set (p − 1)/2 of them to be 1). For example, when

p = 29, there are 40,116,600 min-read recovery sequences.

As a result, enumerating all min-read recovery sequences for

the minimum total recovery cost remains computationally

expensive.

Our key observation is that many min-read recov-

ery sequences return the same download distribution

{y0, · · · yk−1, yk+1, · · · , yp}. For example, referring to the

RDP case in Figure 2, we can verify that the two min-

read recovery sequence {1110000} and {0111000} have the

same download distribution {y0, · · · yk−1, yk+1, · · · , yp} =

{5, 4, 3, 3, 4, 5, 3}. Thus, our goal is to traverse only

the unique min-read recovery sequences that give distinct

download distributions.

To find the number of unique min-read recovery se-

quences, we enumerate all min-read recovery sequences

and determine their corresponding download distributions.

Table I shows the results. We can see that the number of

the unique min-read recovery sequences is significantly less

than that of the min-read recovery sequences.

Table I
ENUMERATION RESULTS FOR RECOVERY IN RDP.

p Total # of # of min-read # of unique min-read
recovery recovery recovery

sequences sequences sequences

5 16 6 2

7 64 20 4

11 1024 252 26

13 4096 924 74

17 65536 12870 698

19 262144 48620 2338

23 4194304 705432 28216

29 268435456 40116600 1302688

To help us identify the unique min-read recovery se-

quences, we propose two lemmas that show the conditions

under which two recovery sequences have the same down-

load distribution.

Lemma 1: (Shift condition). Given a recovery sequence

{xi}0≤i≤p−1, let {x′
i}0≤i≤p−1 = {x〈i+r〉p}0≤i≤p−1 for any

r (0 ≤ r ≤ p− 1). In other words, {x′
i}0≤i≤p−1 is a shifted

recovery sequence of {xi}0≤i≤p−1. Then:

1. If x′
p−1 = 1, then {x′

i}0≤i≤p−1 is not a feasible

recovery sequence.

2. If x′
p−1 = 0, then both {x′

i}0≤i≤p−1 and {xi}0≤i≤p−1

have the same download distribution.

Proof. We require that x′
p−1 = 0 as the lost symbol in the

last (imaginary) row must be recovered from row parity.

Therefore, if x′
p−1 = 1, {x′

i}0≤i≤p−1 is not feasible.

Suppose that x′
p−1 = 0. From Equation (2), we can derive

the download distribution for {x′
i}0≤i≤p−1 as:

y′j = (p− 1)/2 +

p−1
∑

i=0

x′
ix

′
〈i+j−k〉p

= (p− 1)/2 +

p−1
∑

i=0

x〈i+r〉px〈〈i+r〉p+j−k〉p .

Let s = 〈i + r〉p. If i corresponds to the set of integers

{0, 1, · · · , p − 1}, then we can see that s also corresponds

to the same set of integers {0, 1, · · · , p− 1}. Thus, we can

write y′j = (p − 1)/2 +
p−1
∑

s=0
xsx〈s+j−k〉p . Thus, we have



yj = y′j . Both {xi}0≤i≤p−1 and {x′
i}0≤i≤p−1 have the

same download distribution.

Remark: For example, let r = 4 and p = 7. Then both the

recovery sequences {xi}0≤i≤6 = {1110000} and {x′
i}0≤i≤6

= {x〈i+4〉p}0≤i≤6 = {0001110} have the same download

distribution.

Lemma 2: (Reverse condition). Given a recovery sequence

{xi}0≤i≤p−1, let {x′
i}0≤i≤p−1 = {xp−1−i}0≤i≤p−1. In

other words, {x′
i}0≤i≤p−1 is a reverse recovery sequence

of {xi}0≤i≤p−1. Then:

1. If x′
p−1 = 1, then {x′

i}0≤i≤p−1 is not a feasible

recovery sequence.

2. If x′
p−1 = 0, then both {x′

i}0≤i≤p−1 and and

{xi}0≤i≤p−1 have the same download distribution.

Remark: The proof of Lemma 2 is omitted as it is similar to

that of Lemma 1. For example, both the recovery sequences

{xi}0≤i≤6 = {0110100} and {x′
i}0≤i≤6 = {xp−1−i}0≤i≤6

= {0010110} have the same download distribution.

C. Cost-based Heterogeneous Recovery (CHR) Algorithm

In this section, we present the cost-based heterogeneous

recovery (CHR) algorithm for single-node failure recovery

under heterogeneous storage environments. The main idea of

CHR is as follows. Given the weight of each surviving node

in a storage system, CHR enumerates all the unique min-

read recovery sequences and calculates their respective total

recovery costs. It then returns the recovery sequence with

the minimum total recovery cost. This min-cost recovery

sequence will specify the symbols being retrieved from the

surviving nodes.

Notation. We summarize the major notation being used in

the CHR algorithm, using RDP as an example. Recall that

given the prime number p, there are n = p+1 storage nodes

V0, V1, · · · , Vp, and we assume that Vk (where 0 ≤ k ≤
p − 2) is the failed node. Each node Vi (where 0 ≤ i ≤ p)

is associated with a weight wi, which is defined according

to the specific optimization objective. We enumerate each

recovery sequence R and evaluate its recovery cost C. Our

goal is to find the min-cost recovery sequence (denoted by

R∗) with the minimum total recovery cost C∗.

Given a feasible recovery sequence {xi}0≤i≤p−1, we

always have xp−1 = 0, so we can treat the sequence

{xp−2xp−1 · · ·x0} as a (p − 1)-bit binary representation

of an integer value denoted by v. We let F be a bitmap

that identifies whether a min-read recovery sequence has

already been enumerated, such that the bit F [v] (where

0 ≤ v ≤ (2p−1 − 1)) is initialized to 0, and will be set

to 1 if the recovery sequence with integer value v has

been enumerated. Note that the size of F is 2p−1 bits,

which is exponential in p. Nevertheless, the stripe sizes of

systems used in practice tend to stay within a medium range

[20]. Thus, the memory overhead remains feasible for a

reasonable range of p. For example, for a storage system

of at most n = p+ 1 = 30 nodes, the size of F is at most

32MB, which is manageable for today’s commodity systems.

Functions. The CHR algorithm is built on three functions.

• NEXTRS(p, R). The function seeks to generate all min-

read recovery sequences, each containing p−1
2 1-bits

and p+1
2 0-bits. NEXTRS is derived from Algorithm R

[14], which can be used to generate all (s, t) combina-

tions of s 0-bits and t 1-bits in lexicographic order (in

our case, s = p−1
2 and t = p−1

2 ). We adapt Algorithm R

into NEXTRS, such that given p and R, it outputs

the next recovery sequence in order, or NULL if all

recovery sequences have been enumerated. Note that

each invocation of NEXTRS only re-orders a few bits,

and has minimal computational overhead in general.

• DUPLICATERS(p, F , R). Given a min-read recovery

sequence R, the function generates all its shifted recov-

ery sequences and their corresponding reverse recovery

sequences, all of which have the same recovery cost

as R according to Lemmas 1 and 2, respectively. For

each generated sequence, DEPLICATERS checks if it

is feasible (i.e., xp−1 = 0); if so, it finds the binary

representation of the sequence and its corresponding

integer value v, and sets F [v] = 1.

• DOWNLOADS(R, i). Given the recovery sequence R
and the identifier i of surviving node Vi, the function

returns the number of symbols read from node Vi.

Algorithm details. Figure 3 shows the pseudo-code of the

CHR algorithm. First, we initialize different variables (Steps

1-5). We initialize the array F to all 0-bits (Step 2). We also

initialize the considered recovery sequence R to have p−1
2

1-bits followed by p+1
2 0-bits (Step 3).

Then we find the min-cost recovery sequence R∗ among

all min-read recovery sequences (Steps 6-19). For each

recovery sequence R we consider, if it has not been enumer-

ated, then we first mark all the shifted and reverse recovery

sequences of R as being enumerated using the function

DUPLICATERS (Step 11). We then calculate the recovery

cost C of R (Step 12), and identify whether it is the min-

cost recovery sequence among all the currently enumerated

recovery sequences (Steps 13-15). We then select the next

recovery sequence R to be considered using the function

NEXTRS (Step 18). We repeat the process until all min-

read recovery sequences are enumerated.

Finally, we compare R∗ that we have found with the

baseline conventional recovery approach (Steps 20-25). Our

observation is that there are circumstances where the conven-

tional recovery approach outperforms all min-read recovery

sequences. Recall that the conventional approach uses only

the row parity sets for recovery (see Section II), while the

hybrid and CHR approaches uses both row and diagonal

parity sets. In some situations, the storage node that stores

the diagonal parities may have a significantly high weight



Algorithm: CHR(p, k, {wi})

Input:
p: prime number
k: identifier of the failed node
{wi}: set of weights of storage nodes Vi (0 ≤ i ≤ p+ 1)

Output:
R∗: min-cost recovery sequence

1: /* Initialization */
2: Initialize F [0 · · · 2p−1 − 1] with 0-bits
3: Initialize R with p−1

2
1-bits followed by p+1

2
0-bits

4: Initialize R∗ = R
5: Initialize C∗ = MAX VALUE
6: /* Find R∗ among all min-read recovery sequences */
7: while R 6= NULL do
8: Convert R into integer value v
9: if F [v] = 0 then

10: F [v] = 1
11: DUPLICATERS(p, F , R)
12: C =

∑
i 6=k

(DOWNLOADS(R, i) ×wi)

13: if C < C∗ then
14: C∗ = C
15: R∗ = R
16: end if
17: end if
18: R = NEXTRS(p, tmpR)
19: end while
20: /* Compare with the conventional approach */
21: R = all 0-bits
22: C =

∑
i 6=k

(DOWNLOADS(R, i) ×wi)

23: if C ≤ C∗ then
24: R∗ = R
25: end if
26: return R∗

Figure 3. The cost-based heterogeneous recovery (CHR) algorithm.

(e.g., with very limited transmission bandwidth). In this

case, the conventional recovery approach, even reading more

symbols, still has better recovery performance. We first

initialize the recovery sequence R with all 0-bits (Step 21),

meaning that each lost symbol is recovered from its row

parity set. Then we compare whether its recovery cost is no

greater than C∗; if so, we switch to use the conventional

approach. This baseline testing ensures that the recovery

performance of the CHR algorithm is always no worse than

that of the conventional approach.

D. Example

We illustrate via an example the main idea of the CHR

algorithm and how it improves the recovery performance

over the conventional and hybrid approaches. Figure 4(a)

shows a star-based distributed storage system where a cen-

tralized proxy connects to 8 storage nodes, each of which has

link transmission bandwidth following a uniform distribution

U(0.3Mbps, 120Mbps), which has also been used in prior

work on distributed storage [18] to mimic a PlanetLab-like

environment [16]. The storage system uses RDP with p = 7
as its coding scheme. Each storage node stores p−1 = 6 data

Node 0

Node 1 Node 2

Node 3

Node 4

Node 5

New Node

Node 6

Node 7

26Mbps

68Mbps 109Mbps

110Mbps

86Mbps

110Mbps 10Mbps

113Mbps

Proxy

(a) Heterogeneous storage envi-
ronment

Nodes
0 1 2 3 4 5 6 7

(b) Cost-based Heterogeneous Re-
ocvery Scheme

Figure 4. An example for CHR.

blocks (i.e., symbols) of size α (in the unit of Mb). Suppose

now that node 0 fails. The proxy then downloads data from

the other surviving nodes and regenerates the lost data of

Node 0 in a new node. In this example, we let wi be the

inverse of the link transmission bandwidth of node i (e.g.,

w0 = 1
26Mbps , w1 = 1

68Mbps , etc.). The total recovery cost

is thus interpreted as the total time of reading data blocks

from each surviving node one by one (see Section III-A).

CHR approach. The CHR algorithm works as follows. We

initialize the array F with 0-bits, R = {1110000}, and the

recovery cost C = MAX VALUE. The integer value of R
is 7. As F [7] = 0, we set F [7] = 1. We also find out all

shifted and reverse recovery sequences of R. For example,

we use the shift condition to find the following: 1110000 →
1100001 → 1000011 → 0000111 → 0001110 → 0011100

→ 0111000. The 2nd, 3rd, and 4th recovery sequences are

not feasible as xp−1 6= 0. Thus, we set F [56] = F [28] =
F [14] = 1. We also find the reverse of each of the shifted

sequences and set the corresponding element of F to be 1.

Now, we calculate the recovery cost C for R =
{1110000}. We can verify that the proxy will (i) read 3

blocks from Nodes 3, 4, and 7, (ii) read 4 blocks from

Nodes 2 and 5, and (iii) read 5 blocks from Nodes 1 and 6

for recovery. The recovery cost C will be:

5α

68
+

4α

109
+

3α

110
+

3α

86
+

4α

110
+

5α

10
+

3α

113
= 0.7353α (in sec).

Note that this is one of the optimal results of the hybrid re-

covery approach [27] (see Figure 2(b)), since it corresponds

to a min-read recovery sequence that reads the minimum

number of blocks.

We now compare the recovery cost C with C∗. Since the

former is smaller for the first iteration, we replace C∗ with

C and R∗ with R = {1110000}. At the end of this loop,

we use NEXTRS to operate on the next min-read recovery

sequence. Finally, we can find that R∗ = {1010100} is the

min-cost recovery sequence, whose download distribution is



shown in Figure 4(b). The minimum recovery cost is:

3α

68
+

5α

109
+

4α

110
+

4α

86
+

5α

110
+

3α

10
+

3α

113
= 0.5449α (in sec).

Note that CHR reduces the recovery cost of the first con-

sidered recovery sequence {1110000} (which is an optimal

result of the hybrid approach) by 25.89%.

Conventional approach. Note that CHR significantly re-

duces the recovery cost of the conventional approach. Using

the conventional approach (see Figure 2(a) in Section II),

the proxy reads 6 blocks from each of Nodes 1 to 6. The

recovery cost is:

6α

68
+

6α

109
+

6α

110
+

6α

86
+

6α

110
+

6α

10
= 0.9221α (in sec).

We observe that CHR reduces the recovery cost by 40.91%

over the conventional approach.

E. Simulation Studies

In this subsection, we use simulation to quantitatively

evaluate the efficiency of our proposed CHR algorithm in

terms of the computational overhead of the algorithm as

well as the recovery performance.

Our simulations consider a star-like network topology as

in Figure 4(b), where a centralized proxy connects to a

number of nodes, each having link transmission bandwidth

following a uniform distribution U(0.3Mbps, 120Mbps) [16].

We again let wi be the inverse of the link transmission

bandwidth of each node i.

Traverse efficiency. We first evaluate the computational time

of the CHR algorithm in traversing all recovery sequences.

Our goal is to justify that the CHR algorithm can determine

the min-cost recovery solution within a reasonable time

frame. Recall that the CHR algorithm only computes the

recovery costs of the unique min-read recovery sequences

(see Section III-B). We compare with the naive traverse

approach that enumerates all of the
(

p−1
(p−1)/2

)

min-read

recovery sequences and computes their recovery costs. Here,

we evaluate the traverse time using a Linux-based desktop

computer running with 3.2GHz CPU and 2GB RAM. All

approaches we consider are implemented in C. We consider

different values of p from 5 to 29, and obtain the averaged

results over 100 runs.

Table I shows the results. By enumerating only the unique

min-read recovery sequences, CHR significantly reduces the

traverse time of the naive approach by over 90% as p
increases. For example, when p = 29, the naive traverse

time is over 12 minutes (per run), while CHR reduces the

traverse time to around 45.4 seconds (per run). As stated in

Section III-C, the range of p that we consider is expected to

be feasible in actual usage [20].

Table II
TRAVERSE EFFICIENCY COMPARISON FOR RDP WITH DIFFERENT p.

p Naive traverse time CHR’s traverse Time Improved rate
(ms) (ms) (%)

5 0.0220 0.0100 54.55

7 0.0950 0.0310 67.37

11 2.3160 0.3910 83.12

13 11.9840 1.6150 86.52

17 107.7410 10.0790 90.65

19 455.2760 40.5370 91.10

23 9230.7800 691.2800 92.51

29 752296.2700 45423.5570 93.96

Robustness efficiency. Recall that the CHR approach only

considers a simplified recovery model that enumerates only

the min-read recovery sequences (see Equation (4) in Sec-

tion III-B). We would like to see if the CHR approach

actually achieves the global optimal among all the 2p−1

feasible recovery sequences (which read more symbols than

the min-read sequences in general).

Here, we compute the minimum recovery cost of the

global optimal recovery sequence by enumerating all the

2p−1 feasible solutions. We compare the global optimal

result with that of CHR. We repeat the comparison over

1000 simulation runs.

Table III shows the results, in which we show the proba-

bility that CHR actually returns the global optimal result (the

2nd column) and the maximum percentage reduction of the

recovery time of the global optimal result over CHR (the 3rd

column) for each p. We observe that CHR has a very high

probability (over 93%) to hit the global optimal recovery

cost. Also, the recovery cost of the global optimal solution

is less than that of CHR by at most 6.46% only. Therefore,

CHR is robust in returning a global optimal solution in most

cases, while significantly reducing the computational time.

Table III
ROBUSTNESS EFFICIENCY FOR CHR.

p Hit Global Optimal Global Optimal Max
Probability(%) Improvement (%)

5 94.9 6.12

7 94.5 5.54

11 93.6 5.98

13 93.2 6.46

17 92.8 5.97

19 93.1 5.73

Recovery efficiency. We evaluate via simulations the re-

covery efficiency of CHR in a heterogeneous storage envi-

ronment. We conduct 100 simulation runs for each value
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(a) CHR vs. Conventional (b) CHR vs. Hybrid

Figure 5. Percentage reduction of recovery cost over (a) the conventional approach and (b) the hybrid approach.

of p and show the results via box plots. A box plot

shows the minimum, lower quartile, median, upper quartile,

maximum of the 100 results, and provides the outliers as

well. Figures 5(a) and 5(b) show the box plots of the

distributions of the recovery improvements of CHR in terms

of the percentage reduction of the total recovery cost over the

conventional and hybrid recovery approaches, respectively.

We observe that CHR can reduce the recovery cost by up

to 50% and 30% (e.g., when p = 5) over the conventional

and hybrid approaches, respectively.

From Figure 5(b), CHR can reduce the recovery cost of

the hybrid approach by over 80% in few simulation runs

(e.g., for p = 5, 7, 11). The main reason is that in those

runs, the diagonal parity node happens to have a very small

transmission bandwidth (and hence a large weight wi). Since

the hybrid approach uses diagonal parity sets to minimize

the number of blocks read, it has a very high recovery cost.

On the other hand, in those runs, CHR will switch to the

conventional approach (see the last portion of the algorithm

in Figure 3), and its performance improvement over the

conventional approach is 0% (see Figure 5(a)).

F. Generalization to EVENODD

Our discussion of CHR thus far focuses on the single-

node failure recovery for RDP [5]. For the single-node

failure recovery for EVENODD [4], we can apply the CHR

approach in a similar way with two observations. First, based

on the EVENODD construction, each lost data symbol of

EVENODD can be recovered from either its row or diagonal

parity sets. This implies that we can construct a recovery

sequence as in the RDP case. Second, it is shown that

for EVENODD, exactly (p − 1)/2 lost symbols must be

recovered from the diagonal parity sets [27]. Thus, we can

propose the same simplified recovery model in Equation (4)

(see Section III-B). Note that Lemmas 1 and 2 are also

applicable for EVENODD, so we can enumerate only the

unique min-read recovery sequences for EVENODD as well.

IV. TESTBED EXPERIMENTS

In this section, we experiment different recovery ap-

proaches using a networked storage system testbed de-

ployed in a heterogeneous environment. Specifically, we

consider three single-node failure recovery approaches: (i)

the conventional approach, which recovers each lost symbol

independently (see Section II-C), (ii) the hybrid approach

[24, 27], which minimizes the number of symbols read

by using a combination of parity sets in recovery (see

Section II-C), and (iii) the CHR approach, which seeks to

minimize the recovery cost by associating a weight with

each storage node (see Section III).

Our goal is to validate the performance improvement

of CHR over the conventional and hybrid approaches in

a real, heterogeneous network environment. We emphasize

that our testbed experiments are distinct from our numerical

simulations (see Section III-E) and disk-based simulations

[27], since we experiment the actual read/write operations

via physical storage devices. The resulting recovery per-

formance is determined by the hardware configurations of

the testbed. We expect that testbed experiments can provide

more realistic results than simulations.

A. Methodology

Our experiments are based on an open-source networked

storage system called NCFS [12]. It is a networked file

system that interconnects different storage nodes and stripes

data across the nodes according to the underlying coding

scheme. In our experiments, we focus on RDP and EVEN-

ODD, and integrate them into the NCFS implementation.

NCFS includes a recovery utility that can recover a single-

node failure. The recovery operation of NCFS includes

three steps: (i) reading data from other surviving storage

nodes, (ii) reconstructing the lost data, and (iii) writing data

to a new storage node. We implement the three recovery

approaches (i.e., conventional, hybrid, and CHR) in NCFS.

Note that both the hybrid and CHR approaches only focus

on optimizing the read part (i.e., step (i)), but we argue

(in Experiment 1) that it remains a good approximation in

practice since the read part accounts for the majority of the

total recovery time.

We set up the testbed topology as follows. We deploy

NCFS on a Linux server with Intel Quad-Core 2.66GHz

CPU and 4GB RAM. We connect the NCFS server to a



number of storage devices (or nodes) over a Gigabit Ethernet

switch using the ATA over Ethernet protocol [10]. The set

of storage nodes is composed of a mixture of personal

computers (PCs) or network-attached storage (NAS) devices.

Each storage node is equipped with an Ethernet interface

card with a different network speed that is either 100Mbps

and 1Gbps. Table IV shows the compositions of storage

nodes in our testbed for the RDP case for different values

of p that we consider (i.e., the total number of nodes is

n = p + 1). Note that for EVENODD, the total number of

nodes is n = p + 2, and we add another storage node of

100Mbps to our testbed. The testbed is configured to have

a heterogeneous setting, as the storage nodes have different

transmission speeds.

Table IV
COMPOSITIONS OF STORAGE NODES FOR RDP IN OUR TESTBED.

p Total # of # of nodes # of nodes
of nodes with 100Mbps with 1Gbps

(n = p+ 1)

5 6 2 4

7 8 3 5

11 12 5 7

13 14 6 8

17 18 9 9

Default settings. By default, we let each symbol refer to

a chunk of size 1MB, which has been considered in some

existing distributed file systems (e.g., [22]). The chunk size

is larger than a typical file system block size (e.g., the default

block size of Linux file systems is 4KB). We expect that

it is natural for distributed storage systems to operate on

large-size chunks (e.g., 64MB in GFS [8]). We will evaluate

the impact of different chunk sizes (see Experiment 2).

In addition, to trigger a recovery operation, we disable

the storage node in the leftmost column (i.e., Node 0 in

Figure 1). We will also evaluate the impact of disabling

other nodes (see Experiment 3).

Metric. We consider the metric recovery time (per MB

of data being recovered) needed to perform a recovery

operation. The average recovery time is obtained over 10

runs. In each run, we write nGB of data to NCFS, where

n is the number of storage nodes that we consider. NCFS

will stripe the data across the storage nodes. We disable a

storage node, and reconstruct the lost data in another spare

storage node of network speed 1Gbps. The recovery utility

reads the data symbols from each surviving node one by

one.

In CHR, we associate each storage node with a weight

given by the inverse of the speed of its Ethernet interface

card. Note that the weight can be more accurately deter-

mined, for example, by probing measurements. Nevertheless,

we validate in the following experiments that such simple

weight assignments suffice to bring improvements in the

recovery performance. Here, the total recovery cost reflects

the total recovery time (see Section III-A).

B. Results

Experiment 1 (Recovery time performance for different

numbers of storage nodes). We first evaluate the recovery

time performance of different recovery approaches by vary-

ing the value of p, and hence the number of storage nodes.

Recall that both the hybrid and CHR approaches seek to

improve the read performance in the recovery process. That

is, the hybrid approach minimizes the number of symbols

(or chunks) read from surviving nodes, and CHR further

improves the read performance by taking into account the

network transmission bandwidths. Figures 6(a) and 6(b)

show the performance for the read part in the recovery

operation for RDP and EVENODD, respectively. Compared

to the conventional approach, the hybrid approach reduces

the time of the data read part by 18.02% to 23.49%,

while CHR further reduces the time by 25.74% to 34.91%.

Specifically, CHR improves the hybrid approach by up to

14.92% and 20.03% for RDP and EVENODD when p = 17,

respectively.

We also consider the overall performance of the com-

plete recovery operation, which also includes the steps

of reconstructing the lost data in NCFS and writing the

reconstructed data to a new node. Figures 7(a) and 7(b) show

the total recovery time performance of different recovery

approaches for RDP and EVENODD, respectively. We again

observe that CHR constantly outperforms the hybrid and

conventional approaches for different values of p. Take RDP

for p = 11 as an example. Compared to the conventional

approach, the total recovery times for the hybrid and CHR

approaches are reduced by 15.28% and 21.45%, respectively.

In particular, CHR reduces the overall recovery time of the

hybrid approach by up to 13.15% and 16.89% for RDP and

EVENODD, respectively.

From both Figures 6 and 7, we observe that the read

time (in Figure 6) accounts for at least 68.61% of the

total recovery time (in Figure 7). This also justifies why

the CHR and hybrid approaches [27] seek to optimize the

read part only. Also, CHR works better in a heterogeneous

environment compared to the hybrid approach.

Experiment 2 (Performance with different chunk sizes).

We now evaluate the impact of chunk size on the recovery

time performance. We vary the chunk size from 256KB to

4MB. We fix p = 11 and hence the number of storage nodes.

Figures 8(a) and 8(b) show the total recovery times for

RDP and EVENODD, respectively. We observe that as the

recovery time decreases as the chunk size increases. In

addition, the improvements of both the hybrid and CHR

approaches over the conventional approach increase with the

chunk size. The main reason is that with a larger chunk size,

the number of I/O accesses decreases. Thus, the recovery
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Figure 6. Experiment 1: Read part performance comparison during recovery for p ranging from 5 to 17. Each number corresponds to the percentage
reduction over the conventional approach (same for other figures).
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Figure 7. Experiment 1: Overall recovery time performance comparison for p ranging from 5 to 17.

time performance becomes more dominated by the amount

of data being read. Take RDP with chunk size 4MB as an

example. Compared to the conventional approach, the total

recovery time reduction of the hybrid approach is 19.82%,

while that of CHR is 25.66%. It is important to note that the

improvement of CHR over the hybrid approach is consistent

over all chunk sizes.

Experiment 3 (Performance with different failed nodes).

We now evaluate the recovery time performance when the

failed node is in a different column. We set the chunk

to be 1MB, and fix p = 11. Figure 9 shows the total

recovery time for RDP, while similar results are observed

for EVENODD and omitted here in the interest of space.

Both the hybrid and CHR approaches have varying recovery

performance improvements over the conventional approach

across different failed nodes. Nevertheless, CHR outper-

forms the hybrid approach regardless of which node fails.

Compared to the recovery approach, the total recovery time

of the hybrid approach is reduced by 10.04-19.44%, while

the total recovery time of CHR is reduced by 17.90-25.12%.

V. CONCLUSIONS

We address single-node failure recovery of a RAID-6-

coded storage system with heterogeneous types of storage

nodes. We formulate an optimization model, and propose

a cost-based heterogeneous recovery algorithm to mini-

mize the total recovery cost of single-node failure recov-

ery. We simplify the model to improve the computational

efficiency of the algorithm, while still effectively mini-

mize the total recovery cost. Through extensive simula-

tions and testbed experiments, we justify the effectiveness

of the CHR algorithm in achieving efficient single-node

failure recovery in a heterogeneous storage environment.

The source code of the CHR algorithm is available at:

http://ansrlab.cse.cuhk.edu.hk/software/chr.
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Figure 8. Experiment 2: Total recovery time versus different chunk sizes (from 256KB to 4MB).
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Figure 9. Experiment 3: Total recovery time versus different failed nodes for RDP.
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