
A Hybrid Local and Distributed Sketching Design for Accurate and Scalable

Heavy Key Detection in Network Data Streams

Qun Huanga, Patrick P. C. Leea

aDepartment of Computer Science and Engineering, The Chinese University of Hong Kong

Abstract

Real-time characterization of network traffic anomalies, such as heavy hitters and heavy changers, is critical for the

robustness of operational networks, but its accuracy and scalability are challenged by the ever-increasing volume

and diversity of network traffic. We address this problem by leveraging parallelization. We propose LD-Sketch,

a data structure designed for accurate and scalable traffic anomaly detection using distributed architectures. LD-

Sketch combines the classical counter-based and sketch-based techniques, and performs detection in two phases:

local detection, which guarantees zero false negatives, and distributed detection, which reduces false positives by

aggregating multiple detection results. We derive the error bounds and the space and time complexity for LD-Sketch.

We further analyze the impact of ordering of data items on the memory usage and accuracy of LD-Sketch. We compare

LD-Sketch with state-of-the-art sketch-based techniques by conducting experiments on traffic traces from a real-life

3G cellular data network. Our results demonstrate the accuracy and scalability of LD-Sketch over prior approaches.

Note: An earlier conference version of the paper appeared in IEEE INFOCOM 2014 [15]. We extend our proposed

design with the consideration of the ordering of data items (Section 5). We also correct the flaws of the lemmas and

theorems in our conference version.

1. Introduction

Characterizing traffic anomalies is important for administrators to maintain the robustness of a network. There

are two types of anomalies that are of particular interest: flows with persistently large data volume (known as “heavy

hitters”) and flows with abrupt changes of data volume (known as “heavy changers”), since they may imply the

existence of denial-of-service attacks, component failures, or service level agreement violation. Traffic anomalies are

detrimental to network robustness and must be detected and suppressed in real-time.

However, today’s IP networks continuously grow in size and complexity. Thus, characterizing traffic anomalies in

real-time becomes more challenging, particularly in two aspects:

• Enormous key space. The complexity of anomaly detection is overwhelmed by the number of keys being

monitored. For example, 5-tuple network flows are defined by 104-bit keys (i.e., source/destination IP addresses,

source/destination ports, and protocols). Keeping track of 2104 flow keys can imply huge memory usage.

• Line-rate packet processing. Packet processing must keep pace with the increasing line rate to meet the real-

time requirement. Conventional single-processor platforms no longer provide enough computational power

to achieve this goal. To improve scalability, anomaly detection needs to be performed on distributed packet

streams in parallel. However, providing both accuracy and scalability guarantees becomes challenging when

aggregating the detection results from multiple sources.

Anomaly detection has been extensively studied in the context of data streaming. To deal with the enormous key

space, counter-based techniques (e.g., [12, 19–21]) and sketch-based techniques (e.g., [4, 5, 7–11, 13, 16, 17, 23])

propose space-efficient data structures for anomaly detection and derive error bounds. Counter-based techniques use

Email addresses: qhuang@cse.cuhk.edu.hk (Qun Huang), pclee@cse.cuhk.edu.hk (Patrick P. C. Lee)

Preprint submitted to Computer Networks September 29, 2015

an associative array to monitor frequent items and are designed for heavy hitter detection; sketch-based techniques

project data items into a subset of buckets in a summary called sketch and are designed for both heavy hitter and

heavy changer detections. Although theoretically sound, such techniques are mainly studied and evaluated in the

single-processor paradigm. With the emergence of distributed streaming architectures (e.g., Flume [2], S4 [22], and

Storm [25]), an open issue is to seamlessly parallelize such techniques to achieve accurate and scalable anomaly

detection.

In this paper, we study the traffic anomaly detection problem from both theoretical and implementation perspec-

tives. We propose LD-Sketch, a novel sketching design that combines the counter-based and sketch-based techniques

to accurately and scalably detect heavy hitters and heavy changers using distributed architectures. Its main idea

is to augment a sketch in which each bucket keeps track of anomaly candidates in an associative array, similar to

counter-based techniques. We enhance our counter-based technique to allow the associative array to be dynamically

expandable based on the current number of anomaly candidates associated with the bucket. LD-Sketch performs de-

tection in two phases: (i) local detection, which guarantees no false negatives and identify the anomaly candidates

(including true anomalies and false positives) in a single compute node called worker, and (ii) distributed detection,

which reduces false positives (with a slight increase in the false negative rate) by combining detection results from

multiple workers. Thus, not only do we exploit streaming architectures to improve scalability, but we also use their

distributed nature to improve the detection accuracy.

In summary, we make the following contributions:

• We design LD-Sketch, which enables accurate and scalable detection of heavy hitters and heavy changers and

is seamlessly deployable in distributed architectures. We derive the error bounds, space complexity, and time

complexity when LD-Sketch is used in both local detection (i.e., using a single worker) and distributed detection

(i.e., using multiple workers).

• We analyze how the ordering of data items influences the memory usage and accuracy of LD-Sketch. By

leveraging the ordering property of data items, we propose two enhancement heuristics that respectively reduce

the memory usage and the false positive rate of LD-Sketch.

• We implement and compare LD-Sketch with state-of-the-art sketch-based techniques by conducting trace-

driven experiments using traces from a real-life 3G cellular network. We show that LD-Sketch achieves higher

accuracy than other approaches, and improves accuracy and scalability using multiple workers in a distributed

setting.

The rest of the paper proceeds as follows. Section 2 formulates the heavy hitter/changer detection problem.

Sections 3 and 4 describe and analyze the local and distributed detection procedures of LD-Sketch, respectively.

Section 5 studies the impact of ordering of data items and proposes two enhancement heuristics for LD-Sketch.

Section 6 presents our trace-driven evaluation results. Section 7 reviews related work, and finally Section 8 concludes

the paper. We also present our proofs of lemmas in Appendix.

2. Problem Formulation

We formulate the problem of heavy hitter/changer detection (which we collectively call heavy key detection).

Table 1 summarizes the major notation in this paper.

2.1. Distributed Heavy Key Detection

We first describe the distributed architecture, as shown in Figure 1, on which our heavy key detection problem is

formulated. Our architecture is based on that of [6]. Specifically, we consider an architecture with p ≥ 1 remote sites

and q ≥ 1 workers. A remote site is the source of a data stream, while a worker performs heavy key detection based

on the streams from multiple remote sites. The architecture has a bipartite structure, in which each remote site can

connect to all workers, while there is no communication among the remote sites and among the workers.

We periodically perform heavy key detection on the streams of data items from the p remote sites, and we refer to

each time period of detection as an epoch. Each data item is represented by a tuple (x, vx), where x is the key drawn

from a domain [n] = {0, 1, · · · , n− 1} of size n and vx is a value associated with x. For example, in network traffic

2

Table 1: Major notation used in the paper.

Notation Meaning

Defined in Section 2

p number of remote sites

q number of workers

[n] key domain

(x, vx) data item with key x and value vx
S(x) true sum for key x in an epoch

D(x) true difference for key x between two adjacent epochs

U total sum of the values of all keys in an epoch

φ heavy key threshold

H maximum possible number of heavy keys

r number of rows in a sketch

w number of buckets in one row in a sketch

(i, j) the j-th bucket in row i, where 1≤ i≤r and 1≤j≤w
fi hash function {0, 1, . . . , n− 1} → {1, 2, · · · , w} for row i

Defined in Section 3

Vi,j counter value of bucket (i, j) in the sketch

Ai,j associative array in bucket (i, j)
(Ai,j [x] denotes the counter value of key x)

li,j maximum length of array Ai,j

ei,j maximum error for keys in bucket (i, j)
T expansion parameter

k current expansion number (starting from zero)

Slow
i,j (x) lower estimated sum for key x in bucket (i, j)

Sup
i,j (x) upper estimated sum for key x in bucket (i, j)

Di,j(x) estimated difference for key x in bucket (i, j)
ǫ approximation parameter in local detection

δ upper bound of error probability

Defined in Section 4

γ approximation parameter in distributed detection

d number of workers to which a key is distributed

Defined in Section 5

k̂i,j controlled expansion number

ti,j number of distinct keys in bucket (i, j)

t≥i,j number of keys satisfying S(x) ≥ T in bucket (i, j)

V ≥
i,j total sum of the values of all keys satisfying S(x) ≥ T in bucket (i, j)

V <
i,j total sum of the values of all keys satisfying S(x) < T in bucket (i, j)

k≥i,j integer such that k≥i,jT ≤ V ≥
i,j < (k≥i,j + 1)T

k<i,j integer such that k<i,jT ≤ V <
i,j < (k<i,j + 1)T

monitoring, x may refer to a 5-tuple flow, and vx may refer to the byte counts of the flow. In each epoch, let S(x) be

the true sum of values of key x, and D(x) be the true absolute difference of S(x) of key x in the current epoch and

in the last epoch. Also, let U =
∑

x∈[n] S(x) be the total sum of the values of all keys in the epoch. Our primary

goal is to detect the heavy keys whose true sums or true absolute differences exceed an absolute-value threshold φ in

an epoch. Specifically, a heavy hitter is a key x whose S(x) ≥ φ, and a heavy changer is a key x whose difference

D(x) ≥ φ. For ease of presentation, we use the same threshold φ for both types of heavy keys, although it can be

defined differently. In practice, it is infeasible to keep track of S(x) and D(x) for every key x given the enormous key

space (see Section 1), so we must approximate S(x) and D(x) using some space-efficient data structures.

Let H be the maximum possible number of heavy keys. Thus, for heavy hitter detection, H = U
φ

; for heavy

changer detection, H = 2U
φ

(i.e., twice the maximum possible number of heavy hitters in each epoch). Our space and

time complexity results are expressed in terms of H , as in prior studies in the literature.

A heavy key detection algorithm typically consists of two procedures: the update procedure, which includes the

value of each arriving data item into a data structure, and the detection procedure, which examines the data structure

at the end of each epoch and reports the heavy keys. A good heavy key detection algorithm should introduce (i) small

fractions of false positives (i.e., non-heavy keys being treated as heavy keys) and false negatives (i.e., true heavy keys

3

Remote Site 1 . . .

Data Source

Remote Site 2 Remote Site p

Worker 1 Worker 2 Worker q. . .

Data Source Data Source

Figure 1: Distributed architecture for heavy key detection.

that are not reported), (ii) low space usage of the data structure, and (iii) low time complexity of both update and

detection procedures.

2.2. Counter-based and Sketch-based Techniques

We describe two main classes of techniques that identify the heavy keys using space-efficient data structures:

counter-based and sketch-based techniques.

Counter-based techniques keep individual counters for a subset of keys. For some performance parameter l, an

associative array A with at most l − 1 key-value counters is defined. Suppose that we have a stream of data items

{(x, vx)} and vx = 1 for all x. If x is in A, its counter value A[x] is incremented by one; otherwise, if there are empty

counters, a new counter is allocated for x with value initialized to one; if no counter is available, each of other existing

counters has its value decremented by one. We remove a key from A if its counter value is zero. The value of each

counter remaining in A approximates the true sum of the corresponding key. Lemma 1 shows the error bound of the

estimated value [21].

Lemma 1 ([21]). Consider a stream of data items {(x, vx)} and vx = 1. In counter-based techniques, if x is kept in

A, then A[x] ≤ S(x) ≤ A[x] + U
l

; if x is not in A, its estimated value is set to zero and 0 ≤ S(x) ≤ U
l

.

Counter-based techniques can identify all heavy hitters (without false negatives) with threshold exceeding φ = U
l

by checking if a key has a positive counter value in the associative array. False positives may exist if some non-heavy

hitters remain in the array and are not removed by the end of the epoch. To the best of our knowledge, it remains an

open issue how counter-based techniques are applied to heavy changer detection, mainly because the associative array

is not linear and we cannot combine two arrays of two epochs to describe the differences of data items.

Sketch-based techniques process a data stream in sub-linear space, and can identify both heavy hitters and heavy

changers. A sketch is a small summary data structure projected from a large set. Specifically, we consider a sketch

with r rows. Each row i (1 ≤ i ≤ r) is associated with w buckets and an independent 2-universal hash function fi
that hashes a key to one of the w buckets. We denote the j-th bucket (1 ≤ j ≤ w) in row i by (i, j). Each bucket (i, j)
is associated with a counter value Vi,j initialized at zero. For each data item (x, vx), the update procedure hashes key

x to one of the buckets in each of the r rows, and increments the counter value by vx. By Markov’s inequality, we

have the following lemma:

Lemma 2. In sketch-based techniques, Pr{Vi,j ≥ ν} ≤ U
wν

for any sufficiently large ν > U
w

.

Sketch-based techniques can identify all heavy hitters (without false negatives) with threshold exceeding φ by

checking if the corresponding buckets of all r rows have values exceeding φ. False positives may exist if non-heavy

hitters are hashed to the buckets with values above the threshold in all rows. For heavy changer detection, we compute

the differences of counter values of each bucket in the two sketches in two adjacent epochs. By the linear property

of a sketch, the difference of each bucket is also the sum of the differences of the keys hashed to the bucket. If a key

has differences in the corresponding buckets of all r rows (or a subset of them [7]) exceeding φ, it is reported as a

heavy changer. False negatives may also exist in heavy changer detection, for example, when a heavy changer with a

positive change greater than φ and another heavy changer with a negative change less than −φ are hashed to the same

bucket.

4

Key x

w buckets

r rows

Bucket (i, j) Vi,j
ei,j

(key, value) . . . empty

Maximum Size: li,j

Ai,j

Hash Functions

(key, value)

Figure 2: Structure of LD-Sketch.

2.3. Our Approach: Overview

This work proposes LD-Sketch, a design that leverages the distributed architecture to achieve accurate and scal-

able heavy key detection. It follows a sketching design that combines the classical counter-based and sketch-based

techniques. It builds on two phases: local detection and distributed detection, which we describe in Sections 3 and 4,

respectively. In addition, in Section 5, we show that LD-Sketch can leverage the ordering of data items to trade off

between space complexity and accuracy.

3. Local Detection

We present the local detection approach of LD-Sketch that aims to identify the heavy hitters and heavy changers

in a single worker. We also analyze the error bounds, space complexity, and time complexity of the local detection

approach.

3.1. Data Structure

We first describe the data structure of LD-Sketch, as shown in Figure 2. An LD-Sketch is composed of r rows

with w buckets each. Each bucket (i, j) (where 1 ≤ i ≤ r and 1 ≤ j ≤ w) corresponds to the j-th bucket in

row i, and is associated with a counter value Vi,j , which will be incremented by vx for every incoming key x. We

augment each bucket (i, j) with three additional components, including: (i) Ai,j , which denotes the associative array

used in counter-based detection, (ii) li,j , which denotes the maximum length of Ai,j , and (iii) ei,j , which denotes the

maximum estimation error for the true sums of the keys hashed to bucket (i, j).
Our main idea is to use Ai,j to keep track of the heavy key candidates that are hashed to the bucket (i, j). Thus,

when we restore all heavy keys in the detection procedure, we only inspect the tracked heavy key candidates in all

Ai,j’s, and this significantly improves the accuracy and performance of our heavy key detection. One new extension

to the counter-based technique of [21] is that we dynamically increase li,j (i.e., the maximum size of Ai,j) as Vi,j

increases. We call this approach dynamical expansion. We define an expansion parameter T as a function of the

threshold φ (see Section 3.2), and the current expansion number k = ⌊Vi,j/T ⌋ ≥ 0, such that when k is incremented,

we increase li,j . The dynamic expansion approach trades memory for accuracy, i.e., by keeping track of more high-

valued keys, we can restore the heavy keys more accurately.

Algorithm 1 details how we update a data item to an LD-Sketch. Initially, Vi,j and ei,j are set to zero, li,j is set to

one and Ai,j contains an empty counter for each bucket (i, j) (where 1≤ i≤r and 1≤j≤w). For a data item (x, vx),
we hash the key to some bucket (i, j) via a hash function fi for each row i, and call the function UPDATEBUCKET.

In essence, the function UPDATEBUCKET builds on counter-based techniques, with an extension of enabling dynamic

expansion. Specifically, let us consider bucket (i, j). If key x is in Ai,j , we increment the counter Ai,j [x] (Line 4); or

if Ai,j is not yet full, we insert x to Ai,j (Line 6). Otherwise, if Ai,j is full, we either decrement the keys in Ai,j or

expand Ai,j . We consider both cases below.

5

Algorithm 1 LD-Sketch Update Algorithm

Input: data item (x, vx); expansion parameter T
1: function UPDATEBUCKET(x, vx, i, j)

2: Vi,j = Vi,j + vx
3: if x ∈ Ai,j then

4: Ai,j [x] = Ai,j [x] + vx
5: else if Ai,j has less than li,j counters then

6: Insert x to Ai,j and set Ai,j [x] = vx
7: else

8: k = ⌊Vi,j/T ⌋
9: if (k + 1)(k + 2)− 1 ≤ li,j then

10: ê = min(vx,miny∈Ai,j Ai,j [y])
11: ei,j = ei,j + ê
12: for all key y ∈ Ai,j do

13: Ai,j [y] = Ai,j [y]− ê
14: if Ai,j [y] ≤ 0 then

15: Remove y from Ai,j

16: end if

17: end for

18: if vx > ê then

19: Insert x to Ai,j and set li,j = vx − ê
20: end if

21: else ⊲ li,j < (k + 1)(k + 2)− 1
22: add (k + 1)(k + 2)− 1− li,j new counters to Ai,j

23: li,j = (k + 1)(k + 2)− 1
24: Insert x to Ai,j and set Ai,j [x] = vx
25: end if

26: end if

27: end function

28:

29: procedure UPDATE

30: for data item (x, vx) do

31: for row i = 1, 2, . . . , r do

32: j = fi(x)
33: UPDATEBUCKET(x, vx, i, j)

34: end for

35: end for

36: end procedure

We first describe how we decrement the keys (Lines 10-20), and the steps are similar to the original counter-based

technique [21]. The decrement value ê is chosen to be the minimum of vx and the minimum value of Ai,j (Line 10).

We first add ê to ei,j (which will be used in the detection procedure) (Line 11). Then we decrement all keys in Ai,j

by ê and remove the keys whose values are no more than zero (Lines 12-17). If vx is not completely decremented, the

residue vx − ê can be inserted to Ai,j , given that the some key must have been removed (Lines 18-20).

We next describe the dynamic expansion of Ai,j (Lines 22-24). We keep track of the current expansion number

k = ⌊Vi,j/T ⌋ (Line 8). We set li,j = (k + 1)(k + 2) − 1. When Ai,j is full, if li,j < (k + 1)(k + 2) − 1, which

happens when k is incremented, then we add new counters to Ai,j .

If T > vx for any data item x, then k is incremented by at most one for each new data item x. On the other hand,

if some data item has a significantly large vx, then k may be aggressively incremented. This implies that we add a

large number of new counters to Ai,j . In Section 5, we further enhance Algorithm 1 to control the expansion of Ai,j .

We use LD-Sketch to estimate the true sum S(x) of each key x. Here, LD-Sketch produces a pair of estimates for

each key x and each bucket (i, j): the lower estimate Slow
i,j (x) and the upper estimate Sup

i,j (x). If x is in Ai,j , we set

Slow
i,j (x) = Ai,j [x]; otherwise Slow

i,j (x) = 0. Also, we set Sup
i,j (x) = Slow

i,j (x) + ei,j .

6

3.2. Heavy Key Detection

We now explain how we identify heavy hitters and heavy changers using LD-Sketch.

For heavy hitter detection, we use a single LD-Sketch with expansion parameter T = ǫφ, where ǫ ∈ (0, 1] denotes

the approximation parameter that bounds the error rates. At the end of each epoch, we examine every bucket (i, j) in

the sketch. We identify every bucket (i, j) with Vi,j ≥ φ, and examine the keys kept in Ai,j . A key x is reported as a

heavy hitter if Sup
i,j (x) ≥ φ for all row i, where 1 ≤ i ≤ r, and j = fi(x).

For heavy changer detection, we maintain two LD-Sketches for two adjacent epochs. Both sketches set the expan-

sion parameter T = ǫφ/2. At the end of the second epoch, we identify every bucket (i, j) with Vi,j ≥ φ in at least

one epoch, and examine the keys of Ai,j in both sketches. We obtain the lower and upper estimates in the first epoch

and those in the second epoch, denoted by Slow,1
i,j (x), Sup,1

i,j (x), Slow,2
i,j (x), and Sup,2

i,j (x), respectively. The estimated

change is given by Di,j(x) = max{Sup,1
i,j (x) − Slow,2

i,j (x), Sup,2
i,j (x) − Slow,1

i,j (x)}. A key x is reported as a heavy

changer if Di,j(x) ≥ φ for all row i, where 1 ≤ i ≤ r, and j = fi(x).

3.3. Analysis

We present theoretical analysis of the local detection of LD-Sketch as described in Section 3.2. We analyze the

error rates, space complexity, and time complexity. Our proofs are presented in Appendix.

3.3.1. Error Rates

First, we analyze the estimated error of a key, based on which we derive the error rates of LD-Sketch. For bucket

(i, j) and key x hashed to the bucket (i.e., fi(x) = j), the estimated error of key x in bucket (i, j) depends on the sum

of other keys in the bucket, i.e.,
∑

y 6=x,fi(y)=j S(y). Lemmas 3 and 4 describe the errors of lower and upper estimated

sums with respect to
∑

y 6=x,fi(y)=j S(y), respectively.

Lemma 3. For bucket (i, j) and x with fi(x) = j, if
∑

y 6=x,fi(y)=j S(y) ≤
(k+1)2

k+2 T ,

S(x)−
k + 1

k + 2
T ≤ Slow

i,j (x) ≤ S(x).

Lemma 4. For bucket (i, j) and key x with fi(x) = j, if kT <
∑

y 6=x,fi(y)=j S(y) ≤ (k + 1)T ,

S(x) ≤ Sup
i,j (x) ≤ S(x) + (

k + 1

k + 2
)T.

Based on the range of the estimated sum of a key, we now derive the error rates of LD-Sketch. Lemma 5 argues

that our local detection has zero false negatives.

Lemma 5. Using LD-Sketch, if key x has S(x) ≥ φ, it must be reported as a heavy hitter; if x has D(x) ≥ φ, it must

be reported as a heavy changer.

Lemmas 6 and 7 discuss the false positive rates of heavy hitter detection and heavy changer detection, respectively.

Lemma 6. For key x with S(x) ≤ (1 − ǫ)φ, it is never be reported as a heavy hitter. For key x with (1 − ǫ)φ <
S(x) < (1− ǫ/2)φ, it is reported as a heavy hitter with probability at most (U

wǫφ
)r.

Lemma 7. For key x with D(x) ≤ (1− ǫ)φ, it will never be reported as a heavy changer. For key x with (1− ǫ)φ <
D(x) < (1− ǫ/2)φ, it is reported as a heavy changer with probability at most (6U

wǫφ
)r.

3.3.2. Complexities

We now perform complexity analysis on LD-Sketch, whose complexity depends on li,j , i.e., the average length of

the associative array in each bucket. Lemma 8 shows the worst-case expectation of li,j .

Lemma 8. The expected value of li,j is given by E[li,j] = O(U2

w2T 2).

Given the average length of associative arrays, Lemma 9 discusses the space and time complexities of LD-Sketch.

Lemma 9. LD-Sketch has space complexity O(r(w+ U2

wT 2)). Its time complexity of updating a data item is O(r(1 +
U2

w2T 2)), and that of detection is (r(w + U2

wT 2)).

7

Table 2: Comparisons of Existing Approaches with LD-Sketch: Upper Bounds of the Error Probability1,2.

Method
Heavy Hitter Detection Heavy Changer Detection

R1 R2 R3 R4 R5 R1 R2 R3 R4 R5

Count-Min [11] δ * * 0 0 δ * * * δ

Combinatorial Group Testing [10] δ * * * δ δ * * * δ

Reversible Sketch [23] δ * * * δ δ * * * δ

SeqHash [4] δ * * 0 0 δ * * * δ

Fast Sketch [17] δ * * * δ δ * * * δ

LD-Sketch 0 δ * 0 0 0 δ * 0 0

1 Each key is classified into one of the four intervals in which its true sum/difference lies: R1 = (0, (1 −
ǫ)φ), R2 = [(1−ǫ)φ, (1−ǫ/2)φ), R3 = [(1−ǫ/2)φ, φ), R4 = [φ, (1+ǫ)φ), R5 = [(1+ǫ)φ,+∞).

2 * means that the algorithm fails to bound the error probability in the range.

Table 3: Comparisons of Existing Approaches with LD-Sketch for Heavy Changer Detection: Space and Time Complexities.

Method Space Update Time Detect Time

Count-Min [11] O(H
ǫ
log 1

δ
) O(log 1

δ
) O(n)

Combinatorial Group Testing [10] O(H
ǫ
logn log 1

δ
) O(log n log 1

δ
) O(H

ǫ
logn log 1

δ
)

Reversible Sketch [23] O(lognΘ(1)

log logn
) O(logn) O(H

ǫ
n

3
log log n log logn)

SeqHash [4] O(H
ǫ
logn log 1

δ
) O(log n log 1

δ
) O(H

ǫ
logn log 1

δ
)

Fast Sketch [17] O(H
ǫ
log 1

δ
log nǫ

H log 1
δ

) O(log 1
δ
log nǫ

H log 1
δ

) O(H
ǫ
log3 1

δ
log nǫ

H log 1
δ

)

LD-Sketch O(H
ǫ
log 1

δ
) O(log 1

δ
) O(H

ǫ
log 1

δ
)

3.4. Parameter Selection

We now propose the parameter selection of LD-Sketch. As stated above, we set T = ǫφ and T = ǫφ/2 for heavy

hitter and heavy changer detections, respectively. We express our results in terms of H , where H = U
φ

for heavy hitter

detection and H = 2U
φ

for heavy changer detection (see Section 2.1). The selection of r and w takes two parameters

ǫ and δ as inputs, similar to the work [10]. For heavy hitter detection, LD-Sketch selects w = 2H
ǫ

, r = log 1
δ

. For

heavy changer detection, LD-Sketch selects w = 6H
ǫ

and r = log 1
δ

. Note that with these selected parameters, the

expected value of li,j in Lemma 8 will have a constant complexity O(1). In Section 6, we will verify this property via

trace-driven evaluation.

With the above lemmas and the selected parameters w, r and T , Theorems 1 and 2 summarize the error bounds,

space complexity, and time complexity of LD-Sketch in heavy hitter and heavy changer detections, respectively.

Theorem 1. Consider an LD-Sketch with w = 2H
ǫ

, r = log 1
δ

and T = ǫφ. It reports all heavy hitters. A non-heavy

hitter with sum less than (1− ǫ)φ is never reported. A non-heavy hitter with sum between (1− ǫ)φ and (1− ǫ/2)φ is

reported with probability at most δ. The expected space is O(H
ǫ
log 1

δ
). The expected time complexity of updating a

data item is O(log 1
δ
), and that of detection is O(H

ǫ
log 1

δ
)

Theorem 2. Consider two LD-Sketches with w = 6H
ǫ

, r = log 1
δ

, and T = ǫφ/2. They report all heavy changers. A

non-heavy changer with difference less than (1− ǫ)φ is never reported. A non-heavy changer with difference between

(1 − ǫ)φ and (1 − ǫ/2)φ is reported with probability at most δ. The expected space complexity is O(H
ǫ
log 1

δ
). The

expected time complexity of updating a data item is log 1
δ

, and that of detection is O(H
ǫ
log 1

δ
).

3.5. Comparisons with Existing Techniques

We compare LD-Sketch with state-of-the-art techniques. We focus on the sketch-based techniques, which provide

error bounds with two parameters: 0 < ǫ ≤ 1 and 0 < δ < 1 in addition to the threshold φ.

We first compare the accuracy of different approaches. We classify each key x into one of the five intervals in

which its true sum S(x) or true difference D(x) lies: R1 = (0, (1 − ǫ)φ), R2 = [(1 − ǫ)φ, (1 − ǫ/2)φ), R3 =
[(1 − ǫ/2)φ, φ), R4 = [φ, (1 + ǫ)φ), and R5 = [(1 + ǫ)φ,+∞). If x belongs to R1, R2 or R3, we evaluate its

error probability of being a false positive (i.e., treated as a heavy key); if x belongs to R4 or R5, we evaluate its

error probability of being a false negative (i.e., treated as a non-heavy key). Table 2 shows the upper bounds of the

8

error probability for different approaches. LD-Sketch shows two advantages over existing approaches. First, LD-

Sketch guarantees a zero false negative rate for both heavy hitter and heavy changer detections. Second, LD-Sketch

guarantees a zero false positive rate in the interval [0, (1− ǫ)φ) for both heavy hitter and heavy changer detections.

We next compare the space and time complexities of different approaches. In the interest of space, we only

consider heavy changer detection. Table 3 lists the space and time complexity of heavy changer detection for different

approaches, in terms of φ, ǫ, δ, and H . Count-Min consumes O(H
ǫ
log 1

δ
) of memory but requires O(n) time to

recover heavy keys. Combinatorial Group Testing, Reversible Sketch, SeqHash, and Fast Sketch aims to reduce the

detection time, but they all have a log n term in the memory complexity to keep track of the heavy keys inside the

sketch structure, so that the heavy keys can be recovered from the sketch structure. On the other hand, LD-Sketch has

the same memory complexity as Count-Min by keeping the heavy key candidates in the associative arrays, while its

update and detection time complexity is comparable to other approaches.

4. Distributed Detection

In this section, we elaborate how we perform heavy key detection in a distributed architecture via LD-Sketch.

4.1. Design

We design our distributed scheme as follows. We deploy an LD-Sketch in each of the q workers. Then we partition

the data stream in each of the p remote sites using a two-step approach. First, for a data item (x, vx), a remote site

hashes key x to a set of d (1 ≤ d ≤ q) workers for some design parameter d. This selection is deterministic in the

sense that the same set of d workers will always be selected for all data items with the same key x. Second, the remote

site uniformly selects one of the d workers and forwards it the data item. The partitioning functions in both steps are

identical in all remote sites. Since each of the d workers receives on average 1/d of the total value for each key, we

set the heavy key threshold to be (1− γ)φ
d

for some approximation parameter 0 ≤ γ < 1. Finally, if a key is reported

as a heavy key by all the d workers, then we report the key as a heavy key in our final results.

The design parameter d in our distributed scheme determines the accuracy of heavy key detection. As d increases,

the false positive rate decreases until some turning point is reached. We also introduce a small false negative rate,

since some of the d workers may receive less than (1− γ)φ
d

of the total value if the partition is not perfectly even. We

study the impact of d on the accuracy in the next subsection.

4.2. Analysis

We conduct theoretical analysis on LD-Sketch in a distributed setting. Our results are based on those in Section 3

by substituting new parameters for the distributed scheme.

We first consider the space and time complexity. Suppose that each LD-Sketch has r rows and w buckets. For the

total sum U and the threshold φ in local detection, we replace them with U
q

and (1−γ)φ
d

, respectively. We assume that

the worker selection for each data item is independent. By similar arguments in Lemma 8, the expectation of the term

U2 in the space and time complexity can be replaced with O(U
2

q2
), assuming that q is far smaller than the number of

available keys n. Using the above arguments, the space complexity is O(r(w + U2

wT 2q2
)). The time complexity of the

update procedure is O(r(1+ U2

w2T 2q2
)), and that of the detection procedure is O(r(w+ U2

wT 2q2
)). We set T = (1−γ) ǫφ

d

for heavy hitter detection and T = (1− γ) ǫφ2d for heavy changer detection. Since 1 ≤ d ≤ q and γ is typically small,

we actually reduce both the space and time complexity of local detection.

For the false positive rate, it can be derived from Lemmas 6 and 7 by replacing U and φ with U
q

and (1 − γ)φ
d

,

respectively. Note that the distributed scheme further reduces the false positive rate since a non-heavy key needs to be

reported by all d workers. Thus, the corresponding false positive rate in the range [(1 − ǫ)φ, (1 − ǫ/2)φ) is at most

(dU
qw(1−γ)ǫφ)

rd for heavy hitter detection and at most (6dU
qw(1−γ)ǫφ)

rd for heavy changer detection.

We illustrate how the false positive rate varies with different values of d. As a case study, we pick φ = 0.001U ,

so there are at most H = U
φ

= 1000 heavy hitters and H = 2U
φ

= 2000 heavy changers (see Section 2.1). We fix

γ = 0, ǫ = 0.8, r = 5, and w = 4H . Figures 3(a) and 3(b) show the upper bounds of the false positive rate for heavy

hitter and heavy changer detection, respectively. Note that the upper bound of the false positive rate can be viewed as

9

 1e-45

 1e-40

 1e-35

 1e-30

 1e-25

 1e-20

 1e-15

 1e-10

 1e-05

 1 2 3 4 5 6 7 8 9 10

F
a

ls
e

 P
o

s
it
iv

e
 R

a
te

 (
U

p
p

e
r

B
o

u
n

d
)

Selected d

q=10
q=15
q=20

 1e-20

 1e-15

 1e-10

 1e-05

 1

 1 2 3 4 5 6 7 8 9 10

F
a

ls
e

 P
o

s
it
iv

e
 R

a
te

 (
U

p
p

e
r

B
o

u
n

d
)

Selected d

q=10
q=15
q=20

(a) Heavy Hitter (b) Heavy Changer

Figure 3: False positive rate of distributed scheme versus d.

the function (cd)rd, for some constant c. As d increases, if log(cd) < −1, the upper bound of the false positive rate

decreases; if log(cd) > −1, the upper bound increases exponentially, as shown in Figure 3(b).

For the false negative rate, Lemma 10 shows that it can be bounded in a distributed setting.

Lemma 10. For a heavy key x, it will be missed at probability at most 1− (1− e−
φ
2dγ

2

)d.

4.3. Parameter Selection

We now propose the parameter selection for distributed detection. The selection involves H , φ, ǫ, δ, and γ as

inputs. For heavy hitter detection, LD-Sketch selects w = 2dH
(1−γ)qǫ , r = log 1

dδ
, and T = (1−γ)ǫφ

d
; for heavy changer

detection, it selects w = 6dH
(1−γ)qǫ , r = log 1

dδ
, and T = (1−γ)ǫφ

2d . With the selected parameters, the following theorems

summarize the error bounds, space complexity, and time complexity of the distributed scheme of LD-Sketch.

Theorem 3. Consider an LD-Sketch with w = 2dH
(1−γ)qǫ , r = log 1

dδ
, and T = (1−γ)ǫφ

d
. A heavy hitter is missed

with probability at most 1− (1− e−
φ
2dγ

2

)d. A non-heavy hitter with the true sum less than (1− γ)(1− ǫ)φ is never

reported. A non-heavy hitter with sum between (1 − γ)(1 − ǫ)φ and (1 − γ)(1 − ǫ/2)φ is reported with probability

at most δ. The expected space complexity is O(dH
qǫ(1−γ) log

1
dδ
). The expected time complexity of updating a data item

is O(log 1
dδ
), and that of detection is O(dH

qǫ(1−γ) log
1
dδ
).

Theorem 4. Consider two LD-Sketches with w = 6dH
(1−γ)qǫ , r = log 1

dδ
, and T = (1−γ)ǫφ

2d . A heavy changer is missed

with probability at most 1− (1− e−
φ
2dγ

2

)d. A non-heavy changer with the true difference less than (1− γ)(1− ǫ)φ is

never reported. A non-heavy changer with difference between (1−γ)(1− ǫ)φ and (1−γ)(1− ǫ/2)φ is reported with

probability at most δ. The expected space complexity is O(dH
q(1−γ)ǫ log

1
dδ
). The expected time complexity of updating

a data item is log 1
dδ

, and that of detection is O(dH
q(1−γ)ǫ log

1
dδ
).

4.4. Discussion

The distributed detection of LD-Sketch builds on its local detection approach. However, it is also possible to extend

existing local detection approaches for distributed detection. Such extensions can be classified into two groups.

The first group is to detect heavy keys in each worker independently and merge the detected results. This group of

approaches reduces both space and time complexities in workers, but it may introduce a higher error rate as the errors

of individual workers are accumulated.

The second group of approaches maintains a local data structure (e.g., an associative array or a sketch) in each

worker. It then merges the local data structures into a global one and then performs heavy key detection based on

the merged global structure. For example, Mergeable Summary [1] merges two associative arrays without increasing

errors. This group of approaches boosts the processing throughput as each worker only needs to process a partial data

stream. However, the memory consumption in each worker is not reduced. To keep the same error rate, the size of the

10

k = 2k = 1k = 0

ei,j : 0 → 0.1φ Vi,j : 0.6φ → 1.5φ

(x4, 0.9φ) (x5, 1.3φ)

li,j : 1 → 5

0.1φ 0.2φ 0.3φ

ei,j : 0.1 → 0.2φ

(a) Ascending arrival sequence

k = 2k = 1k = 0

Vi,j : 1.3φ → 2.2φ

(x4, 0.9φ)(x5, 1.3φ)

li,j : 1 → 11

0.1φ0.2φ0.3φ

(b) Descending arrival sequence

Figure 4: Two arrival sequences of data items, and they lead to different expansions of Ai,j and numbers of false positives.

global structure must be the same as that in single-host detection. To make the local structures are mergeable, each

worker need to maintain the same size of a local structure as that of the global structure, implying that the memory

complexity of each worker is the same as that in single-host detection.

To summarize, the above extensions either increase the error rate or bring no memory reduction. On the other

hand, LD-Sketch reduces both the error rate and memory consumption in distributed detection.

5. Ordering of Data Items

Our analysis in Sections 3 and 4 focuses on the sum or difference of a key as a whole over an entire epoch, and the

complexity results only address the worst-case scenario. However, the actual performance and accuracy of LD-Sketch

is in fact sensitive to the ordering of data items within an epoch. Specifically, during the update procedure, the values

of the data items determine how much we decrement the keys of the associative arrays and how much we expand the

associative arrays. The actual number of counters allocated in LD-Sketch, and hence the detection accuracy, varies

depending on the ordering of data items and their values received by LD-Sketch.

To our knowledge, the impact of ordering is not considered in prior work. Counter-based techniques always keep

fixed-length arrays, so the memory usage is unaffected, although it remains an open issue how the ordering of data

items affects decrements of counters and the resulting detection accuracy. On the other hand, sketch-based techniques

always add values to buckets, and the summation results are unaffected by the ordering of data items.

In this section, we demonstrate via examples the impact of the ordering of data items on LD-Sketch. We then

explain how we leverage the ordering property to enhance LD-Sketch.

5.1. Motivating Examples

We consider the following scenario to illustrate the impact of ordering of data items. Suppose that we perform

heavy hitter detection, with the detection threshold φ, approximation parameter ǫ = 1 and the expansion parameter

T = φ. Five keys, denoted by x1, x2, x3, x4, x5, are hashed to the same bucket (i, j), and their true sums S(xi)
(1 ≤ i ≤ 5) are 0.1φ, 0.2φ, 0.3φ, 0.9φ, and 1.3φ, respectively. To simplify our discussion, we assume that each key

has a single data item whose value is equal to the true sum (i.e., vx = S(x) for key x).

Referring to Algorithm 1, since the total sum of all keys in bucket (i, j) is Vi,j = 2.8φ, we see that k is at most

2 (Line 8), and the maximum length of the associative array Ai,j is li,j = 11 (Line 23). We now consider two

specific arrival sequences of the data items, as shown in Figure 4, and discuss how Ai,j is actually expanded based on

Algorithm 1.

Figure 4(a) shows that the keys arrive in ascending order of their true sums, i.e., in the order x1, x2, x3, x4, and

x5. When x1 arrives, it is inserted to Ai,j (Line 6). When x2 arrives, Ai,j is now full with li,j = 1 counter. Since

11

Initialization (before each epoch): k̂i,j = 0
1: k̂i,j = k̂i,j + 1
2: add (k̂i,j + 1)(k̂i,j + 2)− 1− li,j new counters to Ai,j

3: li,j = (k̂i,j + 1)(k̂i,j + 2)− 1
4: Insert x to Ai,j and set Ai,j [x] = vx

Figure 5: Controlled expansion: modifications to Lines 22-24 of Algorithm 1.

k = 0, Lines 10-20 will be executed, and x1 is removed and x2 is stored in Ai,j . When x3 arrives, Lines 10-20 will

be similarly executed, and x2 is removed and x3 is stored in Ai,j . At this moment, ei,j is incremented to 0.2φ. When

x4 arrives, Vi,j is incremented from 0.6φ to 1.5φ and we now have k = 1. Thus, Ai,j expands and li,j = 5, and x4 is

stored in Ai,j (Lines 22-24). When x5 arrives, there are empty counters, so it is inserted to Ai,j (Line 6). Note that

x4 remains in Ai,j . Its estimated sum is Sup
i,j (x4) = Ai,j [x4] + ei,j = 0.9φ + 0.2φ = 1.1φ. Thus, x4 is treated as a

heavy hitter, but it is a false positive. In short, this ascending arrival sequence expands Ai,j to have li,j = 5 counters,

and returns one false positive.

Figure 4(b) shows another sequence in which the keys arrive in descending order of their true sums, i.e., in the

order x5, x4, x3, x2, and x1. When x5 arrives, it is inserted to Ai,j (Line 6). When x4 arrives, Ai,j is now full with

li,j = 1 counter. Since Vi,j becomes 2.2φ, we have k = 2. Thus, Ai,j expands to have li,j = 11 counters, and

x2 is inserted (Lines 22-24). Afterwards, the following keys x3, x2, and x1 can be inserted directly (Line 6). This

scenario keeps ei,j = 0, so no false positive is reported. In short, the descending arrival sequence expands Ai,j to

have li,j = 11 counters, but does not return any false positive.

Implication. The above two examples provide preliminary insights that the ordering of data items affects memory

usage and detection accuracy in different ways. Both memory usage and detection accuracy are critical metrics for

evaluating a real-time heavy key detection scheme. The insights motivate us to conduct more in-depth studies on

the impact of data ordering, including both theoretical analysis (see Section 5.2) and trace-driven evaluation (see

Section 6).

5.2. Analysis

We now conduct theoretical analysis on the impact of ordering, in particular, when the arrival of data items follows

either ascending order or descending order of their true sums over an epoch. We call them an ascending arrival

sequence and a descending arrival sequence, respectively. An ascending (resp. descending) arrival sequence means

that the data items of key xa always arrive before the data items of xb if S(xa) < S(xb) (resp. S(xa) > S(xb)).
Before we present our analysis, we first modify Algorithm 1 by controlling the expansion of the associative array

Ai,j for a bucket (i, j). Our observation is that if a data item x has a significantly large vx, then k will be incremented

by a large value, thereby making Ai,j expand by a large number of additional counters than it actually uses. For

instance, in the descending arrival sequence discussed in the previous subsection, when x2 is added, k increases from

0 to 2 and hence li,j increases from 1 to 11. The reason is that li,j is incremented based on the expansion number

k, which is determined by the current counter value Vi,j (see Line 8 and Lines 22-24 of Algorithm 1). To handle

the problem, we introduce a controlled expansion number k̂i,j for each bucket (i, j), such that k̂i,j is incremented

by exactly one for each expansion and make li,j increase with respect to k̂i,j instead of k. Thus, Ai,j is expanded

independently of the value of a data item.

Figure 5 details the modifications, in which we replace Lines 22-24 of Algorithm 1 with Lines 1-4 in Figure 5.

Specifically, the controlled expansion number k̂i,j is initialized to zero before each epoch. At each expansion, we

increment k̂i,j by one (Line 1) and add (k̂i,j + 1)(k̂i,j + 2)− 1− li,j new counters (Line 2). Then we update li,j and

insert the incoming key x (Lines 3-4).

The modifications ensure that k̂i,j ≤ k. When k̂i,j = k, we must have li,j = (k̂i,j + 1)(k̂i,j + 2) − 1 =

(k + 1)(k + 2) − 1, so Lines 10-20 Algorithm 1 will be executed. Then k̂i,j stops growing until k is incremented

again (Line 8 of Algorithm 1).

It is important to note that all analysis results in Section 3.3 still hold, since the results depend on the expansion

number k, which provides an upper bound on k̂i,j .

12

xi
xi, count(xi)

Hash Table

Priority Queue

(x, vx) (x, count(x))

Figure 6: Framework for the enhancement heuristics.

We now formally analyze the impact of ordering based on the modified algorithm, and define the following no-

tation. Consider a bucket (i, j), which is updated with ti,j distinct keys. Their total sum Vi,j satisfies the condition

ki,jT ≤ Vi,j < (ki,j + 1)T for some ki,j , where T = ǫφ for heavy hitter detection and T = ǫφ/2 for heavy changer

detection. Among the ti,j keys, we assume that t≥i,j of them have true sum at least T . For ease of presentation, we

refer to them as large keys and the rest as small keys. Let V ≥
i,j and V <

i,j = Vi,j − V ≥
i,j be the total sums of large and

small keys satisfying k≥i,jT ≤ V ≥
i,j < (k≥i,j +1)T and k<i,jT ≤ V <

i,j < (k<i,j +1)T for some k≥i,j and k<i,j , respectively.

We analyze two issues: (i) how an ascending arrival sequence affects memory usage of LD-Sketch and (ii) how a

descending arrival sequence affects detection accuracy of LD-Sketch. The following two lemmas describe the impact

of the two types of arrival sequences on li,j and ei,j , respectively.

Lemma 11. For an ascending arrival sequence, li,j = O(k<i,j
2
+ t≥i,j).

Lemma 12. For a descending arrival sequence, ei,j = O(T

k
≥
i,j

).

Discussion. From Section 3.1, we know that li,j = O(k2i,j), which may be very large, especially when a bucket

includes a key with a very large value. However, Lemma 11 shows that for a special case of ascending arrival

sequences, li,j only depends on the total sum of small keys and the number of large keys. In real-life networks, the

key distribution of network traffic is typically highly skewed [3, 24, 26], such that a few number of large keys account

for most of the traffic. This suggests that k<i,j and t≥i,j are small in practice. Thus, the memory usage is much smaller

for ascending arrival sequences.

In terms of accuracy, Lemma 12 considers the maximum estimation error ei,j , which determines the false positive

rate. It shows that descending arrival sequences bound ei,j to O(T

k
≥
i,j

). Since network traffic is highly skewed in

practice [3, 24, 26] and few large keys can generate large k≥i,j , ei,j (and hence the false positive rate) is much smaller

for descending arrival sequences.

5.3. Enhancements for LD-Sketch

Although Lemmas 11 and 12 provide observations on the impact of the ordering of data items, it is non-trivial to

leverage the analysis to enhance LD-Sketch. The difficulty comes from the fact that it is infeasible to sort data items

without tracking all keys; otherwise, the heavy key detection can be immediately solved by simply sorting keys in

descending order and reporting the first few keys.

To take advantage of the ordering property of data items, our idea is to sort data items at a coarse granularity

rather than produce an exact ordering. We propose two heuristics, namely (i) the memory-oriented heuristic, which

leverages the ascending ordering of data items to reduce memory usage, and (ii) the accuracy-oriented heuristic,

which leverages the descending ordering of data items to reduce the false positive rate.

Both heuristics employ the same framework as shown in Figure 6. The framework is composed of a hash table

(denoted by H) and a priority queue (denoted by Q), both of which store the same number of items that is pre-

configured in advance. The entries of H are indexed by keys of data items, and each of the entries is a pointer to

an entry of Q, which maintains a counter for the corresponding key. Q can return the key with the largest or the

13

smallest counter value in Θ(1) time. If multiple keys have the same counter values in Q, we assume that the one that

is accessed earlier will be returned.

Algorithm 2 elaborates how the framework is used. It consists of two basic functions, namely UPDATEFRAME-

WORK and EVICTENTRY. UPDATEFRAMEWORK includes a data item (x, vx) into the framework. If key x in H,

we look up H and increment the counter by vx in Q (Lines 2-4). Otherwise, if key x is not in H and both H and

Q are full, then the framework will evict one entry to make room for the new key (Lines 6-8), and we insert key x
into H and Q and initialize the counter in Q to be vx (Line 9). EVICTENTRY always evicts the highest-priority key

and its counter value and removes it from both H and Q (Lines 14-16). Based on these two functions, Algorithm 2

works as follows. In each epoch, both H and Q are initialized with empty entries (Lines 20-21). We then update the

framework with each incoming data item (Lines 22-24). At the end of an epoch, all remaining data items are evicted

(Lines 25-27).

Algorithm 2 applies to both heuristics in the same way, with the only difference in the priority definition. For the

memory-oriented heuristic, the highest-priority key is the one that has the smallest counter value in Q, while for the

accuracy-oriented heuristic, the highest-priority key is the one with the largest counter value in Q. All evicted data

items will be the inputs to LD-Sketch.

Discussion. We discuss some practical issues for the enhancement heuristics. The first issue is where the heuristics

are deployed. Instead of putting the heuristics in the workers (where LD-Sketch is deployed), we deploy the heuristics

in each of the remote sites. Such a placement has two advantages. First, it shifts some workload from workers to

remote sites. Second, it reduces the data transmission overhead between the remote sites and workers, as the priority

queue may aggregate the values of a data item before evicting it.

The second issue is the number of data items being stored in the hash table and the priority queue. Increasing the

capacity improves the sorting accuracy, but at the expense of more memory and processing overhead for maintaining

the framework. In this paper, we configure the capacity to be 1000 items. Based on our traces, this number is only

around 0.1% of the total number of keys observed in an epoch, yet it suffices to significantly improve the detection

algorithm as shown in our evaluation (see Section 6).

The final issue is the problem of uneven partitioning, which introduces false negatives in distributed detection.

Since the framework can aggregate the values of a key, the uneven partitioning problem can be more severe. Consider

an extreme case in which a true heavy hitter is never evicted from the priority queue until the end of the epoch, with

its counter value in the priority queue equal to its true sum. When the remote site emits the key to one of d workers,

the selected worker will behave as if it receives all values, while the other d − 1 workers receive none. This uneven

partitioning makes LD-Sketch fail to detect the key as a heavy hitter since it requires all d workers to report the key.

To handle this problem, we explicitly split an evicted data item into d equal pieces, each holding the counter value

divided by d, and emit exactly one piece to each worker.

6. Experiments

In this section, we present results based on trace-driven experiments. Our goal is to demonstrate the accuracy and

scalability of LD-Sketch in a distributed setting.

Implementation. We implement a distributed streaming architecture in C++ with remote sites and workers, each

of which runs as a software process. To eliminate network I/O overhead in our evaluation, we deploy our architecture

in a multi-core testbed, where a remote site and a worker is connected via an in-memory ring buffer. We implement

LD-Sketch in each worker.

Testbed and evaluation methodologies. Our testbed is a multi-core server with 12 physical 2.93GHz CPU cores

and 50GB RAM. The server runs Linux 2.6.32. We compile our code using GCC 4.6 with the -O3 option.

We run our evaluation on real IP packet header traces from a commercial 3G UMTS network in China in December

2010 (the same traces as in our prior work [14]). We leverage the real-life traffic patterns of the traces to evaluate

LD-Sketch in practical scenarios. Here, we only focus on the IP traffic in the data plane, but do not consider the traffic

in the control plane, which is specific for 3G networks. We select the most heavy-loaded six hours of traces for our

evaluation. The traces contain 1.1 billion packets that account for a total of around 600GB of traffic. We configure

p = 3 remote sites and a number of q workers (varied in our experiments). We divide the traces into three sub-traces in

a round-robin manner, and each sub-trace is replayed by one of the three remote sites. Each data item corresponds to

14

Algorithm 2 Enhancement Heuristics for LD-Sketch

Input: data item (x, vx)
1: function UPDATEFRAMEWORK(x, vx,H,Q)

2: if x ∈ H then

3: LookupH and the corresponding entry inQ
4: Increment the counter value of the entry inQ
5: else

6: ifH is full then

7: EVICTENTRY(H,Q)

8: end if

9: Insert x toH andQ, and initialize its counter inQ as vx
10: end if

11: end function

12:

13: function EVICTENTRY(H,Q)

14: Find the highest-priority entry e fromQ
15: Emit (e.key, e.counter)
16: Remove e.key fromH andQ
17: end function

18:

19: procedure MAIN

20: hash tableH ← ∅
21: priority queueQ ← ∅
22: for data item (x, vx) do

23: UPDATEFRAMEWORK(x, vx,H,Q)

24: end for

25: whileQ is not empty do

26: EVICTENTRY(H,Q)

27: end while

28: end procedure

a packet, where the key is set as the 64-bit source and destination IP address pair and the value is set as the IP payload

size. We set the epoch length for heavy key detection as 10 minutes, while we also verify the results for different

epoch lengths and make consistent observations. Our results are averaged over all 36 epochs of the six-hour traces.

We compare LD-Sketch with several state-of-the-art sketch-based techniques, including Combinational Group

Testing (CGT) [10], SeqHash [4], and Fast Sketch [17] in both heavy hitter and heavy changer detections. We also

compare LD-Sketch with the counter-based technique in [21]. As the counter-based technique only supports heavy

hitter detection (see Section 2.2), we subtract the counters of a key of the associative arrays at two adjacent epochs to

estimate the change. Note that all the above sketch-based and counter-based techniques, except LD-Sketch, are only

designed for local detection (i.e., using one worker).

Metrics. We consider the following metrics:

• Memory usage: It is the number of bytes consumed by the data structure. We omit the memory space for storing

the hash functions of the sketch, assuming that they consume negligible space.

• Recall: It is the ratio of the number of true heavy keys returned to the actual number of true heavy keys. A

higher recall means a lower false negative rate.

• Precision: It is the ratio of the number of true heavy keys returned to the total number of all heavy keys returned

(including true heavy keys and false positives). A higher precision means a lower false positive rate.

• Update throughput: It is the total IP payload size divided by the total time to update the data items. Before

measurements, we load the traces to memory to eliminate disk overhead. We also bind the worker processes to

CPU cores to avoid context switching.

15

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 2 4 6 8 10 12 14 16 18 20

K
B

Threshold / MB

Counter-based
CGT

Seqhash
Fast Sketch

LD-Sketch

 0.96

 0.97

 0.98

 0.99

 1

 1.01

 1.02

 1.03

1 5 11 19 29 41 55 71 89 109
131

155
181

209

C
D

F

Maximum length of associated array

Threshold 1 MB
Threshold 5 MB

Threshold 10 MB
Threshold 20 MB

(a) Memory usage (b) Length distribution of asso-

ciative arrays in LD-Sketch

Figure 7: Experiment 1 (Memory usage).

We do not present the throughput results of the detection procedure. Our experience is that the detection time is

significantly less than that of updating all data items in one epoch.

Experiment 1 (Memory usage). We first examine the actual memory usage of different approaches. The results

depend on three variables δ, ǫ, and φ. Given that there are many combinations, we consider a special setting where we

fix δ = 1
4 , ǫ = 1, and vary φ.

Given the values of δ, ǫ and φ, we configure the parameters for different approaches as follows. We set H = U/φ
for heavy hitter detection and H = 2U/φ for heavy changer detection as defined in Section 2. For previous ones,

we employ the default parameter selection mechanisms proposed in their respective studies. Specifically, for CGT,

we configure two rows and 2H buckets, and each bucket contains log(n) + 1 counters to recover heavy keys, where

log(n) = 64 is the key length in bits. For SeqHash, we partition the 64-bit key into 25 words with the first word

containing 16 bits and two bits for each of the remaining words. We allocate 66 rows in total, including four rows for

the first sub-key space, 16 rows for the last sub-key space, and two rows for others. We allocate H buckets to each

row, and the allowed miss is set to one specifically for heavy changer detection. For Fast Sketch, we use two hash

functions and set the hash table length as 4H to reduce hash collisions. For LD-Sketch, we set r = 2, w = 2H , and

T = φ.

Figure 7(a) compares the amount of memory (in units of KB) consumed by different approaches. We see that LD-

Sketch uses twice as much memory as counter-based approach. On the other hand, it consumes much less memory

than prior sketch-based approaches. For example, LD-Sketch only consumes one-sixth of memory of SeqHash, and

its fraction is even less compared to CGT and Fast Sketch. The main reason is that prior approaches require enough

space to restore heavy keys from their sketch structures. In contrast, LD-Sketch employs dynamically expandable

associative arrays to keep the heavy keys. The average length of each array is bounded within a constant complexity.

To examine how the length of each associative array in LD-Sketch varies, Figure 7(b) shows the length distribution

of the associative arrays in LD-Sketch for different values of threshold φ. We see that more than 96% associative arrays

are of length one. Also, the average length of associative arrays is less than two for all cases. The results confirm the

theoretical analysis of Lemma 8 that the average length has a constant complexity O(1) (see Section 3.3).

Experiment 2 (Accuracy of local detection of LD-Sketch). We compare the accuracy of local detection of LD-

Sketch with the detection accuracy of other approaches. For fair comparison, we configure all the detection approaches

with the same amount of memory. We fix M = 106 bytes in the data structure for each approach. For CGT, SeqHash,

and Fast Sketch, we fix δ = 1
4 and allocate the M bytes to the buckets accordingly. For LD-Sketch, the actual memory

usage is not fixed due to dynamic expansion. To handle this, we estimate the length of an associated array to be 2 U2

w2T 2

based on Lemma 8 (see Section 3) and configure w that satisfies the memory requirement.

We first validate the memory usage of LD-Sketch, which is dynamic. Figure 8(a) shows that the actual amount

of allocated memory does not exceed the configured amount for all cases. The actual amount is even smaller when

φ increases. For example, the actual amount is only 50% of configured amount for φ = 20MB. Figure 8(b) plots the

actual average length of the associative arrays versus φ. The results show that the actual average length approaches

16

 500

 600

 700

 800

 900

 1000

 1100

 0 2 4 6 8 10 12 14 16 18 20

K
B

Threshold / MB

Configured memory
Used memory

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10 12 14 16 18 20

A
v
e
ra

g
e
 L

e
n
g
th

Threshold / MB

Estimated
Actual allocated

(a) Memory usage (b) Average associative array length

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 2 4 6 8 10 12 14 16 18 20

H
e

a
v
y
 H

it
te

r
R

e
c
a
ll

Threshold / MB

Counter-based
CGT

Seqhash
Fast Sketch

LD-Sketch

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 2 4 6 8 10 12 14 16 18 20

H
e

a
v
y
 H

it
te

r
P

re
c
is

io
n

Threshold / MB

Counter-based
CGT

Seqhash
Fast Sketch

LD-Sketch

(c) Heavy hitter, Recall (d) Heavy hitter, Precision

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 2 4 6 8 10 12 14 16 18 20

H
e

a
v
y
 C

h
a

n
g

e
r

R
e

c
a

ll

Threshold / MB

Counter-based
CGT

Seqhash
Fast Sketch

LD-Sketch

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 2 4 6 8 10 12 14 16 18 20

H
e

a
v
y
 C

h
a

n
g

e
r

P
re

c
is

io
n

Threshold / MB

Counter-based
CGT

Seqhash
Fast Sketch

LD-Sketch

(e) Heavy changer, Recall (f) Heavy changer, Precision

Figure 8: Experiment 2 (Accuracy of local detection of LD-Sketch).

one when φ increases. For example, when φ = 20MB, our configured length is 3.277, yet the actual average length is

only 1.072.

Figures 8(c)-(f) show the results of detection accuracy. We see that all CGT, SeqHash, and Fast Sketch have low

recall (see Figures 8(c) and 8(e)), because they need more memory to recover all heavy keys (see Table 3). With

insufficient memory, they have high false negative rates. Fast Sketch has low precision, since it identifies heavy

quotients (i.e., prefixes of heavy keys) and may return many false positives that match the quotients. The counter-

based technique has around 90% recall and 70% precision for heavy changer detection. The reason is that the counter

values are below the actual values (as in Lemma 1) in both epochs so that we cannot determine whether the estimated

change is larger or smaller than the true change. On the other hand, LD-Sketch uses associative arrays to keep track

of frequent items, and have recall exactly equal to 100%. Its precision is as low as 80% (when φ = 1MB). However,

we can increase its precision with distributed detection (see below).

Experiment 3 (Accuracy of distributed detection of LD-Sketch). We now study the accuracy of LD-Sketch

17

 0.97

 0.98

 0.99

 1

 1.01

 1.02

 0 2 4 6 8 10 12 14 16 18 20

H
e
a
v
y
 H

it
te

r
R

e
c
a
ll

Threshold / MB

q=1, d=1
q=5, d=1
q=5, d=2
q=5, d=3

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0 2 4 6 8 10 12 14 16 18 20

H
e
a
v
y
 H

it
te

r
P

re
c
is

io
n

Threshold / MB

q=1, d=1
q=5, d=1
q=5, d=2
q=5, d=3

(a) Heavy hitter, Recall (b) Heavy hitter, Precision

 0.97

 0.98

 0.99

 1

 1.01

 1.02

 0 2 4 6 8 10 12 14 16 18 20

H
e

a
v
y
 C

h
a
n
g
e
r

R
e
c
a
ll

Threshold / MB

q=1, d=1
q=5, d=1
q=5, d=2
q=5, d=3

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0 2 4 6 8 10 12 14 16 18 20

H
e

a
v
y
 C

h
a
n
g
e
r

P
re

c
is

io
n

Threshold / MB

q=1, d=1
q=5, d=1
q=5, d=2
q=5, d=3

(c) Heavy changer, Recall (d) Heavy changer, Precision

Figure 9: Experiment 3 (Accuracy for distributed detection of LD-Sketch).

using distributed detection. We deploy LD-Sketch in q = 5 workers, each of which is configured with M
q

bytes for

heavy hitter detection and 2M
q

for heavy changer detection, where M = 106 as in Experiment 2. We fix γ = 0 and

vary both d and φ. Other parameters are the same as in Experiment 2.

Figure 9 shows the results of different values of d. When d = 1, the result is similar to the local detection in

Experiment 1. When d > 1, the heavy hitters can be detected with 100% recall and precision. For heavy changers,

choosing d = 2 improves the precision of local detection algorithm from 76% to 97% for threshold 1MB, and choosing

d = 3 can even achieve 100% of precision. However, false negatives will be introduced when d > 1 since we may not

partition the data items of a key evenly across the workers. Nevertheless, our evaluation shows that the false negative

rate is less than 2%.

Experiment 4 (Update throughput). In this experiment, we measure the update throughput using a single worker

(local detection) and multiple workers (distributed detection). The parameters are the same as in Experiment 2 and 3.

Figure 10(a) presents the update throughput versus the number of true heavy keys when a single worker is used.

The throughput changes marginally as the number of true heavy keys grows. Note that the main bottleneck of the

sketch-based algorithms is the hash operations, and the number of hash operations remains the same as it depends on

the fixed parameter δ. Thus, the throughput is similar as the number of true heavy keys changes. From the figure,

SeqHash is the slowest because it employs multiple sketches, in which the hash operations slow down the overall

throughput. LD-Sketch, CGT, and Fast Sketch perform the same number of hash operations, but LD-Sketch requires

additional time to update the associative arrays. For example, when φ = 1MB, LD-Sketch achieves only 72% and

63% of the throughput of CGT and Fast Sketch, respectively.

Nevertheless, we can boost the throughput of LD-Sketch via parallelization. Figure 10(b) shows the update

throughput of LD-Sketch using multiple workers with d = 1. We see that the throughput increases almost linearly as

the number of workers grows. When using five workers, LD-Sketch can reach over 20Gb/s of throughput. This shows

the scalability of LD-Sketch in a distributed architecture.

Experiment 5 (Effectiveness of enhancement heuristics). We study the effectiveness of our proposed enhance-

18

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14 16 18 20

T
h
ro

u
g
h
p
u
t

G
b
/s

Threshold /MB

CGT
Seqhash

Fast Sketch
LD-Sketch

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5

T
h
ro

u
g
h
p
u
t

G
b
/s

of Workers

LD-Sketch

(a) Single worker (b) Multiple workers

Figure 10: Experiment 4 (Update throughput).

ment heuristics (see Section 5.3). We compare them with the baseline LD-Sketch, which does not take into account

the ordering property of data items. In the interest of space, we only report the results of distributed detection with

q = 5 and d = 2, while we verify that the results of other settings are similar. The parameter selection is the same as

in Experiment 3.

Figure 11(a) shows the actual memory usage of LD-Sketch for both baseline and two heuristics. We see that the

actual amount of memory usage of all algorithms is less than the configured amount, and decreases as φ increases.

In addition, the memory-oriented heuristic consumes only 75% of memory of the baseline algorithm. We further

examine the reason behind. Figure 11(b) plots the length distribution of the associative arrays in LD-Sketch when the

memory-oriented heuristic is used for φ = 1MB. It shows that more than 99.9% of the associative arrays have length

not exceeding five. Note that the accuracy-oriented heuristic uses nearly the same memory as the baseline algorithm.

Figures 11(c)-(f) present the accuracy results. The memory-oriented heuristic loses less than 2% of precision in

both heavy hitter and heavy changer detections. On the other hand, the accuracy-oriented heuristic maintains high

accuracy. In particular, it improves the precision of heavy changer detection to above 99.6% (see Figure 11(f)), while

keeping the false negative rate less than 2% for all cases (see Figures 11(c) and 11(e)).

Summary of results. LD-Sketch consumes less memory and achieves higher accuracy than existing sketch-based

algorithms for heavy key detection. A trade-off is that the speed of LD-Sketch is slightly slower than other sketch-

based algorithms. Using distributed detection improves the precision of LD-Sketch significantly while losing no more

than 1% recall, and in the meantime, increases the update throughput. The enhancement heuristics further improve

LD-Sketch by trading off between memory and accuracy.

7. Related Work

Counter-based techniques. The Misra-Gries algorithm [21] maintains an associative array of counters and keeps

tracks of frequent items (see Section 2.2). Lossy Counting [19] extends the Misra-Gries algorithm by tracking the

estimation error for each key. Space-Saving [20] improves the time and space efficiency with some specialized data

structure. Probabilistic Lossy Counting [12] provides probabilistic guarantees on accuracy and consumes less memory

by allowing errors in Lossy Counting. The above algorithms only work for heavy hitter detection, but do not address

heavy changer detection.

Sketch-based techniques. Count-Sketch [5, 7] and Count-Min [11] are two well-known sketch algorithms for

frequency estimation. The two algorithms differ in space requirement and error bounds. A comprehensive study [8]

shows that both algorithms have similar performance in practice. Sketches have been used in heavy hitter detection

(e.g., [13]) and heavy changer detection (e.g., [16]).

Some studies propose to efficiently restore heavy keys. Cormode et al. [9] consider a hierarchical structure of keys

and formalize the problem of finding hierarchical heavy hitters. Combinational Group Testing (CGT) [10] exploits

group testing to construct heavy keys from the extra information of buckets. Reversible Sketch [23] generalizes this

approach by searching smaller divided keys and constructing heavy keys from the searched results. SeqHash [4]

constructs a sequence of subspaces and searches each subspace based on the results of prior ones. Fast Sketch [17]

19

 100

 120

 140

 160

 180

 200

 220

 240

 260

 0 2 4 6 8 10 12 14 16 18 20

K
B

Threshold / MB

Configured
orig

memory-oriented
accuracy-oriented

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

1 5 11 19 29 41 55 71 89 109
131

155
181

209

C
D

F

Maximum length of associated array

orig (1 MB)
memory-oriented (1 MB)

(a) Memory usage (b) Length distribution of asso-

ciative arrays in LD-Sketch

 0.97

 0.98

 0.99

 1

 1.01

 1.02

 0 2 4 6 8 10 12 14 16 18 20

H
e

a
v
y
 H

it
te

r
R

e
c
a
ll

Threshold / MB

orig
memory-oriented

accuracy-oriented

 0.97

 0.98

 0.99

 1

 1.01

 1.02

 0 2 4 6 8 10 12 14 16 18 20

H
e

a
v
y
 H

it
te

r
P

re
c
is

io
n

Threshold / MB

orig
memory-oriented

accuracy-oriented

(c) Heavy hitter, Recall (d) Heavy hitter, Precision

 0.97

 0.98

 0.99

 1

 1.01

 1.02

 0 2 4 6 8 10 12 14 16 18 20

H
e

a
v
y
 C

h
a

n
g

e
r

R
e

c
a

ll

Threshold / MB

orig
memory-oriented

accuracy-oriented

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 0 2 4 6 8 10 12 14 16 18 20

H
e

a
v
y
 C

h
a

n
g

e
r

P
re

c
is

io
n

Threshold / MB

orig
memory-oriented

accuracy-oriented

(e) Heavy changer, Recall (f) Heavy changer, Precision

Figure 11: Experiment 5 (Effectiveness of enhancement heuristics).

optimizes the space and time complexity of group testing by a quotient technique. Group testing assumes that there

is exactly one heavy key in a bucket. It leads to a high false negative rate when multiple heavy keys are hashed to the

same bucket due to constrained memory, as shown in our evaluation. In contrast, LD-Sketch queries the heavy key

candidates in the buckets and guarantees no false negatives.

Distributed detection. Cormode et al. [6] exploit the linear property of sketches for distributed detection, and

reduce I/O using a prediction model. Manjhi et al. [18] organize all workers into a tree structure, in which each level

has its own error parameter to control the detection accuracy. Yi et al. [27] address the worst-case communication

complexity in distributed streaming. Mergeable Summary [1] extends the counter-based technique [21] and proposes

a technique to merge two associative arrays. However, the above studies only address heavy hitter detection, while

the distributed detection of LD-Sketch addresses heavy changer detection as well.

20

8. Conclusions

We present LD-Sketch, a novel distributed sketching design that aims to achieve real-time detection of traffic

anomalies, including heavy hitters and heavy changers, in today’s IP networks. It combines the classical counter-

based and sketch-based techniques, and leverages parallelization of the emerging distributed streaming architectures

to achieve both accurate and scalable detection. It is composed of local detection and distributed detection, and for both

components we derive the error bounds, space complexity, and time complexity. We also examine the impact of the

ordering of data items on LD-Sketch and propose two enhancement heuristics for LD-Sketch. We show via extensive

trace-driven experiments that LD-Sketch provides more accurate detection than existing sketch-based techniques, and

has both accuracy and scalability improvements in a distributed setting.

Acknowledgments

This work was supported by (i) GRF CUHK413711 from the Research Grant Council of Hong Kong and (ii)

TH127485 from Huawei Technologies.

References

[1] P. K. Agarwal, G. Cormode, Z. Huang, J. Phillips, Z. Wei, and K. Yi. Mergeable Summaries. In Proc. of PODS, 2012.

[2] Apache Flume. http://flume.apache.org.

[3] T. Benson, A. Akella, and D. A. Maltz. Network Traffic Characteristics of Data Centers in the Wild. In Proc. of IMC, Nov. 2010.

[4] T. Bu, J. Cao, A. Chen, and P. P. Lee. Sequential Hashing: A Flexible Approach for Unveiling Significant Patterns in High Speed Networks.

Computer Networks, 54(18):3309–3326, 2010.

[5] M. Charikar, K. Chen, and M. Farach-Colton. Finding Frequent Items in Data Streams. Theoretical Computer Science, 312(1):3–15, 2004.

[6] G. Cormode and M. Garofalakis. Sketching Streams Through the Net: Distributed Approximate Query Tracking. In Proc. of VLDB, 2005.

[7] G. Cormode, M. Garofalakis, P. J. Haas, and C. Jermaine. Synopses for Massive Data: Samples, Histograms, Wavelets, Sketches. Now

Publishers Inc., Jan. 2012.

[8] G. Cormode and M. Hadjieleftheriou. Methods for Finding Frequent Items in Data Streams. VLDB Journal, 19(1):3–20, 2010.

[9] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava. Finding Hierarchical Heavy Hitters in Data Streams. In Proc. of VLDB, 2003.

[10] G. Cormode and S. Muthukrishnan. What’s New: Finding Significant Differences in Network Data Streams. In Proc. of INFOCOM, 2004.

[11] G. Cormode and S. Muthukrishnan. An Improved Data Stream Summary: The Count-Min Sketch and its Applications. Journal of Algorithms,

55(1):58–75, 2005.

[12] X. Dimitropoulos, P. Hurley, and A. Kind. Probabilistic Lossy Counting: An Efficient Algorithm for Finding Heavy Hitters. SIGCOMM

Comput. Commun. Rev., 38(1):5–5, Jan. 2008.

[13] C. Estan and G. Varghese. New Directions in Traffic Measurement and Accounting : Focusing on the Elephants , Ignoring the Mice. TOCS,

21(3):270–313, 2003.

[14] X. He, P. P. C. Lee, L. Pan, C. He, and J. C. S. Lui. A panoramic view of 3G data/control-plane traffic: Mobile device perspective. In Proc.

of IFIP/TC6 Networking, 2012.

[15] Q. Huang and P. P. C. Lee. LD-Sketch: A Distributed Sketching Design for Accurate and Scalable Anomaly Detection in Network Data

Streams. In Proc. of INFOCOM, 2014.

[16] B. Krishnamurthy, S. Sen, Y. Zhang, F. Park, and Y. Chen. Sketch-based Change Detection : Methods , Evaluation , and Applications. In

Proc. of IMC, 2003.

[17] Y. Liu, W. Chen, and Y. Guan. A Fast Sketch for Aggregate Queries over High-Speed Network Traffic. In Proc. of INFOCOM, 2012.

[18] A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Olston. Finding (Recently) Frequent Items in Distributed Data Streams. In Proc. of ICDE,

2005.

[19] G. S. Manku and R. Motwani. Approximate Frequency Counts over Data Streams. In Proc. of VLDB, 2002.

[20] A. Metwally, D. Agrawal, and A. E. Abbadi. Efficient Computation of Frequent and Top-k Elements in Data Streams . In Proc. of ICDT,

2005.

[21] J. Misra and D. Gries. Finding Repeated Elements. In Science of Comput Program 2, 1982.

[22] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4: Distributed Stream Computing Platform. In KDCloud, Dec. 2010.

[23] R. Schweller, Z. Li, Y. Chen, Y. Gao, A. Gupta, Y. Zhang, P. Dinda, M. Y. Kao, and G. Memik. Reversible Sketches: Enabling Monitoring

and Analysis over High-Speed Data Streams. IEEE/ACM Transactions on Networking, 15(5):1059–1072, 2007.

[24] M. Z. Shafiq, L. Ji, A. X. Liu, and J. Wang. Characterizing and Modeling Internet Traffic Dynamics of Cellular Devices. In Proc. of

SIGMETRICS, June 2011.

[25] Storm. https://github.com/nathanmarz/storm.

[26] K. Thompson, G. J. Miller, and R. Wilder. Wide-Area Internet Traffic Patterns and Characteristics. Netwrk. Mag. of Global Internetworking,

11:10–23, 1997.

[27] K. Yi and Q. Zhang. Optimal Tracking of Distributed Heavy Hitters and Quantiles. In Proc. of PODS, 2009.

21

Appendix: Proofs

Proof of Lemma 3

Proof. From Algorithm 1, S(x) ≥ Ai,j [x] = Slow
i,j (x) since Ai,j [x] is never incremented due to other items not

belonging to x.

Now we prove the lower bound of Slow
i,j (x). The main idea of the proof is to sum the maximum possible errors

introduced for all expansion numbers. For each expansion number κ (0 ≤ κ ≤ k), Ai,j contains li,j = (κ + 1)(κ +
2) − 1 counters, so key x is decremented by at most T

li,j+1 = T
(κ+1)(κ+2) (by Lemma 1). Note that once key x is

decremented by a value, (κ+1)(κ+2)− 1 other keys are also decremented by the same value. Therefore, to achieve

the maximum decrement of key x, the total decrement of other keys in the bucket is
(κ+1)(κ+2)−1
(κ+1)(κ+2) T .

Thus, before the expansion number k + 1, Ai,j [x] is decremented by at most
∑k

κ=0
T

(κ+1)(κ+2) =
∑k

κ=0(
1

κ+1 −
1

κ+2)T = (k+1
k+2)T . To achieve this maximum decrement, it requires the total decrement of other keys to be equal to

∑k
κ=0(

(κ+1)(κ+2)−1
(κ+1)(κ+2) T = (k+1)T− k+1

k+2T = (k+1)2

k+2 T . Since
∑

y 6=x,fi(y)=j S(y) ≤
(k+1)2

k+2 T , the results follow.

Proof of Lemma 4

Proof. From Algorithm 1, Ai,j [x] is decremented by at most ei,j , so Ai,j [x] ≥ S(x)−ei,j and hence S(x) ≤ Sup
i,j (x).

We now prove the upper bound of Sup
i,j (x). The main idea of the proof is again to sum the maximum possible errors

introduced for all expansion numbers, similar to the proof of Lemma 3. Let e′i,j = S(x)−Slow
i,j (x) be the decrements

of Ai,j [x]. Thus, ei,j − e′i,j corresponds to the decrements of Ai,j [y] for any y 6= x when Ai,j [x] is not decremented,

and is contributed by sum of other keys not x in the bucket, whose maximum value is
∑

y 6=x,fi(y)=j S(y). Thus,

ei,j − e′i,j is at most
∑k

κ=0
T

(κ+1)(κ+2) = k+1
k+2T . Since Sup

i,j (x) = Slow
i,j (x) + ei,j = S(x) + (ei,j − e′i,j), the results

follow.

Proof of Lemma 5

Proof. The main idea of the proof is that the false negative rate is directly derived from Lemmas 3 and 4.

By Lemma 3, if S(x) ≥ φ, then for any bucket (i, j) associated with x, we must have Ai,j [x] = Slow
i,j (x) >

S(x) − T ≥ 0 (note that T = ǫφ for heavy hitter detection and T = ǫφ/2 for heavy changer detection). For heavy

changer detection, if D(x) ≥ φ, there must be at least one epoch where S(x) ≥ 0. Therefore, x must be kept in the

associative array of its corresponding buckets.

By Lemma 4, we know S(x) ≤ Sup
i,j for every bucket (i, j). If S(x) ≥ φ, then Sup

i,j (x) ≥ φ, so x must be reported

as a heavy hitter. Also, D(x) ≤ Di,j(x) for every bucket (i, j). If D(x) ≥ φ, then Di,j(x) ≥ φ, so x must be

reported as a heavy changer.

Proof of Lemma 6

Proof. The main idea of the proof is to apply Markov’s inequality to derive the false positive rate of heavy hitter

detection.

In heavy hitter detection, we set T = ǫφ. By Lemma 4, for key x with S(x) ≤ (1− ǫ)φ, Sup
i,j (x) ≤ S(x)+T ≤ φ.

Thus, key x will never be reported.

For key x with (1−ǫ)φ < S(x) < (1−ǫ/2)φ, there always exists an integer k ≥ 0 such that S(x) < (1−ǫ)φ+ ǫφ
k+2 .

If
∑

y 6=x,fi(y)=j S(y) ≤ (k+ 1)ǫφ, by Lemma 4, Sup
i,j (x) ≤ (k+1

k+2)ǫφ+ S(x) < (k+1
k+2)ǫφ+ (1− ǫ)φ+ ǫφ

k+2 = φ. So

x is not reported as a heavy hitter. Thus, x is reported as a heavy hitter only if
∑

y 6=x,fi(y)=j S(y) ≥ (k+1)ǫφ for all

row i. By Markov’s inequality, Pr{
∑

y 6=x,fi(y)=j S(y) ≥ (k + 1)ǫφ} ≤ U
w[(k+1)ǫφ] . Since the r hash functions are

independent, the probability that x is reported as a heavy hitter is (U
w(k+1)ǫφ)

r ≤ (U
wǫφ

)r.

22

Proof of Lemma 7

Proof. The main idea of the proof of Lemma 7 is similar to that of Lemma 6.

For heavy changer detection, we set T = ǫφ/2. Denote the sum of key x in last and current epochs by S1(x) and

S2(x), respectively. Without losing generality, we assume S2(x) ≥ S1(x) and hence D(x) = S2(x)− S1(x).
For key x with D(x) ≤ (1 − ǫ)φ, by Lemma 3 and Lemma 4, the estimated change Di,j(x) < [S2(x) + T] −

[S1(x)− T] = D(x) + 2T ≤ (1− ǫ)φ+ ǫφ = φ, implying that x is not reported as a heavy changer.

For key x with D(x) < (1 − ǫ/2)φ, there always exits an integer k ≥ 0 such that D(x) < (1 − ǫ)φ + ǫφ
k+2 .

If
∑

y 6=x,fi(y)=j S
1(y) < (k+1)2

k+2 T in the first sketch and
∑

y 6=x,fi(y)=j S
2(y) < (k + 1)T in the second one, by

Lemma 3 and Lemma 4, both Sup,2(x) − S2(x) and S1(x) − Slow,1(x) are at most k+1
k+2T . The estimated change

Di,j(x) ≤ D(x) + 2k+1
k+2T < (1 − ǫ)φ + ǫφ

k+2 + k+1
k+2ǫφ ≤ φ, implying that x is not reported as a heavy changer.

Thus, key x is reported as a heavy changer only if
∑

y 6=x,fi(y)=j S
1(y) ≥ (k+1)2

k+2 T or
∑

y 6=x,fi(y)=j S
2(y) ≥

(k + 1)T . The probability of at least one of them occurs is at most Pr{
∑

y 6=x,fi(y)=j S
1(y) ≥ (k+1)2

k+2 T} +

Pr{
∑

y 6=x,fi(y)=j S
2(y) ≥ (k + 1)T} ≤ 2(k+2)U

w(k+1)2ǫφ + 2U
w(k+1)ǫφ ≤ 6U

wǫφ
. Since the r hash functions are independent,

the probability that x is reported as a heavy changer is at most (6U
wǫφ

)r.

Proof of Lemma 8

Proof. The main idea of the proof is to compute the expectation of li,j .

In the worst case, the associative array Ai,j is expanded as large as possible, so li,j = O(k2) = O((
Vi,j

T
)2). Then

we consider E[V 2
i,j], where E[V 2

i,j] = E[Vi,j]
2 + V ar[Vi,j].

Let Yx be an indicator variable such that Yx = 1 if key x is hashed to bucket (i, j), or Yx = 0 otherwise.

Thus, Vi,j =
∑

x∈[n] S(x)Yx. Given that the keys are uniformly hashed to the buckets, we have E[Yx] = 1/w and

V ar[Yx] =
w−1
w2 . Thus, E[Vi,j] =

U
w

.

Also, since all keys are hashed independently, V ar[Vi,j] = V ar[
∑

x∈[n] S(x)Yx] =
w−1
w2

∑
x∈[n] (S(x))

2
. Since

w is much smaller than the number of available keys n, we have w
∑

x∈[n] (S(x))
2
< (

∑
x∈[n] S(x))

2 = U2. Hence

V ar[Vi,j] = O(w−1
w3 U2).

Thus, combining the two terms, E[li,j] = O(U2

w2T 2).

Proof of Lemma 9

Proof. The main idea of the proof is to derive the complexity results based on Lemma 8.

We first examine the space complexity. By Lemma 8, the expected space of an LD-Sketch is the total size of all

buckets of the sketch and all associative arrays, and is given by O(rw(1 + li,j)) = O(r(w + U2

wT 2)).
We then discuss the time complexities of both update and detection procedures. To update a data item, we update

r buckets of the sketch. For each bucket (i, j), we perform O(1) operations if we insert keys directly or expand

its associative array. On the other hand, if we decrement keys, we need to go through the entire associative array

and perform li,j operations. Note that Lemma 8 bounds the average length of an associative array. Thus, the time

complexity of updating a data item is O(r(1 + li,j)) = O(r(1 + U2

w2T 2)). For detection, we enumerate all buckets in

an LD-Sketch and the associative arrays. The time complexity of detection is O(rw(1+ li,j)) = O(r(w+ U2

wT 2)).

Proof of Lemma 10

Proof. The main idea of the proof is to apply Chernoff’s bound adequately.

Let X be the random variable of the sum of values of the heavy key x received by a worker. We first consider heavy

hitter detection. Note that E(X) = S(x)
d

≥ φ
d

. By Chernoff bound, Pr{X < (1− γ)φ
d
} < e−

E(X)
2 (1−(1−γ) dφ

E(X)
)2 ≤

e−
φ
2dγ

2

. This is also the probability of missing the key in a single worker. Thus, the probability of missing the key in

at least one worker is at most 1− (1− e−
φ
2dγ

2

)d.

For heavy changer detection, we denote X as the difference of the heavy key x. Since E(X) ≥ φ
d

. We can apply

the same results as above.

23

Proof of Lemma 11

Proof. We partition the update procedure into two phases. The first phase updates all small keys only. It expands Ai,j

by at most k<i,j times. After this phase, we have k̂i,j ≤ k<i,j , and hence li,j ≤ (k<i,j + 1)(k<i,j + 2)− 1.

The second phase updates the remaining t≥i,j large keys. By Lemma 5, all large keys must be kept in Ai,j . This

implies that Ai,j tracks the t≥i,j large keys, as well as at most (k<i,j + 1)(k<i,j + 2)− 1 small keys in the worst case. To

store all these keys, k̂i,j is further incremented until ((k̂i,j−1)+1)((k̂i,j−1)+2)−1 ≤ (k<i,j+1)(k<i,j+2)−1+t≥i,j ≤

li,j = (k̂i,j + 1)(k̂i,j + 2)− 1 (the leftmost term is li,j at k̂i,j − 1). Thus, li,j = O(k̂2i,j) = O(k<i,j
2
+ t≥i,j).

Proof of Lemma 12

Proof. Similar to the proof of Lemma 11, we also partition the update procedure into two phases. The first phase

updates all large keys only. When a new large key arrives and Ai,j is full, Ai,j must expand because the value of the

large key is greater than T . Therefore, this phase keeps ei,j = 0 and the controlled expansion number k̂i,j ≤ k≥i,j .

The second phase updates the remaining small keys. When keys are decremented, we must have k̂i,j ≥ k≥i,j , and

ei,j starts to be incremented. For the expansion number κ (k≥i,j ≤ κ ≤ k), ei,j is incremented by at most T
(κ+1)(κ+2)

(by Lemma 1). Thus, ei,j is at most
∑ki,j

κ=k
≥
i,j

T
(κ+1)(κ+2) =

T

k
≥
i,j+1

− T
ki,j+2 = O(T

k
≥
i,j

).

24

