
Computer Networks 54 (2010) 3309–3326
Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet
Sequential hashing: A flexible approach for unveiling significant patterns
in high speed networks

Tian Bu a, Jin Cao a, Aiyou Chen a, Patrick P.C. Lee b,*

a Bell Labs, Alcatel-Lucent, 600–700 Mountain Avenue, Murray Hill NJ 07974, USA
b Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shartin, N.T., Hong Kong

a r t i c l e i n f o a b s t r a c t
Article history:
Received 3 May 2009
Received in revised form 27 June 2010
Accepted 28 June 2010
Available online 6 July 2010
Responsible Editor: J.C. de Oliveira

Keywords:
Heavy hitter/changer detection
Network monitoring
1389-1286/$ - see front matter � 2010 Elsevier B.V
doi:10.1016/j.comnet.2010.06.018

* Corresponding author. Tel.: +852 31634260.
E-mail addresses: tbu@research.bell-labs.com (T

bell-labs.com (J. Cao), aychen@research.bell-labs.co
cse.cuhk.edu.hk (P.P.C. Lee).
Identification of significant patterns in network traffic, such as IPs or flows that contribute
large volume (heavy hitters) or those that introduce large changes of volume (heavy chang-
ers), has many applications in accounting and network anomaly detection. As network
speed and the number of flows grow rapidly, identifying heavy hitters/changers by tracking
per-IP or per-flow statistics becomes infeasible due to both the computational overhead
and memory requirements. In this paper, we propose SeqHash, a novel sequential hashing
scheme that supports fast and accurate recovery of heavy hitters/changers, while requiring
memory just slightly higher than the theoretical lower bound. SeqHash monitors data traf-
fic using a sketch data structure that can flexibly trade-off between the memory usage and
the computational overhead in a large range that can be utilized by different computer
architectures for optimizing the overall performance. In addition, we propose statistically
efficient algorithms for estimating the values of heavy hitters/changers. Using both math-
ematical analysis and experimental studies of Internet traces, we demonstrate that Seq-
Hash can achieve the same accuracy as the existing methods do but using much less
memory and computational overhead.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Monitoring and detecting significant patterns in a net-
work, such as: (i) the presence of persistent flows with
large data volume or (ii) a sudden increase in network traf-
fic due to the emergence of new flows, are essential for
network provisioning, management and security because
significant patterns often imply events of interests. For in-
stance, a flow that accounts for more than 1% of total traffic
may suggest the violation of a service agreement. Similarly,
a sudden increase of traffic volume for a specific destina-
tion IP may indicate either a hot spot, the beginning of a
denial-of-service attack, or traffic rerouting due to link fail-
ures elsewhere.
. All rights reserved.

. Bu), cao@research.
m (A. Chen), pclee@
To understand the behavior of a network, we are inter-
ested in monitoring a collection of keys within a stream of
data traffic, where a key is a unique identifier of a flow ele-
ment. Examples of the definition of a key can be a source
IP, a pair of source–destination of IPs, or any combination
of the five tuples (i.e., source/destination IPs, source/desti-
nation ports, and the protocol). We focus on the identifica-
tion of two important types of significant patterns: heavy
hitters and heavy changers. A heavy hitter is a key whose
traffic volume exceeds a pre-defined threshold, whereas a
heavy changer is a key whose change in traffic volume be-
tween two monitoring intervals exceeds a pre-defined
threshold.1 Moreover, in order to understand the impact
of different heavy hitters and heavy changers, we are also
1 There are more sophisticated definitions of ‘‘change” that account for
traffic forecast models. However, the technique we develop in this paper
would also apply to such definitions with linear forecast models. Using the
simple definition of change allows us to explain our technique more clearly.

http://dx.doi.org/10.1016/j.comnet.2010.06.018
mailto:tbu@research.bell-labs.com
mailto:cao@research. bell-labs.com
mailto:cao@research. bell-labs.com
mailto:aychen@research.bell-labs.com
mailto:pclee@ cse.cuhk.edu.hk
mailto:pclee@ cse.cuhk.edu.hk
http://dx.doi.org/10.1016/j.comnet.2010.06.018
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

3310 T. Bu et al. / Computer Networks 54 (2010) 3309–3326
interested in finding the value associated with each of the
heavy hitters and heavy changers, corresponding to the
traffic volume and the change in traffic volume,
respectively.

However, as the Internet continues to grow in size and
complexity, the ever-increasing network bandwidth poses
great challenges on monitoring heavy hitters and heavy
changers in real time due to its computation and storage
requirements. In particular, to identify any network flow
that causes significant volume change, the system should
scale up to 2104 keys.2 Some fundamental requirements
for monitoring and detecting significant patterns in real
time for high bandwidth links are discussed below:

� Fast per-packet update: The per-packet update speed has
to be able to catch up with the link bandwidth even in
the worst case when all packets are of the smallest pos-
sible size. Otherwise the real time constraint is violated.
� Fast discovery of significant patterns: The detection delay

of significant patterns should be short such that impor-
tant events like network attacks and link failures can be
responded in time before any serious damage is made.
� High accuracy: Both false positive and false negative

rates should be minimized. It is well understood that
having a false negative may miss an important event
and thus delay the necessary reaction. Having a false
positive, on the other hand, may trigger unnecessary
responses that waste resources.

To monitor data traffic with low memory usage, we pro-
pose to keep track of a data stream using a sketch, a hash-
table-based data structure that provides data stream sum-
maries. In particular, it is desirable to have a sketch that is
reversible, i.e., by using only the summary information
stored in the sketch, we can recover all significant patterns
with high accuracy. Having a reversible sketch can facili-
tate various applications. For instance, if we parallelize
network monitoring (e.g., [16]), a subset of threads can
be dedicated for recording data packets into sketches,
while other threads can periodically collect and aggregate
data stream summaries for post processing without requir-
ing the original data traffic as input.

In this paper, we propose effective mechanisms that ad-
dress the heavy key detection problem that is composed of
two parts: (i) to identify heavy keys (i.e., either heavy hit-
ters or heavy changers) and (ii) to estimate their associated
values. Our main objective is to improve the accuracy of
heavy key detection while minimizing both memory usage
and computational overhead. Our contributions are sum-
marized as follows:

� We derive a lower bound of memory usage when apply-
ing parallel hash tables for heavy key detection at a
given error rate.
2 This number is calculated based on the number of possible five-tuple
flows: source IP address (32 bits), source port (16 bits), destination IP
address (32 bits), destination port (16 bits), and protocol (8 bits). The
number may be significantly smaller for realistic traffic since not all
possible combination of these fields are possible.
� We propose SeqHash, a sequential hashing scheme that
constructs reversible multi-level hash arrays for fast and
accurate detection of heavy keys while incurring a small
increase in memory usage with respect to the derived
lower bound. Moreover, we demonstrate via mathemat-
ical analysis that SeqHash can flexibly trade off between
computational overhead and memory usage using tun-
able parameters. This allows SeqHash to adapt to differ-
ent hardware architectures to maximize the overall
system performance.
� We design efficient yet accurate methods for estimating

the values of heavy keys that we recover from our
sketch data structure, by taking into account the infor-
mation of the counter values and the traffic behavior.
Our estimation methods can further reduce errors
introduced in the detection stage. This implies that we
can make SeqHash more memory efficient by allowing
a high error rate in the detection stage and then elimi-
nating the errors in the estimation stage.
� Through extensive experiments using real Internet

traces collected at a high speed link, we show that Seq-
Hash yields more accurate results, yet is more memory
and computationally efficient, than existing work.

The balance of the paper is organized as follows. In Sec-
tion 2, we review related work on state-of-the-art data
monitoring algorithms. In Section 3, we derive a lower
bound of memory requirement when using parallel hash
tables for heavy key detection. In Section 4, we describe
SeqHash. In Section 5, we formally derive the costs of
memory usage and computational overhead of our pro-
posed scheme. In Section 6, we present efficient algorithms
for estimating the values associated with all heavy keys.
Section 7 shows the evaluation results using Internet
traces. Finally, we conclude the paper in Section 8.
2. Related work

To minimize the memory usage of monitoring data traf-
fic, previous studies propose efficient sketch data struc-
tures for summarizing data stream information. Examples
include heavy hitter detection (e.g., [4–6,8,13]), heavy
changer detection (e.g., [9]), or traffic-volume query (e.g.,
[10]). In particular, given the difficulty of keeping track of
all possible per-flow states, Estan and Varghese [6] propose
to use a sketch, a set of parallel hash tables to identify hea-
vy hitters. In [6], each packet of a flow is hashed into buck-
ets in different hash tables in parallel using independent
hash functions, and the size of the packet is added to the
counter associated with each bucket. If all the buckets cor-
responding to a flow have counter values larger than a pre-
defined threshold, then the flow is known to be a heavy
hitter. Similarly, [9] uses a sketch to identify heavy chang-
ers. Given a key as input, [6,9] can tell, with high accuracy,
whether the input key is heavy. However, the sketches
used in [6,9] are irreversible, meaning that it is computa-
tionally infeasible to recover all heavy keys using only
the sketch-based summaries (see Section 4 for details).

Deltoids [7] and reversible sketch [17] are two ap-
proaches that use reversible sketch data structures to ad-

Table 1
Major notation used in the paper.

Defined in Section 3
x Key
vx Value associated with key x
t Pre-specified threshold to identify heavy keys
N Size of key space
M Total number of hash tables
K Size of a hash table (in number of buckets)
U Size of memory in total number of buckets, i.e., M � K
H Maximum number of heavy keys being observed
C Candidate set of heavy keys
� False positive rate (Eq. (2))

Defined in Section 4
D Number of words in a key (= number of hash arrays)
Mi Number of hash tables in hash array i, where 1 6 i 6 D
T i;j The jth hash table in hash array i, where 1 6 i 6 D, 1 6 j 6Mi

fi,j {0, . . .,Ni � 1} ? {1, . . .,K}, the hash function for table T i;j

wi The ith word of a key, where 1 6 i 6 D
bi Number of bits in word wi, where 1 6 i 6 D
N i Sub-key space, where 1 6 i 6 D
Ni 2b1þ���þbi , size of sub-key space N i , where 1 6 i 6 D
Hi Set of sub-keys of the heavy keys in original key space
Ci Intermediate candidate set of sub-keys of the heavy keys

Defined in Section 5
a Intermediate false positive rate

Key

T. Bu et al. / Computer Networks 54 (2010) 3309–3326 3311
dress both heavy hitter detection and heavy changer detec-
tion. In Deltoids [7], the key space is partitioned into differ-
ent groups using independent 2-universal hash functions.
Each group contains L counters, where L is the bit length
of a key and each counter corresponds to a particular bit
within a key. If each group contains exactly one heavy
key (either heavy hitter or heavy changer) based on a
group test, then the heavy key will be recovered. Other-
wise, the whole group will be discarded, even though it
may review partial information (e.g., a subset of bits)
regarding a heavy key. As a result, more buckets, and hence
more memory, are required in order to recover all heavy
keys with high accuracy.

Reversible sketch [17] proposes a modular hashing
scheme to narrow down a candidate set of heavy keys. In
particular, a key is divided into multiple sub-keys with
smaller bit lengths, where the candidate sub-keys are then
combined to construct the actual heavy keys. However, as
we will explain in Section 4.4, reversible sketch incurs a
higher collision probability of hashing a non-heavy key
and a heavy key into the same bucket. Also, it is computa-
tionally expensive in recovering all heavy keys, as its com-
plexity is sub-linear of the size of the key space [17].

By carefully engineering a different sketch data struc-
ture, SeqHash improves the approaches of Deltoids and
reversible sketch in heavy key detection in terms of both
computational overhead and memory usage. Also, SeqHash
provides tunable parameters that can trade-off between
the computational overhead and memory usage. We pres-
ent the analysis in subsequent sections.
M tables

K
buckets

Fig. 1. A hash array, which consists of M hash tables with K buckets each.
3. Memory lower bound for a hash array

In this section, we derive the lower bound of the mem-
ory required for identifying heavy keys using parallel hash
tables as in [6]. We also present the trade-off analysis be-
tween the memory usage and computational overhead.
This section aims to lay out a baseline understanding of
the memory-computation trade-off analysis for SeqHash
that we propose later.

Table 1 summarizes the major notation used in this pa-
per. We write ‘‘log” to denote the natural logarithm, and ‘‘
log2” to denote the logarithm with base 2.

We model network traffic within a monitoring interval as
a stream of data packets that arrive in order, where each
packet is represented by a pair (x, vx), where x denotes a
key in the key space of size N, and vx denotes the value asso-
ciated with key x. Throughout this paper, we set vx to be the
size of a packet for key x. Clearly, the identification of heavy
keys (i.e., either heavy hitters or heavy changers) is straight-
forward if the value of vx for each possible key x is known,
that is, we associate a counter with each possible key. How-
ever, keeping track of every possible pair (x, vx) becomes
infeasible for large N, as we require a total of N counters.

To identify heavy keys with a limited amount of mem-
ory, we construct a hash array (or sketch) to approximate
the set of heavy keys. Fig. 1 illustrates the structure of a
hash array, which consists of M hash tables with K buckets
each. Each given key is hashed to a bucket within each
hash table using an independent hash function. The value
vx is then added to the counter associated with the bucket.
The hash function for each table is chosen independently
from a class of hash functions such that the K buckets of
each table form a random partition of N keys.

Here, we let H be the maximum number of heavy keys
that can be observed over a monitoring period, and we pro-
vision memory based on H. Throughout the paper, we as-
sume that H is also the actual number of heavy keys, and
this enables us to conduct the worst-case analysis.

We first derive the memory lower bound for heavy hit-
ter detection, for which the hash array proposed by [6] is
used. We then discuss how we apply the results to heavy
changer detection as well.
3.1. Memory lower bound for heavy hitter detection

Recall that a heavy hitter refers to a key x whose sum of
values

P
vx exceeds a pre-specified threshold t. We call a

3312 T. Bu et al. / Computer Networks 54 (2010) 3309–3326
bucket to be heavy if its counter value (i.e., sum of values of
all keys hashed to the bucket) crosses the threshold t. It is
easy to see that for any heavy hitter, every bucket that it
falls into in each of the M tables is a heavy bucket. A can-
didate set C of heavy hitters refers to the set of keys whose
buckets within the M hash tables are all heavy buckets.
Note that C is the superset of the actual heavy hitters,
and it may contain some non-heavy hitters that happen
to fall into heavy buckets in all M hash tables.

Our lower-bound analysis assumes that the traffic dis-
tribution is very skewed such that the sum of values of
any subset of non-heavy hitters is less than the threshold,
i.e., the contributions of non-heavy hitters are negligible. If
the non-heavy hitters are non-negligible, then it is possible
that a heavy bucket is contributed by only the non-heavy
keys whose sum of values exceeds the pre-specified
threshold, and hence the false positive rate increases. As
a result, we need more memory (or buckets) for a hash ar-
ray to satisfy a false positive rate. Nevertheless, our mem-
ory lower-bound remains valid, although it denotes a loose
lower bound when the ‘‘noise” values due to non-heavy
keys become significant.

Lemma 1. Let Z be the number of heavy hitters contained in
an arbitrary bucket. Then Z follows a binomial distribution
with parameters H and 1

K. If H is large (e.g., H > 100), then Z
can be approximated by a Poisson distribution with param-
eter H/K.
Remark. The proof is straightforward and is omitted.
When H/K = log 2 (see Theorem 1 below), Lemma 1 indi-
cates that about 50% of the buckets within a hash table
do not contain any heavy hitters, and that among the
heavy buckets within a hash table, about 70% of them con-
tain exactly one heavy hitter.
Lemma 2. The expected size of the candidate set C of heavy

hitters is given by EjCj � H þ ðN � HÞ 1� 1� 1
K

� �H
� �M

. When

H is large, then

EjCj � H þ ðN � HÞð1� e�H=KÞM : ð1Þ
10 20 30 40

1.
0

1.
5

2.
0

2.
5

Number of hashing functions (m)

R
at

io
 w

.r.
t.

re
qu

ire
d

m
in

im
al

 m
em

or
y

si
ze

ε = 10−6

ε = 10−3

Fig. 2. The trade-off between the total memory and the number of
hashing operations. The y-axis is the normalized memory size with
respect to the minimum memory size for a given �.
Proof. Let pe be the probability that a non-heavy hitter
falls into the candidate set C of heavy hitters, and pi be
the probability that a non-heavy hitter falls into a heavy
bucket in the ith table, where 1 6 i 6M. If a key is hashed
to each bucket uniformly and independently, then the
probability that a bucket contains no heavy hitter is given

by 1� 1
K

� �H . Hence, pi ¼ 1� 1� 1
K

� �H . As hash functions that
we select are assumed to be independent, we have
pe ¼

QM
l¼1pl. Hence, we have EjCj ¼ H þ ðN � HÞpe, and by

Lemma 1, the result follows. h

For the set C, let � be the false positive rate, defined as
the ratio of the expected number of false positives to H, i.e.,

EjCj ¼ H þ �H: ð2Þ
Then by (1), for a given value � and a large H, the num-

ber of tables within a hash array is

M � � logðN��1H�1Þ
logð1� e�H=KÞ : ð3Þ
Let U = M � K denote the memory size, in total number
of buckets, of a single hash array. Two questions naturally
arise: (i) Given a fixed false positive rate �, what is the min-
imum memory size U? (ii) Given a fixed memory size U,
what is the minimum false positive rate �? The following
two theorems state the minimum amount of memory re-
quired for a specified false positive error �.

Theorem 1. Given a fixed false positive rate �, the memory
size U is minimized when K = H/log 2 and M ¼ log2

N
�H

� �
. Also,

the minimum value of U is H
log 2 log2

N
�H

� �
.

Proof (Sketch). Note that U is a function of K, such that

U ¼ � K logðN��1H�1Þ
logð1�e�H=K Þ , where �, N, and H are fixed parameters.

By differentiating U with respect to K and setting the deriv-
ative dU

dK ¼ 0, we can see that U is minimized when K = H/log
2, and by (3), M ¼ log2

N
�H

� �
. h
Remark. Theorem 1 is essentially the same memory opti-
mization problem in the design of Bloom filter [1], whose
network-related applications are surveyed in [2].

Theorem 1 specifies the corresponding number of hash
operations M when U is minimized. However, it is impor-
tant to note that we can observe a trade-off between the
memory requirement and the hash operations in order to
achieve a fixed false positive error �. Fig. 2 shows the
trade-off between M and U for the case where N = 232,
H = 1000 in the lower bound case. The circles represent
the optimal pair of (M,U) such that U is minimized. To
achieve the same expected normalized false positive error
(� = 10�6 or � = 10�3), we can in fact use just half of the
optimal number of hashing tables with the price of increas-
ing the memory size by about only 20%. This may be desir-
able when hash operations are considered expensive.

Theorem 2. Given a fixed memory size U, the false positive
rate � is minimized when K = H/log 2.
Proof. We again can express � as a function of K for a given
U, N, and H. Instead of differentiating � with respect to K,
we provide a more intuitive proof for the theorem. Suppose

T. Bu et al. / Computer Networks 54 (2010) 3309–3326 3313
the contrary that � is minimized at � = �* when K = K*,
where K* – H/log 2, for a fixed U = U*. By Theorem 1, we
can find a smaller U0 at K = H/log 2, where U0 < U*, that sat-
isfies the error rate �*. Since U is a strictly decreasing func-
tion of �, then there exists a smaller � < �* that satisfies U*.
This contradicts the fact that �* is minimum for U = U*.
Therefore, � is minimized when K = H/log 2. h
3.2. Memory lower bound for heavy changer detection

We provide high-level arguments to justify for a given
false positive rate, the memory size required for heavy
changer detection is no less than that for heavy hitter
detection. For a given bucket, let y(1) and y(2) be the bucket
values in the previous and current monitoring interval,
respectively, and let y = y(2) � y(1) be the change in the
bucket value across the two monitoring intervals. For the
heavy changer case, a bucket is considered heavy if jyj
crosses a pre-specified threshold t. Let us assume that the
change of value of every non-heavy changer is non-negligi-
ble. However, unlike the heavy hitter case presented above,
it is now possible that a positive heavy changer (i.e., with
change of value greater than t) and a negative heavy chan-
ger (i.e., with change of value less than �t) are hashed to
the same bucket such that the bucket is not heavy (i.e.,
jyj < t). Therefore, the outcome of the threshold test may
not include all heavy changers, and there will be false neg-
atives in addition to false positives when using the inter-
sections of heavy buckets to identify the heavy changers.
To minimize the false negative errors, [17] introduces a no-
tion of misses, such that a key is still considered to be a hea-
vy key if it falls into at least M � r heavy buckets, where r is
the number of allowed misses. The use of misses has a
trade-off of increasing the false positive rate. Hence, we
need more memory (buckets) to satisfy a given false posi-
tive rate. Note that the memory lower bound derived for
the heavy hitter case remains valid for the heavy changer
case, though it denotes a looser lower bound for the latter.

4. SeqHash

In this section, we present SeqHash, a sequential hash-
ing scheme that enables us to recover all heavy keys (either
T1,1

Key

T1,2 T1,3 T1,4 T2,1 T2,2 T2,3

Array 1 Array 2

f1,1
f2,3

Fig. 3. Overview of SeqHash: how a key
heavy hitters or heavy changers) given the counter values
stored in a reversible sketch data structure.
4.1. Motivation

Suppose that we use a single hash array (Fig. 1 in Sec-
tion 3) to keep track of the heavy keys. One major limita-
tion of such a data structure is that it is irreversible,
meaning that it is computationally infeasible to recover
all heavy keys given the counter values stored in the hash
array. This irreversibility holds even if the non-heavy keys
have negligible values. To understand why this limitation
exists, note that the hash array corresponds to many-to-
one mappings from the entire key space of size N to a small
number of buckets. To identify all heavy keys from the
hash array, the only solution is to exhaustively enumerate
all possible keys in the entire key space, and check if each
individual key is associated with a heavy key in each hash
table. Such an approach, however, is computationally
infeasible if N, the size of the key space, is very large.

In view of this, we propose SeqHash, a framework of
using multi-level hashing to recover H heavy keys from a
very large key space. The multi-level hashing scheme al-
lows us to divide the original problem into much smaller
sub-problems to which exhaustive search can be applied.
4.2. Intuition of SeqHash

To illustrate the general idea of SeqHash, for a key x
with n = log2N bits, we first focus on identifying a sub-
key of x with b bits that belongs to a heavy key. We assume
b is sufficiently small (say 4–8 bits) such that enumeration
of this sub-key space for identifying the heavy sub-keys is
trivial using a hash array as described in Section 3. Next, we
combine the heavy sub-keys that have just been found
with additional bits (say 2–4 bits) of the key to form a lar-
ger sub-key with more bits, say b0 > b bits. Enumeration of
this larger sub-key space (with b0 bits) is now significantly
reduced because the smaller sub-keys (with b bits) for hea-
vy keys are already known. Therefore, we can again use a
new hash array to identify the larger sub-keys of the heavy
TD,1 TD,2 TD,3 TD,4 TD,5

Array D

K
buckets

fD,5fD,1

is mapped to multiple hash arrays.

3314 T. Bu et al. / Computer Networks 54 (2010) 3309–3326
keys. Repeating the process, we can eventually discover
the full heavy keys in the original key space.

4.3. Design of SeqHash

SeqHash uses a sketch-based data structure that is com-
posed of multiple hash arrays. Fig. 3 depicts the relationship
between a key and the multiple hash arrays in SeqHash, and
additional notation is presented in Table 1. We partition a
key x into D words w1w2, . . .,wD such that each word wi has
bi bits, where 1 6 i 6 D. Let us consider the sub-key w1,
. . .,wi, formed by the first i words of key x. The sub-key
w1, . . .,wi is a member of the sub-key space N i ¼ f0;1; . . . ;

Ni � 1g, where Ni ¼ 2
Pi

r¼1
br . In each sub-key space N i, we

letHi denote the set of sub-keys that correspond to the hea-
vy keys in the original key space. We can easily tell Hi is at
most of size H. Also, our data structure consists of D hash ar-
rays, in which the ith hash array corresponds to sub-key
w1, . . .,wi and contains Mi hash tables T i;1; . . . ; T i;Mi

. The total
number of hash tables is given by M ¼

PD
i¼1Mi.

SeqHash consists of two major steps: (1) Update step,
which adds the value of a key to the associated buckets
of the hash arrays, and (2) Detection step, which finds the
set of heavy keys. The Update step is carried out for every
incoming key (i.e., data packet), while the Detection step is
carried out at the end of every monitoring interval.

Algorithm 1 outlines the Update step. For each incom-
ing key x = w1, . . .,wD with value vx, we associate the sub-
key w1, . . .,wi with bucket fi,j(w1, . . .,wi) 2 {1, . . .,K} in hash
table T i;j, where 1 6 i 6 D, 1 6 j 6Mi, and 1 6 k 6 K. We
then increment the counter in the bucket with value vx.

Algorithm 1: Update step

Input: a key x with value vx

1: Partition key x into D words as w1w2, . . .,wD,
where word wi has bi bits for 1 6 i 6 D
2: for i = 1 to D do
3: for j = 1 to Mi do
4: Increment the counter of bucket
fi,j(w1, . . .,wi) in hash table T i;j with value vx
Algorithm 2: Detection step

Inputs: hash tables fT i;jg16i6D;16j6Mi
with heavy

buckets
Output: a set of heavy keys

1: Set C0 ¼ f0g and Ci ¼ / for 1 6 i 6 D
2: for i = 1 to D do
3: for all x0 2 Ci�1 do

4: for wi = 0 to 2bi � 1 do

5: x00 ¼ x0 � 2bi þwi

6: if is_heavy(x00, i) == TRUE then
7: Add x00 to Ci

8: return CD

Algorithm 2 summarizes the Detection step for recover-
Fig. 4. Implementation of is_heavy for heavy hitter detection.
ing heavy keys. The main idea is to decompose the original
problem of finding H heavy keys into a sequence of D
nested sub-problems, each of which determines a candi-
date set Ci of sub-keys from subspace N i as an approxima-
tion of Hi. We first identify C1 by searching for all values in
N 1 that have all their associated buckets in T 1;1; . . . ; T 1;M1

considered to be heavy by the function is_heavy, whose ac-
tual implementation depends on whether we consider
heavy hitters or heavy changers, and is described later.
To determine Ci for 2 6 i 6 D, we first concatenate each
sub-key x0 2 Ci�1 with an arbitrary word wi 2 f0; . . . ;

2bi � 1g to form x00. We then check whether x00 is considered
to be heavy in hash array i by the function is_heavy. If
is_heavy returns TRUE, then it means x00 is a candidate
sub-key and we include x00 into Ci. We continue this process
and finally return CD, which is our final set C of candidate
heavy keys.

We now present the implementation of the function
is_heavy. Fig. 4 presents the pseudo-code of is_heavy for
heavy hitter detection, whose goal is to identify the keys
that are always associated with heavy buckets. The func-
tion returns FALSE if a bucket has its counter value less
than some pre-specified threshold t in the current moni-
toring interval.

The implementation of is_heavy is slightly more compli-
cated for heavy changer detection. As explained in Section
3.2, it is possible that positive and negative heavy changers
cancel each other if they are hashed to the same bucket,
and this leads to false negatives. We borrow the idea of
misses (i.e., non-heavy buckets) in [17] and extend this idea
as follows. Let y(1) and y(2) be the counter values of a given
bucket in the previous and current monitoring intervals,
respectively. We observe that for a change jy(2) � y(1)j to
exceed a pre-specified threshold t, then we must have
either y(1) > t or y(2) > t (or both). With this observation,
we define a miss to be legitimate if a non-heavy bucket
has y(1) > t or y(2) > t. Our detection only allows the legiti-
mate misses and eliminates any miss that is due to only
non-heavy keys.

Fig. 5 illustrates the implementation of is_heavy for hea-
vy changer detection. Let ri be an input parameter that
specifies the number of allowed legitimate misses for the
ith hash array. Then is_heavy returns FALSE if bucket fi,j(x00)
is a non-legitimate miss, or the number of legitimate
misses for hash array i exceeds ri.

Note the performance of SeqHash depends on the
choices of parameters, and hence the layout of the multi-
hash-array structure. We discuss this issue in Section 5.
4.4. Modular hashing

In addition to SeqHash, another possible implementa-
tion of multi-level hashing is called modular hashing, which
is the core component of reversible sketch in [17]. Fig. 6

T. Bu et al. / Computer Networks 54 (2010) 3309–3326 3315
shows the idea of modular hashing. Let us consider a hash
array of M hash tables with K buckets each. In modular
hashing, a key is partitioned into multiple words, each of
which is independently hashed to a value with fewer bits.
The hash values of all words are then concatenated to form
the bucket index in a hash table. To recover heavy keys, we
perform a reverse mapping from a bucket index to a word,
that is, we examine the index of each heavy bucket and
determine the words that are hashed to the index. The
set of the recovered heavy keys will be given by the inter-
sections of such words, such that each word of a recovered
heavy key is hashed to the corresponding subset of bits of a
heavy bucket index. We can apply an iterative approach as
in [17] to find the intersections and recover the heavy keys.

However, modular hashing has a couple of design limi-
tations. First, to make the reverse mapping from a bucket
index to a word possible, the number of buckets (i.e., K)
in each hash table must be in the form of 2qc, where q is
the number of partitioned words of a key and c is some
integer. This limits the choice of K. Thus, modular hashing
is less flexible in trading off between computational over-
head and memory usage through tuning parameters when
compared to SeqHash (see Section 5).

Second, the correlation structure among the IP ad-
dresses will significantly increase the false positive rate.
Fig. 5. Implementation of is_heavy for heavy changer detection.

T i

K
buckets

T 1 T M... ...

Fig. 6. Overview of modular hashing.
For example, suppose that the key space is the set of 32-
bit IP addresses and that we partition the IP addresses into
q = 4 octets. Let x1 � x2 � x3 � x4 be a heavy key. Then every
non-heavy key x1 � x2 � x3 � * will have probability 1

8 to be
hashed to a heavy bucket in a hash table, as opposed to 1

K

in the scheme that hashes the entire key (note that if a
2-universal hash function is used, then any two different
keys will be hashed to the same bucket with probability
1
K). To destroy the correlation structures of keys, [17] pro-
poses to apply a mangling function to each of the input
keys to generate a randomized key. However, the accuracy
of modular hashing depends on the choice of the mangling
function. On the other hand, SeqHash does not assume any
prior mangling on input keys, as it includes the hash oper-
ations that apply to the entire key and possibly remove any
correlation of keys. In Section 7, we compare both SeqHash
and modular hashing.
5. Analytical evaluation

In this section, we present a formal analysis of SeqHash
in terms of memory and computation, and discuss how the
choices of parameters achieve the most savings in both
memory and computation for a targeted false positive rate.
We also conduct complexity comparison between Seq-
Hash, Deltoids, and reversible sketch.

Our analysis assumes that non-heavy keys have negligi-
ble contribution to the counter values. In addition, we fo-
cus on the heavy hitter case. This enables us to directly
compare our results with the memory lower bound we de-
rive in Theorem 1 (see Section 3), which gives a tight
bound. As explained in Section 4.1, using a single hash ar-
ray to recover all heavy hitters incurs a computational
complexity H(N) (i.e., by enumerating all possible keys in
the entire key space), even though all non-heavy hitters
have negligible values. We show that with the right design
choice, SeqHash can reduce the computational complexity
to H(HlogN) with a slight increase in total memory with
respect to the memory lower bound we derive in Section 3.

We also discuss how we extend our analytical results to
heavy changer detection, under the assumption that non-
heavy keys are negligible. To evaluate the case with signif-
icant non-heavy keys, we resort to the use of trace-driven
experiments, as described in Section 7.

In the following analysis, in addition to assuming negli-
gible non-heavy hitters, we assume that the maximum
number of heavy keys H is large (e.g., H > 100), and that
the size of the sub-key space Ni� H, for 1 6 i 6 D (e.g.,
Ni P 64H). Such assumptions enable us to estimate the
number of heavy keys in each intermediate step, as dis-
cussed below.
5.1. Memory cost for the update step

SeqHash uses a multi-hash-array data structure (see
Fig. 3). In this subsection, we derive the memory (in total
number of buckets) required for this data structure given
a fixed false positive rate �. Our goal is to compute K (i.e.,
the number of buckets within each hash table) and Mi

3316 T. Bu et al. / Computer Networks 54 (2010) 3309–3326
(i.e., the number of hash tables within each hash array i,
where 1 6 i 6 D).

First, we determine K. We note that Hi, the set of dis-
tinct values in the sub-key w1, . . .,wi of the heavy keys,
has the maximum size H. Suppose that we focus on the
worst case such that the heavy keys are randomly distrib-
uted over the entire key space. Since we assume that
Ni� H, we have jHij � H for 1 6 i 6 D. Also, as H is large,
by Lemma 1, the minimum memory requirement is ful-
filled when K = H/log2, which is independent of the size
of the sub-key space. As a result, we have K = H/log2.

To derive Mi for 1 6 i 6 D, we need to compute EjCij, the
expected size of the intermediate candidate set of heavy
keys Ci. Note that Ci is returned by each iteration in the
Detection step (see Algorithm 2) and is determined by
the concatenation of the previous intermediate candidate
set Ci�1 and the set f0; . . . ;2bi � 1g. Thus, using the proof
of Lemma 2 (see Section 3) and the facts that jHij � H
and K = H/log2, the expected size of Ci (conditioned on
Ci�1) is

E Cij j ¼ Hij j þ jCi�1j � 2bi � jHij
� �

� 1� 1� 1
K

� �jHi j
 !Mi

� H þ jCi�1j � 2bi � H
� �

� 1
2Mi

: ð4Þ

Let a be the intermediate false positive rate such that
the expected size of Ci is given by EjCij ¼ ð1þ aÞH for
1 6 i 6 D � 1 (note that the sizes of the initial and final
candidate sets are EjC0j ¼ 1 and EjCDj ¼ ð1þ �ÞH, respec-
tively). Then we have Mi as follows:

Mi ¼

log2
2b1�H

aH

� �
if i ¼ 1;

log2
2bi ð1þaÞ�1

a

� �
if 2 6 i 6 D� 1;

log2
2bD ð1þaÞ�1

�

� �
if i ¼ D:

8>>>><>>>>: ð5Þ

Therefore, the memory of the multi-hash-array struc-
ture used by SeqHash is

Memory ¼ K �
XD

i¼1

Mi

6
H

log 2
� log2

2b1

aH

 !
þ
XD�1

i¼2

log2
2bi ð1þ aÞ

a

 !"

þ log2
2bD ð1þ aÞ

�

 !#

¼ H
log 2

� log2
N
�H
� 1þ 1

a

� �D�1
 !

: ð6Þ

In comparison to the result of Theorem 1, SeqHash
requires KðD� 1Þlog2 1þ 1

a

� �
additional buckets, where

K = H/log2, and D and a are fixed parameters that are tun-
able depending on applications. We evaluate this addi-
tional memory overhead, together with the
computational cost derived in the next subsection, later
in Section 5.3.
It is important to note that the choices of the design
parameters are based on the value of H, the maximum
number of heavy keys being observed. To estimate H for
a pre-specified threshold t, one conservative method is to
set H = Y/t, where Y is the total data volume observed with-
in a monitoring interval and can be estimated based on the
history of traffic distribution. For example, the number of
heavy hitters that exceeds 1% of the traffic is at most
100. Note that this approach applies to the detection of
both heavy hitters and heavy changers, since the maxi-
mum value of every key is upper bounded by Y. Our future
work is to derive a more accurate H so as to reduce the
memory usage.

5.2. Computational cost for detection

We now evaluate the computational cost, in number of
hash operations, of recovering all heavy keys in the Detec-
tion step for heavy hitter detection. (see both Algorithm 2
and Fig. 4). Note that for a non-heavy hitter, the function
is_heavy returns FALSE immediately when it hits a non-
heavy bucket whose value is less than the pre-specified
threshold, and hence it skips subsequent hash operations.
Since with K = H/log 2, about 50% of buckets are non-heavy
buckets (see Lemma 1 in Section 3). Therefore, the ex-
pected number of hash operations performed on a non-
heavy hitter is approximately equal to 2. On the other
hand, the number of hash operations performed on a heavy
hitter is equal to the total number of hash tables. With this
observation, and using the facts that: (i) jHij � H for
1 6 i 6 D, (ii) jC0j ¼ 1, and (iii) jCij � ð1þ aÞH for 1 6
i 6 D � 1, the computational cost of the Detection step is
as follows:

Computation �
XD

i¼1

Mi � Hij j þ 2� jCi�1j � 2bi � jHij
� �h i

6 Hlog2
N
�H
� 1þ 1

a

� �D�1
 !

þ 2

� 2b1 þ ð1þ aÞH
XD

i¼2

2bi

" #
ðfromð6ÞÞ:

ð7Þ

5.3. Memory-computation trade-off

The memory and computational costs of SeqHash de-
pend on the tunable parameters �, a, and the set of bi’s
(which in turn determine D). Suppose that the following
parameters are considered: N = 232, � = 0.2%, H = 500 (and
hence K = H/log2 � 722), b1 = 16 (and hence N1 = 216 and
Ni P 64H), and bi = b for i P 2, where we fix b = 1, 2, and
4. We then vary a to obtain the corresponding pairs of
memory and computational costs using (6) and (7). Fig. 7
illustrates how SeqHash trades off between the memory
and computational costs. When b = 1 or 2, a smaller detec-
tion cost is obtained as compared to b = 4, while the differ-
ence between b = 1 and 2 is very small. For example, when
b = 2 and a = 9, the total number of tables across all hash
arrays is given by M ¼

PD
i¼1Mi � 33 (where M1 = 4, Mi = 2

for 2 6 i 6 D � 1, MD = 15, and D = 9), while the computa-
tional cost for detection is about 400 K hash operations

T. Bu et al. / Computer Networks 54 (2010) 3309–3326 3317
and is about twice the minimum computational cost
achieved by the use of large memory. Note that the num-
ber of tables in the minimum memory requirement is
log2

N
�H ¼ 32, where the heavy key detection is done by enu-

meration of the entire key space. Thus, with only one extra
table, we can recover all heavy keys with manageable com-
putational overhead.

5.4. Complexity results

We now derive the complexity results of different mea-
sures that quantify the costs of the Update and Detection
steps of SeqHash. Such measures are also considered by
[17] to evaluate the Reversible Sketch scheme.

The complexity of SeqHash depends on the choices of
parameters. Here, we focus on a particular set of design
parameters where a = 9, b1 = 16, and bi = 2 for i P 2. This
also implies D = (log2N � 16)/2 + 1 = H(logN). As justified
by the results of Fig. 7 and our experiments (see Section
7), this set of parameters provides manageable memory
and computational costs. In addition, we set �H = H(1),
meaning that the number of false positives is controlled
within a constant factor. This setting enables us to reduce
our complexity results to functions of N and H for compar-
ison with existing approaches.

Memory used by the update step: The total memory is
given by the total number of buckets within the
multi-hash-array structure, and the result is shown in
(6). Note that log2 1þ 1

a

� �D�1 ¼ ðD� 1Þlog2ð1:1Þ is smal-
ler than log2N in general. Thus, the complexity is given
by H(H logN).

Number of memory accesses of the update step: The num-
ber of memory accesses is equal to the number of tables
within the multi-hash array structure, i.e., H(logN).
Number of hash operations of the update step: This is
equal to the number of memory accesses, as each hash
operation corresponds to a unique hash table.
0

100

200

300

400

500

600

700

800

30 35 40 45 50 55 60 65 70

de
te

ct
io

n
co

st
 (i

n
10

3 h
as

h
op

er
at

io
ns

)

update memory (in M = number of tables)

b=1
b=2
b=4

α=9, b=2

α=1, b=2

α=20, b=2

Fig. 7. The memory-computation trade-off of SeqHash, with N = 232 and
H = 500. Note that the x-axis represents the total number of hash tables
across the multi-hash-array structure, and the y-axis represents the
number of hash operations of the detection step (for heavy hitter
detection). We highlight the memory and computational costs for
different values of a when b = 2.
Memory used by the detection step: In addition to the
multiple hash arrays, SeqHash also stores (1 + a)H =
10H = H(H) of the candidate heavy keys in intermediate
steps (see Algorithm 2 in Section 4). Overall, the com-
plexity is given by H(HlogN).
Number of hash operations of the detection step: The
result is shown in (7). Note that 2b1 þ ð1þ aÞ
H
PD

i¼22bi ¼ HðH log NÞ. Thus, the complexity is given
by H(HlogN).

Table 2 compares the complexity results of SeqHash
with Deltoids [7] and reversible sketch [17]. Note that
although the complexity results of Deltoids and reversible
sketch in Table 2 are derived for heavy changer detection,
they remain valid for heavy hitter detection, which we as-
sume in our complexity analysis. Compared with Deltoids,
SeqHash has the same complexity results. However, as
shown in our experiments (see Section 7), SeqHash has sig-
nificantly higher accuracy than Deltoids using the same
amount of memory.

On the other hand, SeqHash has smaller memory and
computational costs in the Detection step than reversible
sketch, whose complexity is sub-linear of the original key
space (with O(N1/log logNlog logN) in memory and O(N3/log

logNlog logN) in computation). The main reason is that Seq-
Hash enumerates sub-keys of the heavy keys using multi-
ple intermediate steps, rather than using one step as in
reversible sketch. The flip side is that SeqHash requires
more memory accesses than reversible sketch. Neverthe-
less, should the number of memory accesses be a bottle-
neck, we can reduce this cost by increasing the memory
usage (i.e., increasing K), and hence we can reduce the total
number of hash tables used by SeqHash for a fixed error
rate (see analysis in Section 3).
5.5. Extension to heavy changer detection

In heavy changer detection, we use the notion of legit-
imate misses to reduce the false negative rate. In this case,
we perform more hash operations to determine non-heavy
keys as opposed to heavy hitter detection. In this subsec-
tion, we provide an upper bound on the computational cost
of the Detection step.
Table 2
Complexity results of reversible sketch, deltoids, and SeqHash (the results
of reversible sketch and deltoids are obtained by Schweller et al. [17]).

Update step

Memory Memory accesses Operations

(a) Update costs
Reversible sketch H ðlog NÞHð1Þ

log log N

� �
H ðlog NÞ

log log N

� �
H(logN)

Deltoids H(HlogN) H(logN) H(logN)
SeqHash H(HlogN) H(logN) H(logN)

Memory Operations

(b) Detection costs
Reversible sketch H N

1
log log N � log log N

� �
O HN

3
log log N � log log N

� �
Deltoids H(HlogN) O(HlogN)
SeqHash H(HlogN) H(HlogN)

3318 T. Bu et al. / Computer Networks 54 (2010) 3309–3326
Suppose that we fix the design parameters a = 9,
b1 = 16, and bi = 2 for i P 2 as in our previous complexity
analysis. From both Algorithm 2 and Fig. 5, the maximum
number of hash operations of the Detection step is

Computationmax ¼
XD

i¼1

jCi�1j � 2bi �Mi

¼ 2b1 M1 þ ð1þ aÞH � 22
XD

i¼2

Mi

6 maxð216;40HÞ
XD

i¼1

Mi: ð8Þ

If we use a total number of
PD

i¼1Mi ¼ Hðlog NÞ hash ta-
bles as in heavy hitter detection, then the total number of
hash operations is upper bounded by H(HlogN). Although
the complexity has a higher multiplicative constant than
the case of heavy hitter detection, it remains logarithmic
in N and is still less than the Detection step of reversible
sketch (see Table 2).

In general, for heavy change detection, we also need
more memory to mitigate the false negative rate (see Sec-
tion 3). In our experiments, we achieve this by increasing
K, as well as using estimation that is explained in Section 6.
6. Estimating values of heavy keys using linear
regression

In this section, we present a maximum-likelihood-based
method that uses a linear regression model to estimate
the values of heavy key values that have been recovered
from SeqHash. Estimation of values of heavy keys is impor-
tant for two reasons. First, when the number of heavy
keys is large, it is desirable to highlight the most important
heavy keys with the highest values. Second, using the
estimated values, we can further reduce the false positive
rate by eliminating those non-heavy keys included in the
candidate set of heavy keys. In the experimental studies
in Section 7, we will show that by using estimation, we
can reduce the false positive rate significantly at the
expense of only a small increase in the false negative rate.

It is important to note that SeqHash presented earlier
does not fully utilize the information in the counter values,
as all it does is a simple threshold test. Also, it does not
take into account the noise values due to non-heavy keys
that are determined by the underlying traffic behavior.
We now show how we exploit the information of the coun-
ter values and the traffic behavior to develop our estima-
tion methods.

Suppose that we are given a candidate set C of heavy
keys, and L heavy buckets, each of which is associated with
at least one candidate heavy key in C. Let Y be a vector of
length L representing the counter values (or change in
counter values for heavy changer detection) for the L heavy
buckets. Let A be an L� jCj 0–1 matrix in which element Aij

equals 1 if the ith heavy bucket is associated with the jth
candidate heavy key, or 0 otherwise. Let V be a vector of
length jCj representing the values of heavy keys, and d be
a vector of length L that denote the values due to remain-
ing non-heavy keys to the heavy buckets. Note that both V
and d are the unknown vectors that need to be estimated.
Now we can write

Y ¼ AV þ d: ð9Þ

In the following, we discuss the model choice for d in
both heavy hitter and heavy changer cases, and present a
maximum likelihood estimator for V.

6.1. Heavy hitter estimation

Based on the empirical studies of real traces, for heavy
hitter estimation, we find that the distribution of d is well
approximated by a Weibull distribution with mean h and
shape parameter b. Fig. 8 shows Weibull-QQplot of the ob-
served d distribution for the detection of at most 500 heavy
hitters in a real trace studied later in Section 7, using a
hash array with M = 33 tables and K = 722 buckets per ta-
ble. It is easy to see that the Weibull distribution gives
an excellent approximation as a straight line indicates an
exact Weibull distribution.

We observe that the shape parameter b is close to 1.
When the shape parameter is 1, a Weibull distribution is
reduced to an exponential distribution. In this case, the
maximum likelihood estimate bV MLE is equivalent to solving
the following linear programming problem with respect to
V:

maximize
XL

l¼1

AlV subject to yl � AlVð Þ P 0; ð10Þ

where yl is the l-th element of Y and Al is the l-th row of A.
A computationally cheaper estimator of V, the countmin

estimator, has been proposed in [4]. The countmin estima-
tor for the value of a candidate heavy hitter key is essen-
tially the minimum of all bucket values of y that contain
the candidate key. It is straightforward to show that if all
the heavy buckets contains exactly one heavy hitter, the
maximum likelihood estimator bV MLE reduces to the count-
min estimator bV min. However, from Lemma 1, this is not
true in general as only around 70% of the heavy buckets
contain exactly one heavy hitter when H/K = log2. In addi-
tion, it can be shown that both bV min and bV MLE have some
small positive bias, which is approximately

bias � E min
m
eY m

h i
; ð11Þ

where eY m corresponds to some value of a non-heavy buck-
et in hash table m in our multi-hash-array structure (note
that 1 6 m 6

PD
i¼1Mi). The bias can be approximated

accurately using a nonparametric method as follows. First,
we randomly select a non-heavy bucket from each hash ta-
ble and compute the minimum value among the selected
non-heavy buckets. Then we repeat this process many
times and compute the empirical mean of the minimum
values.

In summary, our estimation method is based on linear
regression, by solving the linear programming problem in
(10). The result is then corrected with the bias in (11).

In addition to the countmin estimator, a least-square
estimator of the heavy hitters has been proposed in [11],
whose approach can be viewed as the maximum likelihood

-4

-3

-2

-1

0

1

2

0.1 1 10 100

Lo
g

ex
po

ne
nt

ia
l q

ua
nt

ile

Log quantile of empirical distribution

Fig. 8. The error distribution of bucket values in a hash array for heavy
hitter detection with K = 722, M = 33, and 500 heavy hitters (see
Experiment 1 in Section 7). The dotted line indicates the true Weibull
distribution.

T. Bu et al. / Computer Networks 54 (2010) 3309–3326 3319
estimate when the error distribution follows a normal dis-
tribution. In Section 7, we compare our approach with the
least-square method.

6.2. Heavy changer estimation

Based on the empirical studies of real traces, we find the
distribution of d in the heavy changer case is well approx-
imated by a double exponential distribution. In such case,
the maximum likelihood estimate bV MLE for the linear
regression problem in (9) can be obtained from solving a
L1-regression problem. In particular, when all the heavy
buckets contain exactly one heavy hitter, then bV MLE corre-
sponds to the median estimator, similar to that proposed
in [9]. The median estimator for the value of a candidate
key is the median of all bucket values that contain the can-
didate key.

To illustrate the benefits of using estimation, we imple-
ment heavy changer estimation by directly applying the
heavy hitter estimation approach. We find that this
approximation can provide substantial improvement over
the heavy changer detection without estimation.

7. Experimental studies

When non-heavy key values are no longer negligible as
is often the case in real traces, some of the non-heavy
buckets will be considered to be heavy, leading to more
false positives. Therefore, we need additional memory to
counter this noise effect. In this section, we use trace-dri-
ven simulation to study how various choices of parameters
tolerate the presence of noise.

Using Internet traces captured from various sources, we
evaluate SeqHash in identifying heavy keys (i.e., heavy hit-
ters and heavy changers) when non-heavy keys have non-
negligible values. We mainly our scheme with Deltoids [7]
using its publicized software. In addition, we analyze the
improvement of SeqHash when it is coupled with linear
regression presented in Section 6. In addition, we compare
SeqHash with the modular hashing scheme that is used in
reversible sketch [17] (see Experiment 7).
7.1. Traces

The results presented here are based on a 1-h uni-direc-
tional trace from NLANR [14]. The trace contains about
50 GB of Internet traffic collected from 10:00 pm to
11:00 pm on June 1, 2004 at an OC-192 link connecting be-
tween Indianapolis and Kansas city in the United States.
The huge volume of collected traffic allows us to demon-
strate the effectiveness of SeqHash in a high speed net-
work. We repeat our evaluation using the NLANR traces
collected from the same source but at other times as well
as using private traces collected at an OC-48 link of an
ISP, and similar results are observed.

We divide the 1-h NLANR trace into six 10-min moni-
toring intervals. For heavy hitter detection, we identify
the source IPs whose data volume exceeds a threshold in
each interval. We then average the results across all inter-
vals. On the other hand, for heavy changer detection, we
identify the source IPs whose absolute change of data vol-
ume is above a threshold in each pair of adjacent intervals.
We then average the results across all pairs of adjacent
intervals. It should be noted that the length of a monitoring
interval varies across applications, and our goal here is to
evaluate the effectiveness of the heavy key detection ap-
proaches. Evaluation of different lengths of monitoring
intervals can be found in [15].

7.2. Experiment setup

Unless otherwise stated, our discussion focuses on the
32-bit key space based on source IP addresses. However,
we also experiment the 64-bit key space defined by
source–destination IP addresses.

In our experiments, we assume the maximum number
of heavy keys (i.e., H) is 500. Also, we vary K (i.e., the num-
ber of buckets in each hash table) and M (i.e.,

PD
i¼1Mi, the

total number of hash tables across all hash arrays) for iden-
tifying at most H heavy keys. For evaluation purpose, we
select different thresholds, each of which corresponds to
a true number of heavy keys. We therefore maintain a
baseline structure that keeps track of the per-key data vol-
ume for such threshold selection. The baseline structure is
also used for assessing the accuracies of recovering heavy
keys of SeqHash and Deltoids.

Our implementation is written in C. In our prior confer-
ence version [3], we use MD5 for our hash functions. In this
journal version, we revise our hash function implementa-
tion using the one in Snort [18]. While both Snort-based
and MD5-based hash functions lead to very similar accu-
racy results in our experiments, the former requires signif-
icantly less time in update steps (see Experiment 6). In
addition, we use the freely distributed package lp_solve
[12] to implement linear programming (LP) for linear
regression. Our experiments are conducted on a machine
with CPU speed 2.8 GHz and DRAM memory.

7.3. Metrics

We are mainly interested in two accuracy metrics: (1)
false positive rate, defined as the ratio of the number of
non-heavy keys to the number of keys returned, and (2)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F
(in

 %
)

Deviation from the threshold (in %)

K=1083, M=33
K=1444, M=33

Fig. 10. Experiment 1: deviations of false positives from the threshold for
finding the top 500 heavy hitters.

3320 T. Bu et al. / Computer Networks 54 (2010) 3309–3326
false negative rate, defined as the ratio of the number of
true heavy keys that are not returned to the number of true
heavy keys. In addition, we also consider the update time
and detection time of executing SeqHash as well as the esti-
mation errors in estimating the values of the recovered hea-
vy keys.

Experiment 1 (Analysis of finding heavy hitters (without
linear regression)). To counter the noise effect, we need
additional memory by increasing K and/or M for successful
heavy key detection. Thus, we study the impact with
different choices of K and M. We begin our analysis by first
excluding linear regression described in Section 6.

As shown in Section 5, if H = 500 and non-heavy keys
have negligible values, then we can choose K = H/log 2 �
722, and M = 33 where M1 = 4, M2 = � � � = M8 = 2, and
M9 = 15 (i.e., 9 hash arrays) for SeqHash. This is the
‘‘noise-free” configuration. To counter the effects of noise
due to non-heavy keys, we increase the memory by 50%
and 100% by using different values of K and M shown in
Table 3 (where each counter is assumed to be of size
4 bytes).

Fig. 9 shows the false positive rate of finding heavy
hitters using SeqHash (note that since every bucket that
contains heavy hitters must be a heavy bucket, there is no
false negative). With the original noise-free configuration
K = 722 and M = 33, the false positive rate can be as high as
32%. However, by increasing the number of counters, we
can reduce the false positive rate significantly to less than
6% by increasing K by 50% (for M = 33 and K = 1083) and
further to less than 3% by doubling K (for M = 33 and
K = 1444).
Table 3
Configurations of K and M.

K M (M1, M26i68, M9) Number of counters (memory size)

722 33 (4, 2, 15) 23826 (93 KB)
722 50 (6, 3, 23) 36100 (141 KB)
722 66 (8, 4, 30) 47652 (186 KB)
1083 33 (4, 2, 15) 35739 (140 KB)
1444 33 (4, 2, 15) 47652 (186 KB)

 0

 5

 10

 15

 20

 25

 30

 35

 50 100 150 200 250 300 350 400 450 500

Fa
ls

e
po

si
tiv

e
ra

te
 (i

n
%

)

True number of top heavy hitters

K=722, M=33
K=722, M=50
K=722, M=66

K=1083, M=33
K=1444, M=33

Fig. 9. Experiment 1: false positive rate of finding heavy hitters using
SeqHash without linear regression.
In the presence of noise, we note that increasing K is
more advantageous than increasing M. Intuitively, as K
increases, the values of non-heavy keys are distributed
across more buckets. Thus, a bucket that contains only
non-heavy keys is less likely to become a heavy bucket,
leading to a reduced false positive rate. Also, increasing M
is less desirable in practice because it increases the number
of hash operations needed to record keys into the hash
arrays.

To further examine the values of the false positives,
Fig. 10 depicts the percentage of deviations of these values
with respect to the threshold for the case of finding the top
heavy hitters using the configurations with M = 33 and
K = 1083 and 1444. In fact, most of the false positives do
not actually deviate much from the threshold. For instance,
the proportion of false positives that have values within
15% of the threshold is more than 80% when M = 33 and
K = 1083, and achieves 100% when M = 33 and K = 1444. It
shows that the heavy hitter candidates returned from
SeqHash can effectively approximate the set of true heavy
hitters.

We now compare SeqHash with Deltoids using its
publicized software. Fig. 11 shows the accuracy of using
Deltoids to identify heavy hitters. Here, we set the number
of hash tables and the number of buckets in each hash
table to be 4 and 361, respectively. Since each of its buckets
is associated with log2N + 1 = 33 counters, its total number
of counters is no less than all of our configurations. While
Deltoids has less than 10% of false positive rate, its false
negative rate is significantly high (up to 80%) as more
heavy hitters need to be identified, meaning that many
true heavy hitters evade detection. We have also tried
other combinations of the numbers of hash tables and
buckets in each hash table with the same total number of
counters, but the false negative rate remains significantly
high. In short, with the same or even less amount of
memory, SeqHash provides a much more accurate heavy
hitter detection than does Deltoids.
Experiment 2 (Analysis of finding heavy hitters (with linear
regression)). Here, we analyze how the heavy hitter detec-
tion benefits from linear regression presented in Section 6.

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 50 100 150 200 250 300 350 400 450 500

Fa
ls

e
po

si
tiv

e
ra

te
 (i

n
%

)

True number of top heavy hitters

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 50 100 150 200 250 300 350 400 450 500

Fa
ls

e
ne

ga
tiv

e
ra

te
 (i

n
%

)

True number of top heavy hitters

(a) False positive rate (b) False negative rate

Fig. 11. Experiment 1: accuracy of deltoids in finding heavy hitters.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 50 100 150 200 250 300 350 400 450 500

Fa
ls

e
po

si
tiv

e
ra

te
 (i

n
%

)

True number of top heavy hitters

K=722, M=33
K=1083, M=33
K=1444, M=33

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 50 100 150 200 250 300 350 400 450 500

Fa
ls

e
ne

ga
tiv

e
ra

te
 (i

n
%

)

True number of top heavy hitters

K=722, M=33
K=1083, M=33
K=1444, M=33

(a) False positive rate (b) False negative rate

Fig. 12. Experiment 2: accuracy of finding heavy hitters with linear regression.

T. Bu et al. / Computer Networks 54 (2010) 3309–3326 3321
As Experiment 1 shows that increasing K outperforms
increasing M, we focus on the configurations with M = 33,
and K = 722, 1083, and 1444.

Fig. 12 shows the accuracy of finding heavy hitters
when we couple SeqHash with linear regression. Referring
to Fig. 9 in Experiment 1, for K = 722 and M = 33, the false
positive rate for identifying 500 heavy hitters is almost 32%
without linear regression. However, linear regression
reduces this false positive rate to less than 3%, while
introducing a false negative rate 3.3% (i.e., the total error
rate is about 6%). Also, for K = 1083 and M = 33, the false
positive rate for identifying 500 heavy hitters is also about
6% when no linear regression is used. This shows that
linear regression can reduce the amount of memory
required to achieve the same total error rate.

In terms of the accuracy of estimation, we show that
linear regression provides a better estimate of values of
heavy hitters than does the least-square method proposed
in [11]. Here, we consider the following two error
measures:
Err1 ¼
1
jCj
X
x2C

vest
x � vx

�� ��;
Err2 ¼

ffi
1
jCj
X
x2C

vest
x � vx

� �2

s
;

where vx and vest
x are respectively the true value and the

corresponding estimate of key x, and C is the final candi-
date set returned from SeqHash.

Table 4 shows the error measures (in unit MB) of both
linear and least-square regressions in estimating the data
volumes of the top 500 heavy hitters. It shows that linear
regression always outperforms least-square regression in
both error measures. We have also tried other types of
error measures and linear regression still provides better
results.

The improvement of our linear regression method is a
result of modeling the characteristics of non-heavy keys in
data traffic. While by no means do we claim our linear
regression approach is the best choice for all instances of

Table 4
Experiment 2: accuracies of linear and least-square regressions.

Configuration Linear Least-square

Err1 Err2 Err1 Err2

K = 722, M = 33 0.7381 1.0233 2.1737 2.8462
K = 1083, M = 33 0.3950 0.5469 0.7658 0.9897
K = 1444, M = 33 0.2146 0.3035 0.3992 0.5316

3322 T. Bu et al. / Computer Networks 54 (2010) 3309–3326
traffic traces, our analysis provides insights on how heavy
key detection techniques can benefit from understanding
the behavior of data traffic.
Experiment 3 (Accuracy of finding heavy changers)). We
now compare both SeqHash (with linear regression) and
Deltoids in heavy changer detection. Since the positive
and negative changes can cancel each other, some of the
buckets that contain heavy changers will not be identified
as heavy buckets. Therefore, we need even more memory
to mitigate this impact. Here, for SeqHash, we consider
the configuration with K = 1444 and M = 33, while for Del-
toids, we use the same configuration as in Experiment 1.
Thus, both approaches are allocated with the same number
of counters.
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 50 100 150 200 250 300 350 400 450 500

Fa
ls

e
po

si
tiv

e
ra

te
 (i

n
%

)

True number of top heavy changers

(a) False positive rate, SeqHash

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 50 100 150 200 250 300 350 400 450 500

Fa
ls

e
po

si
tiv

e
ra

te
 (i

n
%

)

True number of top heavy changers

(c) False positive rate, Deltoids

Fig. 13. Experiment 3: accuracy
Fig. 13 depicts the accuracy of finding heavy changers
both schemes. While Deltoids only has at most 1.2% false
positive rate, its false negative rate can be as high as 70%.
On the other hand, with the same number of counters,
SeqHash bounds the false positive and negative rates
within 1.4% and 3.6%, respectively.
Experiment 4 (Analysis of 64-bit key space). We further
evaluate SeqHash (with linear regression) using the 64-
bit source–destination IP pairs as the key space. We con-
sider a special case with M = 66 and 25 hash arrays, such
that M1 = 4, M2 = � � � = M24 = 2, M25 = 16. For the case of
finding heavy hitters, we start with M = 66 and K = 1444.
Fig. 14(a) and (b) show the accuracy of finding heavy hit-
ters. The average false positive and negative rates are no
more than 1.6% and 1%, respectively. On the other hand,
for the case of finding heavy changers, we set K = 1800 to
further counter the cancellation of positive and negative
changes. Fig. 14(c) and (d) show the accuracy of finding
heavy changers. The average false positive and negative
ratios are no more than 0.9% and 2.4%, respectively.

Note that we observe variations of the false positive/
negative rates in the figures. For example, Fig. 14(d) shows
‘‘dips” when the true number of heavy changers changes
from 50 to 100 and from 400 to 450. This is mainly due to
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 50 100 150 200 250 300 350 400 450 500

Fa
ls

e
ne

ga
tiv

e
ra

te
 (i

n
%

)

True number of top heavy changers

(b) False negative rate, SeqHash

 0

 10

 20

 30

 40

 50

 60

 70

 50 100 150 200 250 300 350 400 450 500

Fa
ls

e
ne

ga
tiv

e
ra

te
 (i

n
%

)

True number of top heavy changers

(d) False negative rate, Deltoids

of finding heavy changers.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 50 100 150 200 250 300 350 400 450 500

Fa
ls

e
po

si
tiv

e
ra

te
 (i

n
%

)

True number of top heavy hitters

M=66, K=1444

 0

 0.5

 1

 1.5

 2

 2.5

 3

 50 100 150 200 250 300 350 400 450 500

Fa
ls

e
ne

ga
tiv

e
ra

te
 (i

n
%

)

True number of top heavy hitters

M=66, K=1444

(a) False positive rate, heavy hitters (b) False negative rate, heavy hitters

 0

 0.5

 1

 1.5

 2

 2.5

 3

 50 100 150 200 250 300 350 400 450 500

Fa
ls

e
po

si
tiv

e
ra

te
 (i

n
%

)

True number of top heavy changers

M=66, K=1800

 0

 0.5

 1

 1.5

 2

 2.5

 3

 50 100 150 200 250 300 350 400 450 500

Fa
ls

e
ne

ga
tiv

e
ra

te
 (i

n
%

)

True number of top heavy changers

M=66, K=1800

(c) False positive rate, heavy changers (d) False negative rate, heavy changers

Fig. 14. Experiment 4: accuracy of SeqHash in finding the top 500 heavy hitters/changers of 64-bit source–destination IP pairs.

 0

 1

 2

 3

 4

 5

 6

 50 100 150 200 250 300 350 400 450 500

D
et

ec
tio

n
tim

e
(in

 s
ec

)

True number of top heavy hitters

With linear regression
Without linear regression

 0

 1

 2

 3

 4

 5

 6

 50 100 150 200 250 300 350 400 450 500

D
et

ec
tio

n
tim

e
(in

 s
ec

)

True number of top heavy changers

With linear regression
Without linear regression

(a) Heavy hitters (b) Heavy changers

Fig. 15. Experiment 5: detection time of SeqHash of recovering the top 500 heavy hitters/changers (with linear regression).

T. Bu et al. / Computer Networks 54 (2010) 3309–3326 3323
the statistical variations of our real traffic trace data, such
that a slight change of the number of false positive/
negative keys can affect the false positive/negative rates.
Nevertheless, the number of false positive/negative keys
remains small in all cases. For instance, when the true
number of heavy changers is between 50 and 200, the
expected number of false negative keys is less than one
(Fig. 14(d)).

3324 T. Bu et al. / Computer Networks 54 (2010) 3309–3326
Experiment 5 (Detection time). This experiment evaluates
the execution time of recovering heavy keys. We consider
the case where M = 33 and K = 1444, and enable linear
regression. Fig. 15(a) and (b) show the detection times of
recovering heavy hitters and heavy changers, respectively.
The detection times for finding heavy hitters and heavy
changers, when linear regression is used, are within 2.6
and 5.5 s, respectively. We point out that the execution
time of SeqHash is less than 0.05 s if linear regression is
not used. Therefore, the major overhead is on solving the
LP problem for linear regression. We expect that the detec-
tion time can be further improved with more computation-
ally efficient hash functions and LP packages.
Experiment 6 (Update time). We now evaluate the speed
of the update step of SeqHash using the Snort-based hash
function implementation [18]. We have SeqHash process
the NLANR traces as far as possible on a machine with
CPU speed 2.8 GHz and DRAM memory. Fig. 16(a) and (b)
show the update times for the 32-bit key space (where
we set M = 33) and the 64-bit key space (where we set
M = 66) in each of the six 10-min monitoring intervals,
respectively. In each of the monitoring intervals, we
observe that SeqHash can update all packets within 110
and 300 s for the 32-bit key space and 64-bit key space,
respectively, implying that SeqHash can catch up with
the packet rate of the traces that we use in our
experiments.

Note that our current implementation runs on a single
process. The update speed can be further improved if we
can leverage parallel processing on multi-core architec-
tures. In a high level, we can dispatch packets to different
cores in a round-robin manner, and each core has a thread
that updates packets to its own sketch. We can later
combine the sketches from multiple threads into an
aggregate sketch by summing the bucket values (note that
our data structure fulfills the linearity property [9]), and
solve the heave-key detection problem on the aggregate
sketch.
 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 2 3 4 5 6

U
pd

at
e

tim
e

(in
 s

ec
)

Monitoring interval

32-bit key space

(a) 32-bit keys, M = 33

Fig. 16. Experiment 6: upd
Experiment 7 (Analysis of modular hashing). We now
compare SeqHash with modular hashing [17] (see our dis-
cussion in Section 4.4), both of which are possible imple-
mentations of multi-level hashing. Here, we focus on
identifying the heavy hitters among the 32-bit source IP
addresses. Our setting is based on Experiment 1, such that
we disable linear regression for sequential hashing. This
enables us to analyze the baseline implementations of
multi-level hashing.

For modular hashing, we first apply managling to each
source IP address to destroy correlations among the keys.
Based on [17], we consider a simple mangling function
f(x) = 101�1x(mod 232) for input key x. We then divide each
32-bit mangled key into four octets, and apply modular
hashing. After the detection step, the returned heavy
keys will be unmangled using the function f�1(x) =
101x(mod232), and we evaluate the accuracy. The config-
urations for modular hashing are M = 6, 9, and 12, and K
= 212 = 4096. On the other hand, for sequential hashing, we
use M = 33 and K = 722, 1083, and 1444, as in Experiment
1. Our goal is to compare both modular hashing and
sequential hashing using the similar amount of memory.

Fig. 17 shows the false positive rates of finding heavy
hitters in both sequential hasing and modular hashing
under different configurations (note that we do not have
false negatives as linear regression is disabled). Note that
modular hashing has a significantly high false positive rate
when M = 6. When we increase the memory size, the false
positive rate of modular hashing decreases, but remains
larger than that of SeqHash when the true number of top
heavy hitters is high.

Here, we do not claim modular hashing is less
accurate, as the choice of the mangling function could
affect the accuracy. In [17], a more sophisticated man-
gling function based on Galois Field operations is pro-
posed, and it is shown to be very effective in destroying
correlations of keys. The study of the impact of mangling
functions on multi-level hashing is beyond the scope of
our work.
 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 2 3 4 5 6

U
pd

at
e

tim
e

(in
 s

ec
)

Monitoring interval

64-bit key space

(b) 64-bit keys, M = 66

ate time of SeqHash.

 0

 20

 40

 60

 80

 100

 50 100 150 200 250 300 350 400 450 500

Fa
ls

e
po

si
tiv

e
ra

te
 (i

n
%

)

True number of top heavy hitters

Sequential
Modular

 0

 5

 10

 15

 20

 25

 30

 35

 40

 50 100 150 200 250 300 350 400 450 500

Fa
ls

e
po

si
tiv

e
ra

te
 (i

n
%

)

True number of top heavy hitters

Sequential
Modular

(a) (b)

 0

 2

 4

 6

 8

 10

 50 100 150 200 250 300 350 400 450 500

Fa
ls

e
po

si
tiv

e
ra

te
 (i

n
%

)

True number of top heavy hitters

Sequential
Modular

(c)

Fig. 17. Experiment 7: comparison of modular hashing and sequential hashing: (a) modular hashing, M = 6, K = 4096, sequential hashing, M = 33, K = 722;
(b) modular hashing, M = 9, K = 4096, sequential hashing, M = 33, K = 1083; (c) Modular hashing, M = 12, K = 4096, sequential hashing, M = 33, K = 1444. The
results for sequential hashing are identical to those in Experiment 1, Fig. 9.

T. Bu et al. / Computer Networks 54 (2010) 3309–3326 3325
7.4. Summary

Using a memory-efficient data structure, we show that
SeqHash provides more accurate heavy hitter and heavy
changer detection than does Deltoids in the presence of
noise. With linear regression, the accuracy of SeqHash is
further improved. Moreover, we show that SeqHash allows
fast detection and supports large key space.
8. Conclusion

In this paper, we consider how to identify the keys (e.g.,
IPs or flows) that have large data volume or large volume
change in a high speed network. Given the infeasibility of
tracking all keys, we first derive the lower-bound memory
requirement for recovering heavy keys with respect to a
fixed false positive rate. We then propose SeqHash, which
uses a sketch data structure to achieve accurate and fast
identification of heavy keys. We show that with different
choices of design parameters, we can readily achieve a
trade-off between memory usage and computational over-
head. In addition, we propose a linear-regression-based
method to accurately estimate the values of heavy keys
and to further improve the accuracy of heavy key detec-
tion. Finally, we show via extensive trace-driven simula-
tion that SeqHash is more robust in identifying heavy
keys as compared to the Deltoids approach.

Note: An earlier and shorter conference version of this
paper appeared in IEEE INFOCOM ’07 [3]. We make several
extensions in this journal version. First, we formally derive
the costs of memory usage and computational cost of our
proposed scheme (see Section 5). We revise our evaluation
using a fast hash function to minimize the monitoring and
detection times (see Section 7). We also present more rig-
orous arguments when comparing our proposed scheme
with previous work.
Acknowledgment

The work of Patrick P.C. Lee was supported in part by
the CUHK faculty direct grant (project number: 2050447).
References

[1] B. Bloom, Space/time trade-offs in hashing coding with allowable
errors, Communications of the ACM 13 (7) (1970) 422–426.

[2] A. Broder, M. Mitzenmacher, Network applications of bloom filters: a
survey, Internet Mathematics 1 (4) (2003) 485–509.

3326 T. Bu et al. / Computer Network
[3] T. Bu, J. Cao, A. Chen, P.P.C. Lee, A fast and compact method for
unveiling significant patterns in high speed networks, in:
Proceedings of IEEE INFOCOM, 2007.

[4] G. Cormode, F. Korn, S. Muthukrishnan, D. Srivastava, Finding
hierarchical heavy hitters in data streams, in: VLDB, 2003.

[5] X. Dimitropoulos, P. Hurley, A. Kind, Probabilistic lossy counting: an
efficient algorithm for finding heavy hitters, ACM SIGCOMM
Computer Communication Review 38 (1) (2008).

[6] C. Estan, G. Varghese, New directions in traffic measurement and
accounting: focusing on the Elephants, ignoring the Mice, ACM
Transactions on Computer Systems 21 (3) (2003) 270–313.

[7] G. Cormode, S. Muthukrishnan, What’s new: finding significant
differences in network data streams, in: Proceedings of IEEE
INFOCOM, 2004.

[8] M. Kodialam, T. Lakshman, S. Mohanty, Runs based traffic estimator
(RATE): a simple, memory efficient scheme for per-flow rate
estimation, in: Proceedings of IEEE INFOCOM, 2004.

[9] B. Krishnamurthy, S. Sen, Y. Zhang, Y. Chen, Sketch-based change
detection: methods, evaluation, and applications, in: Internet
Measurement Conference, 2003.

[10] A. Kumar, J. Xu, J. Wang, O. Spatschek, L. Li, Space-code bloom filter
for efficient per-flow traffic measurement, in: Proceedings of IEEE
INFOCOM, 2004.

[11] G.M. Lee, H. Liu, Y. Yoon, Y. Zhang, Improving sketch reconstruction
accuracy using linear least squares method, in: Internet
Measurement Conference, 2005.

[12] lp_solve. <http://groups.yahoo.com/group/lp_solve/>.
[13] G. Manku, R. Motwani, Approximate frequency counts over data

streams, in: Proceedings of the VLDB, 2002.
[14] NLANR. Abilene-III Trace Data. <http://pma.nlanr.net/Special/

ipls3.html>.
[15] K. Papagiannaki, R. Cruz, C. Diot, Network performance monitoring

at small time scales, in: IMC, 2003.
[16] V. Paxson, R. Sommer, N. Weaver, An architecture for exploiting

multi-core processors to parallelize network intrusion prevention,
in: IEEE Sarnoff Symposium, 2007.

[17] R. Schweller, Z. Li, Y. Chen, Y. Gao, A. Gupta, E. Parsons, Y. Zhang, P.
Dinda, M. Kao, G. Memik, Reversible sketches: enabling monitoring
and analysis over high-speed data streams, IEEE/ACM Transactions
on Networking 15 (5) (2007).

[18] Snort. <http://www.snort.org/>.

Tian Bu received his Ph.D. in Computer Sci-
ence from University of Massachusetts,

Amherst in 2002. He has been at Bell Labs,
Alcatel-Lucent since 2002. He is now the CTO
of a wireless data network security and
management project at Alcatel-Lucent. His
current research includes network security
and network modeling and performance
evaluation.
Jin Cao has been a member of technical staff
at Bell Laboratories since 1997. She got her

Ph.D. from the Department of Mathematics
and Statistics, McGill University, Canada in
1997 and joined Bell Laboratories later in the
year. Her Ph.D. thesis was on the statistical
analysis of brain images. Her current research
focuses on statistical problems arising from
data networks, for example, network tomog-
raphy, traffic modeling and simulation, per-
formance analysis, and data streaming
algorithms.

s 54 (2010) 3309–3326
Aiyou Chen received the B.S. degree in
mathematics from Wuhan University, Wuhan,

China, in 1997, the M.S. degree in probability
and mathematical statistics from Peking Uni-
versity, Beijing, China, in 2000, and the Ph.D.
degree in statistics from University of Cali-
fornia, Berkeley, in 2004. He is currently a
Member of Technical Staff with Bell Labora-
tories, Alcatel Lucent, Murray Hill, NJ. His
current research interests include statistical
learning, social network models, streaming
data, and statistical inference in network
applications.
Patrick P.C. Lee received the B.E. degree

(first-class honors) in Information Engineer-
ing from the Chinese University of Hong Kong
in 2001, the M.Phil. degree in Computer Sci-
ence and Engineering from the Chinese Uni-
versity of Hong Kong in 2003, and the Ph.D.
degree in Computer Science from Columbia
University in 2008. He is now an assistant
professor of the Department of Computer
Science and Engineering at the Chinese Uni-
versity of Hong Kong. His research interests
are in network robustness and security.

http://groups.yahoo.com/group/lp_solve/
http://pma.nlanr.net/Special/ipls3.html
http://pma.nlanr.net/Special/ipls3.html
http://www.snort.org/

	Sequential hashing: A flexible approach for unveiling significant patterns in high speed networks
	Introduction
	Related work
	Memory lower bound for a hash array
	Memory lower bound for heavy hitter detection
	Memory lower bound for heavy changer detection

	SeqHash
	Motivation
	Intuition of SeqHash
	Design of SeqHash
	Modular hashing

	Analytical evaluation
	Memory cost for the update step
	Computational cost for detection
	Memory-computation trade-off
	Complexity results
	Extension to heavy changer detection

	Estimating values of heavy keys using linear regression
	Heavy hitter estimation
	Heavy changer estimation

	Experimental studies
	Traces
	Experiment setup
	Metrics
	Summary

	Conclusion
	Acknowledgment
	References

