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Abstract—Cloud storage is an emerging service model that
enables individuals and enterprises to outsource the storage of
data backups to remote cloud providers at a low cost. However,
cloud clients must enforce security guarantees of their outsourced
data backups. We present FadeVersion, a secure cloud backup
system that serves as a security layer on top of today’s cloud stor-
age services. FadeVersion follows the standard version-controlled
backup design, which eliminates the storage of redundant data
across different versions of backups. On top of this, FadeVersion
applies cryptographic protection to data backups. Specifically, it
enables fine-grained assured deletion, that is, cloud clients can
assuredly delete particular backup versions or files on the cloud
and make them permanently inaccessible to anyone, while other
versions that share the common data of the deleted versions or
files will remain unaffected. We implement a proof-of-concept
prototype of FadeVersion and conduct empirical evaluation atop
Amazon S3. We show that FadeVersion only adds minimal
performance overhead over a traditional cloud backup service
that does not support assured deletion.

I. INTRODUCTION

Cloud computing is an emerging service model that pro-

vides computation and storage resources on the Internet. One

attractive functionality that cloud computing can offer is cloud

storage. Individuals and enterprises are often required to

remotely archive their data to avoid any information loss in

case there are any hardware/software failures or unforeseen

disasters. Instead of purchasing the needed storage media to

keep data backups, individuals and enterprises can simply

outsource their data backup services to the cloud service

providers, which provide the necessary storage resources to

host the data backups.

While cloud storage is attractive, how to provide security

guarantees for outsourced data becomes a rising concern.

One major security challenge is to provide the property of

assured deletion, i.e., data files are permanently inaccessible

upon requests of deletion. Keeping data backups permanently

is undesirable, as sensitive information may be exposed in

the future because of data breach or erroneous management

of cloud operators. Thus, to avoid liabilities, enterprises and

government agencies usually keep their backups for a finite

number of years and request to delete (or destroy) the backups

afterwards. For example, the US Congress is formulating the

Internet Data Retention legislation in asking ISPs to retain data

for two years [9], while in United Kingdom, companies are

required to retain wages and salary records for six years [24].

Assured deletion aims to provide cloud clients an option

of reliably destroying their data backups upon requests. On

the other hand, cloud providers may replicate multiple copies

of data over the cloud infrastructure for fault-tolerance rea-

sons. Since cloud providers do not publicize their replication

policies, cloud clients do not know how many copies of their

data are on the cloud, or where these copies are located. It

is unclear whether cloud providers can reliably remove all

replicated copies when cloud clients issue requests of deletion

for their outsourced data.

Thus, we are interested in the design of a highly secure

cloud backup system that enables assured deletion for out-

sourced data backups on the cloud, while addressing the im-

portant features for a typical backup application. One such fea-

ture is to enable version control for outsourced data backups,

so that cloud clients can roll-back to extract data from earlier

versions. Typically, each backup version is incrementally built

from the previous version. If the same file appears in multiple

versions, then it is natural to store only one copy of the file and

have the other versions refer to the file copy. However, there

are data dependencies across different versions, and deleting

an old version may make the future versions unrecoverable.

This is one challenge we aim to overcome.

In this paper, we present FadeVersion, a secure cloud backup

system that supports both version control and assured deletion.

FadeVersion allows fine-grained assured deletion, such that

cloud clients can specify particular versions or files on the

cloud to be assuredly deleted, while other versions that share

the common data of the deleted versions or files will remain

unaffected. The main idea of FadeVersion is to use a layered

encryption approach. Suppose that a file F appears in multiple

versions. We first encrypt F with key k, and then encrypt key

k independently with different keys associated with different

versions. Thus, if we remove a key of one version, we can

still recover key k and hence file F in another version.

We implement a proof-of-concept prototype of FadeVersion

that is compatible with today’s cloud storage services. We

extend an open-source cloud backup system Cumulus [23]

and include the assured deletion feature. Using Amazon S3

as the cloud storage backend, we empirically evaluate the

performance of FadeVersion. We also conduct monetary cost

analysis for FadeVersion based on the cost plans of different

cloud providers. We show that the additional overhead of

FadeVersion is justifiable compared to Cumulus, which does

not possess the assured deletion functionality.

The remainder of the paper proceeds as follows. In Sec-

tion II, we provide the necessary background on cloud storage



systems and the related technical issues. In Section III, we

present the threat model and assumptions we make in our

design. In Sections IV and V, we discuss the design and

implementation details of FadeVersion, respectively. In Sec-

tion VI, we evaluate the cost effectiveness and performance

overhead of our system. Section VII concludes and presents

future work.

II. BACKGROUND AND RELATED WORK

There are different ways of achieving assured deletion.

One approach is by secure overwriting [7], in which new

data is written over original data to make the original data

unrecoverable. Secure overwriting has also been applied in

versioning file systems [15]. However, this requires internal

modifications of a file system and is not feasible for outsourced

storage, since the storage backends are maintained by third

parties, and it has no guarantee that replicated data will be

over-written.

Another approach is achieved by cryptographic protection,

which removes the cryptographic keys that are used to decrypt

data blocks to make the encrypted blocks unrecoverable [3],

[5], [6], [14], [21], [25]. The encrypted data blocks are stored

in outsourced storage (e.g., clouds), while the cryptographic

keys are kept independently by a key escrow system. For

instance, FADE [21] supports policy-based assured deletion,

in which data can be assuredly deleted according to revoked

policies. However, existing studies do not consider version

control for this approach. As shown in Section IV-A, existing

version control systems and assured deletion systems are

incompatible with each other.

Version control follows the notion of deduplication [16],

which eliminates the storage of redundant data chunks that

have the same content. In the security context, recent studies

propose convergent encryption [2], [20], such that the key for

encrypting/decrypting a data chunk is a function of the content

of the data chunk, so that the encryptions of two redundant

data chunks will still return the same content. However, in

convergent encryption, if we want to assuredly delete a data

chunk of a particular version, we cannot simply remove its

associated key, since it may make the identical chunks in other

versions unrecoverable.

There are a few cloud backup systems in the market. Ex-

amples include commercial systems like Dropbox [4], Jungle

Disk [8], and Nasuni [10], as well as the open-source Cumulus

system [23], all of which provide version control and archive

different versions of backups. Specifically, Cumulus considers

a thin cloud interface, meaning that the cloud only provides

basic functionalities for outsourced storage, such as put, get,

list, and delete1. It splits a file into chunks, and only

modified chunks will be uploaded to the cloud. New versions

may refer to the identical chunks in older versions, so no

redundant chunks across versions will be stored. Note that

Cumulus does not provide assured deletion.

1The delete operation only requests the cloud to remove the physical
copy of a file, but there is no guarantee that the file is assuredly deleted.

In March 2011, Nasuni announced that its system enables

the new snapshot retention policy that allows assured deletion

of backup snapshots [11]. On the other hand, there is no

formal study about their implementation methodologies and

performance evaluation. We address this issue in this paper.

We provide a comprehensive study that describes the design

details of how to integrate assured deletion into a general

version-controlled system with deduplication. We also provide

extensive empirical evaluation and monetary cost analysis for

our design.

III. THREAT MODEL AND ASSUMPTIONS

We consider a retrospective attack threat model: an attacker

wants to recover specific files that have been deleted. This type

of attack may occur if there is a security breach in the cloud

data center, or if a subpoena is issued to demand data and

encryption keys. We assume that the attacker is omnipotent,

i.e., it can obtain copies of any encrypted data, as well as keys

on any machines.

Our security goal is to achieve assured deletion of files for

a cloud backup system with version control. We adopt the

cryptographic approach [3], [5], [6], [14], [21], [25], i.e., by

removing the keys that are used to decrypt the data backups

stored on the cloud. We make two assumptions for this

approach. First, the encryption operation is secure, in the sense

that it is computationally infeasible to revert the encrypted

data into the original data without the decryption key. Second,

we assume that the decryption keys are maintained by a key

escrow system that is totally independent of the cloud and can

be fully controlled by cloud clients. If a file is requested to

be assuredly deleted, then we require the associated key be

securely erased [7], which we believe is feasible given that

the size of a key is much smaller compared to a backup file.

In Section IV-F, we discuss in more detail the design of the

key escrow system.

IV. DESIGN OF FADEVERSION

A. Motivation

We argue that existing version-controlled cloud backup sys-

tems (e.g., Cumulus [23]) and assured deletion systems (e.g.,

Vanish [6] and FADE [21]) are incompatible. To elaborate the

issue, we consider a scenario in which we archive data backups

using two independent systems, i.e., a version control system

and an assured deletion system, and explain how they break

certain functionalities.

There are two approaches of deployment. In the first

approach, we first pass data backups through the version

control system, followed by the assured deletion system,

as shown in Figure 1(a). Suppose that Version V1 is first

generated, followed by Version V2. In this case, if there are

some identical file copies in both versions, then Version V2

can keep references to point to the identical file copies in

Version V1 instead of storing redundant file copies. In other

words, Version V2 may depend on some files in Version V1.

Then we pass the versions through the assured deletion system,

which we assume is based on cryptographic protection as
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Fig. 1. Illustration of why existing version control systems and assured
deletion systems are incompatible.

described in Section II. Now, if we want to assuredly delete

Version V1, then we can remove the cryptographic key that

encrypts Version V1. However, since Version V2 shares some

files in Version V1, some files in Version V2 also become

inaccessible. In short, assuredly deleting one version may also

affect future versions.

In the second approach, we first pass data backups through

the assured deletion system, followed by the version control

system, as shown in Figure 1(b). First, each backup file is

encrypted with different cryptographic keys by the assured

deletion system. If two identical files are encrypted with

different keys, then their encrypted copies will have different

format. Thus, if we pass these encrypted files through the

version control system, then the version control system cannot

discover any commonality between the encrypted copies and

cannot share identical files across versions.

B. Main Idea

Our goal is to make both version control and assured

deletion compatible with each other in a single design. The

main idea of FadeVersion is as follows. We first start with the

design of a version-controlled cloud backup system that has

similar ideas as in Cumulus [23], in which we create different

data objects that are to be archived on the cloud. On top

of the version control design, we add a layered approach of

cryptographic protection, in which data is encrypted with the

first layer of keys called the data keys, and the data keys are

further encrypted with another layer of keys called the control

keys. The control keys are defined by fine-grained policies

that specify how each file is accessed. If a policy is revoked,

then its associated control key is deleted. If the data object

is associated solely with the revoked policy, then it will be

assured deleted; if the data object is associated with both the

revoked policy and another active policy, then we still allow

the data object to be accessed through the active policy. We

elaborate how this idea is designed and implemented in the

following subsections.

C. Version Control

In FadeVersion, each backup version (or snapshot) arranges

data files into file objects. Each file object is of variable size

Version V1
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O1 O2 O3 O4

O3   O4   O5   O6

O5 O6

time t1

Metadata 
objects

file 
objects

Version V2
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Fig. 2. Illustration of how version control works.

with a configurable maximum-size threshold (e.g., currently

set as 1 MB). If a file has size less than the threshold, then it

can be represented by a single object; otherwise, we split the

file into multiple objects. Thus, if there is any modification

to a large file, then we only need to upload the modified

objects, rather than the whole file, to the cloud so as to save

the upload and storage costs. To further reduce the upload

cost, we can group multiple objects into a segment, and each

transfer request is done on a per-segment basis [23].

In many cases, the same file (or object) may appear in mul-

tiple backup versions, or different files (or objects) may have

the same content in the same or different versions. We employ

deduplication [16] to further reduce storage. Specifically, if

two objects have the same content, then we only need to store

one object on the cloud and create smaller-size pointers to

reference the stored object. To determine if two objects have

the same content, we apply a cryptographic hash function (e.g.,

SHA-1) to the content of each object and check if both objects

return the same hash value.

We may further look for the identical content that can

be deduplicated within an object using a more fine-grained

technique like Rabin Fingerprints [17]. However, we note that

it does not always significantly improve the storage efficiency,

such as using the datasets in our experiments (see Section VI).

Therefore in this paper, we assume that an object is the

smallest unit of data backups.

FadeVersion allows users to archive backup files at different

time instants, and organizes backups into different versions

(snapshots). For each version, there is a metadata object that

describes the file objects. Figure 2 illustrates how we upload

different backup versions. Suppose that at time t1, we want

to upload a version V1 of four file objects: (O1, O2, O3, O4).

Suppose later at time t2 > t1, we do not include O1 and O2,

but add new file objects O5 and O6. Thus, the new version V2

will upload the physical copies of O5 and O6, and its metadata

object has pointers to refer to the physical copies of O3 and

O4 in version V1. Finally, all the metadata objects and file

objects are stored on the cloud.

D. Assured Deletion

We now incorporate assured deletion into the version control

design discussed in the previous subsections. To simplify our

discussion, we focus on the case where we want to assuredly

delete a particular backup version.

FadeVersion employs two-layer encryption to achieve as-

sured deletion. Figure 3 illustrates the idea. Denote {.}k as

the symmetric-key encryption (e.g., AES [12]) with key k.
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For each object Oi, we generate a data key ki, and encrypt Oi

with ki via symmetric-key encryption (i.e., compute {Oi}ki).
For each version Vi, we generate a control key si, and encrypt

all data keys of the objects associated with version Vi using

si via symmetric-key encryption (i.e., compute {ki}si). The

encrypted data keys are stored in the metadata object of version

Vi, and will be later uploaded to the cloud. The control keys

are kept by a key escrow system (see Section IV-F). To recover

a file object of a version, we need to get the corresponding

control key of the version from the key escrow system, and

decrypt the corresponding data key and hence the encrypted

file object.
The deduplication feature is still maintained. For example,

in Figure 3, both the encrypted copies O3 and O4 are still

shared by both versions V1 and V2. Their respective data keys

k3 and k4 are separately encrypted with s1 and s2. To recover

O3 and O4, we can use either s1 or s2 to decrypt their data

keys.
We now explain how FadeVersion enables assured deletion

of a particular version. Suppose that we request to assuredly

delete a particular version V1. Then FadeVersion will purge

the control key s1 from the key escrow system. Since s1 is

purged, we cannot decrypt the encrypted data keys associated

with snapshot V1, even if there are many replicated copies on

the cloud. Note that file objects O1 and O2 only appear in the

assuredly deleted version V1, but not in other active versions.

Thus, both of them will become permanently inaccessible.
Note that the assured deletion of one version does not affect

other active versions, even if different versions have data

dependency. When we purge the control key s1, we can still

retrieve version V2 that is protected by a different control key

s2, and hence recover the file objects O3 and O4. The layered

encryption approach in essence decouples the data dependency

across versions.

E. Assured Deletion for Multiple Policies

We can generalize the idea of assured deletion for multiple

policies, each of which specifies the access privilege of a file

object. Each file object can be simultaneously associated with

multiple policies. If any one of the policies is revoked, then

the file object will be assuredly deleted. This enables us to

perform fine-grained assured deletion on data backups that

are stored on the cloud.
To formalize, we now revise our notation associating a file

object with multiple policies as follows. Let kid be the data

key for file object with a unique identifier id. Let P denote the

policy that describes the access right for a file object, and sP

be the control key associated with policy P . Let {m}k denotes

the symmetric-key encryption of message m with key k. Thus,

to protect a file object O with identifier id with policies P1,

P2, · · ·, and Pn, we apply layered encryption as follows:

{O}kid and {{{kid}sP1
}sP2

...}sPn
.

If any control key sPi
(1 ≤ i ≤ n) is purged, then kid becomes

inaccessible, so does file object O.

We illustrate how fine-grained assured deletion is achieved.

Suppose that we archive the data files of Alice on a regular

basis. Then we can associate each file object for file F with

three policies: (i) user-based policy (e.g., “accessible by Alice

only”), (ii) file-based policy (e.g., “accessible via file F only”),

and (iii) version-based policy (e.g., “accessible via backup ver-

sion Vi only”). Then we can support three different operations

of assured deletion, respectively: (i) assuredly deleting all files

of Alice across all backup versions by revoking the user-based

policy, (ii) assuredly deleting file F across all backup versions

by revoking the file-based policy, (iii) assuredly deleting a

particular backup version by revoking the version-based policy.

We point out that we can readily generalize the assured

deletion scheme for other combinations of policies.

F. Key Management

The control keys are maintained by a key escrow system,

which we assume can securely remove the control keys

associated with revoked policies to achieve assured deletion

(see Section III). On the other hand, it is still important to

maintain the robustness of the existing control keys that are

associated with active policies. Here, we discuss two possible

approaches to address the robustness of key management.

One approach is by encrypting all control keys with a

single master key, while this master key is stored in secure

hardware (e.g., trusted platform module [22]). The justification

is that protecting the robustness of a single key is easier than

protecting the robustness of multiple keys. However, if the

hardware that stores the master key is failed, then all control

keys will be lost.

Another approach is by using a quorum scheme based on

threshold secret sharing [19]. Each control key is split into N

key shares and are distributed to N independent key servers,

such that we need at least K < N of the key shares to recover

the original control key. The justifications of applying the

quorum scheme are two-fold. First, even if one key server is

failed, we can still obtain the key shares from the remaining

N − 1 key servers. This ensures the fault-tolerance of key

management. Second, an attacker needs to compromise at

least K key managers in order to obtain the control key for

decrypting the data on the cloud. This increases the attack

resources required by the attacker. On the other hand, the

challenge is that it increases the management overhead of

maintaining multiple key servers.
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V. IMPLEMENTATION DETAILS

We now present how FadeVersion is implemented to support

both version control and assured deletion. FadeVersion is

an extension of Cumulus [23], upon which we add new

cryptographic implementation for assured deletion. The cryp-

tographic operations are implemented with OpenSSL [13].

A. System Entities

FadeVersion is built on several system entities, as illustrated

in Figure 4. Their functionalities are described as follows.

Backup storage. It is the target destination where data back-

ups are stored. The current implementation of FadeVersion

uses Amazon S3 [1] as the storage backend. This can be easily

extended to other third-party cloud storage services that offer

generic file access semantics such as put, get, list, and

delete.

Backup module. This is to (i) create backup versions from

data files and upload them to the cloud, and (ii) retrieve backup

versions from the cloud and recover the original data files. It

acts as an interface for other entities. It queries the object

database for deduplication optimization, and communicates

with the key escrow system to obtain the keys for encryp-

tion/decryption.

Object database. It maintains the identifiers and hash values

of all file objects that are stored in the backup storage. It also

stores the data key for each file object. During the backup

operation, the backup module queries the object database to

check by hash values whether an identical file object is created

in the previous backup version, so as to perform deduplication

if possible. If an identical file object is found, then the

corresponding data key will be retrieved, encrypted with the

corresponding control keys, and included in the new backup

version. The backup module also records new file objects in

the database. We currently deploy the object database locally

with the backup module. We also use SHA-1 as the hashing

algorithm, but this can be easily configurable.

Key escrow system. It creates and manages control keys as-

sociated with policies (see Section IV-E). It creates mappings

between each policy (defined by a unique identifier) and the

corresponding control key. Currently, the key escrow system is

implemented as a single key server process, which is deployed
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Fig. 5. Metadata format for a single file: Cumulus (left) and FadeVersion
(right).

locally with the backup module. However, it can be extended

for a higher degree of fault tolerance (see Section IV-F).

Stat Cache [23]. It keeps metadata locally and is used to

check if a file has been modified based on the modification

time returned from the stat() system call. If the file has

not been modified, then the backup module will directly reuse

the information from the stat cache to construct the metadata

of the unmodified file for the current backup version, instead

of reading the objects of the unmodified file. The use of the

stat cache can further improve the backup performance.

B. Metadata Format in FadeVersion

We use the metadata object to keep the information of all

archived file objects in a backup version (see Section IV-C).

FadeVersion extends the metadata format in Cumulus [23] to

include the policy information and the encrypted cryptographic

keys, both of which are used for assured deletion.

Figure 5 shows the metadata formats for a single file in

Cumulus and FadeVersion, assuming that the file contains

three file objects (i.e., A/1, A/2, A/3). In FadeVersion, we

add an additional field named key, which stores the data key

of each associated data object. The data key is encrypted with

the control keys of the corresponding policies, and the control

keys are kept by the key escrow system. In our prototype, each

file object is associated with three policies (see Section IV-E):

(i) user-based policy, which is described by the user field, (ii)

file-based policy, which is described by the name field, and

(iii) version-based policy, which is described by the version in

which the file resides. Based on the information, FadeVersion

can know how to restore a file, i.e., by using the correct control

keys from the key escrow system to decrypt the data keys, and

how to revoke a policy and its associated files.

We use AES [12] as the encryption algorithm to encrypt

file objects and their corresponding data keys. AES is a block-

cipher encryption scheme with block size 128 bits, so the size

of the encrypted data key remains the same even it is encrypted

multiple times with different policies. In our implementation,

we use the 128-bit key size for both data keys and control

keys, so the size of the encrypted data key is fixed to be 128



TABLE I
STATISTICS OF OUR DATASET.

Day 1 Day 46
Number of files 5590 11946

Median 2054 B 1731 B
Average 172 KB 158 KB

Maximum 56.7 MB 100 MB
Total 940 MB 1.85 GB

bits (16 bytes). If a file object has a large size, then the storage

overhead for its encrypted data key will be insignificant.

VI. EXPERIMENTS

In this section, we conduct an empirical study on the

prototype of FadeVersion. We compare FadeVersion with Cu-

mulus [23]. Our goal is to evaluate the performance overhead

of adding assured deletion on top of a version-controlled

cloud backup system. We explore the overhead from three

perspectives: (i) backup/restore time, (ii) storage space, and

(iii) monetary cost.

A. Setup

Our experiments use Amazon S3 Singapore as our cloud

storage backend. We deploy both Cumulus and FadeVersion

on a Linux machine that resides in Hong Kong. The Linux

machine is configured with Intel Quad-Core 2.4GHz CPU,

8GB RAM, and Seagate ST3250310NS hard drive.

We drive our experiments with real-life workload. We

conduct nightly backups for the file server of our research

group. The dataset that we use consists of 46 days of snapshots

of the home directory of one of the co-authors of this paper.

Table I summarizes the statistics of the dataset, including the

summaries of the full snapshots on the first day (i.e., Day 1)

and last day (i.e., Day 46).

Figure 6 shows the cumulative distribution functions of file

sizes of the full snapshots on Day 1 and Day 46, respectively,

and Figure 7 shows the size of data changes per day reported

by rdiff-backup [18]. Since the size of data changes

is less significant compared to the size of the entire home

directory, we expect that the distributions of file sizes across

different days of data backups remain fairly stable throughout

the entire backup period.

B. Backup/Restore Time

We first evaluate the backup operation. On Day 1, both

Cumulus and FadeVersion start the initial backup, which

uploads the full snapshot of the home directory to the cloud;

from Day 2 onwards, both systems will conduct the incre-

mental backups, which store the backup versions that are

incrementally built from the previous backup versions.

The backup times for performing a full snapshot on the

first day for Cumulus and FadeVersion are 43.18s and 44.55s,

respectively (i.e., FadeVersion uses 3.2% more time). The

additional overhead of FadeVersion is mainly due to the key

management and cryptographic operations, but such overhead

is minimal compared to Cumulus.
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The backup time of storing each incremental backup on

the cloud is composed of two parts: (i) the time for creating a

backup version based on the previous backup versions, and (ii)

the time for uploading the created backup version to the cloud

(i.e., Amazon S3 Singapore). Our measurements are averaged

over three times.

Figure 8 shows the time for creating incremental backups

for Cumulus and FadeVersion. FadeVersion introduces higher

creation time. On average, FadeVersion uses 9.8% more time

than Cumulus in creating incremental backups.

Figure 9 shows the time for uploading incremental backup

versions to the cloud. We only measure the time to upload

the incremental backups but not for the initial backup, as the

latter takes much longer time than the incremental backups

that follow. We observe that both Cumulus and FadeVersion

have very similar values of upload time, and the average values

are 6.624 s and 7.106 s, respectively.

We also evaluate the time for restoring a backup. The restore

operation includes: (i) downloading the necessary file objects

from the cloud and (ii) restoring the original view of the
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Fig. 8. Backup time for each incremental backup.
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Fig. 9. Upload time for each incremental backup.

entire home directory. We note that the former part takes the

dominant portion of time, and the overhead added by our

restore module becomes insignificant. For instance, we try

restoring the snapshot for Day 46 from S3, and the time taken

(averaged over 10 trials each) by Cumulus and FadeVersion

are 26.47 minutes and 26.13 minutes respectively, in which

25.11 minutes and 24.47 minutes are used in downloading

files. Thus, both systems have very similar restore time,

and the overhead of FadeVersion is easily masked by the

downloading time. In order to minimize the effect of network

fluctuations in restore time, we try restoring from local storage.

Figure 10 shows the results of restoring snapshots from all

46 days in sequence from the local storage. On average,

FadeVersion uses 55.1% more time than Cumulus in restoring

backups. The overhead of FadeVersion is mainly due to

the cryptographic operations of decrypting all encrypted file

objects, and this accounts for 97.25% of the overhead on

average.
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Fig. 10. Restore time for all 46 days of snapshots from local storage.

TABLE II
SUMMARY OF STORAGE SPACE ON THE CLOUD USING CUMULUS AND

FADEVERSION.

Initial Storage Total Storage Increment
on Day 1 on Day 46 per month

Cumulus 597.03 MB 755.73 MB 105.67 MB
FadeVersion 597.51 MB 786.88 MB 126.24 MB

C. Storage Space

FadeVersion includes encrypted copies of data keys in data

backups for assured deletion (see Section V-B), and this

introduces storage space overhead. Here, we evaluate the space

overhead of FadeVersion due to the storage of keys. Table II

summarizes the storage space of both systems. Note that the

actual storage space on the cloud is less than the full snapshot

sizes as shown in Table I, mainly because both Cumulus and

FadeVersion exploit deduplication to reduce the storage of

redundant data (see Section IV-C). On average, FadeVersion

introduces 19.4% more space increment per month compared

to Cumulus.

We now focus on incremental backups. Figure 11 illus-

trates the storage space of both Cumulus and FadeVersion in

the incremental backups on different days. We observe that

FadeVersion introduces fairly similar storage space overhead

on each day.

D. Monetary Cost

We estimate the monetary cost overhead of FadeVersion

after adding assured deletion. Here, we focus on the backup

operation. We consider the monetary costs due to two com-

ponents: (i) the storage cost of storing 46 days of backup for

a month and (ii) the bandwidth cost of uploading 46 days

of incremental backups to the cloud since the initial backup.

We consider the pricing plans of various cloud providers in

addition to Amazon S3.

Table III shows the costs of Cumulus and FadeVersion.

We observe that when compared to Cumulus, the additional

storage cost of FadeVersion is within $0.008 per month, and



TABLE III
STORAGE COSTS PER MONTH AND OVERALL BANDWIDTH COST OF CUMULUS AND FADEVERSION FOR 46 DAYS OF BACKUP WITH DIFFERENT CLOUD

PROVIDERS.

Storage Cost Bandwidth Cost
Providers $/GB/month Cumulus FadeVersion for updates$/GB Cumulus FadeVersion

S3 (Singapore) 0.14 $0.103 $0.108 0.10 $0.0154 $0.0185
Rackspace 0.15 $0.111 $0.115 0.08 $0.0124 $0.0148

Nirvanix SDN 0.25 $0.184 $0.192 0.10 $0.0154 $0.0185
Windows Azure 0.15 $0.111 $0.115 0.10 $0.0154 $0.0185
Google Storage 0.17 $0.125 $0.131 0.10 $0.0154 $0.0185
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Fig. 11. Size of incremental uploads for Cumulus and FadeVersion.

its additional bandwidth cost is within $0.003. The monetary

cost overhead of FadeVersion is minimal in general.

VII. CONCLUSIONS AND FUTURE WORK

We present the design and implementation of FadeVersion, a

system that provides secure and cost effective backup services

on the cloud. FadeVersion is designed for providing assured

deletion for remote cloud backup applications, while allowing

version control of data backups. We use a layered encryp-

tion approach to integrate both version control and assured

deletion into one design. Through system prototyping and

extensive experiments, we justify the performance overhead

of FadeVersion in terms of time performance, storage space,

and monetary cost.

We note that the main performance overhead of FadeVersion

is the additional storage of cryptographic keys in data backups.

In future work, we explore possible approaches of minimizing

the number of keys to be stored and managed.
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