
1

A New Construction of EVENODD Codes with
Lower Computational Complexity

Hanxu Hou†∗ and Patrick P. C. Lee§
† School of Electrical Engineering & Intelligentization, Dongguan University of Technology
§ Department of Computer Science and Engineering, The Chinese University of Hong Kong

Abstract— EVENODD codes are binary array codes for
correcting double disk failures in RAID-6 with asymptotically
optimal encoding and decoding complexities. However, the update
complexity of EVENODD is sub-optimal. We propose a new
construction of binary MDS array codes, namely EVENODD+,
such that the encoding, decoding, and update complexities of
EVENODD+ are less than those of EVENODD in general.
Moreover, EVENODD+ achieves asymptotically optimal update
complexity.

Index Terms—EVENODD codes, update complexity.

I. INTRODUCTION

ARRAY codes have been widely employed in storage
systems, such as Redundant Arrays of Inexpensive Disks

(RAID) [1], for data reliability. In particular, RAID-6 systems
dedicate two disks for storing parity-check bits and are toler-
able against any two disk failures.

Consider a binary array code of size r × n, in which each
entry in the array stores one bit. Among the n columns, k of
them store the information bits and are called the information
columns, while the remaining n− k columns store the parity
bits and are called the parity columns. Practical array codes
are maximum distance separable (MDS), i.e., any k columns
suffice to recover the information bits; that is, the system
can tolerate any n − k column failures (note that the MDS
property here is measured by the column weight instead
of the Hamming weight). The number of rows r depends
on the code construction. In addition to the MDS property,
some important performance metrics need to be considered,
including the encoding complexity (i.e., the number of XORs
needed to construct the parity bits), the decoding complexity
(i.e., the number of XORs needed to recover the erased
columns from surviving ones), and the update complexity (i.e.,
the average number of parity bits affected by a change of a
single information bit). In particular, the update complexity
affects the performance of small writes and is a crucial metric
to storage applications (e.g., databases) with update-intensive
workloads. It is desirable to design array codes whose update
complexity is as small as possible.

There are many binary MDS array codes in the literature.
EVENODD [2] and RDP [3] are two important codes correct-
ing double disk failures. Other binary MDS array codes in-
clude X-code [4], Liberation code [5], H-code [6], C-code [7],

This work was partially supported by the National Natural Science Foun-
dation of China (No. 61701115) and Research Grants Council of Hong Kong
(GRF 14216316).
* Corresponding author.

HV code [8], and Short code [9]. EVENODD is well explored
in the literature and has a well-designed algebraic structure that
can be extended to have more parity columns [10]. Thus, in
this work, we focus on extending EVENODD with improved
performance.

We first provide an overview of EVENODD. EVENODD
codes are (p−1)× (k+2) array codes, where p ≥ k is prime,
the first k columns are information columns, and the last two
columns are parity columns1. For i = 0, 1, . . . , p − 2, let bi,j
be the bits stored in column j, where j = 0, 1, . . . , k+1. The
parity bits bi,k in column k are computed by

bi,k =

k−1∑
j=0

bi,j ,

and the parity bits bi,k+1 in column k + 1 are computed by

bi,k+1 = bp−1,k+1 +

k−1∑
j=0

bi−j,j ,

where bp−1,j = 0 for j = 0, 1, . . . , k − 1, and bp−1,k+1 =∑k−1
j=1 bp−1−j,j . Note that the subscripts above are taken mod-

ulo p. It is shown that the encoding complexity of EVENODD
is (p−1)(2k−1)−1, which is optimal [2]. However, the update
complexity of EVENODD is 3− p+k−2

k(p−1) , which is sub-optimal
(note that the optimal update complexity of binary MDS array
codes with two parity columns is 2 + k−1

k(p−1) [11]).
We present EVENODD+, an extended construction of

EVENODD. EVENODD+ belongs to MDS codes and pro-
vides the same double-fault tolerance as EVENODD. It can
also be reduced to EVENODD as a special case. We show
that EVENODD+ has lower encoding/decoding/update com-
plexity than that of EVENODD, and the update complexity of
EVENODD+ is asymptotically optimal. The design rationale
of EVENODD+ is as follows. In the original EVENODD
codes, bp−1,k+1 is added to each parity bit in column k + 1,
thereby making the update complexity sub-optimal. The main
idea of EVENODD+ is to preserve the MDS property but
avoid adding a specific bit to each parity bit in column k+1.
This enables EVENODD+ to reduce the update complexity.

1Note that the definition of EVENODD codes here refers to the shortened
codes of the original EVENODD codes in [2], which we obtain by deleting
p− k information columns from the original (p− 1)× (p+ 2) EVENODD
codes. The original EVENODD codes can be viewed as a special case of the
shortened EVENODD codes with k = p.



2

TABLE I: EVENODD+(9, 3) (note that b8,4 = b7,1 + b6,2).

b0,0 b0,1 b0,2 b0,0 + b0,1 + b0,2 b0,0 + b7,2 + b8,4
b1,0 b1,1 b1,2 b1,0 + b1,1 + b1,2 b1,0 + b0,1 + b8,4
b2,0 b2,1 b2,2 b2,0 + b2,1 + b2,2 b2,0 + b1,1 + b0,2
b3,0 b3,1 b3,2 b3,0 + b3,1 + b3,2 b3,0 + b2,1 + b1,2
b4,0 b4,1 b4,2 b4,0 + b4,1 + b4,2 b4,0 + b3,1 + b2,2
b5,0 b5,1 b5,2 b5,0 + b5,1 + b5,2 b5,0 + b4,1 + b3,2
b6,0 b6,1 b6,2 b6,0 + b6,1 + b6,2 b6,0 + b5,1 + b4,2
b7,0 b7,1 b7,2 b7,0 + b7,1 + b7,2 b7,0 + b6,1 + b5,2

II. NEW CONSTRUCTION: EVENODD+

We now present EVENODD+ (with two parity columns).
Given an odd integer m ≥ k, we define an (m− 1)× (k+2)
array code as follows. For j = 0, 1, . . . , k − 1, column j is
called an information column that stores the information bits
b0,j , b1,j , . . . , bm−2,j , and for j = k, k+1, column j is called a
parity column that stores the parity bits b0,j , b1,j , . . . , bm−2,j .
The subscripts are taken modulo m throughout the paper
unless otherwise specified.

Given the (m − 1) × k information array bi,j for i =
0, 1, . . . ,m−2 and j = 0, 1, . . . , k−1, we define an imaginary
row bm−1,j = 0 for j = 0, 1, . . . , k− 1. The bits in column k
are computed by

bi,k =

k−1∑
j=0

bi,j for 0 ≤ i ≤ m− 2, (1)

and the bits in column k + 1 are computed by

bi,k+1 =


bm−1,k+1 +

k−1∑
j=0

bi−j,j for 0 ≤ i ≤ 2bk2 c − 1,

k−1∑
j=0

bi−j,j for 2bk2 c ≤ i ≤ m− 2,

(2)
where bm−1,k+1 =

∑k−1
j=1 bm−1−j,j . We denote the array

defined in the equations above as EVENODD+(m, k). The
main differences between EVENODD+(m, k) and the original
EVENODD codes are two-fold. First, the number of bits in
each column is more flexible in EVENODD+(m, k), i.e., m
is an odd integer that satisfies the condition in Theorem 1
(see Section III), while p should be a prime number in
EVENODD. Second, the parity bits in column k + 1 are
different in both codes. In EVENODD+(m, k), we only add
the bit bm−1,k+1 to the first 2bk2 c parity bits in column k+1,
while in EVENODD, the bit bp−1,k+1 is added to all the
parity bits in column k + 1. The above two differences
enable EVENODD+(m, k) to achieve asymptotically optimal
update complexity and lower encoding/decoding complex-
ity than EVENODD. When m = k is a prime number,
EVENODD+(m,m) is reduced to EVENODD. Table I illus-
trates an example of EVENODD+(9, 3), in which the bit b8,4
is added to the first two parity bits in column 4.

III. THE MDS PROPERTY

In this section, we show that the MDS property of
EVENODD+(m, k) holds in Theorem 1, which also gives the
decoding method for any two column failures.

Theorem 1. EVENODD+(m, k) is MDS if and only if m is
an odd integer such that all divisors of m except 1 are larger
than k − 1.

Proof. We first show the “if” part: if m is an odd integer
such that all divisors of m except 1 are larger than k − 1,
we want to show that EVENODD+(m, k) are MDS codes.
It is equivalent to showing that the k(m − 1) information
bits can be reconstructed after any two column failures. The
reconstruction can be divided into three cases: (i) from all k
information columns, (ii) from any k−1 information columns
and one parity column, and (iii) from any k − 2 information
columns and two parity columns.

For case (i), we can obtain the k(m − 1) information bits
directly from k information columns. Consider case (ii). First,
suppose that columns f and k+1 are erased, where 0 ≤ f ≤
k − 1. We can recover the information bits in column f by

bi,k +(bi,0+ bi,1+ · · ·+ bi,f−1+ bi,f+1+ · · ·+ bi,k−1) = bi,f

according to (1), for i = 0, 1, . . . ,m−2. Second, suppose that
columns f and k are erased, where 0 ≤ f ≤ k − 1. The bits
bi−f,f for i = 2bk2 c, 2b

k
2 c+1, . . . ,m−2 can be recovered by k−1∑

j=0,j 6=f

bi−j,j

+ bi,k+1 =

k−1∑
j=0,j 6=f

bi−j,j +

k−1∑
j=0

bi−j,j

= bi−f,f .

The first equation above comes from (2). If f = 0, the other
information bits bi,0 can be repaired by

bi,k+1 +

k−1∑
j=1

bi−j,j +

k−1∑
j=1

bm−1−j,j

=

k−1∑
j=0

bi−j,j +

k−1∑
j=1

bm−1−j,j +

k−1∑
j=1

bi−j,j +

k−1∑
j=1

bm−1−j,j

= bi,0,

where the first equation above comes from (2), for i =
0, 1, . . . , 2bk2 c− 1. Otherwise, if f ≥ 1, we have 0 ≤ f − 1 ≤
k − 2 ≤ 2bk2 c − 1 and we can recover the bit bm−f−1,f by

bf−1,k+1 +

k−1∑
j=0,j 6=f

bf−1−j,j +

k−1∑
j=1,j 6=f

bm−1−j,j

=

k−1∑
j=0

bf−1−j,j +

k−1∑
j=1

bm−1−j,j+

k−1∑
j=0,j 6=f

bf−1−j,j +

k−1∑
j=1,j 6=f

bm−1−j,j

= bm−1,f + bm−f−1,f

= bm−f−1,f ,

where the first equation above comes from (2) and the last
equation above comes from bm−1,f = 0. Now, bm−f−1,f is



3

known. We can repair bi−f,f by k−1∑
j=0,j 6=f

bi−j,j

+

k−1∑
j=1

bm−1−j,j

+ bi,k+1

=

k−1∑
j=0,j 6=f

bi−j,j +

k−1∑
j=1

bm−1−j,j +

k−1∑
j=0

bi−j,j +

k−1∑
j=1

bm−1−j,j

= bi−f,f ,

where i = 0, 1, . . . , 2bk2 c − 1. Therefore, we can recover
column f from case (ii).

Finally, consider case (iii). Without loss of generality, we
assume that the indices of two failure information columns are
f and g, where 0 ≤ f < g ≤ k − 1. We want to decode the
information bits in columns f and g. We can first compute
bm−1,k+1 by summing all the parity bits in columns k and
k + 1, i.e.,

m−2∑
i=0

bi,k +

m−2∑
i=0

bi,k+1

=

m−2∑
i=0

k−1∑
j=0

bi,j +

m−2∑
i=0

k−1∑
j=0

bi−j,j +

bm−1,k+1 + · · ·+ bm−1,k+1︸ ︷︷ ︸
k−1 terms if k is odd,k terms if k is even

(3)

=

k−1∑
j=0

m−1∑
i=0

bi,j +

k−1∑
j=0

m−1∑
i=0

bi−j,j +

k−1∑
j=0

bm−1−j,j (4)

= bm−1,k+1. (5)

In above equations, (3) comes from (1) and (2); (4) comes
from bm−1,j = 0 for j = 0, 1, . . . , k − 1; (5) comes from

{−j, 1− j, · · · ,m− 1− j} = {0, 1, · · · ,m− 1} mod m.

We subtract bm−1,k+1 from bi,k+1 for i = 0, 1, . . . , 2bk2 c − 1
and let b′i,k+1 = bi,k+1 for i = 2bk2 c, 2b

k
2 c + 1, . . . ,m − 1.

Then, we obtain

b′i,k+1 =

k−1∑
j=0

bi−j,j

by (2) for i = 0, 1, . . . ,m−1. Next, we subtract (k−2)(m−1)
information bits in k− 2 surviving information columns from
bits bi,k and b′i,k+1 for i = 0, 1, . . . ,m − 1 and obtain the
following 2m bits

bi,f + bi,g and bg−f+i,f + bi,g for i = 0, 1, . . . ,m− 1. (6)

Recall that bm−1,f = bm−1,g = 0. We can directly obtain{
bg−f+m−1,f = bg−f+m−1,f + bm−1,g
bg−f+m−1,g = bg−f+m−1,f + (bg−f+m−1,f + bg−f+m−1,g).

We compute b2(g−f)+m−1,f and b2(g−f)+m−1,g by
b2(g−f)+m−1,f

= bg−f+m−1,g + (b2(g−f)+m−1,f + bg−f+m−1,g),
b2(g−f)+m−1,g

= b2(g−f)+m−1,f + (b2(g−f)+m−1,f + b2(g−f)+m−1,g).

The information bits bi(g−f)+m−1,f and bi(g−f)+m−1,g can be
decoded iteratively for i = 1, 2, . . . ,m− 1 if

{m−1+i(g−f) mod m | 1 ≤ i ≤ m−1} = {0, . . . ,m−2}.
(7)

As 1 ≤ g − f ≤ k − 1 and all divisors of m except 1 are
larger than k − 1, we have that gcd(g − f,m) = 1. First,
we prove that if i 6= j, then (m − 1 + i(g − f)) mod m 6=
(m− 1+ j(g− f)) mod m. If (m− 1+ i(g− f)) mod m =
(m−1+ j(g−f)) mod m for 1 ≤ i < j ≤ m−1, then there
exists an integer ` such that

m− 1 + j(g − f) = `m+m− 1 + i(g − f).

The equation above can be further reduced to

(j − i)(g − f) = `m.

Since gcd(g−f,m) = 1, we have (j− i)|m. However, this is
impossible due to the fact that 1 ≤ i < j ≤ m− 2. Similarly,
we can prove that, for 1 ≤ i ≤ m− 1,

m− 1 + i(g − f) mod m 6= m− 1.

Hence, (7) holds. Therefore, we can decode all the information
bits in columns f and g, if m is an odd number such that all
divisors of m except 1 are larger than k − 1.

We now show the “only-if” part. If EVENODD+(m, k)
is MDS, then we can recover all the information bits from
any k columns. Consider the case that we want to recover
information columns f and g from the other k−2 information
columns and two parity columns. By the same procedures of
case (iii), we can show that all the information bits in columns
f and g can be recovered if (7) holds. As (7) holds only when
gcd(g − f,m) = 1, all the divisors of m except 1 should be
larger than k − 1. This completes the proof.

We show via the example of m = 9, k = 3 in Table I the
reconstruction method of case (iii). Suppose that information
columns f and g are erased, where 0 ≤ f < g ≤ 2. We can
compute b8,4 by summing all parity bits in columns 3 and 4:

7∑
i=0

bi,3 +

7∑
i=0

bi,4 = b7,1 + b6,2 = b8,4.

After subtracting b8,4 from b0,4 and b1,4, we obtain 18 bits
bi,3 = bi,0 + bi,1 + bi,2 and b′i,4 = bi,0 + b(i−1) mod 9,1 +
b(i−2) mod 9,2 for i = 0, 1, . . . , 8. Then, we subtract bi,` from
bi,3 and b′i,4 for i = 0, 1, . . . , 8, where ` = {0, 1, 2} \ {g, f},
to obtain 18 bits

bi,f + bi,g and b(g−f+i) mod 9,f + bi,g for i = 0, 1, . . . , 8.

As b8,f = b8,g = 0, we can obtain b(g−f+8) mod 9,f =
b(g−f+8) mod 9,f + b8,g and b(g−f+8) mod 9,g =
b(g−f+8) mod 9,f +(b(g−f+8) mod 9,f + b(g−f+8) mod 9,g). The
other information bits can be recovered iteratively.

We note that in case (iii) of the proof in Theorem 1, the
calculation of bm−1,k+1, obtained by summing all the 2(m−1)
parity bits in (3), is a key point. By (3), we can always obtain
bm−1,k+1 if the number of parity bits in column k + 1 that
contain bm−1,k+1 is an even number. This is one of the reasons
we add bm−1,k+1 to the first 2bk2 c parity bits in column k+1.



4

However, the number of parity bits in column k+1 that contain
bm−1,k+1 should be no less than 2bk2 c, as we need to ensure
that any k − 1 information columns and column k + 1 can
recover all the information bits.

IV. COMPLEXITY ANALYSIS

The next theorem shows the encoding, decoding, and update
complexities for EVENODD+(m, k); note that we focus on the
decoding complexity for decoding two information erasures.

Theorem 2. The encoding, decoding, and update complexities
of EVENODD+(m, k) are 2km−2m−k, 2km+2bk2 c−2k−2,
and 2 + (2bk2 c − 1) k−1

k(m−1) , respectively.

Proof. First, consider the encoding complexity. Computing the
bits in column k according to (1) takes (k−1)(m−1) XORs.
The bits in column k + 1 are computed by (2) that involve
(k−1)(m−1)+k−2 XORs. Thus, the encoding complexity
is 2km− 2m− k.

Next, consider the decoding complexity of two information
erasures. The decoding process is given in the proof of
Theorem 1. First, we can compute bm−1,k+1 by (5) that takes
2m − 3 XORs. Then we can obtain the bits in (6) with
2(k − 2)(m − 1) + 2bk2 c XORs. Finally, we can recover the
erased 2(m − 1) information bits with 2m − 3 XORs. Thus,
the decoding complexity is 2km+ 2bk2 c − 2k − 2.

Finally, consider the update complexity. If an information bit
is changed, we need to update one parity bit in column k and
1+(2bk2 c−1) k−1

k(m−1) parity bits in column k+1 on average.
Thus, the update complexity is 2 + (2bk2 c − 1) k−1

k(m−1) .

Define the normalized encoding complexity as the ratio
of encoding complexity to the number of information bits
and normalized decoding complexity as the ratio of decoding
complexity to the number of information bits. By Theorem 2,
the normalized encoding complexity of EVENODD+(m, k) is
2− 2m−k

k(m−1) . Recall that the normalized encoding complexity of
EVENODD is 2− p

k(p−1) . Therefore, the normalized encoding
complexity of EVENODD+(m, k) is slightly less than that of
EVENODD for m = p > k.

According to Theorem 2, the normalized decoding com-
plexity of EVENODD+(m, k) is 2+

2b k2 c−1
k(m−1) . The normalized

decoding complexity of EVENODD is 2+ p−2
k(p−1) . Therefore,

the normalized decoding complexity of EVENODD+(m, k) is
slightly less than that of EVENODD for m = p > k.

The update complexity of EVENODD+(m, k) is 2+(2bk2 c−
1) k−1

k(m−1) by Theorem 2. If m� k, then the update complex-
ity approaches the optimal value 2 + k−1

k(m−1) [11] asymptoti-
cally in m. Therefore, the update complexity is asymptotically
optimal when m is much larger than k. The update complexity
of EVENODD is 3− p+k−2

k(p−1) , which is strictly larger than that of
EVENODD+(m, k) if m = p > k. Table II shows the update
complexity of EVENODD, EVENODD+(m, k), and the code
in [11] when k = 7 and m = p ranges from 7 to 53. We
observe that EVENODD+(m, k) has less update complexity
than EVENODD when m > 7, and this advantage increases
with m. As m = 49 is not prime, we do not add the result for
EVENODD and the code in [11] in Table II.

TABLE II: Update complexities of EVENODD+(m, 7),
EVENODD, and the code in [11].

m EVENODD EVENODD+(m, 7) Code in [11]
7 2.7143 2.7143 2.1429
11 2.7714 2.4286 2.0857
13 2.7857 2.3571 2.0714
17 2.8035 2.2679 2.0536
19 2.8095 2.2381 2.0476
23 2.8182 2.1948 2.0390
29 2.8265 2.1531 2.0306
31 2.8229 2.1429 2.0286
37 2.8333 2.1190 2.0238
41 2.8357 2.1071 2.0214
43 2.8367 2.1020 2.0204
47 2.8385 2.0932 2.0186
49 n/a 2.0893 n/a
53 2.8407 2.0824 2.0165

Although the code in [11] has optimal update complexity,
how to decode the information bits when two columns are
failed is not presented. Also, the generalization of the code
in [11] with more parity columns is not necessarily MDS.

V. CONCLUSION

In this letter, we present EVENODD+(m,k), a new con-
struction of EVENODD such that its update complexity is
asymptotically optimal and the encoding and decoding com-
plexities are also slightly less than that of EVENODD. The
main idea for reducing the encoding, decoding, and update
complexities is that we only add the bit bm−1,k+1 to the first
2bk2 c parity bits in the second parity column, while bp−1,k+1 is
added to all the parity bits in the second parity column in the
original EVENODD construction. Future work includes the
extension of the construction with more parity columns and
the design of efficient repair algorithms for column failures.

REFERENCES

[1] D. A. Patterson, P. Chen, G. Gibson, and R. H. Katz, “Introduction
to Redundant Arrays of Inexpensive Disks (RAID),” in Proc. IEEE
COMPCON, vol. 89, 1989, pp. 112–117.

[2] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: An efficient
scheme for tolerating double disk failures in RAID architectures,” IEEE
Trans. on Computers, vol. 44, no. 2, pp. 192–202, 1995.

[3] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, and
S. Sankar, “Row-diagonal parity for double disk failure correction,” in
Proc. of USENIX Conf. on File and Storage Technologies (FAST), 2004,
pp. 1–14.

[4] L. Xu and J. Bruck, “X-code: MDS array codes with optimal encoding,”
IEEE Trans. on Information Theory, vol. 45, no. 1, pp. 272–276, 1999.

[5] J. S. Plank, “The RAID-6 liberation codes,” in Proc. of USENIX Conf.
on File and Storage Technologies (FAST), 2008, pp. 97–110.

[6] C. Wu, S. Wan, X. He, Q. Cao, and C. Xie, “H-code: A hybrid MDS
array code to optimize partial stripe writes in RAID-6,” in Parallel &
Distributed Processing Symposium, 2011, pp. 782–793.

[7] M. Li and J. Shu, “C-codes: Cyclic lowest-density MDS array codes
constructed using starters for RAID 6,” IBM Corporation, 2012.

[8] Z. Shen and J. Shu, “HV code: An all-around MDS code to improve
efficiency and reliability of RAID-6 systems,” in IEEE International
Conference on Dependable Systems and Networks, 2014, pp. 550–561.

[9] Y. Fu, J. Shu, X. Luo, Z. Shen, and Q. Hu, “Short code: An efficient
RAID-6 MDS code for optimizing degraded reads and partial stripe
writes,” IEEE Trans. on Computers, vol. 66, no. 1, pp. 127–137, 2016.

[10] M. Blaum, J. Brady, J. Bruck, J. Menon, and A. Vardy, “The EVENODD
code and its generalization: An effcient scheme for tolerating multiple
disk failures in RAID architectures,” in High Performance Mass Storage
and Parallel I/O. Wiley-IEEE Press, 2002, ch. 8, pp. 187–208.

[11] M. Blaum and R. M. Roth, “On lowest density MDS codes,” IEEE
Trans. on Information Theory, vol. 45, no. 1, pp. 46–59, 1999.


