
Modeling SSD RAID Reliability under General Settings
Zhiyong Wu 1, Yongkun Li 1, Patrick P. C. Lee 2, Yinlong Xu 1

1School of Computer Science and Technology, University of Science and Technology of China
2Department of Computer Science and Engineering, The Chinese University of Hong Kong

wzylucky@mail.ustc.edu.cn, {ykli, ylxu}@ustc.edu.cn, pclee@cse.cuhk.edu.hk

ABSTRACT
Solid-state drives (SSDs) are susceptible to the limited number
of program/erase (P/E) cycles and uncorrectable flash errors, and
hence achieving high reliability of SSD storage systems is a critical
issue. RAID provides a viable option for enhancing system reliabil-
ity by distributing redundancy across a number of SSDs. However,
the flash error rate of an SSD increases with the number of P/E
cycles, and this time-varying nature complicates the reliability anal-
ysis of SSD RAID. In addition, there remains very limited formal
analysis that quantifies the reliability dynamics of an SSD RAID
array under general settings. To this end, we propose a new continu-
ous time Markov chain (CTMC) model to characterize the reliability
dynamics of SSD RAID over time under two general settings: (1)
fault tolerance against a general number of device failures and (2)
non-uniform workload. We validate the correctness of our CTMC
model via trace-driven simulations. Based on our model, we further
analyze the impact of different RAID parameters on the reliability
dynamics of an SSD RAID array.

CCS CONCEPTS
• Computer systems organization → Reliability; • Informa-
tion systems→ Storage management; • Theory of computation
→ Probabilistic computation;

KEYWORDS
SSD RAID, Reliability, CTMC, Transient Analysis

1 INTRODUCTION
1.1 Background and Motivation
NAND-flash-based solid-state drives (SSDs) have revolutionized
traditional storage architectures since they provide higher I/O per-
formance, lower power consumption, and higher reliability than
hard disk drives (HDDs). SSDs have inherently distinct internal
architecture and I/O characteristics from traditional HDDs. Specifi-
cally, they are composed of NAND flash memory that is organized
as blocks, each of which further contains a fixed number (e.g., 64 or
128) of pages of size several kilobytes (e.g., 4KB or 8KB) each. SSDs
perform data read and write based on three basic operations pro-
vided by flash memory: read, write (or program), and erase, which
operate in units of pages, pages, and blocks, respectively. We refer
readers to [1] for a more detailed description of the SSD architec-
ture. As the price of SSDs has been dropping in recent years, we
have witnessed an increasing adoption of commercial SSDs in both
desktops and even large-scale data centers [30].

Although SSDs are increasingly adopted, there remain reliability
concerns that prohibit their wide deployment. First, each flash block
in an SSD can only tolerate a limited number of program/erase (P/E)
cycles. The typical limit is 100K for single-level cell (SLC) SSDs,

and it drops to 10K for multi-level cell (MLC) SSDs [5] and even
several thousand for triple-level cell (TLC) SSDs [11]. In addition,
even though SSDs often employ error correction codes (ECC) for
data protection, flash errors are quite common and uncorrectable
in SSDs due to read disturbs, write disturbs, and data retention
[4, 10, 11, 27]. Even worse, the flash error rate of an SSD increases
as flash blocks undergo more P/E cycles [4, 10, 27, 36, 37]; the
reason is that the physical materials of the underlying flash cells,
which trap electric charges to store bit information, deteriorate
after multiple erase operations [4]. Furthermore, to increase the
SSD capacity, manufacturers deploy high-density flash cells for
SSDs, but make the trade-off of further reducing the P/E cycle limit
of flash blocks and degrading flash reliability [11].

RAID (Redundant Array of Independent Disks) [32] provides a
viable option for enhancing the reliability of SSD storage systems by
striping data redundancy across multiple SSDs. SSD RAID has been
well explored by the literature (see Section 7). However, deploying
SSD RAID remains challenging and is subject to various pitfalls
[16, 28], mainly because of distinct I/O characteristics of SSDs.

In this work, we argue that quantitative analysis of the reliabil-
ity dynamics of general configurations of SSD RAID is of major
significance, since a quantitative model can be used to guide sys-
tem designers to decide the appropriate RAID configuration that
satisfies the reliability and storage capacity constraints. In addition,
a quantitative model can be used to assist system administrators
to manage SSD RAID arrays, so as to satisfy the desired reliability
requirements during system operation. For example, system admin-
istrators can use the model to estimate the run-time reliability of
SSD RAID arrays, and then decide whether reliability enhancement
techniques(e.g., replacing aged SSDs early, scheduling full recovery
operations) are necessary for increasing the RAID reliability.

However, there remain limited mathematical models in the lit-
erature that accurately characterize the reliability of SSD RAID.
Unfortunately, characterizing the reliability dynamics of SSD RAID
accurately is a non-trivial task. First, the flash error rate of an SSD
increases as flash blocks undergomore P/E cycles. The time-varying
nature of the flash error rate needs to be taken into account in the
reliability modeling of SSDs. Second, SSDs typically contain a large
number of flash blocks. For example, a 256GB SSD contains around
one million blocks of size 256KB each. Thus, keeping track of the
dynamics of all these blocks implies a significant computational
cost. Finally, the reliability dynamics of SSD RAID often depends
on a wide variety of factors, including the RAID configurations,
data loss patterns, and workload patterns. This requires a general
analytical model that can be adaptive for various settings. The lit-
erature [23] makes the first attempt of characterizing the reliability
dynamics of SSD RAID, but it only considers single-fault tolerance
and does not take into account workload patterns.

1.2 Our Contributions
In this paper, we propose a general mathematical model that quan-
tifies the reliability dynamics of SSD RAID. By general, we aim
for two general settings: (1) an SSD RAID provides fault tolerance
against a general number of SSD failures and (2) the model is ap-
plicable for non-uniform workloads. Our model takes into account
the time-varying nature of flash errors of SSDs. To this end, we
make the following contributions:

• We formulate a novel non-homogeneous continuous time
Markov Chain (CTMC) model that addresses more general
settings in the deployment of an SSD RAID array. The CTMC
model take into account a general number of SSD failures.

• We extend the CTMCmodel to analyze the reliability dynam-
ics of SSD RAID arrays subject to non-uniform workloads,
in which SSDs may wear out at different rates due to the
non-uniform access patterns.

• We conduct trace-driven simulations using the DiskSim sim-
ulator with SSD extensions [1] to validate the accuracy of
our analysis. We also conduct extensive numerical analysis
to study the impact of different factors, including workloads,
error dynamics, error recovery capabilities, and array con-
figurations. Our study provides insights into the selection of
the appropriate RAID configuration for SSDs.

The remainder of the paper proceeds as follows. In Section 2,
we provide the necessary background on SSD RAID organizations,
and also characterize the error dynamics of SSDs. In Section 3, we
present the CTMC model that characterizes the system dynamics
of SSD RAID under uniform workload, and then derive the RAID
reliability. In Section 4, we extend our modeling framework to ad-
dress non-uniform workload. In Section 5, we validate the accuracy
of our model via trace-driven simulations. In Section 6, we conduct
numerical analysis using our model and study the impact of general
settings on SSD RAID reliability. In Section 7, we present related
work, and finally in Section 8, we conclude the paper.

2 PROBLEM FORMULATION
In this section, we first present the background details of the or-
ganization of an SSD RAID array. We then present mathematical
models that characterize the system dynamics of an SSD RAID ar-
ray and the time-varying flash error rate of an SSD. We also provide
justifications for our modeling.

2.1 Basics of SSD RAID
We consider a device-level RAID array composed of n SSDs that can
tolerate up tom failures (wherem < n). Figure 1 shows the detailed
organization, in which we number the n SSDs from 0 to n − 1. Each
SSD contains B physical blocks, each of which can sustain up to
M P/E cycles. To implement RAID, we assume that each SSD is
further divided into S non-overlapping chunks, and each chunk can
be mapped to one or multiple physical pages. Correspondingly, the
whole RAID array is divided into S stripes, each of which comprises
exactly n chunks from the n SSDs. Among the n chunks in each
stripe, n −m of them are data chunks that contain the uncoded
information, and the remainingm of them are parity chunks that
are encoded from the n −m data chunks of the same stripe. Stripes
are encoded independently. We assume that the placements of data

and parity chunks are rotated across stripes for load balancing [33],
so that parity chunks are evenly distributed across SSDs. The value
m determines the fault tolerance level. In particular,m = 1 means a
RAID-5 system, whilem = 2 means a RAID-6 system.

... ...
One Stripe

SSD #: 0 1 n-1n-m-1 n-m

Data chunk: Parity chunk:

Figure 1: Organization of an SSD RAID array consisting of n
SSDs and tolerating up tom failures.

Bit errors have been demonstrated to be prevalent in SSDs. In this
work, we assume that data loss is due to bit errors only, although
other failure types such as device crashes are also possible. We say
that a chunk is an erroneous chunk if it contains uncorrectable bit
errors; otherwise, we call it a correct chunk. In SSD RAID, a stripe
can contain at mostm erroneous chunks without data loss.

2.2 System Dynamics
We now characterize the system dynamics of an SSD RAID array, in
particular, the wearing process in the presence of I/O requests. We
assume that SSDs can achieve perfect wear-leveling, since efficient
wear-leveling techniques are often deployed in SSDs to balance the
number of P/E cycles on blocks. Note that if all blocks have the same
number of P/E cycles, then all pages in an SSD also have the same
number of P/E cycles. This further implies that all chunks in an SSD
have the same number of P/E cycles since each chunk consists of one
or multiple pages. Thus, we can focus on the number of P/E cycles
at the chunk level for each SSD. Let ki (t), where 0 ≤ ki (t) ≤ M ,
denote the number of P/E cycles performed on each chunk on the
ith SSD at time t , where i = 0, 1, · · · ,n − 1, and we call ki (t) the
age of SSD i . We treat ki (t) as a continuous value in range [0,M],
so that the time-varying bit error rate in SSDs can be modeled by
a continuous function (see Section 2.3). In addition, we define the
age of an SSD RAID based on the number of P/E cycles performed
on the array. Let kRAID (t) denote the age of a RAID array, which
represents the total number of P/E cycles until time t . Since each
block can only sustain M P/E cycles, an SSD must be replaced if
its age reaches M . Here, we assume that the replacement is an
immediate operation.

We proceed to characterize the relationship between the age of
an SSD RAID array and the age of an SSD. Given the age of array
kRAID (t), our goal is to derive the age of SSD i , i.e., ki (t) where
i = 0, 1, · · · ,n − 1. To model this relationship, we define another
parameter ri j , which denotes the ratio of the aging rate of SSD i to
that of SSD j, where i, j = 0, 1, · · · ,n − 1. We call ri j as the aging
ratio, whose physical meaning is that if the number of P/E cycles
performed on SSD j is one, then the number on SSD i is ri j . Clearly,
rii = 1 where i = 0, 1, · · · ,n − 1. Now ki (t) can be expressed in
terms of kRAID (t) as follows.

ki (t)=

[
kRAID (t)

(
∑n−1
l=0 rl i)B

]
mod M, i=0, 1, · · · ,n − 1. (1)

2

In Equation (1), 1/(
∑n−1
l=0 rl i) denotes the average probability of

an P/E cycles being performed on SSD i , and mod represents the
modulo operation. We use the modulo operation because each block
can only sustainM P/E cycles, and an SSD will be replaced with a
brand new one immediately when it reaches its P/E cycle limit.

We have assumed that parity chunks are evenly distributed
among n SSDs (see Section 2.1). Thus, the aging ratio depends
on the access patterns of a given workload pattern. For example,
for uniform workload, data chunks have the same probability of
being accessed by each request, so the aging ratio ri j equals to one
for any i, j. On the other hand, for non-uniform workload, some
“hot” data chunks may be frequently accessed, so the number of
writes to each SSDs varies significantly and the aging ratio may
be different across SSDs. We assume that the aging ratio can be
estimated by replaying the I/O trace via simulation.

2.3 Modeling the Time-varying Error Rate
2.3.1 Error Model. We now develop a mathematical model to

characterize the time-varying bit error rate in SSDs. We assume
that the error arrival processes of different chunks are independent,
and let λi (t) denote the bit error rate of each chunk in SSD i at
time t . We model λi (t) as a function of the age ki (t) of SSD i . More
precisely, let λi (t) = f (ki (t)), where f (·) is a monotone increasing
function of ki (t). In this work, we consider a special case of λi (t) by
modeling the inter-arrival time of bit errors to be Weibull distribu-
tion [41], which is one of the most widely used lifetime distrubitons
in reliability engineering and is also used to carve the relationship
between the bit error rate and the number of erasures in an SSD in
literature [23]. Mathematically, λi (t) can be formally modeled as
follows:

λi (t) = cα [ki (t)]
α−1 , α > 1, (2)

where c is a constant and α is called the shape parameter. In
this paper, we set α > 1 to model the behavior that the bit error
rate increases with the system age of an SSD. By tuning the shape
parameter α , we can study various kinds of error behaviors. Specif-
ically, if α is set as 1 < α < 2, then the error rate function λi (t) is
a concave function with respect to the system age; if α = 2, then
λi (t) is a linear function; if α > 2, then λi (t) is a convex function.
We call these three kinds of error rates the concave error rate, the
linear error rate, and the convex error rate, respectively. We believe
that the error rate model in Equation (2) is general enough to cap-
ture various kinds of error behaviors. We will study the impact of
different error rates on SSD RAID reliability in Section 6.4.

2.3.2 Justifications. Our modeling of the bit error rate of an
SSD in Equation (2) assumes a monotone increasing function. We
provide justifications based on current measurement studies.

Many studies on SSDs show that the flash error rate of an
SSD shows an increasing trend as flash blocks undergo more P/E
cycles[4, 10, 27, 36, 37]. This increasing trend is obvious especially
for MLC NAND flash [10]. While the increasing trend is not mono-
tone, we model the error rate as a monotone increasing function as
an approximation for tractability of our analysis.

We note that a recent large-scale field study by Facebook [26]
argues that the SSD failure rate does not monotonically increase
with the number of P/E cycles. However, we find that the increas-
ing trend with the number of P/E cycles actually accounts for the

majority of an entire SSD lifetime. Specifically, the SSD lifecycle
failure pattern can be divided into three periods. The first two pe-
riods (namely the early detection and early failure periods) are
very short and they both finish very quickly, while the last period
(namely the wearout period) dominates and the error rate increases
with the number of P/E cycles. For example, for the 720GB SSDs
(in Platforms A and B), after writing around 15TB data, the early
failure period ends. We can deduce that the early failure period
ends at only around 15TB/720GB ≈ 21 P/E cycles for each block,
assuming that perfect wear-leveling is used. Note that the number
of P/E cycles that a block in an SSD can tolerate is typically on the
order of thousands. Thus, if we assume that the P/E cycle limit is
1,000 cycles, then in over 98% of the SSD lifetime, an SSD is in the
wearout period and its failure rate does increase with the number
of P/E cycles. Similar statistics are also given in [26].

Another recent large-scale field study by Google [36] shows
that both the raw bit error rate and the probability that an SSD
sees an uncorrectable error increase with the number of P/E cycles,
although the increasing rate is slower than commonly assumed.

We emphasize that our analysis framework on SSD RAID relia-
bility does not depend on a particular (e.g., concave, linear, convex)
error distribution. Our analysis remains applicable even defining
λi (t) as a different monotone increasing function of ki (t).

3 ANALYSIS OF RELIABILITY DYNAMICS
We propose a general mathematical model that analyzes the re-
liability dynamics of an SSD RAID array versus the age of the
array. Specifically, we first develop a continuous time Markov chain
(CTMC) model to characterize the error dynamics. And then solve
the CTMCmodel via uniformization technique [6] and the optimiza-
tion techniques [23]. While authors in [23] also propose a CTMC
model for the reliability dynamics of SSD RAID, it is only limited
for single-fault tolerance. Here, we extend the CTMC model to ad-
dress two general settings: (1) we consider an SSD RAID array that
tolerates a general numberm of SSD failures, and (2) we consider
both uniform and non-uniform workloads that can characterize
general data access patterns (see Section 4). We emphasize that
our contribution mainly lies in the formulation of a novel CTMC
model that addresses more general settings in the deployment of
an SSD RAID array (see Sections 3.1 and 4), while the techniques of
solving the model (see Section 3.2) are adapted from the standard
mathematical approaches in stochastic analysis.

We first consider the case of uniform workload where the aging
ratio ri j ’s are equal to one, then extend the case of general non-
uniform workload in Section 4. For uniform workload, the aging
rates of different SSDs are equal (see Section 2.2), and we have

ki (t) =
kRAID (t)

nB
modM, ∀i .

Therefore, the error arrival rates of different chunks in the same
stripe are also the same according to the definition in Equation (2).
For simplicity, we represent the rate as λ(t), and hence we have

λ(t) = cα
[(kRAID (t)

nB

)
modM

]α−1
, α > 1. (3)

3

m+1
20 1

m

Figure 2: State transition diagram of the CTMCmodel under
uniform workload.

3.1 Markov Model
Since the stripes of an SSD RAID array are encoded independently
(see Section 2.1), and the error arrival processes in different chunks
are assumed to be independent, we only need to develop a Markov
model to characterize the dynamics of one particular stripe.

We formulate a CTMC model to characterize the dynamics of a
stripe. Since the error arrival rates of different chunks in a stripe are
the same, we define the state of a stripe as the number of erroneous
chunks within the stripes. Formally, we say that a stripe is at state i
if it contains i erroneous chunks, where i = 0, 1, 2, · · · ,m. Data loss
happens if a stripe contains more thanm erroneous chunks. We
call this state as the “data loss” state, and denote it as statem + 1
for the ease of presentation. Let X (t) denote the state of a stripe
at time t . Then we have X (t) ∈ {0, 1, · · · ,m + 1}, ∀t ≥ 0, and the
CTMC model can be represented as {X (t), t ≥ 0}.

We now specify the state transitions of the CTMC model. Note
that if a stripe contains nomore thanm erroneous chunks, then they
can always be reconstructed from the surviving chunks in the same
stripe. We assume that erroneous chunks are reconstructed one by
one, and the reconstruction time of one erroneous chunk follows an
exponential distribution with rate µ. On the other hand, the error
arrival processes of different chunks in a stripe are independent,
and the arrival rate of each chunk is λ(t). Figure 2 depicts the
state transitions of the CTMC model with respect to the error
arrival and recovery processes. Specifically, suppose that the stripe
is currently at state j. Then it will move to state j + 1 if one more
erroneous chunk appears in the stripe. The corresponding rate is
(n − j)λ(t) as the stripe contains n − j correct chunks at this state,
and each of them may independently experience errors with rate
λ(t). On the other hand, if one erroneous chunk is recovered from
the surviving chunks, then the stripe will move to state j − 1, and
the corresponding rate is µ.

To represent the state transitions of CTMC model , we let Q(t) =
[qi j (t)]0≤i, j≤m+1 be the rate matrix.We haveqii (t) = −

∑
j,i qi j (t),

and qi j (t)’s when j , i are expressed as:

qi j (t) =


(n − i)cα

[
kRAID (t)

nB modM
]α−1
, 0≤ i ≤m, j=i+1,

µ, 1≤ i ≤m, j=i−1,
0, otherwise,

(4)

where qi j (t) denotes the transition rate from i to j at time t .
To derive X (t), let πj (t) be the probability of the CTMC model

being at state j at time t , i.e., πj (t) = Prob{X (t) = j}. Therefore,
the system state of a stripe at time t can be characterized by the
probability vector π (t) = (π0(t),π1(t), · · · ,πm+1(t)).

We now define a metric that characterizes the reliability of an
SSD RAID array. Note that the statem + 1 denotes the data loss
event, and it is an absorbing state. Thus, πm+1(t) represents the
probability that data loss happens in a stripe before time t ; in other

words, 1 − πm+1(t) =
∑m
j=0 πj (t) denotes the probability that there

is no data loss until time t . Since the error arrival and error recovery
processes in different stripes are independent, we can define the
transient reliability of an SSD RAID array as follows:

R(t) =
(∑m

j=0 πj (t)
)S
, (5)

where S denotes the number of stripes in the array, and R(t) is
the probability that no stripe has encountered data loss until time t .
We can now use the definition in Equation (5) to study the reliability
dynamics of an SSD RAID array at different times. In particular,
once the system state at any time t , i.e., π (t) is obtained, we can
derive the transient reliability using Equation (5).

3.2 Transient Analysis
We now perform transient analysis to derive the transient state
probability of the non-homogeneous CTMC model. Our analysis is
mostly based on uniformization [6] and the optimization techniques
[23], all of which follow the standard procedures in solving a CTMC
model. To make the paper self-contained, we summarize the main
idea that is sufficient for the analysis, while we refer readers to
[6, 23] for formal analysis and proofs.

Although the error rate of each chunk λ(t) is time-varying, it
only varies with the array age, i.e., the number of P/E cycles (see
Equation (3)). Thus, for the time period between two consecutive
P/E cycles, the age of the array kRAID (t) remains unchanged, so
the error rate λ(t) is a constant. In other words, the CTMC model is
homogeneous during the period of two consecutive P/E cycles. Let
T denote the average length of the time period of two consecutive
P/E cycles performed on the SSD RAID array, and we can rewrite
the age of the array as kRAID (t) = k if t = kT . The original non-
homogeneous CTMC model {X (t), t ≥ 0} can now be decomposed
into multiple time-homogeneous CTMCmodels {X (t), t ∈ [kT , (k+
1)T)}, where k = 0, 1, 2 · · · . For each time-homogeneous CTMC
model, we can use the uniformization technique [6] for analysis.
Specifically, given the system state at time kT , which is the initial
state of the CTMC {X (t), t ∈ [kT , (k + 1)T)}, we can approximate
the system state at time (k + 1)T , denoted by π ((k + 1)T), with
a given error bound ϵk . Mathematically, let π̃ ((k + 1)T) denote
the approximated system state at time (k + 1)T . We can derive
π̃ ((k + 1)T) by using the uniformization technique [6], and the
results are stated as follows.

Baseline computations of the CTMC model: Given the ini-
tial state π (kT) of the CTMC model {X (t), t ∈ [kT , (k + 1)T)} and
the upper bound of the approximation error ϵk , the system state at
time (k + 1)T can be approximated as follows.

π̃ ((k + 1)T) =
Uk∑
n=0

e−ΛkT
(ΛkT)

n

n! vk (n), (6)

where vk (n) = vk (n − 1)Pk , vk (0) = π (kT), Pk is defined as
Pk = I + Qk

Λk
with I being an identity matrix, Qk being the rate

matrix computed via Equation (4) by substituting kRAID (t) with
k , and Λk satisfying Λk ≥ max0≤i≤m+1 | − qii (kT)|, and Uk is an
integer that satisfies the following inequality.

Uk∑
n=0

e−ΛkT
(ΛkT)

n

n! ≥ 1 − ϵk . (7)

4

We point out that the above solution is a direct application of
the uniformization technique, and the approximation error in Equa-
tion (6) is introduced due to the truncation of the infinite series.
The truncation pointUk is determined by ϵk . In our study, we set
ϵ = 10−9, and deduceUk accordingly.

Note that computing the system state at time kT requires to first
derive π (T) from the initial state π (0), followed by deriving π (2T)
from π (T), and so on. Thus, the computation time will be very
huge for a very large k . For example, a 256GB SSD may contain one
million blocks of size 256KB each, and each block may sustain 10K
P/E cycles. It is possible for an array containing multiple SSDs to
have at least 1010 P/E cycles.

To speed up computations, we apply the optimization techniques
in [23]. Specifically, instead of solving time-homogeneous CTMC
models for each time period, we merge s time periods into a large
time interval, and perform transient analysis on the combined time-
homogeneous CTMC models with s successive periods. Therefore,
the CTMC models {X (t), t ∈ [kT , (k + 1)T)} (where k = 0, 1, 2, · · ·)
can be rewritten as {X (t), t ∈ [lsT , lsT + sT)} (where l = 0, 1, · · ·).
We can then deriveπ ((l+1)sT) fromπ (lsT) by using single transient
analysis, thereby greatly reducing the computation time.

To construct a homogeneous CTMC model to approximate the
non-homogeneous one {X (t), t ∈ [lsT , lsT + sT)}, we carefully con-
figure the error rate to make the approximation accurate. Formally,
if we denote the constructed homogeneous CTMC as {X̄ (t), t ∈

[lsT , lsT + sT)}, and denote its rate matrix as Q̄l = [q̄i j (l)], then we
have Q̄l = Qls+ s2

. We use π̄ ((l + 1)sT) to denote the system state
at time (l + 1)sT for the CTMC model {X̄ (t), t ∈ [lsT , lsT + sT)}.

Again, we can approximate the system state π̄ ((l + 1)sT) by
using the uniformization technique [6]. Mathematically, we define
Λ̄l ≥ max0≤i≤m+1 | − q̄ii (l)| and let matrix P̄l = I + Q̄l

Λ̄l
. We use

˜̄π ((l+1)sT) to denote the approximated system state at time (l+1)sT
with a given upper bound ϵ̄l . The approximation results can be
derived as follows.

Accelerated computations of the CTMCmodel: To analyze
the CTMC model {X̄ (t), t ∈ [lsT , lsT + sT)}, the approximation of
the system state π̄ ((l + 1)sT), which is denoted as ˜̄π ((l + 1)sT), can
be derived as:

˜̄π ((l + 1)sT) =
Ūl∑
n=0

e−Λ̄l sT
(Λ̄l sT)

n

n! vk (n), (8)

where vk (n) = vk (n − 1)P̄l , vk (0) = ˜̄π (lsT), and Ūl is an integer
that satisfies the following inequality.

Ūl∑
n=0

e−Λ̄l sT
(Λ̄l sT)

n

n! ≥ 1 − ϵ̄l . (9)

Note that the solution of the CTMC model {X̄ (t), t ∈ [lsT , lsT +
sT)} is a direct application of the results in Equation (6) and Equa-
tion (7), with the only difference that the length of a time interval
is sT instead of T . The value of s trades between performance and
accuracy (see Section 6.2). In our study, we choose s = BM

20 , which
achieves reasonable performance while the approximation error
remains negligible (see Section 5 and Section 6.2).

1(t)

2(t)

3(t)

0(t)

0(t)+ 1(t)

2(t)+ 3(t)

1(t)+ 3(t)

1(t)+ 2(t)

0(t)+ 3(t)

0(t)+ 2(t)

1(t)

Figure 3: State transition diagram of the CTMC model with
(n,m) = (4, 2) under non-uniform workload.

4 NON-UNIFORMWORKLOAD
We now consider the case of non-uniform workload, in which the
aging ratio ri j ’s are not equal to one. In this case, the error rates
of chunks in different SSDs are different as they are subject to
different write intensities and their ages are no longer the same (see
Equations (1) and (2)). Thus, we cannot simply use the number of
erroneous chunks to characterize the state of a stripe as in Section 3,
but instead, we need to remember the positions of the erroneous
chunks, or equivalently, the identifier of the SSD (i.e., 0, 1, · · · ,n−1)
in which the erroneous chunks reside.

We formulate a CTMC model to characterize the dynamics of
a stripe. To recognize the position of each erroneous chunk, we
use an n-dimensional 0-1 vector to characterize the errors within a
stripe. Formally, let b = (b0,b1, · · · ,bn−1) be a vector where bi = 1
indicates that the chunk from SSD i is an erroneous chunk, and 0
otherwise. Note that a stripe can have at mostm erroneous chunks
before data loss, so any vector b with

∑n−1
i=0 bi > m can be used to

represent the state of data loss. For ease of presentation, we use the
vector e = {1, 1, · · · , 1} to denote the state of data loss. Let X (t)
denote the state of a stripe, and X (t) ∈ {(b0,b1, · · · ,bn−1)|bi =
0, 1 and

∑n−1
i=0 bi ≤ m or

∑n−1
i=0 bi = n}. In particular, the state

X (t) = (0, 0, · · · , 0), which we denote as 0, implies that no error
appears in the stripe.

Take an SSD RAID array with (n,m) = (4, 2) as an example, we
illustrate the state transitions of the CTMC model. Figure 3 depicts
the state transitions. Specifically, if the current state is (0, 0, 0, 0),
it means that the stripe contains no erroneous chunk. Also, it
may transit to one of the states (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and
(0, 0, 0, 1), and the corresponding rates are λ0(t), λ1(t), λ2(t) and
λ3(t), respectively. The physical meaning of transitions is that one
erroneous chunk appears in SSD i , where i = 0, 1, 2, or 3. On the
other hand, if the stripe already contains one erroneous chunk in the
current state, e.g., (1, 0, 0, 0), then it may transit to state (0, 0, 0, 0)
when the erroneous chunk is recovered. The stripe may also tran-
sit to a state containing two erroneous chunks if one more error
appears. For example, it may transit to state (1, 1, 0, 0), (1, 0, 1, 0)
and (1, 0, 0, 1) if one more erroneous chunk appears at SSD 1, SSD 2
and SSD 3, respectively. The corresponding rates are λ1(t), λ2(t),
and λ3(t). Note that for an array which contains four SSDs and can
tolerate up to two failures, the CTMC has 12 states, and we use the
state (1, 1, 1, 1) to denote the state of data loss.

Figure 4 depicts the state transitions of the CTMCmodel {X (t), t ≥
0} under general array configurations. We define ej as the vector in
which only the jth element is one, i.e.,

∑n−1
j=0 ej = e. If the current

5

Data

Loss

λλλλ0(t)

λλλλ1(t)

λλλλn-1(t)

Figure 4: State transition diagram of the CTMC model with
general configurations under non-uniform workload.

state is 0, it means that no erroneous chunk exists, so the stripe
may transit to a state b containing exactly one erroneous chunk,
i.e., the state where

∑n−1
i=0 bi = 1. Moreover, there are n types of

such transitions, which correspond to the cases where the erro-
neous chunk is at SSD i (i = 0, 1, · · · ,n − 1), and the corresponding
rates are λ0(t), λ1(t), · · · , λn−1(t), respectively. Thus, a stripe may
transit from state 0 to state ej with rate λj (t). In general, if a stripe
is currently at state b where

∑n−1
i=0 bi = j, which means that this

stripe contains j erroneous chunks, then it may transit to state b+
where

∑n−1
i=0 b+i = j + 1 if one more erroneous chunk appears, and

the number of such transitions is n − j. On the other hand, it may
also transit to state b− in which

∑n−1
i=0 b−i = j − 1 if one erroneous

chunk is recovered, and the number of such transitions is j. We
still assume that the time to recover an erroneous chunk in a stripe
is exponentially distributed with rate µ as in Section 3, and ran-
dom tie-breaking is used to select a chunk for recovery if multiple
erroneous chunks are contained in a stripe.

We can now express the transition rate matrix of the CTMC
{X (t), t ≥ 0}, which we denote as Q(t) = [qbb′(t)] where qbb′(t)
denotes the transition rate from b to b′ at time t . We have qbb(t) =
−
∑
b′,b qbb′(t), where qbb′(t)’s (b′ , b) are stated as follows.

qbb′(t) =



λj (t), 0≤
n−1∑
i=0

bi <m, b′−b=ej , j = 0, · · · ,n − 1,∑
j ∈S

λj (t),
n−1∑
i=0

bi =m, b′=e, S = {j |(b′ − b)&ej = ej },

µ
(
∑n−1
i=0 bi)

, 0<
n−1∑
i=0

bi ≤m, b−b′=ej , j = 0, · · · ,n − 1,

0, otherwise,

where λj (t) = cα

[
kRAID (t)
(
∑n−1
l=0 rl j)B

mod M

]α−1
and the notation &

denotes the bitwise AND operation.
To derive X (t), let π (t) denote the state probability of the CTMC

model at time t . In particular, if the stripe is at state b at time t ,
then we have πb(t) = Prob{X (t) = b}. Similar to the definition in
Equation (5), we define the transient reliability of an SSD RAID
array as follows.

R(t) =
(∑

b,
∑
bi ≤m

πb(t)
)S
, (10)

Again, R(t) denotes the probability that no stripe has encoun-
tered data loss until time t .

To derive the reliability dynamics, we note that for a given rate
matrix Q(t), we can directly apply the computation framework in
Section 3.2. The only difference is that the dimension of the rate
matrix in the non-uniform workload case is much larger. Never-
theless, the number of states in this CTMC model {X (t), t ≥ 0} is
1 +

∑m
i=0

(n
i
)
. Even though it is large for general values of n and

m, it has a small dimensionality for practical RAID settings. For
example, Facebook uses the configuration n = 14 andm = 4 [35],
and the number of states is smaller than 1,500. In addition, each
state in the CTMC model cannot transit to an arbitrary state, but
instead it only transits to at most n states in one step. Therefore, the
computation process presented in Section 3.2 is computationally
feasible, and it can be directly used to solve the extented CTMC
model developed in this section.

5 MODEL VALIDATION
In this section, we validate the accuracy of our model via trace-
driven evaluations using the DiskSim simulator [3] with SSD exten-
sion [1]. Since an SSD contains multiple flash chips, and these chips
are configured to work independently and handle I/O requests in
parallel, our validation considers RAID configurations at the chip
level instead of the device level for simplicity. In particular, each chip
is configured to have its own data bus, and RAID is implemented
in the flash translation layer of the SSD controller. To speed up
the simulation, we consider a small-scale RAID array. Specifically,
we configure each chip to contain only 80 (i.e., B = 80) physical
blocks, and set the P/E cycle limit of each block as 50 (i.e.,M = 50)
so that it wears out blocks quickly. We fix n = 8 chips. Thus, the
SSD RAID array can sustain at most n×B×M = 8×80×50=32K P/E
cycles before all chips wear out in the equal aging rate case. Since
an SSD usually deploys spare blocks, we set the spare factor as 0.2,
which means the logical capacity of each chip is 64 blocks. We also
configure each block with 64 pages of size 4KB each, and also set
the chunk size as 4KB. Note that even for such a small-scale RAID
array, it may still takes hours to estimate the reliability dynamics
using trace-driven simulations on a commodity PC.

To simulate the error arrival and error recovery processes, we
create two types of requests, which we call error arrival events and
error recovery events, and inject them to the simulator. The arrival
times of these events are determined according to the arrival rate
λi (t) and the recovery rate µ. In our validations, we fix µ = 1, and
set the maximum error rate λi (M) = cαMα−1 as 10−3. We consider
two different error rates by setting the shape parameter α equal to
2 and 4, and the constant c can be derived accordingly based on the
shape parameter α . We generate uniform workload to emulate the
case of equal aging rates. Specifically, for each write request, we
generate its address uniformly at random from the whole logical
address space. This ensures that the writes are equally distributed
across all chips. We point out that even if FTL employs address
translation, it does not influence the distribution of writes to flash
chips, since flash chips are configured to operate independently and
data will not be moved across chips, i.e., update to a data page will
still be directed to the chip to which the data originally belongs. We
Note that this is also the default setting of the SSD simulator. After
we evenly distribute writes across chips, all chips should have the
same aging rate. In the case of unequal aging rates, we configure
80% of requests to uniformly access the data in the first SSD, and

6

0 1 2 3
x 10

4

0

0.2

0.4

0.6

0.8

1

Array Age

R
el

ia
b

ili
ty

DiskSim
Model

α=2

α=4

0 1 2 3
x 10

4

0

0.2

0.4

0.6

0.8

1

Array Age

R
el

ia
b

ili
ty

DiskSim
Model

α=4
α=2

(a) Uniform (m=1) (b) Uniform (m=2)

0 1 2 3
x 10

4

0

0.2

0.4

0.6

0.8

1

Array Age

R
el

ia
b

ili
ty

DiskSim
Model

α=2

α=4

0 1 2 3
x 10

4

0

0.2

0.4

0.6

0.8

1

Array Age

R
el

ia
b

ili
ty

 DiskSim
Model α=2

α=4

(c) Non-uniform (m=1) (d) Non-uniform (m=2)
Figure 5: Analysis validation for different workloads, array
configurations, and error dynamics.

the remaining 20% of requests to uniformly access the data of other
SSDs. Thus, the first SSD ages faster than the others. We measure
the aging ratio when simulation stops, and use the measured aging
ratio to derive the theoretical result of RAID reliability by using
our model.

We obtain the reliability results as follows. For DiskSim simu-
lations, we make 1,000 runs with different random seeds, and in
each simulation run, we generate a workload and run until a data
loss happens or all blocks wear out (i.e., after 32K P/E cycles have
been performed). We record the array age when each simulation
stops, and use the 1,000 values to derive the probability of no data
loss. For modeling, we compute the reliability metrics based on
Equations (5) and (10) for the cases of uniform and non-uniform
workloads, respectively. We consider a RAID array with n = 8, and
consider two values ofm:m = 1 (RAID-5) andm = 2 (RAID-6).

Figure 5 shows both simulation andmodeling results. Figures 5(a)
and 5(b) show the results of RAID-5 and RAID-6 under uniform
workload, respectively, and Figure 5(c) and Figure 5(d) show the
results of RAID-5 and RAID-6 under non-uniform workload. Each
figure shows the results of two error rates for α = 2 and α = 4.
In each figure, the x-axis represents the array age, which denotes
the number of P/E cycles performed on the array, while the y-axis
shows reliability, which denotes the probability of no data loss until
the array ages at the time indicated by the x-axis. Recall that T
denotes the average time length of two consecutive P/E cycles (see
Section 3.2), so the array age shown in the x-axis can be translated
to the average total elapsed time of the array if we multiply the
number of P/E cycles performed by T . Note that T decreases if the
I/O arrival rate of a given workload increases. From the figures, we
can see that our model accurately quantifies the reliability dynamics
of an SSD RAID array for all cases. Moreover, the reliability of the
array drops very fast after a certain age.

6 RELIABILITY EVALUATION
In this section, we conduct numerical analysis on an SSDRAID array
using our model. We consider more practical, larger-scale settings,
and configure the parameters of our model based on realistic SSD
and RAID configurations.

6.1 Model Parameters
We first describe the model parameters used for our numerical
analysis. We consider SSDs with physical capacity of 256GB each,
and configure each block in an SSD with 64 pages of page size 4KB
each. Thus, there are 1M blocks in an SSD, i.e., B = 220. We set the
P/E cycle limit of each block as 10K, i.e, M = 10, 000. We set the
spare factor to be 0.2, and configure the chunk size to be equal to
the block size, meaning that the number of stripes in an array is
S = 0.8 × B.

To configure the error arrival and error recovery rates, we assume
that 4-bit ECC is employed to protect 512 bytes of data. We choose
the maximum uncorrectable bit error rate (UBER) from the range
[10−16, 10−18] [2], which is the UBER when flash blocks reach the
P/E cycle limit. Since the chunk size is set as 256KB, the probability
of a chunk containing at least one error can be computed, which
is in the range of [2 × 10−10, 2 × 10−12]. To configure the error
arrival rate per chunk, we note that in enterprise storage systems, a
storage array may have several hundred of gigabytes of data being
accessed each day [29]. If we set the amount of data being accessed
each day as 1TB, which corresponds to 50 blocks per second, then
the error arrival rate of each chunk at its rated lifetime, denoted
by λ(M) = cαMα−1, is in the range of [10−8, 10−10]. In our study,
we fix λ(M) = 10−9, so that the corresponding parameter c can
be derived with a given α . With respect to the error recovery rate
µ, we set the default value as 10−5, and also study its impact on
RAID reliability in Section 6.4. For the parameter T , which is the
average duration between two consecutive erase operations, we
configure it as follows. Since we assume there are 1TB of writes
per day, the inter-arrival time of two consecutive page writes is
around 3 × 10−4 seconds. Since we configure each block to have 64
pages, erase operation will be triggered after every 64 page writes.
However, except for external user writes, SSDs may also introduce
additional page writes due to garbage collection [13], so we fix
T = 10−2 seconds.

In the following, we present numerical results using our model
with the above parameters. In particular, we first study the impact
of parameter s on the tradeoff of performance and accuracy (see
Section 6.2). We then study the impact of workloads by varying
the parameter of aging ratio (see Section 6.3), the impact of error
dynamics by varying α and µ (see Section 6.4), and the impact of
different array configurations by varying n andm (see Section 6.5).

6.2 Impact of Stepsize s
In Section 3.2, to accelerate the transient analysis, we combine s
consecutive time periods into one time interval, and construct a
single CTMC model to approximate the system dynamics in com-
bined time interval. However, this optimization introduces errors,
and hence there is a tradeoff between performance and accuracy
for different values of the parameter s . Here, we study this tradeoff.
We use the parameters in Section 6.1 to simulate a practical and
large-scale setting. In this evaluation, we fix the array configuration
and error dynamics by setting (n,m) = (8, 2) and α = 4. We also fix
the aging ratio by setting an equal aging rate.

Table 1 shows the tradeoff results. In particular, we show the
numerical result of R(nBM), which denotes the RAID reliability at
the time when the system undergoes nBM P/E cycles, as well as
the time required to compute R(nBM) under different settings of s .

7

Table 1: Tradeoff between performance and accuracy.

s time R(nBM)

4BM ≈ 4.2 × 1010 24 ms 0.9145
2BM ≈ 2.1 × 1010 27 ms 0.8296

BM/20 ≈ 5.24 × 108 34 ms 0.7897
BM/103 ≈ 1.05 × 107 99 ms 0.7898
BM/107 ≈ 1.05 × 103 97132 ms 0.7888

BM/108 ≈ 105 973600 ms 0.7957

We point out that the converged result of R(nBM) can be used to
denote the actual reliability as there is no approximation error if
we set s = 1. Here, we do not run simulations to obtain the actual
result because the running time will be extremely large for such
a large-scale system considered in this section. The results show
that the tradeoff indeed exists: while a large s can save a lot of
computation time, it also introduces a big error. Fortunately, the
reliability quickly converges. For example, when s = BM/20, the
reliability is already very close to the actual value (note that this is
also validated in Section 5), while the computation time under this
setting is still very small. Thus, we set s = BM/20 by default.

6.3 Impact of Workloads
We first study the impact of workloads. Specifically, we compare
RAID reliability under uniform workload (i.e., an equal aging rate)
with that under non-uniform workload (unequal aging rates). For
uniform workload, the aging ratio is set to (1 : 1 · · · 1 : 1). For
non-uniform workloads, we consider two particular aging ratios
for simplicity of illustration: (1 : 1 · · · 1 : 2) and (1 : 1 · · · 1 : 5). It
means that the first n − 1 drives age at the same rate, and the last
drive age two times or five times faster, respectively.

Figure 6 shows the numerical results under three different set-
tings, with different array configurations (n,m) and the error shape
parameter α . We observe that the reliability dynamics vary across
workloads. Specifically, for RAID arrays with low reliability, the
difference of reliability under different aging ratios is very small
(see Figure 6(a)). On the other hand, the difference becomes signifi-
cant for highly reliable RAID arrays (see Figure 6(b)), and unequal
aging rates achieve higher reliability, mainly because SSDs wear
out one by one in this case and this avoids correlated failures [2].

Figure 6(c) shows that the reliability curve under a non-uniform
workload contains inflection points, and this happens when an SSD
wears out and is replaced with a brand-new SSD. Also, the reliability
in the case of unequal aging rates (e.g., for the aging ratio (1 : 1 · · · 1 :
5)) is smaller than that in the case of an equal aging rate (1 : 1 · · · 1 :
1) before the inflection point, while it becomes larger afterwards.
The main reason is that the flash error rate increases as an SSD
undergoes more P/E cycles, and an SSD replacement slows down
the decreasing rate of RAID reliability. Note that inflection points
may exist at different array ages with respect to different aging
ratios. They may appear too early such that the RAID reliability
is still one, or too late so that the reliability has already dropped
to zero. Thus, we may not observe any inflection point in some
reliability curves.

Note that our model can also analyze any general aging ratio. To
further show the reliability implications, we use two distributions to
generate a general form of aging ratio. In this evaluation, we fix the
array configuration and error dynamics by setting (n,m) = (8, 2)

and α = 2, that is, we use the same parameters as in Figure 6(b).
In particular, Figure 7(a) shows the reliability dynamics in the case
where the aging rates of SSDs are generated from a truncated
normal distribution, in which the aging rate of SSD i (0 ≤ i ≤

n−1) is [
∫ i+1
i f (x)]/[

∫ n
0 f (x)]where f (x) is the probability density

function of a normal distribution N (n,σ 2). We show the reliability
dynamics by setting σ = 5 and σ = 3, and the corresponding
aging ratios are (0.058, 0.077, 0.098, 0.119, 0.14, 0.158, 0.171, 0.179)
and (0.012, 0.026, 0.05, 0.088, 0.136, 0.189, 0.236, 0.263), respectively.
Similarly, in Figure 7(b), we use a Zipf distribution to generate the
aging ratio, and precisely, the aging rate of SSD i (0 ≤ i ≤ n − 1)
is [(i + 1)−γ]/[

∑n−1
i=0 (i + 1)−γ]. We set the parameter γ = 1 and

γ = 2, and the corresponding aging ratios are (0.367, 0.184, 0.123,
0.092, 0.074, 0.061, 0.053,0.046) and (0.655, 0.164, 0.073, 0.041, 0.026,
0.018, 0.013, 0.01), respectively. For comparison, we also show the
reliability under an equal aging rate in both figures. We note that
the reliability curves under different workloads share similar trends,
i.e., they all decrease as the array ages. In the following, we only
focus on uniform workload.

6.4 Impact of Error Dynamics
We now study the impact of error dynamics by varying α and µ.
Figures 8(a) and 8(b) show the impact of α under (n,m) = (8, 1)
and (n,m) = (8, 2), respectively. We consider three values of α :
α = 2 (linear error rate), α = 4 (convex error rate), and α = 1.5
(concave error rate). We observe that the reliability is the highest
for a convex error rate, and it is the lowest for a concave error rate.
The reason is that when the maximum error rate λi (M) is fixed, a
convex error rate gives the smallest bit error rate (see Equation (2)).
Also, increasing the reliability of single SSDs (e.g., by decreasing
the bit error rate) increases the RAID reliability, and the increase is
more significant for a smaller fault tolerance degreem.

Figures 8(c) and 8(d) show the impact of µ under (n,m) = (8, 1)
and (n,m) = (8, 2), respectively. We consider three values of µ:
µ = 10−4 (fast recovery), µ = 10−5 (moderate recovery and the
default value), and µ = 10−6 (slow recovery). We see that increasing
the recovery rate greatly improves the RAID reliability, and the
gain is more significant for a larger fault tolerance degreem.

6.5 Impact of Array Configurations
We now study the impact of different array configurations deter-
mined by the parameters n and m, they determine the storage
overhead, which we define as m

n−m , and the reliability dynamics.
We first study the impact of array configurations with a fixed

storage overhead. Specifically, we configure (n,m) to be (4, 1), (8, 2),
and (12, 3), all of which has the storage overhead fixed at 1

3 . Figure 9
shows the results for α = 2 (linear error rate) and α = 4 (non-
linear error rate). We see that different array configurations have a
significant impact on the RAID reliability, even though the storage
overhead is fixed. In particular, a larger array (i.e., both n andm are
large) always achieves a higher RAID reliability.

We further study the impact of array configurations by changing
either n or m at a time (i.e., the storage overhead also changes).
Specifically, we set (n,m) = (8, 1) as default, and change the array
configuration by either decreasing n from n = 8 to n = 4 or increas-
ingm fromm = 1 tom = 2. Figure 10 shows the results for different
α ’s. The RAID reliability increases with the storage overhead. That

8

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Percentage of consumed life

R
el

ia
b

ili
ty

Aging ratio (1:1⋅ ⋅ ⋅1:1)
Aging ratio (1:1⋅ ⋅ ⋅1:2)
Aging ratio (1:1⋅ ⋅ ⋅1:5)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Percentage of consumed life

R
el

ia
b

ili
ty

Aging ratio (1:1⋅ ⋅ ⋅1:1)
Aging ratio (1:1⋅ ⋅ ⋅1:2)
Aging ratio (1:1⋅ ⋅ ⋅1:5)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Percentage of consumed life

R
el

ia
b

ili
ty

Aging ratio (1:1⋅ ⋅ ⋅1:1)

Aging ratio (1:1⋅ ⋅ ⋅1:2)

Aging ratio (1:1⋅ ⋅ ⋅1:5)

(a) (n,m) = (8, 1), α = 2 (b) (n,m) = (8, 2), α = 2 (c) (n,m) = (8, 1), α = 4
Figure 6: Impact of workloads on RAID reliability under different array configurations and error dynamics.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Percentage of consumed life

R
el

ia
b

ili
ty

Equal aging rate
Unequal aging rates (σ=5)
Unequal aging rates (σ=3)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Percentage of consumed life

R
el

ia
b

ili
ty

Equal aging rate
Unequal aging rates (γ=1)
Unequal aging rates (γ=2)

(a) Normal: N (n,σ 2) (b) Zipf: f (k) ∝ k−γ

Figure 7: Reliability dynamics under general distributions
of aging rates.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Percentage of consumed life

R
el

ia
b

ili
ty

Convex error rate
Linear error rate
Concave error rate

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Percentage of consumed life

R
el

ia
b

ili
ty

Convex error rate
Linear error rate
Concave error rate

(a) Impact of error rate ((n,m) = (8, 1)) (b) Impact of error rate ((n,m) = (8, 2))

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Percentage of consumed life

R
el

ia
b

ili
ty

Fast recovery
Moderate recovery
Slow recovery

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Percentage of consumed life

R
el

ia
b

ili
ty

Fast recovery
Moderate recovery
Slow recovery

(c) Impact of recovery rate ((n,m) = (8, 1)) (d) Impact of recovery rate ((n,m) = (8, 2))

Figure 8: Impact of different error arrival and recovery rates
under different array configurations.

is, the storage-reliability trade-off exists if we only change the array
configuration in one dimension (either n orm). However, the trade-
off no longer holds if both dimensions are varied at the same time.
For example, even if the configuration with (n,m) = (8, 2) incurs
smaller overhead than that of (n,m) = (3, 1), the RAID reliability
in the former case is larger. Also, incrementingm brings a higher
reliability gain than decrementing n, although both cases increase
the storage overhead.

7 RELATEDWORK
NAND-flash-based SSDs have been studied in several aspects. Ex-
amples include (1) empirical study of the intrinsic characteristics of

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Percentage of consumed life

R
el

ia
b

ili
ty

(n,m)=(12,3)
(n,m)=(8,2)
(n,m)=(4,1)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Percentage of consumed life

R
el

ia
b

ili
ty

(n,m)=(12,3)
(n,m)=(8,2)
(n,m)=(4,1)

(a) α = 2 (b) α = 4

Figure 9: Impact of (n,m) with fixed storage overhead.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Percentage of consumed life

R
el

ia
b

ili
ty

(n,m)=(8,2)
(n,m)=(3,1)
(n,m)=(4,1)
(n,m)=(5,1)
(n,m)=(6,1)
(n,m)=(7,1)
(n,m)=(8,1)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Percentage of consumed life

R
el

ia
b

ili
ty

(n,m)=(8,2)
(n,m)=(3,1)
(n,m)=(4,1)
(n,m)=(5,1)
(n,m)=(6,1)
(n,m)=(7,1)
(n,m)=(8,1)

(a) α = 2 (b) α = 4

Figure 10: Impact of (n,m) with variable storage overhead.

SSDs [1, 5, 17], (2) performance modeling on write performance and
garbage collection algorithms [7, 12, 13, 22, 38, 39], and (3) reliability
analysis via experiments and mathematical models [11, 23, 26, 36].
To improve SSD reliability, RAID has been adopted [2, 15, 18–
21, 25, 31, 40]. These studies mainly focus on the architectural
design of SSD RAID so as to improve the performance and durabil-
ity of traditional RAID schemes. On the other hand, careless designs
of SSD RAID can degrade reliability [16, 28].

On the theoretical side, RAID reliability was first formulated by
Gibson and Patterson as mean-time-to-data loss (MTTDL) [9]. After
that, various models were proposed to improve the reliability model
of RAID systems, e.g., [8, 14, 34]. Also, Machida et al. proposed a
Markov regenerative process model to address the non-exponential
disk rebuild time for analyzing the performability of RAID storage
systems [24]. For reliability analysis of SSDs, Li et al. [23] develop
a mathematical model to analyze the reliability of SSD RAID ar-
rays that provide single-fault tolerance. In particular, they focus on
studying the impact of different parity distributions among devices,
and compare the reliability of Diff-RAID [2], which places parities
unevenly among devices, with that of traditional RAID-5. In con-
trast, we address this problem from a more general perspective.

9

Specifically, our model analyzes the reliability dynamics of SSD
RAID that tolerates any number of failures subject to various array
configurations and non-uniform workloads.

8 CONCLUSIONS
In this paper, we develop a general mathematical model to analyze
the reliability dynamics of SSD RAID arrays with different configu-
rations. Specifically, we build Markov chain models to characterize
the error dynamics of SSD RAID, and use the uniformization and
interval linearization technique to perform transient analysis. The
accuracy of our model is validated via trace-driven simulations.

Based on our mathematical model, we conduct extensive nu-
merical evaluations on the reliability of SSD RAID. We observe
that RAID reliability under non-uniform workload may be higher
than that under uniform workload, so making SSDs in a RAID age
at different rates and wear out separately may be beneficial for
RAID reliability, while this benefit requires a careful control on the
aging rates of SSDs. We also find that both methods of reducing
the error rate of single SSDs and increasing the recovery capabil-
ity of RAID improve the RAID reliability, and the improvement is
more pronounced for RAID tolerating fewer failures when using
the former method, while the improvement is more pronounced for
RAID tolerating more failures for the latter method. Finally, there
is a trade-off between storage overhead and RAID reliability if we
only change the array configuration in one dimension, i.e., varying
either n orm. However, if we vary both of these parameters, we
can have an SSD RAID with higher storage capacity and better
reliability. This shows our model is indeed relevant in assisting
developers to configure SSD RAID.

ACKNOWLEDGMENTS
This work was supported in part by National Nature Science Foun-
dation of China (61772484 and 61379038), and Anhui Provincial
Natural Science Foundation (1508085SQF214).

REFERENCES
[1] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis, Mark Manasse,

and Rina Panigrahy. 2008. Design Tradeoffs for SSD Performance. In Proc. of
USENIX ATC.

[2] Mahesh Balakrishnan, Asim Kadav, Vijayan Prabhakaran, and Dahlia Malkhi.
2010. Differential RAID: Rethinking RAID for SSD Reliability. ACM Trans. on
Storage 6, 2 (Jul 2010), 4.

[3] John S. Bucy, Jiri Schindler, Steven W. Schlosser, and Gregory R. Ganger. 2008.
The DiskSim Simulation Environment Version 4.0 Reference Manual. Technical
Report CMUPDL-08-101. Carnegie Mellon University.

[4] Yu Cai, E.F. Haratsch, O. Mutlu, and Ken Mai. 2012. Error Patterns in MLC NAND
Flash Memory: Measurement, Characterization, and Analysis. In Proc. of DATE.

[5] Feng Chen, David A. Koufaty, and Xiaodong Zhang. 2009. Understanding Intrinsic
Characteristics and System Implications of Flash Memory Based Solid State
Drives. In Proc. of ACM SIGMETRICS.

[6] E. de Souza e Silva and H. R. Gail. 2000. Transient Solutions for Markov Chains.
Computational ProbabilityW. K. Grassmann (editor). Kluwer Academic Publishers
(2000), 43–81.

[7] Peter Desnoyers. 2012. Analytic Modeling of SSD Write Performance. In Proc. of
SYSTOR.

[8] J. G. Elerath and M. Pecht. 2007. Enhanced Reliability Modeling of RAID Storage
Systems. In DSN.

[9] Garth A. Gibson and David A. Patterson. 1993. Designing Disk Arrays for High
Data Reliability. J. Parallel Distrib. Comput. 17, 1-2 (Jan. 1993), 4–27.

[10] LauraM. Grupp, AdrianM. Caulfield, Joel Coburn, Steven Swanson, Eitan Yaakobi,
Paul H. Siegel, and Jack K. Wolf. 2009. Characterizing Flash Memory: Anomalies,
Observations, and Applications. In Proc. of IEEE/ACM MICRO.

[11] Laura M. Grupp, John D. Davis, and Steven Swanson. 2012. The Bleak Future of
NAND Flash Memory. In FAST.

[12] Peter G. Harrison, Naresh M. Patel, and Soraya Zertal. 2010. Response Time
Distribution of Flash Memory Accesses. Performance Evaluation 67, 4 (April
2010), 248 – 259.

[13] Xiao-Yu Hu, Evangelos Eleftheriou, Robert Haas, Ilias Iliadis, and Roman Pletka.
2009. Write Amplification Analysis in Flash-based Solid State Drives. In Proc. of
SYSTOR.

[14] Ilias Iliadis and Vinodh Venkatesan. 2015. Beyond MTTDL: A Closed-Form RAID-
6 Reliability Equation. Trans. Storage 11, 2, Article 9 (March 2015), 10 pages.

[15] Soojun Im and Dongkun Shin. 2011. Flash-Aware RAID Techniques for Depend-
able and High-Performance Flash Memory SSD. IEEE Trans. on Computers 60
(Jan 2011), 80–92.

[16] Nikolaus Jeremic, Gero Mühl, Anselm Busse, and Jan Richling. 2011. The Pitfalls
of Deploying Solid-state Drive RAIDs. In Proc. of SYSTOR.

[17] Myoungsoo Jung and Mahmut Kandemir. 2013. Revisiting Widely Held SSD
Expectations and Rethinking System-level Implications. In SIGMETRICS.

[18] Jaeho Kim, Jongmin Lee, Jongmoo Choi, Donghee Lee, and S.H. Noh. 2013. Im-
proving SSD Reliability with RAID via Elastic Striping and Anywhere Parity. In
Proc. of IEEE/IFIP DSN.

[19] Sehwan Lee, Bitna Lee, Kern Koh, and Hyokyung Bahn. 2011. A Lifespan-aware
Reliability Scheme for RAID-based Flash Storage. In Proc. of SAC.

[20] Yangsup Lee, Sanghyuk Jung, and Yong Ho Song. 2009. FRA: A Flash-aware
Redundancy Array of Flash Storage Devices. In Proc. of ACM CODES+ISSS.

[21] Yongkun Li, Helen H. W. Chan, Patrick P. C. Lee, and Yinlong Xu. 2016. Elastic
Parity Logging for SSD RAID Arrays. In Proc. of IEEE/IFIP DSN.

[22] Yongkun Li, Patrick P. C. Lee, and John C. S. Lui. 2013. Stochastic Modeling of
Large-Scale Solid-State Storage Systems: Analysis, Design Tradeoffs and Opti-
mization. In Proc. of SIGMETRICS.

[23] Yongkun Li, Patrick P. C. Lee, and John C. S. Lui. 2016. Analysis of Reliability
Dynamics of SSD RAID. IEEE Trans. on Computers 65, 4 (Apr 2016), 1131 – 1144.

[24] F.Machida, R. Xia, and K. Trivedi. 2015. PerformabilityModeling for RAID Storage
Systems by Markov Regenerative Process. IEEE Transactions on Dependable and
Secure Computing PP, 99 (2015), 1–1.

[25] Bo Mao, Hong Jiang, Suzhen Wu, Lei Tian, Dan Feng, Jianxi Chen, and Lingfang
Zeng. 2012. HPDA: A Hybrid Parity-based Disk Array for Enhanced Performance
and Reliability. ACM Trans. on Storage 8, 1 (Feb 2012), 4.

[26] Justin Meza, Qiang Wu, Sanjev Kumar, and Onur Mutlu. 2015. A Large-Scale
Study of Flash Memory Failures in the Field. In Proceedings of ACM SIGMETRICS.

[27] N. Mielke, T. Marquart, Ning Wu, J. Kessenich, H. Belgal, E. Schares, F. Trivedi,
E. Goodness, and L.R. Nevill. 2008. Bit Error Rate in NAND Flash Memories. In
IEEE Int. Reliability Physics Symp.

[28] Sangwhan Moon and A. L. Narasimha Reddy. 2013. Don’t Let RAID Raid the
Lifetime of Your SSD Array. In HotStorage.

[29] Dushyanth Narayanan, Eno Thereska, Austin Donnelly, Sameh Elnikety, and
Antony Rowstron. 2009. Migrating Server Storage to SSDs: Analysis of Tradeoffs.
In Proc. of ACM EuroSys.

[30] Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou, Yong Wang, and Yuanzheng
Wang. 2014. SDF: Software-Defined Flash forWeb-Scale Internet Storage Systems.
In Proc. of ACM ASPLOS.

[31] Kwanghee Park, Dong-Hwan Lee, Youngjoo Woo, Geunhyung Lee, Ju-Hong Lee,
and Deok-Hwan Kim. 2009. Reliability and Performance Enhancement Technique
for SSD Array Storage System Using RAID Mechanism. In IEEE ISCIT.

[32] David A. Patterson, Garth Gibson, and Randy H. Katz. 1988. A Case for Redundant
Arrays of Inexpensive Disks (RAID). In Proc. of ACM SIGMOD.

[33] J.S. Plank, J. Luo, C.D. Schuman, L. Xu, and Z. Wilcox-O’Hearn. 2009. A Perfor-
mance Evaluation and Examination of Open-Source Erasure Coding Libraries
for Storage. In Proc. of USENIX FAST.

[34] E. W. D. Rozier, W. Belluomini, V. Deenadhayalan, J. Hafner, K. Rao, and P. Zhou.
2009. Evaluating the Impact of Undetected Disk Errors in RAID systems. In 2009
DSN. 83–92.

[35] Maheswaran Sathiamoorthy, Megasthenis Asteris, Dimitris Papailiopoulos,
Alexandros G. Dimakis, Ramkumar Vadali, Scott Chen, and Dhruba Borthakur.
2013. XORing Elephants: Novel Erasure Codes for Big Data. Proc. VLDB Endow.
6, 5 (March 2013), 12.

[36] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant. 2016. Flash Reliability
in Production: The Expected and the Unexpected. In Proc. of USENIX FAST.

[37] Jonathan Thatcher, Tom Coughlin, Jim Handy, and Neal Ekker. 2009. NAND
Flash Solid State Storage for the Enterprise: An In-depth Look at Reliability. In
SNIA report.

[38] Benny Van Houdt. 2013. A Mean Field Model for a Class of Garbage Collection
Algorithms in Flash-based Solid State Drives. In Proc. of ACM SIGMETRICS.

[39] Benny Van Houdt. 2013. Performance of Garbage Collection Algorithms for
Flash-based Solid State Drives with Hot/cold Data. Performance Evaluation 70,
10 (Sep 2013), 692 – 703.

[40] Yu Wang, Wei Wang, Tao Xie, Wen Pan, Yanyan Gao, and Yiming Ouyang. 2014.
CR5M: A Mirroring-powered Channel-RAID5 Architecture for An SSD. In Proc.
of IEEE MSST.

[41] W. Weibull. 1951. A Statistical Distribution Function of Wide Applicability.
Journal of Applied Mechanics 18 (1951), 293–297.

10

	Abstract
	1 Introduction
	1.1 Background and Motivation
	1.2 Our Contributions

	2 Problem Formulation
	2.1 Basics of SSD RAID
	2.2 System Dynamics
	2.3 Modeling the Time-varying Error Rate

	3 Analysis of Reliability Dynamics
	3.1 Markov Model
	3.2 Transient Analysis

	4 Non-uniform Workload
	5 Model Validation
	6 Reliability Evaluation
	6.1 Model Parameters
	6.2 Impact of Stepsize s
	6.3 Impact of Workloads
	6.4 Impact of Error Dynamics
	6.5 Impact of Array Configurations

	7 Related Work
	8 Conclusions
	Acknowledgments
	References

