
FarReach: Write-back Caching in Programmable Switches
Siyuan Sheng1, Huancheng Puyang1, Qun Huang2, Lu Tang3, and Patrick P. C. Lee1

1The Chinese University of Hong Kong 2Peking University 3Xiamen University

Abstract

Skewed write-intensive key-value storage workloads are in-
creasingly observed in modern data centers, yet they also
incur server overloads due to load imbalance. Programmable
switches provide viable solutions for realizing load-balanced
caching on the I/O path, and hence implementing write-back
caching in programmable switches is a natural direction to
absorb frequent writes for high write performance. However,
enabling in-switch write-back caching is non-trivial, as it
not only is challenged by the strict programming rules and
limited stateful memory of programmable switches, but also
necessitates reliable protection against data loss due to switch
failures. We propose FarReach, a new caching framework
that supports fast, available, and reliable in-switch write-back
caching. FarReach carefully co-designs both the control and
data planes for cache management in programmable switches,
so as to achieve high data-plane performance with lightweight
control-plane management. Experiments on a Tofino switch
testbed show that FarReach achieves a throughput gain of up
to 6.6× over a state-of-the-art in-switch caching approach
under skewed write-intensive workloads.

1 Introduction
Key-value stores have been widely deployed in modern data
centers to manage structured data (in units of records) for data-
intensive applications, such as social networking [1, 33, 41],
web indexing [7], and e-commerce [11]. Practical key-value
storage workloads are traditionally read-intensive (e.g., up to
a read-to-write ratio of 30:1 at Facebook’s Memcached [1]).
Recent field studies of production key-value stores show the
dominance of write-intensive workloads; for example, more
than 20% of Twitter’s Twemcache clusters have more writes
than reads [41], and the AI/machine-learning services at Face-
book’s RocksDB production have 92.5% of read-modify-
writes [6]. Also, write-intensive workloads are skewed; for ex-
ample, 25% of frequently accessed (i.e., hot) records dominate
in the write workloads at Twitter’s Twemcache clusters [41].

Enabling high write performance for key-value stores in
data centers is challenging. Write requests issued from a client
to a key-value storage server often suffer from long round-trip
times (RTTs) due to switch-to-server transmissions and server-
side processing. In particular, if the server is overloaded, I/O
requests will have long queuing delays or even be dropped.
Also, in distributed key-value stores that span multiple servers,
a small portion of servers may be bottlenecked by substantial
requests for hot records under skewed workloads, thereby

leading to load imbalance [17, 21].
Programmable switches [5] offer an opportunity to im-

prove the write performance of key-value stores. By de-
ploying a programmable switch on the I/O path (e.g., as
a top-of-rack switch in a rack-based data center), it can in-
herently intercept the I/O requests for all servers within the
rack and provide stateful memory that can be programmed
to cache frequently accessed records. For each request issued
by a client, the switch can read or write any of its cached
records and directly respond to the client, thereby eliminat-
ing the long RTT to access the server-side record. It is also
proven that load balancing is achievable by keeping only
O(N logN) records, where N is the number of servers [14].
Recent studies have demonstrated the effectiveness of load-
balanced in-switch caching [20, 27–29] for high throughput
and sub-RTT latencies. However, existing in-switch caching
approaches [20, 27–29] target read-intensive workloads and
implement write-through caching (i.e., write requests update
records both in the in-switch cache and the server side). Thus,
they do not provide write performance gains compared with
no caching under skewed write-intensive workloads.

To address skewed write-intensive workloads, it is desirable
to implement in-switch write-back caching (i.e., write requests
update records in the in-switch cache only without immedi-
ately updating the server side) to absorb frequent writes to
hot records. However, enabling write-back caching in pro-
grammable switches is subject to several challenges. First,
in-switch write-back caching raises an issue of synchronizing
records in both the in-switch cache and server-side storage.
Without proper synchronization, the latest records may be-
come unavailable to clients during cache eviction. Second,
since the in-switch cache keeps the latest records under the
write-back policy, protecting against data loss in the in-switch
cache during switch failures is critical. However, providing
fault tolerance guarantees for the in-switch cache is chal-
lenged by the limited switch resources (e.g., limited stages
with only tens of megabytes for stateful memory) [5, 31].
Finally, the strict pipeline programming model and limited re-
sources in programmable switches necessitate a design of sim-
ple but efficient caching mechanisms. While programmable
switches can be managed with a software controller to relax
switch resource constraints [20, 29], the control-plane interac-
tion between the controller and programmable switches can
incur long delays and slow down the data-plane I/O perfor-
mance. Even worse, the synchronization and fault tolerance
issues complicate cache management with extra control-plane
overhead, thereby further degrading I/O performance.

In this paper, we propose FarReach, a fast, available, and
reliable in-switch write-back caching framework to improve
the I/O performance of key-value stores under skewed write-
intensive workloads. FarReach exploits a careful co-design
of the control and data planes, such that it offloads cache
management to a centralized controller in the control plane,
while achieving high data-plane performance with lightweight
control-plane management. It comprises the following design
features: (i) fast cache admission that admits hot records into
the in-switch cache without blocking data-plane I/O traffic;
(ii) available cache eviction that ensures that the latest records
evicted from the in-switch cache remain available to read
requests; and (iii) reliable snapshot generation and zero-loss
crash recovery for the protection against data loss during
switch failures. To the best of our knowledge, this is the first
work that specifically addresses the availability and fault tol-
erance issues of in-switch caching.

We implement FarReach and compile the in-switch cache
prototype (written in P4 [4]) into the Tofino switch chipset
[39]. We evaluate FarReach with YCSB [42] and synthetic
workloads. Compared with NetCache [20], a state-of-the-
art in-switch caching framework that targets read-intensive
workloads and implements write-through caching, FarReach
achieves a throughput gain of up to 6.6× across 128 simulated
servers under skewed write-intensive workloads. FarReach
also has low access latencies, fast crash recovery, and limited
switch resource usage.

We now release the source code of our FarReach prototype
at http://adslab.cse.cuhk.edu.hk/software/farreach.

2 Background and Motivation
2.1 Programmable Switches

Figure 1 shows the programmable switch architecture, which
consists of both a data plane and a control plane. The data
plane processes packets with a stringent timing requirement
for line-rate forwarding. It contains multiple ingress and
egress pipelines. When a packet arrives at the switch through
an ingress port, the packet first enters the corresponding
ingress pipeline, which specifies an egress port. Then the
traffic manager, which interconnects between the ingress and
egress pipelines, transfers the packet to the egress pipeline
corresponding to the specified egress port. Finally, the packet
leaves the switch through the egress port. On the other hand,
the control plane contains an operating system within the
switch, called the switch OS, to manage the forwarding rules
of the data plane. The switch OS of each switch interacts with
a centralized controller, which manages the packet processing
of all switches in a network-wide manner.

Each ingress/egress pipeline follows a reconfigurable
match tables (RMT) model [5]. When a packet enters an
ingress/egress pipeline, it is first processed by a parser, which
extracts packet header fields into the packet header vector
(PHV). The pipeline transfers the PHV across a number of

Ingress
Pipelines

Ingress
Ports Traffic

Manager Egress
Pipelines

Egress
Ports

Pa
ck

et

Ingress/Egress Pipeline

Pa
rs

er

St
ag

e
1

…

St
ag

e
S

De
pa

rs
er

Pa
ck

et

Switch OS

Data Plane
Control Plane

Programmable Switch

St
ag

e
2

St
ag

e
3PH
V

PH
V

PH
V

PH
V

Figure 1: Programmable switch architecture.

stages with multiple match-action tables each. Each stage
also keeps a limited amount of SRAM, composed of tens
of memory blocks, for tracking stateful information that is
accessible by the match-action tables. A match-action table
can use an ALU to perform arithmetic or logical operations
and store the results into the PHV. It matches the fields in the
PHV from the previous stage and performs the correspond-
ing action to update the PHV for the next stage, while the
match-action rules can be configured by the switch OS. A
match-action table can also use a special kind of ALU, called
stateful ALU, to store the results into on-chip memory. To
fulfill the stringent timing requirement, the memory blocks
associated with a stage cannot be accessed from other stages,
while the processing of a packet within a stage can only access
a limited number of memory blocks associated with the stage
and each memory block can only be accessed at most once.
After being updated by all stages, the PHV is processed by
a deparser, which reconstructs the new packet header fields.
The header fields are combined with the original payload to
form the packet to be forwarded.

2.2 Challenges
Write caching policies can be classified into write-through and
write-back. Write-through synchronously updates the records
both in the cache and on the server side; in contrast, write-back
(a.k.a. delayed-write) updates only the records in the cache,
and later reflects the updates on the server side. Existing in-
switch caches [20, 27–29] mainly implement write-through
caching. In this work, we focus on write-back caching, as it
improves the write performance over write-through caching
by delaying server-side updates. However, managing write-
back caching is non-trivial, and is subject to three unique
challenges in programmable switches.

Performance challenge. Since a programmable switch has a
restricted pipeline programming model (i.e., it can only ac-
cess a limited number of memory blocks) and scarce hardware
resources (i.e., it only has a limited number of stages and state-
ful ALUs) [5], it is necessary to offload switch-level cache
management (including cache admission and eviction) to a

Programmable
Switch

Client
Server

Switch OS

In-switch
Cache

ServerCache Misses

Cache Hits

Controller
Cache Management

Key-value
Stores

Control
Plane

Data
Plane

Server

…Client…

Client

Figure 2: FarReach’s architecture.

centralized controller [20, 29], while the switch only updates
the cached records in the data plane under the write-back
policy. However, due to the high controller-to-switch latency,
control-plane processing is much slower than data-plane pro-
cessing in a programmable switch, thereby bottlenecking the
I/O performance.

Availability challenge. Under write-back caching, both cache
admission and eviction algorithms need careful coordination
between the control and data planes, so as to correctly main-
tain the latest records in either the in-switch cache or server-
side storage; otherwise, the outdated records may be returned
to the client. Such an issue does not exist in write-through
caching [20, 29], as it always keeps the latest records on the
server side. The availability issue is even more challenging in
programmable switches, since the controller needs to manage
both the cache and server updates, but incurs high overhead.
Also, the controller is not on the packet forwarding path and
has no view about the traversed packets in the data plane.

Reliability challenge. Under write-back caching, the latest
records may only be kept in the in-switch cache and may have
their updates to the server-side storage delayed. If the switch
crashes, all latest records are lost. Such an issue again does
not exist in write-through caching, as the latest records can
be persistently kept in server-side storage [20, 29].

3 FarReach Design
3.1 Design Overview
Architecture. FarReach is a fast, available, and reliable in-
switch write-back cache architecture for improving the I/O
performance and load balancing of server-side key-value
stores. Figure 2 shows FarReach’s architecture, in which
clients are connected via the in-switch cache to multiple
servers for key-value storage, while the controller is responsi-
ble for cache admission and eviction. Recall that the controller
has no view about the data plane (§2.2). Thus, the cache man-
agement decisions are triggered by the switches (in the data
plane) based on the workload patterns.

Goals. FarReach’s core idea is a careful co-design of the con-
trol and data planes. Table 1 summarizes our design features.
FarReach aims for three design goals:

• Fast access (§3.2). FarReach supports non-blocking cache
admission for admitting hot records into the in-switch cache,
so as to achieve high write performance. It also ensures

Table 1: Summary of design features of FarReach.

Design features Design details

Non-blocking
cache admission
(§3.2)

FarReach tracks the “outdated” or “latest”
state of each cached record to limit conserva-
tive reads. It also associates a validity register
with each cached record for atomicity.

Available cache
eviction (§3.3)

FarReach uses a “to-be-evicted” flag to make
each evicted record available. It identifies lat-
est records by sequence numbers and handles
packet loss by record embedding.

Crash-consistent
snapshot genera-
tion (§3.4)

FarReach reports original cached records to
the controller. It recirculates writes for atom-
icity, and exploits client-side record preserva-
tion for zero-loss recovery.

atomicity in cache admission under the multi-pipeline set-
ting of programmable switches.

• Availability (§3.3). FarReach ensures that any latest record
that is evicted from the in-switch cache remains available
to clients.

• Reliability (§3.4). FarReach protects against data loss dur-
ing switch failures. It uses a crash-consistent snapshot gen-
eration algorithm for making snapshots of the in-switch
cache state. It also ensures atomicity of snapshot generation
in the multi-pipeline setting. It further couples snapshot
generation with upstream backup [18] to achieve zero-loss
crash recovery.

Design assumptions. FarReach currently supports a fixed
key length of 16 bytes and a variable value length of up to
128 bytes due to limited switch resources; the same con-
straint is also assumed in NetCache [20] and DistCache [29].
Thus, FarReach is suitable for workloads dominated by small
records (e.g., ZippyDB and UP2X in Facebook’s RocksDB
production [6]). For large records, FarReach simply relays
them between clients and servers without caching.

FarReach currently does not support range queries, since
programmable switches cannot feasibly maintain sorted struc-
tures with the memory access limitations (§2.1) and servers
are unaware of the latest in-switch records under the write-
back policy. In this work, we focus on skewed write-intensive
workloads without range queries.

FarReach guarantees reliability for switch failures. We as-
sume that the durability of server-side records is addressed by
the persistence feature of key-value stores [25, 30, 37].

3.2 Non-blocking Cache Admission
Problem of cache admission. A naı̈ve design of cache ad-
mission in programmable switches can introduce blocking to
write requests. Due to limited switch resources, the controller
is responsible for cache management (§2.2). Suppose that the
controller is about to admit a new hot record into the in-switch
cache. As control-plane processing is slower than data-plane
packet forwarding (§2.2), the switch may receive subsequent

Client

Programmable Switch

Controller

Server①

②

③

Count-Min
Sketch

CacheWrite R

Send R

Switch OS
Subsequent

writes

Programmable Switch

Controller
①

②
Cache

Admit R
“outdated”

Switch OS

Write R
“latest”

Read R
“latest”

③

Conservative
reads

③
Client Server

Programmable Switch

Controller
Send

R (K, V)

Cache

Ingress
Pipelines

② K

② K
Validity ② V

Egress Pipeline

①② Set
“invalid”

Admit
R (K, V)

③Set
“valid”

Switch OS

Server

(a) Before cache admission (b) After cache admission
Figure 3: Non-blocking cache admission in FarReach. Before admitting a record R, the
switch forwards subsequent writes to the server in a non-blocking manner. After admitting
R, the switch conservatively forwards reads for R to the server until it receives a new write
from the client or a read from the server; it also marks R as “latest”.

Figure 4: Atomic validity control in FarReach.
For a record R with a key K and a value V , the
controller maintains an egress validity register
for atomicity of cache admission.

writes for the same key before the record from the first write
is admitted to the cache. In this case, such subsequent writes
need to be blocked until the record is admitted; otherwise, the
admitted record may overwrite the newer records from the
subsequent writes that arrive earlier at the switch, due to the
write-back policy.
Cache admission policy. Before proposing our cache admis-
sion design, we first describe the cache admission policy in
FarReach. FarReach currently triggers cache admission for
the hot records with high access frequencies. It follows the
design of NetCache [20] and deploys space-efficient in-switch
data structures for frequency tracking, due to the limited
in-switch SRAM. Specifically, FarReach maintains a Count-
Min Sketch [10] to track the access frequencies of uncached
records for cache admission, as well as a counter array to track
the access frequencies of cached records for cache eviction
(§3.3), within the switch. A Count-Min Sketch is a fixed-size,
error-bounded summary data structure composed of multiple
rows with a fixed number of counters each. FarReach samples
incoming requests for frequency monitoring to reduce pro-
cessing overhead. For each sampled request to an uncached
key, FarReach updates the Count-Min Sketch and estimates
the access frequency. If the frequency exceeds a pre-defined
threshold, FarReach identifies the key as hot. It triggers the
controller to admit the hot record into the in-switch cache, and
also tracks the frequency of the cached record in the counter
array. To avoid counter overflow, FarReach periodically resets
all counters of the Count-Min Sketch and the counter array to
zero. Note that we do not claim the novelty of this design.
Our cache admission design. We propose a non-blocking
cache admission algorithm for FarReach, as shown in Fig-
ure 3. Suppose that a client issues a write request of a record
(say, R) to a server. If R is not yet cached and is identified
as hot based on the Count-Min Sketch, the switch forwards
R to the server (1 in Figure 3(a)). The server forwards R to
the controller for cache admission (2 in Figure 3(a)). Note
that a read request issued by a client can also trigger cache
admission, except that the server will send the server-side
latest record R to the controller (2 in Figure 3(a)). Before
the controller admits R into the in-switch cache, the switch

forwards subsequent writes for the same R’s key (i.e., cache
misses) to the server without updating the cache (3 in Fig-
ure 3(a)). The server directly processes the writes without
blocking. Thus, the server now keeps the latest record.

After R is admitted, FarReach temporarily marks the admit-
ted R as “outdated” (1 in Figure 3(b)). For any read request
to R’s key (which is “outdated”), FarReach conservatively
forwards the read request to the server to obtain the latest
record (2 in Figure 3(b)).

Conservative reads increase read latencies due to server-
side processing. To limit conservative reads, our insight is
that all requests and responses must traverse the switch, so
FarReach can monitor all traversed requests and responses
to mark the “outdated” cached record as “latest” as early as
possible. Specifically, FarReach marks the “outdated” record
as “latest” (3 in Figure 3(b)) if it sees: (i) a write request
from a client for the same key (which carries the latest record),
or (ii) a read response from the server for the same key (which
carries the latest record while the cached record remains out-
dated). When a cached record is marked as “latest”, it can be
directly updated by subsequent writes based on the write-back
policy. Under skewed write-intensive workloads, an “outdated”
cached record can soon be marked as “latest” by a subsequent
write for the same key, so conservative reads are limited.

Recall that a server in FarReach is responsible for send-
ing a record to the controller for cache admission (i.e., 2
in Figure 3(a)). Thus, it can determine whether any record
of the same key has been sent to the controller and avoid
sending duplicate records of the same key, thereby keeping
limited control-plane bandwidth usage (e.g., up to 1.41 MiB/s;
see §5.4). This is in contrast to NetCache [20], in which a
switch sends records to the controller for cache admission
and needs an in-switch Bloom Filter [3] to avoid duplicate
submission; FarReach removes the need of maintaining an
in-switch Bloom Filter and hence saves switch resource usage
for implementing in-switch write-back caching.

Atomic validity control. FarReach stores the keys and values
of records in the ingress and egress pipelines, respectively, to
accommodate the limited number of stages of a single pipeline.
However, it is critical but non-trivial to provide atomicity for

cache admission under the multi-pipeline setting. Specifically,
a switch can only provide atomicity within a single pipeline
rather than multiple pipelines, yet the requests for the same
key can arrive from different ingress pipelines. Without the
atomicity of cache admission, the write requests to the same
key arriving from different ingress pipelines may have incon-
sistent views on the key: cached or uncached. For the former,
the cached record is updated directly by the write-back policy;
for the latter, the requests are forwarded to the server based
on our non-blocking cache admission design. Thus, the key
may be updated with an inconsistent value.

Our insight is that although the requests for the same key
can enter a switch from different ingress pipelines, FarReach
can forward them to the same egress pipeline correspond-
ing to the same server. Note that such forwarding does not
incur cross-pipeline imbalance, as the bottleneck lies in server-
side storage (including both CPU processing and disk I/O)
instead of line-rate switches. The server-side bottleneck is
shown in our evaluation, where the system throughput is
up to 12.1 MB/s under 128 simulated servers (§5.2), signif-
icantly lower than the maximum throughput 3.2 Tbps of a
two-pipeline Tofino switch [39]. Thus, FarReach can provide
atomicity for each record being admitted, with the aid of the
single egress pipeline that is connected to the corresponding
server, while incurring limited performance degradation.

We propose atomic validity control for cache admission
in FarReach (Figure 4). Specifically, programmable switches
provide atomic primitives for each register within a single
pipeline. FarReach introduces a validity register for each
cached key in an egress pipeline. Before admitting a record
R with key K and value V sent by a server, FarReach first
sets the validity register for R as “invalid” (1 in Figure 4).
It then admits, via the switch OS, V into the egress pipeline
and K into all ingress pipelines (the latter is to ensure consis-
tency across all ingress pipelines) (2 in Figure 4). Finally, it
changes the validity register to “valid” (3 in Figure 4). Based
on the validity register, FarReach treats a record as a cache
hit only if the key is cached in an ingress pipeline and the
validity register is “valid” in the single egress pipeline; or as
a cache miss otherwise. Thus, if a key has not been admitted
into all ingress pipelines, its record is treated as a cache miss
as its validity register remains “invalid”.

3.3 Available Cache Eviction
Problem of cache eviction. If the in-switch cache is full for
cache admission, FarReach selects a cached record to evict,
by sampling multiple cached records and selecting the one
with the least access frequency from the counter array (§3.2).
It then triggers the controller to perform cache eviction on
the selected record. Under the write-back policy, the evicted
record may also be the latest record and has not yet been
updated in the server. It is critical to keep any latest record
to be evicted available during cache eviction. To achieve
this goal, the controller needs to synchronize the views of

both the switch and the server on the evicted record during
cache eviction, especially when there also exist read/write
requests for the evicted record. However, the controller is
constrained by slow control-plane processing, which leads to
high synchronization overhead.

Our cache eviction design. We propose a cache eviction
algorithm for FarReach that ensures availability, whose work-
flow is shown in Figure 5(a). Our idea is to associate ad-
ditional metadata with each cached record in the in-switch
cache, so as to maintain the availability of any evicted record,
while incurring limited synchronization overhead to the con-
troller. Specifically, when a cached record (say, R) is to be
evicted, the controller first marks R as “to-be-evicted” and
loads R from the in-switch cache (1 in Figure 5(a)). It then
sends R to a server for storage (2 in Figure 5(a)). If there is
any write request to the “to-be-evicted” R, FarReach simply
forwards the write request to the server (instead of updating
the record in the cache under the write-back policy) and marks
the evicted record as “outdated”. If there is any read request
to the “to-be-evicted” R and R is “latest” (marked in cache ad-
mission (§3.2)), the cache returns R to the client; otherwise, if
R is “outdated” (i.e., it has been updated), FarReach forwards
the read request of R to the server, which holds the latest
record. Thus, we ensure that any evicted cached record that is
also the latest record remains available. After the server has
stored the latest “to-be-evicted” cached record, the controller
acknowledges the cache to actually evict the “to-be-evicted”
R (3 in Figure 5(a)). Note that all writes to the “to-be-evicted”
R must be forwarded to the server no matter with the view of
cached or uncached, so FarReach does not have any atomicity
issue when evicting R in the multi-pipeline setting.

Identifying latest records. One subtlety is that a server may
receive the request of storing a record from two possible paths:
(i) the eviction of a record from the cache and (ii) the write
request of the record issued by a client. It is critical to dif-
ferentiate the latest version of a record that is finally stored
in the server. To resolve this issue, recall that FarReach for-
wards the write requests of the same record to the same egress
pipeline corresponding to the server (§3.2). As programmable
switches can provide atomicity and serialize packets in a
single pipeline (§3.2), FarReach associates a sequence num-
ber with each cached record atomically. It increments the
sequence number for each write request of the key in the
egress pipeline based on the serialized order of accessing the
cache, and embeds the sequence number into the write re-
quest. When the server receives a request of storing a record,
it overwrites the existing record only if the received record has
a higher sequence number than the existing record; otherwise,
the received record will be discarded.

Handling packet loss. Packet loss in switch-to-server trans-
missions can break the availability of cache eviction. To elab-
orate, recall that an in-switch record can be the latest version
under the write-back policy. During cache eviction, FarReach

Programmable Switch

Controller

①
②

③
Send R

Load R

Switch OS

Evict R

Read R
Write R

Cache

R à (“to-be-
evicted”, seq) Client Server

Programmable Switch

①

Switch OS
Read

Cache

“to-be-evicted” and
“outdated” R, seq

①Read
embedded
w/ (R, seq)

②Read
latest version

Client Server
Stale

Version

Programmable Switch

Controller

②

③Send
original R

Trigger
snapshot

generation

Write R

①
② Load

records

Switch OS

CacheClient

(a) Cache eviction workflow (b) Record embedding

Figure 5: Available cache eviction in FarReach. For a record R to be evicted, it is marked
as “to-be-evicted” and is made available to the client’s read if it is also the latest record.
To handle switch-server packet loss, if R is “outdated”, the switch embeds the “outdated”
evicted record into any read and forwards the read to the server. The server compares the
received read with the server-side version and keeps the latest version.

Figure 6: Crash-consistent snapshot genera-
tion in FarReach. If the switch receives the
first write to a cached record R during snap-
shot generation, it forwards the original R to
the controller before R is updated.

forwards the write request to a “to-be-evicted” record to the
server and marks the evicted record as “outdated”. If the write
request is lost during its transmission (e.g., due to server-side
congestion or packet corruption), the server is not updated
with the latest version, but still keeps the stale version. As
the in-switch cache marks the evicted record as “outdated”, it
forwards all subsequent reads to the server and receives the
stale version. Note that such an issue does not exist in cache
admission, as a write request updates either the server (before
the record is admitted to the in-switch cache) or the in-switch
cache (after the record is admitted to the in-switch cache),
instead of changing both of them.

To maintain availability under packet loss, FarReach em-
ploys record embedding during cache eviction, as shown in
Figure 5(b). Our insight is that even though an evicted record
is marked as “outdated” during cache eviction, it can still be
the latest version that can be used for serving read requests.
Specifically, before forwarding a read to the server, the in-
switch cache embeds the “outdated” evicted record (if such
a record exists) into the read; the embedded record includes
the value and sequence number assigned by the switch (1 in
Figure 5(b)). FarReach ensures that the latest version is avail-
able to any client-issued read by comparing the embedded
record with the server-side version (2 in Figure 5(b)): if the
sequence number embedded into a read request is larger than
that stored in the server (i.e., the embedded record is the latest
version), FarReach directly returns the embedded record to
the client; otherwise, FarReach returns the record stored in
the server (which is the latest version) to the client.

3.4 Crash-consistent Snapshot Generation
We now address the reliability challenge (§2.2) through a con-
sistency model that incurs zero data loss after switch failures.
At a high level, FarReach periodically generates snapshots to
protect against data loss of in-switch cached records. It also
lets each client preserve the cached records generated after the
latest snapshot for recovery. Note that the uncached records
are protected by server-side persistent key-value stores (§3.1).
Problem of snapshot generation. Since the in-switch cache

keeps the latest records under the write-back policy, we need
to protect against data loss in switch failures. We propose to
generate a snapshot for all cached records in the in-switch
cache at regular time points (called snapshot points), so that
the switch can restore from the latest snapshot when recover-
ing from a switch failure. However, the design of such snap-
shot generation is non-trivial. Since programmable switches
have limited stages for cache backup and limited on-chip
memory for snapshot storage, they need to offload all cached
records to the controller. Note that the snapshot overhead is
limited for the controller, as the controller only needs to store
the latest snapshot for crash recovery (e.g., 1.5 MB for 10K
records with 16-byte keys and 128-byte values). When the
cached records are loaded to the controller during snapshot
generation, some cached records may be updated under the
write-back policy. The final snapshot will become inconsistent
with the in-switch cache state at the snapshot point. Block-
ing cache updates during snapshot generation can avoid such
inconsistencies, yet it also degrades the I/O performance.
Our snapshot generation algorithm. We propose a two-
phase snapshot generation algorithm for FarReach to maintain
crash consistency in snapshot generation, without blocking
cache updates. Our insight is that whenever FarReach receives
the first write request to a cached record during snapshot gen-
eration, it can send the original cached record (i.e., after the
snapshot point but before the first write) to the controller.
This allows the controller to keep the backups for all original
cached records that are to be overwritten. At the end of snap-
shot generation, the controller replaces the overwritten cached
records by their backups of the original cached records, so
that the snapshot is crash-consistent with the in-switch cache
state at the snapshot point. Under the skewed write-intensive
workloads where most writes are issued to a small fraction
of hot records, FarReach only needs to send limited original
cached records to the controller (without the need to send the
cached record for the subsequent writes after the first write).
Thus, the bandwidth overhead in the controller is limited.

Based on the insight, FarReach generates a crash-consistent
snapshot in a two-phase manner (i.e., triggering snapshot gen-

eration and making a consistent snapshot) at each snapshot
point, as shown in Figure 6. In the first phase, the controller no-
tifies the in-switch cache to trigger snapshot generation (1 in
Figure 6). The cache monitors each traversed write request to
identify whether the write request is the first write to a cached
record during snapshot generation. If so, the cache sends the
original cached record to the controller (2 in Figure 6). In
the second phase, the controller loads all cached records from
the cache for snapshot generation (3 in Figure 6). Note that
if a cached record has been loaded to the controller and later
receives the first write, the cache no longer needs to send the
original cached record, which has already been loaded. Once
the controller loads all cached records, it notifies the cache
about the completion of snapshot generation (i.e., the cache
no longer needs to monitor the writes to cached records), re-
verts any overwritten cached record with the original one, and
finally obtains a crash-consistent snapshot.

FarReach carefully updates the snapshot to address two
corner cases. If a new record is first admitted to the cache
after the snapshot point, the controller will not include the
record into the snapshot. If a cached record is evicted after the
snapshot point, the controller saves the evicted record during
cache eviction (§3.3), and replaces the updated record with
the evicted record in the snapshot after the second phase of
snapshot generation.
Atomic triggering of snapshot generation. As the write re-
quests of a record can arrive from multiple ingress pipelines,
FarReach needs to trigger snapshot generation in multiple
pipelines at the same time; otherwise, the ingress pipelines
may set a snapshot point at different times and generate incon-
sistent snapshots. We propose a coordination mechanism to
support simultaneous snapshot generation in multiple ingress
pipelines. Specifically, FarReach selects one of the ingress
pipelines, and recirculates all write requests from other ingress
pipelines to the selected ingress pipeline; in other words,
all write requests are processed as if they arrive at a sin-
gle ingress pipeline. The controller first notifies the selected
ingress pipeline to trigger snapshot generation, such that the
selected ingress pipeline notifies the egress pipelines to send
any original cached record that receives the first write to the
controller. It then notifies the remaining ingress pipelines to
trigger snapshot generation. After all ingress pipelines trigger
snapshot generation, FarReach disables the recirculation, and
now the controller can perform snapshot generation with all
ingress pipelines in parallel. Thus, we ensure that snapshot
generation is applied to all ingress pipelines at the same snap-
shot point. Note that the recirculation overhead is limited,
due to the short duration for notifying all ingress pipelines to
trigger snapshot generation (e.g., ≈6 ms from our evaluation).
Zero-loss crash recovery. Our snapshot generation only
guarantees crash consistency for switch failures, but the
cached records that are newly added or updated after the lat-
est snapshot point remain unprotected and can be lost during
a switch failure. Unfortunately, switches do not have exter-

nal storage for keeping cached records reliably. To achieve
zero-loss crash recovery, we propose client-side record preser-
vation based on the idea of upstream backup [18] in stream
processing, by keeping the copies of cached records after
the latest snapshot point on the client side. Specifically, after
a client sends a write request of a cached key and receives
the response from the in-switch cache, it keeps locally the
value and sequence number assigned by the in-switch cache
(§3.3) for the cached key. After the completion of snapshot
generation at each snapshot point, the controller notifies each
client with the cached keys and the corresponding sequence
numbers at the snapshot point. Each client then releases its
preserved records whose sequence numbers are no larger than
those notified by the controller. Since the in-switch cache only
keeps a limited number of hot records, FarReach incurs low
client-side overhead for record preservation.

FarReach exploits a replay-based approach to achieve zero-
loss crash recovery after a switch failure. It first replays the
write requests of the latest cached records to update the servers
for persistent storage. Specifically, FarReach collects both the
latest in-switch snapshot (from the controller) and the client-
side preserved records (from all clients), and selects the record
with the largest sequence number for each cached key. If the
sequence number of each selected record is larger than that
stored in a server, FarReach replays the write request to store
the selected record in the server for persistent storage. After
all latest records are persisted, the clients can then release
their preserved records.

FarReach next recovers the in-switch cache, by replaying
the cache admission for each record of the latest in-switch
snapshot, and marks each cached record as “outdated”. The
“outdated” records of the in-switch cache are expected to be
quickly marked as “latest” under skewed write-intensive work-
loads (§3.2). Note that we do not simply start with an empty
in-switch cache from scratch, as it incurs large overhead to
admit all records through the controller.
Client crashes. One limitation of FarReach is that data loss
can occur if both a client and the switch crash simultaneously.
If any client crashes before replay-based recovery, the cached
records preserved by the client, which are not yet protected
by the latest in-switch snapshot, will be lost after a switch
failure. We can reduce the snapshot period to a smaller win-
dow for less vulnerability, at the expense of incurring larger
snapshot generation overhead. Nevertheless, the snapshot gen-
eration overhead remains still limited (e.g., up to 1.41 MiB/s
of control-plane bandwidth when the snapshot period is 2.5 s;
see §5.4). We leave how to completely prevent data loss from
client crashes as future work.

3.5 Discussion

Novelty. While FarReach borrows ideas from NetCache [20]
(e.g., cache admission based on a Count-Min Sketch), it has
other novel design elements: (i) non-blocking cache admis-
sion for fast access, with atomic validity control to address

the atomicity issue (§3.2); (ii) available cache eviction for
the availability of records, with record embedding to handle
packet loss (§3.3); and (iii) crash-consistent snapshot gener-
ation with zero-loss recovery (§3.4). Note that the last two
elements are tailored for write-back caching and are not found
in NetCache for write-through caching.
Trade-offs. FarReach makes two trade-offs in its design. First,
FarReach trades extra switch resources for in-switch caching
for higher key-value storage performance under skewed write-
intensive workloads, yet we show that the extra switch re-
source usage of FarReach for supporting the write-back pol-
icy is similar to that of NetCache (§5.5). Second, FarReach
trades extra client-side storage capacity for zero-loss recovery.
Nevertheless, since the clients only keep the copies of cached
records after the latest in-switch snapshot, the client-side stor-
age overhead is limited (e.g., 1.5 MB for 10K cached records
with 16-byte keys and 128-byte values).
Future work. We pose two open issues as future work. First,
in addition to reducing vulnerability window from client
crashes (§3.4), FarReach should collect the preserved records
from all clients during crash recovery, and it may limit scala-
bility as the number of clients increases. One possible solution
is to extend FarReach with multiple switches and partition
clients among them, such that FarReach can collect the pre-
served records through multiple switches in parallel. Second,
FarReach offloads cache management (including cache ad-
mission and eviction) to a centralized controller, which may
be overwhelmed by extensive cache admission and eviction
decisions. One possible solution is to rate-limit admission and
eviction operations to avoid overloading the control plane.

4 Implementation
We prototyped FarReach with both the control and data planes.
The control plane includes the switch OS and the controller,
while the data plane includes multiple clients and servers
as well as the in-switch cache. All communications among
different components are based on UDP with a timeout-and-
retry mechanism for low-latency yet reliable transmissions.

4.1 Control Plane
We implement both the switch OS and the controller in C++,
with 2.2K and 1K LoC, respectively, and compile the pro-
grams by g++ (v5.4.0) with the -O3 optimization. The switch
OS provides interfaces for: (i) cache admission/eviction by
configuring match-action tables and setting registers, and (ii)
snapshot generation by loading in-switch records and sending
original cached records. The controller manages the in-switch
cache through the interfaces provided by the switch OS and
coordinates snapshot generation by communicating with the
switch OS and all key-value storage servers.

4.2 Data Plane
Client implementation. We evaluate our prototype with the
YCSB benchmark [42] (§5), which is written in Java. We im-

plement a client application in Java that supports YCSB, with
the common key-value storage interfaces including get,put,
and delete to access records stored in both the in-switch
cache and key-value storage servers. The client application
also provides a shim layer to manage client-side record preser-
vation for zero-loss recovery under switch failures (§3.4).
Server implementation. We deploy RocksDB (v6.22.1) [37]
in each server; RocksDB is a log-structured merge-tree (LSM-
tree) persistent key-value store [34] that is suitable for write-
intensive workloads. To support multiple servers, we dis-
tribute records across servers using consistent hashing [22].
In-switch cache. We implement the in-switch cache in P4 [4]
and compile it into the Tofino switch chipset [39]. The cache
implementation includes both ingress and egress pipelines.
In each ingress/egress pipeline, the Tofino switch provides
12 stages for pipeline programming. Each stage has 4 stateful
ALUs to support at most 4 register arrays, and each register
can store 4 bytes of data.

In each ingress pipeline, we deploy multiple match-action
tables for egress processing. We implement a match-action ta-
ble for cache lookup, which matches the key (currently of size
16 bytes) in the packet header to obtain the record location
in the egress pipeline. We also deploy a match-action table
to trigger snapshot generation, such that each egress pipeline
can send the original cached records to the controller (§3.4).
As the Tofino switch currently does not support cross-pipeline
recirculation, we connect the selected ingress pipeline with
each of the other ingress pipelines with a physical wire, so
as to recirculate the write requests from the other ingress
pipelines to the selected ingress pipeline during snapshot gen-
eration in the multi-pipeline setting (§3.4). Furthermore, we
pre-compute the hash results for the Count-Min Sketch in the
ingress pipeline and send them to the egress pipeline by each
packet header, so as to save the stages in the egress pipelines.

In each egress pipeline, we store the statistics, metadata,
and cached values. In the first stage, we deploy a Count-Min
Sketch and configure it with 4 rows as suggested in [20]. Each
row corresponds to a register array with 64K registers. We
use part of the second stage to maintain a counter array (as
a register array) to track the access frequencies of cached
records (§3.2). To support write-back caching and snapshot
generation, we use the remaining part of the second stage and
the third and fourth stages to maintain the required metadata.
We use the remaining 8 (out of 12) stages to provide 32
register arrays of 4-byte registers in total for supporting a
value size of up to 128 bytes.

We need to address two subtle issues in the egress pipeline
implementation. First, to support write-back caching, the in-
switch cache needs to directly respond to a write request
with a cache hit. However, the Tofino switch cannot directly
change the egress port in the egress pipeline. Thus, we drop
the original write request and send a response to the client by
cloning. Second, to assign a sequence number for each write
request, we can maintain a global counter to track the latest

sequence number, but this easily leads to overflow. Instead,
we use multiple global counters to reduce the likelihood of
overflow. Specifically, we maintain a register array with 32K
registers. We map the write requests of different keys into
different registers by hashing, and then increment the hashed
register to assign a sequence number for each write request.

5 Evaluation
5.1 Methodology
Testbed. We conduct evaluation on a testbed composed of
a 3.2 Tbps two-pipeline Tofino switch [39] and four physi-
cal machines. Each machine has four 12-core CPUs (Intel
E5-2650 v4), 64 GiB DRAM, and 2 TB hard disk (HGST Ul-
trastar), and is connected with the switch by a 40 Gbps NIC
(Intel XL710). We use two physical machines as clients and
another two as key-value storage servers. We connect one
client and one server with one pipeline of the switch, and
connect the other machines with another pipeline.

Setup. We evaluate FarReach using both YCSB [42] and
synthetic workloads (see §5.2 and §5.3, respectively). Since
our testbed comprises only two servers, we exploit server
rotation [20] to simulate a much larger number of servers.
Specifically, let N be the number of simulated servers. Given
a workload, we issue the requests to N logical partitions via
consistent hashing [22] (§4). We find the partition (called the
bottleneck partition) that receives the most requests among
all N partitions. We run each experiment over N iterations.
In the first iteration, we deploy the bottleneck partition in a
physical server and send sufficient requests to saturate the
bottleneck to measure its performance. In the subsequent N−
1 iterations, we deploy the bottleneck partition in a physical
server and each of the N − 1 non-bottleneck partitions in
another physical server, and measure the performance of the
non-bottleneck partition. After N iterations, we add all per-
partition performance to obtain the aggregate performance.
By default, we simulate 16 servers, and increase the number
of simulated servers for scalability evaluation (Exp#3). Note
that server rotation is only applied to static workloads without
the dynamics in key popularity, and we also study the impact
of dynamic workloads (Exp#7).

We compare FarReach against two baselines: NoCache
(i.e., no in-switch caching) and NetCache [20] (i.e., the in-
switch cache that implements write-through caching). Before
each experiment, we pre-load 100M records, each of which
contains a 16-byte key and 128-byte value, into each server
that is initially empty. For FarReach and NetCache, we fix
the in-switch cache size as 10,000 records and pre-load the
hottest records into the cache. We also set the sampling rate
as 0.5 and the pre-defined threshold as 20 requests for the
Count-Min Sketch. For FarReach, we set the snapshot period
as 10 s by default. We run all experiments with 5 times, and
plot the average results with the 95% confidence levels based
on the Student’s t-distribution.

Summary of results. We summarize the results as follows:
• Under YCSB workloads, FarReach increases the I/O

throughput by up to 91% and 84% (for workload A with
50% reads and 50% writes) compared with NoCache and
NetCache, respectively (Exp#1). FarReach also achieves
sub-RTT latency with up to 72% reduction of average la-
tency (Exp#2) and scales to an increasing number of servers
with up to 6.6× throughput gain (Exp#3).

• Under synthetic workloads, FarReach achieves higher
throughput gains over NoCache and NetCache for more
write-intensive and more skewed workloads (Exp#4 and
Exp#5, respectively), while maintaining similar through-
put gains for different value sizes and dynamic workloads
(Exp#6 and Exp#7, respectively).

• FarReach’s snapshot generation incurs limited overhead
on throughput and control-plane bandwidth (Exp#8). Its
recovery time is within 2.35 s (Exp#9).

• FarReach incurs similar switch resource overhead as Net-
Cache (Exp#10).

5.2 Performance under YCSB Workloads
(Exp#1) Throughput analysis. We first evaluate the end-to-
end throughput using YCSB workloads, namely Load (insert-
ing records), A (50% reads, 50% writes), B (95% reads, 5%
writes), C (100% reads), D (95% reads, 5% writes), and F
(50% reads, 50% read-modify-writes); we do not consider
range queries (i.e., Workload E) due to switch limitations
(§3.1). For each workload, we generate requests with 16-byte
keys and 128-byte values. The Load workload follows the
uniform distribution, workload D follows the read-latest dis-
tribution, and workloads A, B, C, and F are skewed and follow
the Zipf distribution with the Zipfian constant 0.99 (default
in YCSB). We verify that under NoCache, the load through-
put to a RocksDB instance can reach 0.06 MOPS, which is
consistent with prior findings [2, 35].

Figure 7 shows that FarReach increases the throughput of
NoCache by 91%, 55%, 85%, and 72% in the four skewed
workloads A, B, C, and F, respectively, by reducing and bal-
ancing the server-side load with in-switch write-back caching.
FarReach also increases the throughput of NetCache by
84%, 20%, and 61% in workloads A, B, and F, and achieves
similar throughput as NetCache in workload C (which is
read-intensive). In NetCache, the writes of the cached keys
keep invalidating the in-switch write-through cache, espe-
cially in write-intensive workloads A and F, and hence limit
the throughput of NetCache. NetCache only achieves high
throughput in read-intensive workloads B and C. In the non-
skewed workloads Load and D, both FarReach and NetCache
have similar throughput as NoCache due to limited cache hits.
(Exp#2) Latency analysis. We next evaluate the request la-
tencies. We focus on YCSB workload A, which is skewed and
most write-intensive. In particular, we examine the trade-off
between the latency and target throughput (i.e., configured
by a given sending rate) as in prior studies [8, 12, 20]. We

Load A B C D F0

0.5

1

1.5

2

Th
pt

 (M
O

PS
)

NoCache NetCache FarReach

Figure 7: (Exp#1) Throughput
analysis.

0.2 0.4 0.6 0.8
Target Thpt (MOPS)

0
0.25
0.5

0.75
1

A
ve

ra
ge

 L
at

en
cy

 (m
s) NoCache NetCache FarReach

Figure 8: (Exp#2) Latency anal-
ysis.

16 32 64 128
of Simulated Servers

0
5

10
15
20

Th
pt

 (M
O

PS
)

NoCache NetCache FarReach

Figure 9: (Exp#3) Scalability
analysis.

0 25 50 75 100
Write Ratio (%)

0
0.5

1
1.5

2
2.5

Th
pt

 (M
O

PS
)

NoCache NetCache FarReach

Figure 10: (Exp#4) Impact of
write ratio.

only show the average latency results, while the results of
other latency statistics (e.g., medium and 95th-percentile) are
similar and hence omitted for brevity.

Figure 8 shows that all schemes have small average laten-
cies under low target throughput, as the servers do not have
heavy loads and can quickly process requests. FarReach re-
duces the average latencies of NoCache and NetCache by
65% and 72% when the target throughput is 0.8 MOPS, re-
spectively. For high target throughput, both NoCache and
NetCache are bottlenecked by an overloaded server and hence
incur large queuing delays. NetCache has a larger latency
than NoCache, as NetCache needs extra server-side overhead
to update the in-switch write-through cache for the write re-
quests. FarReach effectively reduces and balances the server-
side load and hence achieves a small latency. Note that No-
Cache and NetCache show larger confidence intervals than
FarReach, especially for high target throughput. The reason
is that the server-side queuing latency can vary significantly
for highly overloaded bottleneck server across different runs,
while FarReach maintains a low latency due to load balancing.

(Exp#3) Scalability analysis. We evaluate the scalability of
different schemes by varying the number of simulated servers.
We focus on YCSB workload A. Figure 9 shows that the
throughput gains of FarReach are 1.9×, 2.5×, 3.9×, and 6.6×
those of NoCache and NetCache (both of which have very sim-
ilar throughput) under 16, 32, 64, and 128 servers, respectively.
As the number of simulated servers increases, the throughput
of FarReach also increases due to load balancing across all
servers, while the throughput of both NoCache and NetCache
is limited by the overloaded servers due to load imbalance.
Our results show that FarReach scales to a large number of
servers under skewed write-intensive workloads.

5.3 Performance under Synthetic Workloads
We generate different synthetic workloads with YCSB for
varying write ratios (over all reads and writes), key distribu-
tions, value sizes, key popularities. By default, we generate
requests with 16-byte keys and 128-byte values, where the
keys follow the Zipf distribution with the Zipfian constant
0.99, and set the write ratio as 100% (i.e., write-only requests).

(Exp#4) Impact of write ratio. We first vary the write ratio
of the synthetic workload to evaluate the throughput of dif-
ferent schemes. Figure 10 shows that FarReach increases the
throughput of NoCache by 67-135% for different write ratios,

Uniform 0.9 0.95 0.99
Key Distribution

0
0.5

1
1.5

2
2.5

Th
pt

 (M
O

PS
)

NoCache NetCache FarReach

Figure 11: (Exp#5) Impact of
key distribution.

16 32 64 128
Value Size (Bytes)

0
0.5

1
1.5

2
2.5

Th
pt

 (M
O

PS
)

NoCache NetCache FarReach

Figure 12: (Exp#6) Impact of
value size.

due to load balancing in FarReach. FarReach achieves similar
throughput as NetCache when the write ratio is zero (i.e., read-
only requests), while increasing the throughput of NetCache
by 48-186% as the write ratio ranges from 25% to 100%. The
throughput gain of FarReach over NoCache and NetCache is
the highest when the write ratio is 100% through in-switch
write-back caching. Note that NetCache has slightly smaller
throughput than NoCache, especially under the write ratio of
100%, due to the extra server-side overhead to maintain cache
coherence for write requests.

(Exp#5) Impact of key distribution. We next consider syn-
thetic workloads under the uniform key distribution as well
as the Zipfian key distributions with different Zipf constants.
Figure 11 shows that all schemes achieve similar throughput
of ≈1 MOPS under the uniform key distribution, as most re-
quests are from the uncached keys and will be processed by
the servers, so FarReach cannot benefit from in-switch write-
back caching. For the skewed workloads, FarReach increases
the throughput of NoCache by 34-135% and that of NetCache
by 50-186%. The throughput gain of FarReach is higher when
the workload is more skewed (i.e., a larger Zipfian constant),
as NoCache and NetCache becomes more imbalanced.

(Exp#6) Impact of value size. We further vary the value
size of the synthetic workload from 16 bytes to 128 bytes
(while the key size remains 16 bytes); note that the number
of records that can be cached in both NetCache and FarReach
(i.e., 10,000 records) remains unchanged. Figure 12 shows
that the throughput gains of FarReach over NoCache and Net-
Cache remain almost the same at 2.33× across different value
sizes, as the caching behavior of FarReach mainly depends
on the key distribution.

We also evaluate all schemes when the value size in-
creases to 256 bytes (i.e., exceeding the maximum value size
of 128 bytes). All schemes achieve similar throughput of
≈0.7 MOPS (not shown in a figure), as both NetCache and

Static Hot-in Hot-out Random0

0.1

0.2

0.3

Th
pt

 (M
O

PS
)

NoCache NetCache FarReach

0 2.5 5 7.5 10
Snapshot Period (s)

0

0.1

0.2

0.3

Th
pt

 (M
O

PS
)

Hot-in Hot-out Random

0 2.5 5 7.5 10
Snapshot Period (s)

0
0.5

1
1.5

2

B
an

dw
id

th
 (M

iB
/s

) Hot-in Hot-out Random

100 1000 10000
Cache Size (Records)

0

0.5

1

1.5

2

Ti
m

e
(s

)

Server In-switch Cache

Figure 13: (Exp#7) Impact of
key popularity changes.

Figure 14: (Exp#8) Performance of snapshot generation, in terms
of throughput (left) and control-plane bandwidth (right).

Figure 15: (Exp#9) Crash recov-
ery time.

FarReach directly forward all records to the servers and have
similar behavior as NoCache.

(Exp#7) Impact of key popularity changes. Finally, we con-
sider dynamic key popularity patterns, in which the access
frequency of a specific key may change over time, while the
previous experiments thus far focus on a static key popu-
larity pattern. We consider three dynamic patterns as used
in prior work [20, 27]: (i) hot-in, which periodically moves
the 200 coldest keys to the highest key popularity ranks and
decreases the ranks of other keys accordingly; (ii) hot-out,
which periodically moves the 200 hottest keys to the lowest
key popularity ranks and increases the ranks of other keys
accordingly; and (iii) random, which randomly replaces 200
keys of the top 10,000 hottest keys with coldest keys. As the
dynamic patterns will trigger cache management decisions
and hence change the system state, we cannot simulate multi-
ple servers by server rotations as in prior experiments. Instead,
we evaluate the performance on the two physical servers, each
of which runs a RocksDB instance. For each dynamic pattern,
we run each scheme for 70 s, and change the key popularity
ranks based on each dynamic pattern every 10 s. We mea-
sure the instantaneous throughput every 1 s, and evaluate the
average throughput over the entire 70 s.

Figure 13 shows that FarReach increases the average
throughput of NoCache and NetCache by at least 59% under
different dynamic patterns. We also run each scheme for 70 s
without any key popularity change (i.e, static), and FarReach
has similar throughput gains as in the dynamic patterns. The
reason is that FarReach quickly reacts to the key popularity
changes (typically within 1 s from our measurement), so it
maintains the cache hit rate and hence the average throughput.
Note that the throughput is smaller than that in prior exper-
iments as we now use fewer servers, yet our emphasis here
is to examine the adaptiveness of FarReach to key popularity
changes rather than the absolute performance.

5.4 Snapshot Generation and Crash Recovery
(Exp#8) Performance of snapshot generation. We vary the
period of snapshot generation to evaluate the throughput and
control-plane bandwidth of FarReach on synthetic workloads.
We focus on the results under dynamic patterns, in which
the bandwidth costs of both snapshot generation and cache
management are included, while we observe similar results
under the static pattern and they are omitted for brevity.

Figure 14 shows both the throughput and control-plane
bandwidth of FarReach versus the snapshot period; note that if
the snapshot period is zero, it means that snapshot generation
is disabled. FarReach keeps its throughput at about 0.2 MOPS
for various snapshot periods under different dynamic patterns,
implying that snapshot generation has a limited impact on
throughput.

When snapshot generation is disabled (i.e., the snapshot
period is zero), FarReach only incurs about 0.03 MiB/s of
control-plane bandwidth, since it only triggers cache man-
agement decisions for new hot records and avoids sending
duplicate records to the controller (§3.2). When snapshot gen-
eration is enabled and as the snapshot period increases from
2.5 s to 10 s, the control-plane bandwidth of FarReach de-
creases from 1.41 MiB/s to 0.33 MiB/s. Note that the control-
plane bandwidth of FarReach is far smaller than the maximum
bandwidth of the controller (i.e., 40 Gbps).

(Exp#9) Crash recovery time. We evaluate the crash recov-
ery time of FarReach under a switch failure for various in-
switch cache sizes. Specifically, for a given in-switch cache
size, we first run the synthetic workload under the static pat-
tern with 16 servers simulated by server rotations. We man-
ually kill the in-switch cache and the switch OS to mimic a
switch failure. We then trigger zero-loss crash recovery (§3.4),
which applies a replay-based approach to update the servers
and recover the in-switch cache. For multiple servers, we
take the average time of updating a server as the server-side
recovery time.

Figure 15 shows that the time of updating a server in
FarReach stays at about 1 s as the cache size increases, as
FarReach only replays a limited number of writes partitioned
in each server, while taking the majority of time to collect
client-side preserved records and control-plane in-switch
snapshot. The time to recover the in-switch cache in FarReach
increases from 1 s to 1.35 s as the cache size increases from
100 records to 10,000 records, as FarReach needs to admit
more records from the latest snapshot under a larger cache
size. Overall, the crash recovery time is within 2.35 s for
various in-switch cache sizes.

5.5 Switch Deployment

(Exp#10) Switch resource usage. We compile the three
schemes into the same Tofino switch chipset [39] to eval-
uate the switch resource usage. We focus on the following

Table 2: (Exp#10) Switch resource usage (percentages in brackets
are fractions of total resource usage).

SRAM (KiB) # stages # actions # ALUs PHV size (bytes)

NoCache 320 (2.08%) 4 (33.33%) 6 (nil) 0 (0%) 134 (17.45%)

NetCache 8800 (57.29%) 12 (100%) 69 (nil) 45 (93.75%) 528 (68.75%)

FarReach 8992 (58.54%) 12 (100%) 70 (nil) 45 (93.75%) 499 (64.97%)

metrics: SRAM consumption (with up to 768 KiB for stateful
information and 512 KiB for match-action tables per stage),
the numbers of stages (12 stages in total), actions, and ALUs
(at most 4 stateful ALUs per stage) for in-switch computation,
and the packet header vector (PHV) size (768 bytes in total)
for cross-stage communication.

Table 2 shows the results. NoCache has the smallest hard-
ware resource usage, as it only needs to support basic network
functions (e.g., L2/L3 forwarding). NetCache and FarReach
have similar switch resource usage, as both of them deploy
an in-switch cache that consumes SRAM to track stateful in-
formation (e.g., key-value records and cache metadata). Also,
both schemes maintain SRAM-based match-action tables,
exploit the stages, actions, and ALUs to perform in-switch
computations (e.g., cache lookups and updates), and use the
PHV size to transmit each request across different stages.

6 Related Work
In-switch caching and storage management. Several
in-switch caching designs have been proposed for high-
performance storage. SwitchKV [27] caches hot keys in a
software switch, which forwards the reads of cached keys to
the in-memory cache nodes, instead of servers, for accessing
the values. IncBricks [28] caches records in general-purpose
network accelerators and implements packet parsing in pro-
grammable switches to serve the reads of cached keys. Net-
Cache [20] implements a packet processing pipeline for an
in-switch read cache based on switch ASICs. DistCache [29]
implements distributed in-network caching across multiple
racks. The above studies target only read-intensive work-
loads with write-through caching, which incurs significant
overhead under write-intensive workloads (§5). PKache [15]
implements in-switch caching with limited associativity and
provides a general framework with different cache manage-
ment policies, yet it does not address write-back caching.

Aside from caching, some studies use programmable
switches for efficient storage management. AppSwitch [9] of-
floads hash-based routing to software switches, and its control
plane dynamically updates the routing rules based on server
loads for load balancing. NetChain [19] stores records in pro-
grammable switches for the coordination of the switch-based
chain replication model. TurboKV [13] and Pegasus [26]
keep in-switch directory information to speed up the repli-
cation protocol of in-memory key-value stores. Concordia
[40] tracks the locations of host-side cache copies in pro-
grammable switches for efficient cache coherence. Mind [24]
maintains in-switch memory management (e.g., address trans-

lation and cache coherence) for efficient and transparent rack-
scale memory disaggregation. Such systems do not consider
in-switch caching for server-side key-value storage.

Write-back caching. Prior studies propose write-back
caching policies. DEFER [32] improves the reliability of
write-back caching by replication and logging. FlashTier [38]
deploys a write-back flash cache and ensures consistency by
storing both cached data and mapping details durably in flash.
Some studies propose write-back caching policies with differ-
ent reliability guarantees. Examples include: (i) ordered and
journaled policies [23] that provide point-in-time consistency,
(ii) write-back flush and persist policies [36] that use write bar-
riers for durable and consistent caching, and (iii) client-side
buffered write policies [16] that ensure durability by replica-
tion with read-after-write consistency guarantees. However,
programmable switches have restricted programming require-
ments and limited hardware resources for implementing such
policies. How to enable new write-back caching policies with
stronger reliability guarantees is our future work.

7 Conclusion
FarReach is a fast, available, and reliable in-switch write-back
caching framework for load-balanced key-value stores in mod-
ern data centers under skewed write-intensive workloads. It
incorporates new co-designs of control and data planes for
cache admission and eviction under a write-back policy. In
particular, FarReach pays special attention to crash-consistent
snapshot generation and zero-loss crash recovery, so as to
protect against data loss under switch failures. Evaluation
under YCSB and synthetic workloads demonstrates the per-
formance benefits of FarReach under skewed write-intensive
workloads.

Acknowledgements
We thank our shepherd, Alberto Lerner, and the anonymous
reviewers for their comments. This work was supported by
Key-Area Research and Development Program of Guang-
dong Province 2020B0101390001, Joint Funds of the Na-
tional Natural Science Foundation of China (U20A20179),
National Natural Science Foundation of China (62172007),
and Natural Science Foundation of Fujian Province of China
(2021J05002). Qun Huang is the corresponding author.

References
[1] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song

Jiang, and Mike Paleczny. Workload analysis of a large-
scale key-value store. In Proc. of ACM SIGMETRICS,
2012.

[2] Oana Balmau, Diego Didona, Rachid Guerraoui, Willy
Zwaenepoel, Huapeng Yuan, Aashray Arora, Karan
Gupta, and Pavan Konka. TRIAD: Creating synergies
between memory, disk and log in log structured key-
value stores. In Proc. of USENIX ATC, 2017.

[3] Burton H Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
13(7):422–426, 1970.

[4] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick
McKeown, Jennifer Rexford, Cole Schlesinger, Dan
Talayco, Amin Vahdat, George Varghese, et al. P4:
programming protocol-independent packet processors.
ACM SIGCOMM Computer Communication Review,
44(3):87–95, 2014.

[5] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Vargh-
ese, Nick McKeown, Martin Izzard, Fernando Mujica,
and Mark Horowitz. Forwarding metamorphosis: fast
programmable match-action processing in hardware for
SDN. In Proc. of ACM SIGCOMM, 2013.

[6] Zhichao Cao, Siying Dong, Sagar Vemuri, and David HC
Du. Characterizing, modeling, and benchmarking
RocksDB key-value workloads at facebook. In Proc. of
USENIX FAST, 2020.

[7] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C
Hsieh, Deborah A Wallach, Mike Burrows, Tushar Chan-
dra, Andrew Fikes, and Robert E Gruber. Bigtable: a
distributed storage system for structured data. ACM
Trans. on Computer Systems, 26(2):1–26, 2008.

[8] Yue Cheng, Aayush Gupta, and Ali R Butt. An in-
memory object caching framework with adaptive load
balancing. In Proc. of ACM EuroSys, 2015.

[9] Eyal Cidon, Sean Choi, Sachin Katti, and Nick McK-
eown. AppSwitch: Application-layer load balancing
within a software switch. In Proc. of APNet, 2017.

[10] Graham Cormode and Shan Muthukrishnan. An im-
proved data stream summary: the count-min sketch and
its applications. Journal of Algorithms, 55(1):58–75,
2005.

[11] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: Amazon’s highly avail-
able key-value store. ACM SIGOPS operating systems
review, 41(6):205–220, 2007.

[12] Diego Didona and Willy Zwaenepoel. Size-aware shard-
ing for improving tail latencies in in-memory key-value
stores. In Proc. of USENIX NSDI, pages 79–94, 2019.

[13] Hebatalla Eldakiky, David Hung-Chang Du, and Eman
Ramadan. TurboKV: scaling up the performance of
distributed key-value stores with in-switch coordination.
CoRR, abs/2010.14931, 2020.

[14] Bin Fan, Hyeontaek Lim, David G Andersen, and
Michael Kaminsky. Small cache, big effect: Provable
load balancing for randomly partitioned cluster services.
In Proc. of ACM SOCC, 2011.

[15] Roy Friedman, Or Goaz, and Dor Hovav. Lim-
ited associativity caching in the data plane. CoRR,
abs/2203.04803, 2022.

[16] Shahram Ghandeharizadeh and Hieu Nguyen. Design,
implementation, and evaluation of write-back policy
with cache augmented data stores. Proc. of the VLDB
Endowment, 12(8):836–849, 2019.

[17] Qi Huang, Helga Gudmundsdottir, Ymir Vigfusson,
Daniel A Freedman, Ken Birman, and Robbert van Re-
nesse. Characterizing load imbalance in real-world net-
worked caches. In Proc. of ACM SIGCOMM HotNets
Workshop, 2014.

[18] J-H Hwang, Magdalena Balazinska, Alex Rasin, Ugur
Cetintemel, Michael Stonebraker, and Stan Zdonik.
High-availability algorithms for distributed stream pro-
cessing. In Proc. of IEEE ICDE, 2005.

[19] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster,
Jeongkeun Lee, Robert Soulé, Changhoon Kim, and Ion
Stoica. NetChain: scale-free sub-RTT coordination. In
Proc. of USENIX NSDI, 2018.

[20] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé,
Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion
Stoica. NetCache: balancing key-value stores with fast
in-network caching. In Proc. of ACM SOSP, 2017.

[21] Jaeyeon Jung, Balachander Krishnamurthy, and Michael
Rabinovich. Flash crowds and denial of service attacks:
Characterization and implications for cdns and web sites.
In Proc. of WWW, 2002.

[22] David Karger, Eric Lehman, Tom Leighton, Rina Pani-
grahy, Matthew Levine, and Daniel Lewin. Consistent
hashing and random trees: Distributed caching protocols
for relieving hot spots on the world wide web. In Proc.
of ACM STOC, pages 654–663, 1997.

[23] Ricardo Koller, Leonardo Marmol, Raju Rangaswami,
Swaminathan Sundararaman, Nisha Talagala, and Ming
Zhao. Write policies for host-side flash caches. In Proc.
of USENIX FAST, 2013.

[24] Seung-seob Lee, Yanpeng Yu, Yupeng Tang, Anurag
Khandelwal, Lin Zhong, and Abhishek Bhattacharjee.
Mind: In-network memory management for disaggre-
gated data centers. In Proc. of ACM SOSP, 2021.

[25] LevelDB. https://github.com/google/
leveldb/.

[26] Jialin Li, Jacob Nelson, Ellis Michael, Xin Jin, and Dan
R. K. Ports. Pegasus: tolerating skewed workloads in
distributed storage with in-network coherence directo-
ries. In Proc. of USENIX OSDI, 2020.

[27] Xiaozhou Li, Raghav Sethi, Michael Kaminsky, David G
Andersen, and Michael J Freedman. Be fast, cheap and
in control with SwitchKV. In Proc. of USENIX NSDI,
2016.

https://github.com/google/leveldb/
https://github.com/google/leveldb/

[28] Ming Liu, Liang Luo, Jacob Nelson, Luis Ceze, Arvind
Krishnamurthy, and Kishore Atreya. IncBricks: Toward
in-network computation with an in-network cache. In
Proc. of ACM ASPLOS, 2017.

[29] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li,
Changhoon Kim, Vladimir Braverman, Xin Jin, and Ion
Stoica. DistCache: provable load balancing for large-
scale storage systems with distributed caching. In Proc.
of USENIX FAST, 2019.

[30] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Har-
iharan Gopalakrishnan, Andrea C Arpaci-Dusseau, and
Remzi H Arpaci-Dusseau. WiscKey: separating keys
from values in SSD-conscious storage. ACM Trans. on
Storage, 13(1):1–28, 2017.

[31] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun
Lee, and Minlan Yu. SilkRoad: making stateful layer-4
load balancing fast and cheap using switching ASICs.
In Proc. of ACM SIGCOMM, 2017.

[32] Srivatsan Narasimhan, Sohum Sohoni, and Yiming Hu.
A log-based write-back mechanism for cooperative
caching. In Proc. of IEEE IPDPS, 2003.

[33] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Harry C. Li Herman Lee, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani. Scal-
ing memcache at Facebook. In Proc. of USENIX NSDI,
2013.

[34] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Eliz-
abeth O’Neil. The log-structured merge-tree (LSM-tree).
Acta Informatica, 33(4):351–385, 1996.

[35] Anastasios Papagiannis, Giorgos Saloustros, Pilar
González-Férez, and Angelos Bilas. Tucana: Design and
implementation of a fast and efficient scale-up key-value
store. In Proc. of USENIX ATC, 2016.

[36] Dai Qin, Angela Demke Brown, and Ashvin Goel. Reli-
able writeback for client-side flash caches. In Proc. of
USENIX ATC, 2014.

[37] RocksDB. https://github.com/facebook/
rocksdb/.

[38] Mohit Saxena, Michael M Swift, and Yiying Zhang.
Flashtier: a lightweight, consistent and durable storage
cache. In Proc. of ACM EuroSys, 2012.

[39] Tofino. https://www.intel.com/content/
www/us/en/products/network-io/
programmable-ethernet-switch/tofino-
series/tofino.html.

[40] Qing Wang, Youyou Lu, Erci Xu, Junru Li, Youmin
Chen, and Jiwu Shu. Concordia: distributed shared
memory with in-network cache coherence. In Proc. of
USENIX FAST, 2021.

[41] Juncheng Yang, Yao Yue, and K. V. Rashmi. A large
scale analysis of hundreds of in-memory cache clusters
at Twitter. In Proc. of USENIX OSDI, 2020.

[42] YCSB. https://github.com/
brianfrankcooper/YCSB/.

https://github.com/facebook/rocksdb/
https://github.com/facebook/rocksdb/
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://github.com/brianfrankcooper/YCSB/
https://github.com/brianfrankcooper/YCSB/

	Introduction
	Background and Motivation
	Programmable Switches
	Challenges

	FarReach Design
	Design Overview
	Non-blocking Cache Admission
	Available Cache Eviction
	Crash-consistent Snapshot Generation
	Discussion

	Implementation
	Control Plane
	Data Plane

	Evaluation
	Methodology
	Performance under YCSB Workloads
	Performance under Synthetic Workloads
	Snapshot Generation and Crash Recovery
	Switch Deployment

	Related Work
	Conclusion

