
Austere Flash Caching with Deduplication and Compression
Qiuping Wang†, Jinhong Li†, Wen Xia‡, Erik Kruus∗, Biplob Debnath∗, and Patrick P. C. Lee†

†The Chinese University of Hong Kong ‡Harbin Institute of Technology, Shenzhen ∗NEC Labs

Abstract
Modern storage systems leverage flash caching to boost I/O
performance, and enhancing the space efficiency and en-
durance of flash caching remains a critical yet challenging
issue in the face of ever-growing data-intensive workloads.
Deduplication and compression are promising data reduc-
tion techniques for storage and I/O savings via the removal
of duplicate content, yet they also incur substantial memory
overhead for index management. We propose AustereCache,
a new flash caching design that aims for memory-efficient
indexing, while preserving the data reduction benefits of dedu-
plication and compression. AustereCache emphasizes austere
cache management and proposes different core techniques for
efficient data organization and cache replacement, so as to
eliminate as much indexing metadata as possible and make
lightweight in-memory index structures viable. Trace-driven
experiments show that our AustereCache prototype saves
69.9-97.0% of memory usage compared to the state-of-the-art
flash caching design that supports deduplication and compres-
sion, while maintaining comparable read hit ratios and write
reduction ratios and achieving high I/O throughput.

1 Introduction
High I/O performance is a critical requirement for modern
data-intensive computing. Many studies (e.g., [1, 6, 9, 11, 20,
21, 24, 26, 31, 34, 35, 37]) propose solid-state drives (SSDs) as
a flash caching layer atop hard-disk drives (HDDs) to boost
performance in a variety of storage architectures, such as
local file systems [1], web caches [20], data centers [9], and
virtualized storage [6]. SSDs offer several attractive features
over HDDs, including high I/O throughput (in both sequential
and random workloads), low power consumption, and high
reliability. In addition, SSDs have been known to incur much
less cost-per-GiB than main memory (DRAM) [27], and such
a significant cost difference still holds today (see Table 1).
On the other hand, SSDs pose unique challenges over HDDs,
as they not only have smaller available capacity, but also
have poor endurance due to wear-out issues. Thus, in order
to support high-performance workloads, caching as many
objects as possible, while mitigating writes to SSDs to avoid
wear-outs, is a paramount concern.

We explore both deduplication and compression as data
reduction techniques for removing duplicate content on the
I/O path, so as to mitigate both storage and I/O costs. Dedu-
plication and compression target different granularities of
data reduction and are complementary to each other: while

Type Brand Cost-Per-GiB ($)
DRAM Crucial DDR4-2400 (16 GiB) 3.75

SSD Intel SSD 545s (512 GiB) 0.24
HDD Seagate BarraCuda (2 TiB) 0.025

Table 1: Cost-per-GiB of DRAM, SSD, and HDD based on
the price quotes in January 2020.

deduplication removes chunk-level duplicates in a coarse-
grained but lightweight manner, compression removes byte-
level duplicates within chunks for further storage savings.
With the ever-increasing growth of data in the wild, dedu-
plication and/or compression have been widely adopted in
primary [18, 23, 36] and backup [40, 42] storage systems. In
particular, recent studies [24, 26, 37] augment flash caching
with deduplication and compression, with emphasis on man-
aging variable-size cached data in large replacement units [24]
or designing new cache replacement algorithms [26, 37].

Despite the data reduction benefits, existing approaches
[24,26,37] of applying deduplication and compression to flash
caching inevitably incur substantial memory overhead due to
expensive index management. Specifically, in conventional
flash caching, we mainly track the logical-to-physical address
mappings for the flash cache. With both deduplication and
compression enabled, we need dedicated index structures to
track: (i) the mappings of each logical address to the physical
address of the non-duplicate chunk in the flash cache after
deduplication and compression, (ii) the cryptographic hashes
(a.k.a. fingerprints (§2.1)) of all stored chunks in the flash
cache for duplicate checking in deduplication, and (iii) the
lengths of all compressed chunks that are of variable size. It
is desirable to keep all such indexing metadata in memory
for high performance, yet doing so aggravates the memory
overhead compared to conventional flash caching. The ad-
ditional memory overhead, which we refer to as memory
amplification, can reach at least 16× (§2.3) and unfortunately
compromise the data reduction effectiveness of deduplication
and compression in flash caching.

In this paper, we propose AustereCache, a memory-
efficient flash caching design that employs deduplication and
compression for storage and I/O savings, while substantially
mitigating the memory overhead of index structures in similar
designs. AustereCache advocates austere cache management
on the data layout and cache replacement policies to limit
the memory amplification due to deduplication and compres-
sion. It builds on three core techniques: (i) bucketization,
which achieves lightweight address mappings by determinis-



tically mapping chunks into fixed-size buckets; (ii) fixed-size
compressed data management, which avoids tracking chunk
lengths in memory by organizing variable-size compressed
chunks as fixed-size subchunks; and (iii) bucket-based cache
replacement, which performs memory-efficient cache replace-
ment on a per-bucket basis and leverages a compact sketch
data structure [13] to track deduplication and recency patterns
in limited memory space for cache replacement decisions.

We implement an AustereCache prototype and evaluate
it through testbed experiments using both real-world and
synthetic traces. Compared to CacheDedup [26], a state-of-
the-art flash caching system that also supports deduplication
and compression, AustereCache uses 69.9-97.0% less mem-
ory than CacheDedup, while maintaining comparable read
hit ratios and write reduction ratios (i.e., it maintains the I/O
performance gains through flash caching backed by dedupli-
cation and compression). In addition, AustereCache incurs
limited CPU overhead on the I/O path, and can further boost
I/O throughput via multi-threading.

The source code of our AustereCache prototype is available
at: http://adslab.cse.cuhk.edu.hk/software/austerecache.

2 Background
We first provide deduplication and compression background
(§2.1). We then present a general flash caching architecture
that supports deduplication and compression (§2.2), and show
how such an architecture incurs huge memory amplification
(§2.3). We finally argue that state-of-the-art designs are lim-
ited in mitigating the memory amplification issue (§2.4).

2.1 Deduplication and Compression
Deduplication and compression are data reduction techniques
that remove duplicate content at different granularities.

Deduplication. We focus on chunk-based deduplication,
which divides data into non-overlapping data units called
chunks (of size KiB). Each chunk is uniquely identified by a
fingerprint (FP) computed by some cryptographic hash (e.g.,
SHA-1) of the chunk content. If the FPs of two chunks are
identical (or distinct), we treat both chunks as duplicate (or
unique) chunks, since the probability that two distinct chunks
have the same FP is practically negligible. Deduplication
stores only one copy of duplicate chunks (in physical space),
while referring all duplicate chunks (in logical space) to the
copy via small-size pointers. Also, it keeps all mappings of
FPs to physical chunk locations in an index structure used for
duplicate checking and chunk lookups.

Chunk sizes may be fixed or variable. While content-based
variable-size chunking generally achieves high deduplication
savings due to its robustness against content shifts [42], it also
incurs high computational overhead. On the other hand, fixed-
size chunks fit better into flash units and fixed-size chunking
often achieves satisfactory deduplication savings [26]. Thus,
this work focuses on fixed-size chunking.

Compression. Unlike deduplication, which provides coarse-
grained data reduction at the chunk level, compression aims
for fine-grained data reduction at the byte level by trans-
forming data into more compact form. Compression is often
applied to the unique chunks after deduplication, and the out-
put compressed chunks are of variable-size in general. For
high performance, we apply sequential compression (e.g.,
Ziv-Lempel algorithm [43]) that operates on the bytes of each
chunk in a single pass.

2.2 Flash Caching
We focus on building an SSD-based flash cache to boost the
I/O performance of HDD-based primary storage, by storing
the frequently accessed data in the flash cache. Flash caching
has been extensively studied and adopted in different storage
architectures (§7). Existing flash caching designs, which we
collectively refer to as conventional flash caching, mostly
support both write-through and write-back policies for read-
intensive and write-intensive workloads, respectively [22];
the write-back policy is viable for flash caching due to the
persistent nature of SSDs. For write-through, each write is
persisted to both the SSD and the HDD before completion; for
write-back, each write is completed right after it is persisted to
the SSD. To support either policy, conventional flash caching
needs an SSD-HDD translation layer that maps each logical
block address (LBA) in an HDD to a chunk address (CA) in
the flash cache.

In this work, we explore how to augment conventional
flash caching with deduplication and compression to achieve
storage and I/O savings, so as to address the limited capacity
and wear-out issues in SSDs. Figure 1 shows the architecture
of a general flash caching system that deploys deduplication
and compression. We introduce two index structures: (i)
LBA-index, which tracks how each LBA is mapped to the
FP of a chunk (the mappings are many-to-one as multiple
LBAs may refer to the same FP), and (ii) FP-index, which
tracks how each FP is mapped to the CA and the length of a
compressed chunk (the mappings are one-to-one). Thus, each
cache lookup triggers two index lookups: it finds the FP of an
LBA via the LBA-index, and then uses the FP to find the CA
and the length of a compressed chunk via the FP-index. We
also maintain a dirty list to track the list of LBAs of recent
writes in write-back mode.

We now elaborate the I/O workflows of the flash caching
system in Figure 1. For each write, the system partitions the
written data into fixed-size chunks, followed by deduplication
and compression: it first checks if each chunk is a duplicate;
if not, it further compresses the chunk and writes the com-
pressed chunk to the SSD (the compressed chunks can be
packed into large-size units for better flash performance and
endurance [24]). It updates the entries in both the LBA-index
and the FP-index accordingly based on the FP of the chunk;
in write-through mode, it also stores the fixed-size chunk
in the HDD in uncompressed form. For each read, the sys-

http://adslab.cse.cuhk.edu.hk/software/austerecache


SSD

Chunking

I/O

Deduplication 
and compression

LBA à FP

FP à CA, length

FP-index

LBA-index

RAM

HDD

…

Dirty list

Variable-size 
compressed chunks 
(after deduplication)

Fixed-size 
chunks

LBA, CA
LBA, CA

Read/write

Figure 1: Architecture of a general flash caching system with
deduplication and compression.

tem checks if the LBA is mapped to any existing CA via the
lookups to both the LBA-index and the FP-index. If so (i.e.,
cache hit), the system decompresses and returns the chunk
data; otherwise (i.e., cache miss), it fetches the chunk data
from the HDD into the SSD, while it applies deduplication
and compression to the chunk data as in a write.

2.3 Memory Amplification
While deduplication and compression intuitively reduce stor-
age and I/O costs in flash caching by eliminating redundant
content on the I/O path, both techniques inevitably incur
significant memory costs for their index management. Specif-
ically, if both index structures are entirely stored in memory
for high performance, the memory usage is significant and
much higher than that in conventional flash caching; we refer
to such an issue as memory amplification (over conventional
flash caching), which can negate the data reduction benefits
of deduplication and compression.

We argue this issue through a simple analysis on the fol-
lowing configuration. Suppose that we deploy a 512 GiB
SSD as a flash cache atop an HDD that has a working set of
4 TiB. Both the SSD and the HDD have 64-bit address space.
For deduplication, we fix the chunk size as 32 KiB and use
SHA-1 (20 bytes) for FPs. We also use 4 bytes to record the
compressed chunk length. In the worst case, the LBA-index
keeps 4 TiB / 32 KiB = 128×220 (LBA, FP) pairs, account-
ing for a total of 3.5 GiB (each pair comprises an 8-byte LBA
and a 20-byte FP). The FP-index keeps 512 GiB / 32 KiB =
16× 220 (FP, CA) pairs, accounting for a total of 512 MiB
(each pair comprises a 20-byte FP, an 8-byte CA, and a 4-byte
length). The total memory usage of both the LBA-index and
the FP-index is 4 GiB. In contrast, conventional flash caching
only needs to index 16×220 (LBA, CA) pairs and the mem-
ory usage is 256 MiB. This implies that flash caching with
deduplication and compression amplifies the memory usage
by 16×. If we use a more collision-resistant hash function,
the memory amplification is even higher; for example, it be-
comes 22.75× if each FP is formed by SHA-256 (32 bytes).

Note that our analysis does not consider other metadata for
deduplication and compression (e.g., reference counts for
deduplication), which further aggravates memory amplifica-
tion over conventional flash caching.

In addition to memory amplification, deduplication and
compression also add CPU overhead to the I/O path. Such
overhead comes from: (i) the FP computation of each chunk,
(ii) the compression of each chunk, and (iii) the lookups to
both the LBA-index and the FP-index.

2.4 State-of-the-Art Flash Caches
We review two state-of-the-art flash caching designs, Ni-
tro [24] and CacheDedup [26], both of which support dedu-
plication and compression. We argue that both designs are
still susceptible to memory amplification.
Nitro [24]. Nitro is the first flash cache that deploys dedupli-
cation and compression. To manage variable-size compressed
chunks (a.k.a. extents [24]), Nitro packs them in large data
units called Write-Evict Units (WEUs), which serve as the ba-
sic units for cache replacement. The WEU size is set to align
with the flash erasure block size for efficient garbage collec-
tion. When the cache is full, Nitro evicts a WEU based on the
least-recently-used (LRU) policy. It manages index structures
in DRAM (or NVRAM for persistence) to track all chunks
in WEUs. If the memory capacity is limited, Nitro stores a
partial FP-index in memory, at the expense that deduplication
may miss detecting and removing some duplicates.

In addition to the memory amplification issue, organizing
the chunks by WEUs may cause a WEU to include stale
chunks, which are not referenced by any LBA in the LBA-
index as their original LBAs may have been updated. Such
stale chunks cannot be recycled immediately if their hosted
WEUs also contain other valid chunks that are recently ac-
cessed due to the LRU policy, but instead occupy the cache
space and degrade the cache hit ratio.
CacheDedup [26]. CacheDedup focuses on cache replace-
ment algorithms that reduce the number of orphaned entries,
which refer to either the LBAs that are in the LBA-index but
have no corresponding FPs in the FP-index, or the FPs that
are in the FP-index but are not referenced by any LBA. It pro-
poses two deduplication-aware cache replacement policies,
namely D-LRU and D-ARC, which augment the LRU and
adaptive cache replacement (ARC) [29] policies, respectively.
It also proposes a compression-enabled variant of D-ARC,
called CD-ARC, which manages variable-size compressed
chunks in WEUs as in Nitro [24]; note that CD-ARC suffers
from the same stale-chunk issue as described above. CacheD-
edup maintains the same index structures as shown in Figure 1
(§2.2), in which the LBA-index stores LBAs to FPs, and the
FP-index stores FPs to CAs and compressed chunk lengths. If
it keeps both the LBA-index and the FP-index in memory for
performance concerns, it still suffers from the same memory
amplification issue. A follow-up work CDAC [37] improves
the cache replacement of CacheDedup by incorporating ref-



Bucket
LBA-index

SSD

LBA-hash prefix FP hash Flag

…

FP-index

…

RAM

…… … …

Bucket 

Metadata
region

… … …
…

Data
region

FP-hash prefix Flag

FP List of LBAs

slot slot

Bucket Bucket 
slotslot

… …

Chunk

Figure 2: Bucketized data layouts of AustereCache in the
LBA-index, the FP-index, as well as the metadata and data
regions in flash.

erence counts and access patterns, but incurs even higher
memory overhead for maintaining additional information.

3 AustereCache Design
AustereCache is a new flash caching design that leverages
deduplication and compression to achieve storage and I/O
savings as in prior work [24,26,37], but puts specific emphasis
on reducing the memory usage for indexing. It aims for
austere cache management via three key techniques.
• Bucketization (§3.1). To eliminate the overhead of main-

taining address mappings in both the LBA-index and the
FP-index, we leverage deterministic hashing to associate
chunks with storage locations. Specifically, we hash index
entries into equal-size partitions (called buckets), each of
which keeps the partial LBAs and FPs for memory savings.
Based on the bucket locations, we further map chunks into
the cache space.

• Fixed-size compressed data management (§3.2). To
avoid tracking chunk lengths in the FP-index, we treat
variable-size compressed chunks as fixed-size units. Specif-
ically, we divide variable-size compressed chunks into
smaller fixed-size subchunks and manage the subchunks
without recording the compressed chunk lengths.
• Bucket-based cache replacement (§3.3). To increase the

likelihood of cache hits, we propose cache replacement on
a per-bucket basis. In particular, we incorporate recency
and deduplication awareness based on reference counts
(i.e., the counts of duplicate copies referencing each unique
chunk) for effective cache replacement. However, tracking
reference counts incurs non-negligible memory overhead.
Thus, we leverage a fixed-size compact sketch data struc-
ture [13] for reference count estimation in limited memory
space with bounded errors.

3.1 Bucketization
Figure 2 shows the bucketized data layouts of AustereCache
in both index structures and the flash cache space. We now

do not consider compression, which we address in §3.2.
AustereCache partitions both the LBA-index and the FP-

index into equal-size buckets composed of a fixed number of
equal-size slots. Each slot corresponds to an LBA and an FP
in the LBA-index and the FP-index, respectively. In addition,
AustereCache divides the flash cache space into a metadata
region and a data region that store metadata information and
cached chunks, respectively; each region is again partitioned
into buckets with multiple slots. Note that both regions are
allocated the same numbers of buckets and slots as in the
FP-index, such that each slot in the FP-index is a one-to-one
mapping to the same slots in the metadata and data regions.

To reduce memory usage, each slot stores only the prefix
of a key, rather than the full key. AustereCache first computes
the hashes of both the LBA and the FP, namely LBA-hash and
FP-hash, respectively. It stores the prefix bits of the LBA-
hash and the FP-hash as the primary keys in one of the slots
of a bucket in the LBA-index and the FP-index, respectively.
Keeping only partial keys leads to hash collisions for different
LBAs and FPs. To resolve hash collisions, AustereCache
maintains the full LBA and FP information in the metadata
region in flash, and any hash collision only leads to a cache
miss without data loss. Also, by choosing proper prefix sizes,
the collision rate should be low. AustereCache currently fixes
128 slots per bucket, mainly for efficient cache replacement
(§3.3). For 16-bit prefixes as primary keys, the hash collision
rate is only 1− (1− 1

216 )
128 ≈ 0.2%, which is sufficiently low.

Write path. To write a unique chunk identified by an
(LBA, FP) pair to the flash cache, AustereCache updates both
the LBA-index and the FP-index as follows. For the LBA-
index, it uses the suffix bits of the LBA-hash to identify the
bucket (e.g., for 2k buckets, we check the k-bit suffix). It scans
all slots in the corresponding bucket to see if the LBA-hash
prefix has already been stored; otherwise, it stores the entry
in an empty slot or evicts the least-recently-accessed slot if
the bucket is full (see cache replacement in §3.3). It writes
the following to the slot: the LBA-hash prefix (primary key),
the FP-hash, and a valid flag that indicates if the slot stores
valid data. Similarly, for the FP-index, it identifies the bucket
and the slot using the FP-hash, and writes the FP-hash prefix
(primary key) and the valid flag to the corresponding slot.

Based on the bucket and slot locations in the FP-index,
AustereCache identifies the corresponding buckets and slots
in the metadata and data regions of the flash cache. For
the metadata region, it stores the complete FP and the list of
LBAs; note that the same FP may be shared by multiple LBAs
due to deduplication. We now fix the slot size as 512 bytes. If
the slot is full and cannot store more LBAs, we evict the oldest
LBA using FIFO to accommodate the new one. For the data
region, AustereCache stores the chunk in the corresponding
slot, which is also the CA.
Deduplication path. To perform deduplication on a written
chunk identified by an (LBA, FP) pair, AustereCache first
identifies the bucket of the FP-index using the suffix bits of



the FP-hash, and then searches for any slot that matches the
same FP-hash prefix. If a slot is found, AustereCache checks
the corresponding slot in the metadata region in flash and
verifies if the input FP matches the one in the slot. If so,
it means that a duplicate chunk is found, so AustereCache
appends the LBA to the LBA list if the LBA does not exist be-
fore; otherwise, it implies an FP-hash prefix collision. When
such a collision occurs, AustereCache invalidates the collided
FP in the metadata region in flash and writes the chunk as
described above (recall that the collision is unlikely from our
calculation).

Read path. To read a chunk identified by an LBA, Austere-
Cache first queries the LBA-index for the FP-hash using the
LBA-hash prefix, followed by querying the FP-index for the
slot that contains the FP-hash prefix. It then checks the cor-
responding slot of the metadata region in flash if an LBA is
found in the LBA list. If so, the read is a cache hit and Aus-
tereCache returns the chunk from the data region; otherwise,
the read is a cache miss and AustereCache accesses the chunk
in the HDD via the LBA.

Analysis. We show via a simple analysis that the bucketiza-
tion design of AustereCache has low memory usage. Suppose
that we use a 512 GiB SSD as the flash cache with a 4 TiB
working set of an HDD. We fix the chunk size as 32 KiB.
Since each bucket has 128 slots, the LBA-index needs at most
220 buckets to reference all chunks in the HDD, while the
FP-index needs at most 217 buckets to reference all chunks in
the SSD. In addition, we store the first 16 prefix bits of both
the LBA-hash and the FP-hash as the partial keys in the LBA-
index and the FP-index, respectively. Since we use suffix bits
to identify a bucket, we need 20 and 17 suffix bits to identify
a bucket in the LBA-index and the FP-index, respectively.
Thus, we configure an LBA-hash with 16+20 = 36 bits and
an FP-hash with 16+17 = 33 bits.

We now compute the memory usage of each index structure,
to which we apply bit packing for memory efficiency. For the
LBA-index, each slot consumes 50 bits (i.e., a 16-bit LBA-
hash prefix, a 33-bit FP-hash, and a 1-bit valid flag), so the
memory usage of the LBA-index is 220×128×50 (bits) =
800 MiB. For the FP-index, each slot consumes 17 bits (i.e.,
a 16-bit FP-hash prefix and a 1-bit valid flag), so the memory
usage of the FP-index is 217 × 128× 17 (bits) = 34 MiB.
The total memory usage of both index structures is 834 MiB,
which is only around 20% of the 4 GiB memory space in
the baseline (§2.3). While we do not consider compression,
we emphasize that even with compression enabled, the index
structures incur no extra overhead (§3.2).

Comparisons with other data structures. We may con-
struct the LBA-index and the FP-index using other data struc-
tures for further memory savings. As an example, we consider
the B+-tree [12], which is a balanced tree structure that orga-
nizes all leaf nodes at the same level. Suppose that we store
index mappings in the leaf nodes that reside in flash, while

the non-leaf nodes are kept in memory for referencing the
leaf nodes. We evaluate the memory usage of the LBA-index
and the FP-index as follows.

Suppose that each leaf node is mapped to a 4 KiB SSD
page. For the LBA-index, each leaf node stores at most
b 4096

8+20c= 146 (LBA, FP) pairs (for an 8-byte LBA and a 20-
byte FP). Referencing each leaf node takes 16 bytes (including
an 8-byte LBA key and an 8-byte pointer). As there are 128×
220 (LBA, FP) pairs, the memory usage of the LBA-index is
128×220

146 ×16 ≈ 14.0 MiB (note that we exclude the memory
usage for referencing non-leaf nodes). For the FP-index, each
leaf node stores at most 4096

20+8+4 = 128 (FP, CA) pairs (for a
20-byte FP, an 8-byte CA, and a 4-byte length). Referencing
each leaf node takes 28 bytes (including a 20-byte FP key
and an 8-byte pointer). As there are 16×220 (FP, CA) pairs,
the memory usage of the FP-index is 3.5 MiB. Both the LBA-
index and the FP-index incur much less memory usage than
our current bucketization design (see above).

We can further use an in-memory Bloom Filter [8] to query
for the existence of index mappings. For an error rate of
0.1%, each mapping uses 14.4 bits in a Bloom Filter. To
track both 128×220 (LBA, FP) pairs in the LBA-index and
16×220 (FP, CA) pairs in the FP-index, we need an additional
memory usage of 259.2 MiB.

We can conduct similar analyses for other data structures.
For example, for the LSM-tree [32], we can maintain an in-
memory structure to reference the on-disk LSM-tree nodes
(a.k.a. SSTables [33]) that store the index mappings for the
LBA-index and the FP-index. Then we can accordingly com-
pute the memory usage for the LBA-index and the FP-index.

Even though these data structures support memory-efficient
indexing, they incur additional flash access overhead. First,
using B+-trees or LSM-trees for both the LBA-index and the
FP-index incurs two flash accesses (one for each index struc-
ture) for indexing each chunk, while AustereCache issues
only one flash access in the metadata region. Also, both the
B+-tree and the LSM-tree have high write amplification [33]
that degrades I/O performance. For these reasons, and per-
haps more importantly, the synergies with compressed data
management and cache replacement (see the following sub-
sections), we settle on our proposed bucketized index design.

3.2 Fixed-Size Compressed Data Management
AustereCache can compress each unique chunk after dedupli-
cation for further space savings. To avoid tracking the length
of the compressed chunk (which is of variable-size) in the
index structures, AustereCache slices a compressed chunk
into fixed-size subchunks, while the last subchunk is padded
to fill a subchunk size. For example, for a subchunk size of
8 KiB, we store a compressed chunk of size 15 KiB as two
subchunks, with the last subchunk being padded.

AustereCache allocates the same number of consecutive
slots as that of subchunks in the FP-index (and hence the
metadata and data regions in flash) to organize all subchunks



FP-index

……

SSD
RAM

… …

FP List of LBAs Length

FP-hash prefix Flag

……

Chunk

Bucket

Metadata Region Data Region
Subchunk

Figure 3: Fixed-size compressed data management, in which
multiple consecutive slots are used for handling multiple
fixed-size subchunks of a compressed chunk.

of a compressed chunk; note that the LBA-index remains
unchanged, and each of its slots still references a chunk. Fig-
ure 3 shows an example in which a chunk is stored as two
subchunks. For the FP-index, each of the two slots stores the
corresponding FP-hash prefix, with an additional 1-bit valid
flag indicating that the slot stores valid data. For the metadata
region, it also allocates two slots, in which the first slot stores
not only the full FP and the list of LBAs (§3.1), but also the
length of the compressed chunk, while the second slot can
be left empty to avoid redundant flash writes. For the data
region, it allocates two slots for storing the two subchunks.
Note that our design incurs no memory overhead for tracking
the length of the compressed chunk in any index structure.

The read/write workflows with compression are similar to
those without compression (§3.1), except that AustereCache
now finds consecutive slots in the FP-index for the multiple
subchunks of a compressed chunk. Note that we still keep
128 slots per bucket. However, since each slot now corre-
sponds to a smaller-size subchunk, we need to allocate more
buckets in the FP-index as well as the metadata and data
regions in flash (the number of buckets in the LBA-index
remains unchanged since each slot in the LBA-index still
references a chunk). As we allocate more buckets for the
FP-index, the memory usage also increases. Nevertheless,
AustereCache still achieves memory savings for varying sub-
chunk sizes (§5.4).

3.3 Bucket-Based Cache Replacement

Implementing cache replacement often requires priority-
based data structures that decide which cached items should
be kept or evicted, yet such data structures incur additional
memory overhead. AustereCache opts to implement per-
bucket cache replacement, i.e., the cache replacement deci-
sions are based on only the entries within each bucket. It then
implements specific cache replacement policies that incur no
or limited additional memory overhead. Since each bucket is
now configured with 128 slots, making the cache replacement
decisions also incurs limited performance overhead.

Slot

…

LBA-index

Slot

…

…

2
3

Reference
Counter

Old
…

…

…

FP-index

…

Recent

Figure 4: Cache replacement in the FP-index. When a bucket
in the FP-index is full, the slot with the least reference counts
(e.g. the slot with reference count 2) will be evicted.

For the LBA-index, AustereCache implements a bucket-
based least-recently-used (LRU) policy. Specifically, each
bucket sorts all slots by the recency of their LBAs, such that
the slots at the lower offsets correspond to the more recently
accessed LBAs (and vice versa). When the slot of an existing
LBA is accessed, AustereCache shifts all slots at lower offsets
than the accessed slot by one, and moves the accessed slot to
the lowest offset. When a new LBA is inserted, AustereCache
stores the new LBA in the slot at the lowest offset and shifts
all other slots by one; if the bucket is full, the slot at the
highest offset (i.e., the least-recently-accessed slot) is evicted.
Such a design does not incur any extra memory overhead for
maintaining the recency information of all slots.

For the FP-index, as well as the metadata and data regions
in flash, we incorporate both deduplication and recency aware-
ness into cache replacement. First, to incorporate deduplica-
tion awareness, AustereCache tracks the reference count for
each FP-hash (i.e., the number of LBAs that share the same
FP-hash). For each LBA being added to (resp. deleted from)
the LBA-index, AustereCache increments (resp. decrements)
the reference count of the corresponding FP-hash. When in-
serting a new FP to a full bucket, it evicts the slot that has
the lowest reference count among all the slots in the same
bucket. It also invalidates the corresponding slots in both the
metadata and data regions in flash.

Simple reference counting does not address recency. To
also incorporate recency awareness, AustereCache divides
each LBA bucket into recent slots at lower offsets and old
slots at higher offsets (now being divided evenly by half), as
shown in Figure 4. Each LBA in the recent (resp. old) slots
contributes to a count of two (resp. one) to the reference count-
ing. Specifically, each newly inserted LBA is stored in the
recent slot at the lowest offset in the LBA-index (see above),
so AustereCache increments the reference count of the cor-
responding FP-hash by two. If an LBA is demoted from a
recent slot to an old slot or is evicted from the LBA-index,
AustereCache decrements the reference count of the corre-
sponding FP-hash by one; similarly, if an LBA is promoted
from an old slot to a recent slot, AustereCache increments the
reference count of the corresponding FP-hash by one.



Maintaining reference counts for all FP-hashes, however,
incurs non-negligible memory overhead. AustereCache ad-
dresses this issue by maintaining a Count-Min Sketch [13]
to track the reference counts in a fixed-size compact data
structure with bounded errors. A Count-Min Sketch is a two-
dimensional counter array with r rows of w counters each
(where r and w are configurable parameters). It maps each
FP-hash (via an independent hash function) to one of the w
counters in each of the r rows, and increments or decrements
the mapped counters based on our reference counting mecha-
nism. AustereCache can estimate the reference count of an
FP-hash using the minimum value of all mapped counters of
the FP-hash. Depending on the values of r and w, the error
bounds can be theoretically proven [13].

Currently, our implementation fixes r = 4 and w equal to
the total number of slots in the LBA-index. We justify via a
simple analysis that sketch-based reference counting achieves
significant memory savings. Referring to the analysis in §3.1,
each FP-hash has 33 bits. If we track the reference counts of
all FP-hashes, we need 233 counters. On the other hand, if we
use a Count-Min sketch, we set r = 4 and w = 227 (the total
number of slots in the LBA-index), so there are r×w = 229

counters, which consume only 1/16 of the memory usage of
tracking all FP-hashes.

Our bucket-based cache replacement design works at the
slot level. By using reference counting to make cache replace-
ment decisions, AustereCache can promptly evict any stale
chunk that is not referenced by an LBA, as opposed to the
WEU design in Nitro and CD-ARC of CacheDedup (§2.4).

4 Implementation
We implement an AustereCache prototype as a user-space
block device in C++ on Linux; the user-space implementa-
tion (as in Nitro [24]) allows us to readily deploy fast algo-
rithms and multi-threading for performance speedups. Specif-
ically, our AustereCache prototype issues reads and writes
to the underlying storage devices via pread and pwrite
system calls, respectively. It uses SHA-1 from the Intel ISA-
L Crypto library [3] for chunk fingerprinting, LZ4 [4] for
lossless stream-based compression, and XXHash [5] for fast
hash computations in the index structures. We also integrate
the cache replacement algorithms in CacheDedup [26] into
our prototype for fair comparisons (§5). Our prototype now
contains around 4.5 K LoC.

We leverage multi-threading to issue multiple read/write
requests in parallel for high performance. Specifically, we im-
plement bucket-level concurrency, such that each read/write
request needs to acquire an exclusive lock to access a bucket
in both the LBA-index and the FP-index, while multiple re-
quests can access different buckets simultaneously.

5 Evaluation
We experiment AustereCache using both real-world and syn-
thetic traces. We consider two variants of AustereCache: (i)

Traces
Working
Set (GiB)

Unique
Data (GiB)

Write-to-Read
Ratio

WebVM 2.71 69.37 3.24
Homes 19.19 240.00 10.81
Mail 59.01 983.78 5.09

Table 2: Basic statistics of FIU traces in 32 KiB chunks.

AC-D, which performs deduplication only without compres-
sion, and (ii) AC-DC, which performs both deduplication
and compression. We compare AustereCache with the three
cache replacement algorithms of CacheDedup [26]: D-LRU,
D-ARC, and CD-ARC (§2.4) (recall that CD-ARC combines
D-ARC with the WEU-based compressed chunk management
in Nitro [24]). For consistent naming, we refer to them as
CD-LRU-D, CD-ARC-D, and CD-ARC-DC, respectively (i.e.,
the abbreviation of CacheDedup, the cache replacement al-
gorithm, and the deduplication/compression feature). We
summarize our evaluation findings as follows.
• Overall, AustereCache reduces memory usage by 69.9-

97.0% compared to CacheDedup (Exp#1). It achieves the
memory savings via different design techniques (Exp#2).

• AC-D achieves higher read hit ratios than CD-LRU-D and
comparable read hit ratios as CD-ARC-D, while AC-DC
achieves higher read hit ratios than CD-ARC-DC (Exp#3).

• AC-DC writes much less data to flash than CD-LRU-D
and CD-ARC-D, while writing slightly more data than
CD-ARC-DC due to padding (§3.2) (Exp#4).

• AustereCache maintains its substantial memory savings for
different chunk sizes and subchunk sizes (Exp#5). We also
study how it is affected by the sizes of both the LBA-index
and the FP-index (Exp#6).

• AustereCache achieves high I/O throughput for different
access patterns (Exp#7), while incurring small CPU over-
head (Exp#8). Its throughput further improves via multi-
threading (Exp#9).

5.1 Traces
Our evaluation is driven by two traces.
FIU [23]. The FIU traces are collected from three different
services with diverse properties, namely WebVM, Homes, and
Mail, for the web, NFS, and mail services, respectively. Each
trace describes the read/write requests on different chunks (of
size 4 KiB or 512 bytes each), each of which is represented
as an MD5 fingerprint of the chunk content.

To accommodate different chunk sizes, we take each trace
of 4 KiB chunks and perform two-phase trace conversion as
in [24]. In the first phase, we identify the initial state of the
disk by traversing the whole trace and recording the LBAs
of all chunk reads; any LBA that does not appear is assumed
to have a dummy chunk fingerprint (e.g., all zeroes). In the
second phase, we regenerate the trace of the corresponding
chunk size based on the LBAs and compute the new chunk
fingerprints. For example, we form a 32 KiB chunk by con-
catenating eight contiguous 4 KiB chunks and calculating a



AC-D AC-DC CD-LRU-D CD-ARC-D CD-ARC-DC

1

10

100

1000

12.5 25 37.5 50 62.5 75 87.5 100
Cache Capacity (%)

M
em

o
ry

 (
M

iB
)

1

10

100

1000

12.5 25 37.5 50 62.5 75 87.5 100
Cache Capacity (%)

M
em

o
ry

 (
M

iB
)

1

10

100

1000

12.5 25 37.5 50 62.5 75 87.5 100
Cache Capacity (%)

M
em

o
ry

 (
M

iB
)

(a) WebVM (b) Homes (c) Mail

Figure 5: Exp#1 (Overall memory usage). Note that the y-axes are in log scale.

new SHA-1 fingerprint for the 32 KiB chunk. Table 2 shows
the basic statistics of each regenerated FIU trace on 32 KiB
chunks.

The original FIU traces have no compression details. Thus,
for each chunk fingerprint, we set its compressibility ratio
(i.e., the ratio of raw bytes to the compressed bytes) following
a normal distribution with mean 2 and variance 0.25 as in [24].

Synthetic. For throughput measurement (§5.5), we build a
synthetic trace generator to account for different access pat-
terns. Each synthetic trace is configured by two parameters:
(i) I/O deduplication ratio, which specifies the fraction of
writes that can be removed on the write path due to dedupli-
cation; and (ii) write-to-read ratio, which specifies the ratios
of writes to reads.

We generate a synthetic trace as follows. First, we ran-
domly generate a working set by choosing arbitrary LBAs
within the primary storage. Then we generate an access pat-
tern based on the given write-to-read ratio, such that the write
and read requests each follow a Zipf distribution. We derive
the chunk content of each write request based on the given
I/O deduplication ratio as well as the compressibility ratio as
in the FIU trace generation (see above). Currently, our evalua-
tion fixes the working set size as 128 MiB, the primary storage
size as 5 GiB, and the Zipf constant as 1.0; such parameters
are all configurable.

5.2 Setup
Testbed. We conduct our experiments on a machine running
Ubuntu 18.04 LTS with Linux kernel 4.15. The machine
is equipped with a 10-core 2.2 GHz Intel Xeon E5-2630v4
CPU, 32 GiB DDR4 RAM, a 1 TiB Seagate ST1000DM010-
2EP1 SATA HDD as the primary storage, and a 128 GiB Intel
SSDSC2BW12 SATA SSD as the flash cache.

Default setup. For both AustereCache and CacheDedup, we
configure the size of the FP-index based on a fraction of the
working set size (WSS) of each trace, and fix the size of
the LBA-index four times that of the FP-index. We store
both the LBA-index and the FP-index in memory for high
performance. For AustereCache, we set the default chunk
size and subchunk size as 32 KiB and 8 KiB, respectively. For
CD-ARC-DC in CacheDedup, we set the WEU size as 2 MiB
(the default in [26]).

5.3 Comparative Analysis

We compare AustereCache and CacheDedup in terms of mem-
ory usage, read hit ratios, and write reduction ratios using the
FIU traces.

Exp#1 (Overall memory usage). We compare the memory
usage of different schemes. We vary the flash cache size
from 12.5% to 100% of WSS of each FIU trace, and con-
figure the LBA-index and the FP-index based on our default
setup (§5.2). To obtain the actual memory usage (rather than
the allocated memory space for the index structures), we
call malloc trim at the end of each trace replay to return
all unallocated memory from the process heap to the oper-
ating system, and check the residual set size (RSS) from
/proc/self/stat as the memory usage.

Figure 5 shows that AustereCache significantly saves the
memory usage compared to CacheDedup. For the non-
compression schemes (i.e., AC-D, CD-LRU-D, and CD-ARC-
D), AC-D incurs 69.9-94.9% and 70.4-94.7% less memory
across all traces than CD-LRU-D and CD-ARC-D, respec-
tively. For the compression schemes (i.e., AC-DC and CD-
ARC-DC), AC-DC incurs 87.0-97.0% less memory than CD-
ARC-DC.

AustereCache achieves higher memory savings than
CacheDedup in compression mode, since CD-ARC-DC needs
to additionally maintain the lengths of all compressed chunks,
while AC-DC eliminates such information. If we compare the
memory overhead with and without compression, CD-ARC-
DC incurs 78-194% more memory usage than CD-ARC-D
across all traces, implying that compression comes with high
memory usage penalty in CacheDedup. On the other hand,
AC-DC only incurs 2-58% more memory than AC-D.

Exp#2 (Impact of design techniques on memory savings).
We study how different design techniques of AustereCache
help memory savings. We mainly focus on bucketization
(§3.1) and bucket-based cache replacement (§3.3); for fixed-
size compressed data management (§3.2), we refer readers to
Exp#1 for our analysis.

We choose CD-LRU-D of CacheDedup as our baseline and
compare it with AC-D (both are non-compressed versions),
and add individual techniques to see how they contribute to
the memory savings of AC-D. We consider four variants:



Vanilla B+FK+L B+PK+L B+PK+S

1

10

100

1000

12.5 25 37.5 50 62.5 75 87.5 100
Cache Capacity (%)

M
em

o
ry

 (
M

iB
)

1

10

100

1000

12.5 25 37.5 50 62.5 75 87.5 100
Cache Capacity (%)

M
em

o
ry

 (
M

iB
)

1

10

100

1000

12.5 25 37.5 50 62.5 75 87.5 100
Cache Capacity (%)

M
em

o
ry

 (
M

iB
)

(a) WebVM (b) Homes (c) Mail

Figure 6: Exp#2 (Impact of design techniques on memory savings).

• Vanilla. It refers to CD-LRU-D. It maintains the LRU lists
that track the LBAs and FPs being accessed in the LBA
index and the FP index, respectively.

• B+FK+L. It deploys bucketization (B), but keeps the full
keys (FK) (i.e., LBAs and FPs) in each slot. Each bucket
implements the LRU policy (L) independently and keeps
an LRU list of the slot IDs being accessed.

• B+PK+L. It deploys bucketization (B) and now keeps the
prefix keys (PK) in both the LBA-index and the FP-index.
It still implements the LRU policy as in B+FK+L.

• B+PK+S. It deploys bucketization (B) and keeps the prefix
keys (PK). It maintains reference counts in a sketch (S).
Note that it is equivalent to AC-D.
Figure 6 presents the memory usage versus the cache ca-

pacity, where the memory usage is measured as in Exp#1.
Compared to Vanilla, B+FK+L saves the memory usage by
30.6-50.6%, while B+PK+L further increases the savings to
43.9-68.0% due to keeping prefix keys in the index structures.
B+FK+S (i.e., AC-D) increases the overall memory savings
to 69.9-94.9% by keeping reference counts in a sketch as
opposed to maintaining LRU lists with full LBAs and FPs.

Exp#3 (Read hit ratio). We evaluate different schemes with
the read hit ratio, defined as the fraction of read requests that
receive cache hits over the total number of read requests.

Figure 7 shows the results. AustereCache generally
achieves higher read hit ratios than different CacheDedup
algorithms. For the non-compression schemes, AC-D in-
creases the read hit ratio of CD-LRU-D by up to 39.2%. The
reason is that CD-LRU-D is only aware of the request re-
cency and fails to clean stale chunks in time (§2.4), while
AustereCache favors to evict chunks with small reference
counts. On the other hand, AC-D achieves similar read hit
ratios to CD-ARC-D, and in particular has a higher read hit
ratio (up to 13.4%) when the cache size is small in WebVM
(12.5% WSS) by keeping highly referenced chunks in cache.
For the compression schemes, AC-DC has higher read hit
ratios than CD-ARC-DC, by 0.5-30.7% in WebVM, 0.7-9.9%
in Homes, and 0.3-6.2% in Mail. Note that CD-ARC-DC
shows a lower read hit ratio than CD-ARC-D although it intu-
itively stores more chunks with compression, mainly because
it cannot quickly evict stale chunks due to the WEU-based
organization (§2.4).

Exp#4 (Write reduction ratio). We further evaluate differ-
ent schemes in terms of the write reduction ratio, defined as
the fraction of reduction of bytes written to the cache due to
both deduplication and compression. A high write reduction
ratio implies less written data to the flash cache and hence
improved performance and endurance.

Figure 8 shows the results. For the non-compression
schemes, AC-D, CD-LRU-D, and CD-ARC-D show marginal
differences in WebVM and Homes, while in Mail, AC-D has
lower write reduction ratios than CD-LRU-D by up to 17.5%.
We find that CD-LRU-D tends to keep more stale chunks
in cache, thereby saving the writes that hit the stale chunks.
For example, when the cache size is 12.5% of WSS in Mail,
17.1% of the write reduction in CD-LRU-D comes from the
writes to the stale chunks, while in WebVM and Homes, the
corresponding numbers are only 3.6% and 1.1%, respectively.
AC-D achieves lower write reduction ratios than CD-LRU-
D, but achieves much higher read hit ratios by up to 39.2%
by favoring to evict the chunks with small reference counts
(Exp#3).

For the compression schemes, both CD-ARC-DC and AC-
DC have much higher write reduction ratios than the non-
compression schemes due to compression. However, AC-DC
shows a slightly lower write reduction ratio than CD-ARC-
DC by 7.7-14.5%. The reason is that AC-DC pads the last
subchunk of each variable-size compressed chunk, thereby
incurring extra writes. As we show later in Exp#5 (§5.4),
a smaller subchunk size can reduce the padding overhead,
although the memory usage also increases.

5.4 Sensitivity to Parameters
We evaluate AustereCache for different parameter settings
using the FIU traces.

Exp#5 (Impact of chunk sizes and subchunk sizes). We
evaluate AustereCache on different chunk sizes and subchunk
sizes. We focus on the Homes trace and vary the chunk sizes
and subchunk sizes as described in §5.1. For varying chunk
sizes, we fix the subchunk size as one-fourth of the chunk size;
for varying subchunk sizes, we fix the chunk size as 32 KiB.
We focus on comparing AC-DC and CD-ARC-DC by fixing
the cache size as 25% of WSS. Note that CD-ARC-DC is
unaffected by the subchunk size.



AC-D AC-DC CD-LRU-D CD-ARC-D CD-ARC-DC

 0

 25

 50

 75

 100

12.5 25 37.5 50 62.5 75 87.5 100
Cache Capacity (%)

R
ea

d 
H

it
 (

%
)

 0

 10

 20

 30

 40

 50

12.5 25 37.5 50 62.5 75 87.5 100
Cache Capacity (%)

R
ea

d 
H

it
 (

%
)

 0

 25

 50

 75

 100

12.5 25 37.5 50 62.5 75 87.5 100
Cache Capacity (%)

R
ea

d 
H

it
 (

%
)

(a) WebVM (b) Homes (c) Mail

Figure 7: Exp#3 (Read hit ratio).

AC-D AC-DC CD-LRU-D CD-ARC-D CD-ARC-DC

0

20

40

60

80

12.5 25 37.5 50 62.5 75 87.5 100
Cache Capacity (%)

W
ri

te
 R

d.
 (

%
)

0

20

40

60

80

12.5 25 37.5 50 62.5 75 87.5 100
Cache Capacity (%)

W
ri

te
 R

d.
 (

%
)

0

20

40

60

80

12.5 25 37.5 50 62.5 75 87.5 100
Cache Capacity (%)

W
ri

te
 R

d.
 (

%
)

(a) WebVM (b) Homes (c) Mail

Figure 8: Exp#4 (Write reduction ratio).

AC-DC maintains the significant memory savings com-
pared to CD-ARC-DC, by 92.8-95.3% for varying chunk
sizes (Figure 9(a)) and 93.1-95.1% for varying subchunk
sizes (Figure 9(b)). It also maintains higher read hit ratios
than CD-ARC-DC, by 5.0-12.3% for varying chunk sizes
(Figure 9(c)) and 7.9-10.4% for varying subchunk sizes (Fig-
ure 9(d)). AC-DC incurs a (slightly) less write reduction ratio
than CD-ARC-DC due to padding, by 10.0-14.8% for varying
chunk sizes (Figure 9(e)); the results are consistent with those
in Exp#4. Nevertheless, using a smaller subchunk size can
mitigate the padding overhead. As shown in Figure 9(f), the
write reduction ratio of AC-DC approaches that of CD-ARC-
DC when the subchunk size decreases. When the subchunk
size is 4 KiB, AC-DC only has a 6.2% less write reduction
ratio than CD-ARC-DC. Note that if we change the subchunk
size from 8 KiB to 4 KiB, the memory usage increases from
14.5 MiB to 17.3 MiB (by 18.8%), since the number of buck-
ets is doubled in the FP-index (while the LBA-index remains
the same).

Exp#6 (Impact of LBA-index sizes). We study the impact
of LBA-index sizes. We vary the LBA-index size from 1× to
8× of the FP-index size (recall that the default is 4×), and fix
the cache size as 12.5% of WSS.

Figure 10 depicts the memory usage and read hit ratios;
we omit the write reduction ratio as there is nearly no change
for varying LBA-index sizes. When the LBA-index size
increases, the memory usage increases by 17.6%, 111.5%,
and 160.9% in WebVM, Homes and Mail, respectively (Fig-
ure 10(a)), as we allocate more buckets in the LBA-index.
Note that the increase in memory usage in WebVM is less

AC-DC CD-ARC-DC

1

10

100

1000

8 16 32 64
Chunk size (KiB)

M
em

or
y 

(M
iB

)

1

10

100

1000

4 8 16 32
Subchunk size (KiB)

M
em

or
y 

(M
iB

)

(a) Memory usage vs.
chunk size

(b) Memory usage vs.
subchunk size

0

20

40

60

8 16 32 64
Chunk size (KiB)

R
ea

d 
H

it
 (

%
)

0

20

40

60

4 8 16 32
Subchunk size (KiB)

R
ea

d 
H

it
 (

%
)

(c) Read hit ratio vs.
chunk size

(d) Read hit ratio vs.
subchunk size

0

20

40

60

8 16 32 64
Chunk size (KiB)

W
ri

te
 R

d.
 (

%
)

0

20

40

60

4 8 16 32
Subchunk size (KiB)

W
ri

te
 R

d.
 (

%
)

(e) Write reduction ratio vs.
chunk size

(f) Write reduction ratio vs.
subchunk size

Figure 9: Exp#5 (Impact of chunk sizes and subchunk sizes).
We focus on the Homes trace and fix the cache size as 25%
of WSS in Homes.

than those in Homes and Mail, mainly because the WSS of
WebVM is small and incurs a small actual increase of the
total memory usage. Also, the read hit ratio increases with



WebVM Homes Mail

0

10

20

30

1 2 3 4 5 6 7 8
LBA-Index Size / FP-Index Size

M
em

o
ry

 (
M

iB
)

0

20

40

60

80

1 2 3 4 5 6 7 8
LBA-Index Size / FP-Index Size

R
ea

d 
H

it
 (

%
)

(a) Memory usage (b) Read hit ratio

Figure 10: Exp#6 (Impact of LBA-index sizes).

AC-D AC-DC CD-LRU-D CD-ARC-D CD-ARC-DC

0

25

50

75

100

20 40 60 80
I/O Dedup Ratio (%)

T
h
pt

 (
M

iB
/s

)

0

25

50

75

100

9:1 7:3 5:5 3:7 1:9
Write-to-Read Ratio

T
hp

t 
(M

iB
/s

)

(a) Throughput vs. I/O dedup
ratio (write-to-read ratio 7:3)

(b) Throughput vs. write-to-read
ratio (I/O dedup ratio 50%)

Figure 11: Exp#7 (Throughput).

the LBA-index size, until the LBA-index reaches 4× of the
FP-index size (Figure 10(b)). In particular, for WebVM, the
read hit ratio grows from 36.7% (1×) to 70.4% (8×), while
for Homes and Mail, the read hit ratios increase by only 4.3%
and 5.3%, respectively. The reason is that when the LBA-
index size increases, WebVM shows a higher increase in the
total reference counts of the cached chunks than Homes and
Mail, implying that more reads can be served by the cached
chunks (i.e., higher read hit ratios).

5.5 Throughput and CPU Overhead
We measure the throughput and CPU overhead of Austere-
Cache. We conduct the evaluation on synthetic traces for
varying I/O deduplication ratios and write-to-read ratios. We
focus on the write-back policy (§2.2), in which AustereCache
first persists the written chunks to the flash cache and flushes
the chunks to the HDD when they are evicted from the cache.
We use direct I/O to remove the impact of page cache. We
report the averaged results over five runs, while the standard
deviations are small (less than 2.7%) and hence omitted.
Exp#7 (Throughput). We compare AustereCache and
CacheDedup in throughput using synthetic traces. We fix
the cache size as 50% of the 128 MiB WSS. Both systems
work in single-threaded mode.

Figures 11(a) and 11(b) show the results for varying I/O
deduplication ratios (with a fixed write-to-read ratio 7:3,
which represents a write-intensive workload as in FIU traces)
and varying write-to-read ratios (with a fixed I/O dedupli-
cation ratio 50%), respectively. For the non-compression
schemes, AC-D achieves 18.5-86.6% higher throughput than
CD-LRU-D for all cases except when the write-to-read ratio
is 1:9 (slightly slower by 2.3%). Compared to CD-ARC-D,

 0
 25
 50
 75

 100

L
at

en
cy

 (
us

)

 5975
 6000
 6025

Fingerprint
Compression

Lookup
Update

SSD
HDD

Figure 12: Exp#8 (CPU
overhead).

0

50

100

150

200

250

1 2 4 6 8
Number of threads

T
hp

t 
(M

iB
/s

)

50% dedup
80% dedup

Figure 13: Exp#9 (Through-
put of multi-threading).

AC-D is slower by 1.1-24.5%, since both AC-D and CD-
ARC-D have similar read hit ratios and write reduction ratios
(§5.3), while AC-D issues additional reads and writes to the
metadata region (CD-ARC-D keeps all indexing information
in memory). AC-D achieves similar throughput to CD-ARC-
D when there are more duplicate chunks (i.e., under high
I/O deduplication ratios). For compression schemes, AC-DC
achieves 6.8-99.6% higher throughput than CD-ARC-DC.

Overall, AC-DC achieves the highest throughput among
all schemes for two reasons. First, AustereCache generally
achieves higher or similar read hit ratios compared to CacheD-
edup algorithms (§5.3). Second, AustereCache incorporates
deduplication awareness into cache replacement by caching
chunks with high reference counts, thereby absorbing more
writes in the SSD and reducing writes to the slow HDD.

Exp#8 (CPU overhead). We study the CPU overhead of
deduplication and compression of AustereCache along the
I/O path. We measure the latencies of four computation
steps, including fingerprint computation, compression, index
lookup, and index update. Specifically, we run the WebVM
trace with a cache size of 12.5% of WSS, and collect the
statistics of 100 non-duplicate write requests. We also com-
pare their latencies with those of 32 KiB chunk write requests
to the SSD and the HDD using the fio benchmark tool [2].

Figure 12 depicts the results. Fingerprint computation has
the highest latency (15.5 µs) among all four steps. In total,
AustereCache adds around 31.2 µs of CPU overhead. On the
other hand, the latencies of 32 KiB writes to the SSD and the
HDD are 85 µs and 5,997 µs, respectively. Note that the CPU
overhead can be suppressed via multi-threaded processing, as
shown in Exp#9.

Exp#9 (Throughput of multi-threading). We evaluate the
throughput gain of AustereCache when it enables multi-
threading and issues concurrent requests to multiple buckets
(§4). We use synthetic traces with a write-to-read ratio of 7:3,
and consider the I/O deduplication ratio of 50% and 80%.

Figure 13 shows the throughput versus the number of
threads being configured in AustereCache. When the number
of threads increases, AustereCache shows a higher throughput
gain under 80% I/O deduplication ratio (from 93.8 MiB/s to
235.5 MiB/s, or 2.51×) than under 50% I/O deduplication
ratio (from 60.0 MiB/s to 124.9 MiB/s, or 2.08×). A higher
I/O deduplication ratio implies less I/O to flash, and Austere-
Cache benefits more from multi-threading on parallelizing



the computation steps in the I/O path and hence sees a higher
throughput gain.

6 Discussion
We discuss the following open issues of AustereCache.

Choices of chunk/subchunk sizes. AustereCache by default
uses 32 KiB chunks and 8 KiB subchunks to align with com-
mon flash page sizes (e.g., 4 KiB or 8 KiB) in commodity
SSDs, while preserving memory savings even for various
chunk/subchunk sizes (Exp#5 in §5.4). Larger chunk/sub-
chunk sizes reduce the chunk management overhead, at the
expense of issuing more read-modify-write operations for
small requests from upper-layer applications. Efficiently man-
aging small chunks/subchunks in large-size I/O units in flash
caching [24, 25], while maintaining memory efficiency in
indexing, is future work.

Impact of indexing on flash endurance. AustereCache cur-
rently reduces its memory usage by keeping only limited
indexing information in memory and full indexing details in
flash (i.e., the metadata region). Since the indexing infor-
mation generally has a smaller size than the cached chunks,
we expect that the updates of the metadata region bring lim-
ited degradations to flash endurance, compared to the writes
of chunks to the data region. An in-depth analysis of how
AustereCache affects flash endurance is future work.

AustereCache assumes that the flash translation layer sup-
ports efficient flash erasure management (e.g., applying write
combining before writing chunks to flash). To further miti-
gate the flash erasure overhead, one possible design extension
is to adopt a log-structured data organization in flash in order
to limit random writes, which are known to degrade flash
endurance [30].

7 Related Work
Flash caching. Flash caching has been extensively studied
to improve I/O performance. For example, Bcache [1] is a
block-level cache for Linux file systems; FlashCache [20] is a
file cache for web servers; Mercury [9] is a hypervisor cache
for shared storage in data centers; CloudCache [6] estimates
the demands of virtual machines (VMs) and manages cache
space for VMs in virtualized storage.

Several studies focus on better flash caching management.
For example, FlashTier [34] exploits caching workloads in
cache block management; Kim et al. [21] exploit applica-
tion hints to cache write requests; DIDACache [35] takes
a software-hardware co-design approach to eliminate dupli-
cate garbage collection. To improve the endurance of flash
caching, Cheng et al. [11] propose erasure-aware heuristics to
admit cache insertions; S-RAC [31] selectively evicts cache
items based on temporal locality; Pannier [25] manages the
flash cache in large-size units (called containers) with erasure
awareness; Wang et al. [38] use machine learning to remove
unnecessary writes to flash.

Deduplication and compression. AustereCache exploits
deduplication and compression in flash caching. Extensive
work has shown the effectiveness of deduplication and/or com-
pression in storage and I/O savings in primary [18, 23, 36],
backup [16, 40, 42], and memory storage [19, 39]. For flash
storage, CAFTL [10] implements deduplication in the flash
translation layer to reduce flash writes; SmartDedup [41]
organizes in-memory and on-disk fingerprints for resource-
constrained devices; FlaZ [28] applies transparent and on-
line I/O compression for efficient flash caching. Prior stud-
ies [24, 26, 37] also exploit deduplication and compression in
flash caching, but incur high memory overhead in metadata
management (§2.4). On the other hand, AustereCache aims
for memory efficiency without compromising the storage and
I/O savings achieved by deduplication and compression.

Memory-efficient designs. Prior studies propose memory-
efficient data structures for flash storage. ChunkStash [15]
uses fingerprint prefixes to index fingerprints on SSDs in
backup deduplication. SkimpyStash [14] designs a hash-
table-based index that stores chained linked lists on SSDs for
deduplication systems. SILT [27] uses partial-key hashing
for efficient indexing in key-value stores. TinyLFU [17] uses
Counting Bloom Filters to estimate item frequencies in cache
admission. Our bucketization design (§3.1) is similar to the
Quotient Filter (also used in flash caching [7]) in prefix-key
matching. AustereCache specifically targets flash caching
with deduplication and compression, and incorporates several
techniques for high memory efficiency.

8 Conclusion
AustereCache makes a case of integrating deduplication and
compression into flash caching while significantly mitigating
the memory overhead due to indexing. It builds on three tech-
niques to aim for austere cache management: (i) bucketiza-
tion removes address mappings from indexing; (ii) fixed-size
compressed data management removes compressed chunk
lengths from indexing; and (iii) bucket-based cache replace-
ment tracks reference counts in a compact sketch structure to
achieve high read hit ratios. Evaluation on both real-world
and synthetic traces shows that AustereCache achieves signif-
icant memory savings, with high read hit ratios, high write
reduction ratios, and high throughput.

Acknowledgments: We thank our shepherd, William Jannen,
and the anonymous reviewers for their comments. This work
was supported in part by RGC of Hong Kong (AoE/P-404/18),
NSFC (61972441), and the Shenzhen Science and Technology
Program (JCYJ20190806143405318). The corresponding
author is Wen Xia.

References
[1] Bcache: A linux kernel block layer cache. http://

bcache.evilpiepirate.org/.

http://bcache.evilpiepirate.org/
http://bcache.evilpiepirate.org/


[2] Fio - Flexible I/O Tester Synthetic Benchmark. http:
//git.kernel.dk/?p=fio.git.

[3] ISA-L crypto. https://github.com/intel/
isa-l_crypto.

[4] LZ4. https://en.wikipedia.org/wiki/
LZ4_(compression_algorithm).

[5] XXHash. https://github.com/Cyan4973/
xxHash.

[6] D. Arteaga, J. Cabrera, J. Xu, S. Sundararaman, and
M. Zhao. CloudCache: On-demand flash cache manage-
ment for cloud computing. In Proc. of USENIX FAST,
2016.

[7] M. A. Bender, M. Farach-Colton, R. Johnson, R. Kraner,
B. C. Kuszmaul, D. Medjedovic, P. Montes, P. Shetty,
R. P. Spillane, and E. Zadok. Don’t thrash: How to
cache your hash on flash. Proc. of VLDB Endowment,
5(11):1627–1637, 2012.

[8] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
12(7):422–426, 1970.

[9] S. Byan, J. Lentini, A. Madan, L. Pabon, M. Condict,
J. Kimmel, S. Kleiman, C. Small, and M. Storer. Mer-
cury: Host-side flash caching for the data center. In
Proc. of IEEE MSST, 2012.

[10] F. Chen, T. Luo, and X. Zhang. CAFTL: A content-
aware flash translation layer enhancing the lifespan
of flash memory based solid state drives. In Proc. of
USENIX FAST, 2011.

[11] Y. Cheng, F. Douglis, P. Shilane, G. Wallace, P. Desnoy-
ers, and K. Li. Erasing belady’s limitations: In search
of flash cache offline optimality. In Proc. of USENIX
ATC, 2016.

[12] D. Comer. Ubiquitous B-tree. ACM Computing Surveys,
11(2):121–137, 1979.

[13] G. Cormode and S. Muthukrishnan. An improved data
stream summary: the count-min sketch and its applica-
tions. Journal of Algorithms, 55(1):58–75, 2005.

[14] B. Debnath, S. Sengupta, and J. Li. SkimpyStash: RAM
space skimpy key-value store on flash-based storage. In
Proc. of ACM SIGMOD, 2011.

[15] B. K. Debnath, S. Sengupta, and J. Li. ChunkStash:
Speeding up inline storage deduplication using flash
memory. In Proc. of USENIX ATC, 2010.

[16] A. Duggal, F. Jenkins, P. Shilane, R. Chinthekindi,
R. Shah, and M. Kamat. Data Domain Cloud Tier:
Backup here, backup there, deduplicated everywhere!
In Proc. of USENIX ATC, 2019.

[17] G. Einziger, R. Friedman, and B. Manes. TinyLFU: A
highly efficient cache admission policy. ACM Trans. on
Storage, 13(4):1–31, 2017.

[18] A. El-Shimi, R. Kalach, A. Kumar, A. Ottean, J. Li,
and S. Sengupta. Primary data deduplicationlarge scale
study and system design. In Proc. of USENIX ATC,
2012.

[19] F. Guo, Y. Li, Y. Xu, S. Jiang, and J. C. S. Lui. SmartMD:
A high performance deduplication engine with mixed
pages. In Proc. of USENIX ATC, 2017.

[20] T. Kgil and T. Mudge. FlashCache: a NAND flash
memory file cache for low power web servers. In Proc.
of ACM CASES, 2006.

[21] S. Kim, H. Kim, S.-H. Kim, J. Lee, and J. Jeong.
Request-oriented durable write caching for application
performance. In Proc. of USENIX ATC, 2015.

[22] R. Koller, , L. Marmol, R. Rangaswami, S. Sundarara-
man, N. Talagala, and M. Zhao. Write policies for
host-side flash caches. In Proc. of USENIX FAST, 2013.

[23] R. Koller and R. Rangaswami. I/O deduplication: Uti-
lizing content similarity to improve I/O performance.
ACM Trans. on Storage, 6(3):13, 2010.

[24] C. Li, P. Shilane, F. Douglis, H. Shim, S. Smaldone, and
G. Wallace. Nitro: A capacity-optimized SSD cache for
primary storage. In Proc. of USENIX ATC, 2014.

[25] C. Li, P. Shilane, F. Douglis, and G. Wallace. Pannier:
Design and analysis of a container-based flash cache for
compound objects. ACM Trans. on Storage, 13(3):1–34,
2017.

[26] W. Li, G. Jean-Baptise, J. Riveros, G. Narasimhan,
T. Zhang, and M. Zhao. CacheDedup: In-line dedu-
plication for flash caching. In Proc. of USENIX FAST,
2016.

[27] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky.
SILT: A memory-efficient, high-performance key-value
store. In Proc. of ACM SOSP, 2011.

[28] T. Makatos, Y. Klonatos, M. Marazakis, M. D. Flouris,
and A. Bilas. Using transparent compression to improve
SSD-based I/O caches. In Proc. of ACM EuroSys, 2010.

[29] N. Megiddo and D. S. Modha. ARC: A self-tuning, low
overhead replacement cache. In Proceedings of USENIX
FAST, 2003.

[30] C. Min, K. Kim, H. Cho, S.-W. Lee, and Y. I. Eom. SFS:
random write considered harmful in solid state drives.
In Proc. of USENIX FAST, 2012.

[31] Y. Ni, J. Jiang, D. Jiang, X. Ma, J. Xiong, and Y. Wang.
S-RAC: SSD friendly caching for data center workloads.
In Proc. of ACM Systor, 2016.

[32] P. O’Neil, E. Cheng, D. Gawlick, and E. ONeil. The
log-structured merge-tree (LSM-tree). Acta Informatica,
33(4):351–385, 1996.

http://git.kernel.dk/?p=fio.git
http://git.kernel.dk/?p=fio.git
https://github.com/intel/isa-l_crypto
https://github.com/intel/isa-l_crypto
https://en.wikipedia.org/wiki/LZ4_(compression_algorithm)
https://en.wikipedia.org/wiki/LZ4_(compression_algorithm)
https://github.com/Cyan4973/xxHash
https://github.com/Cyan4973/xxHash


[33] P. Raju, R. Kadekodi, V. Chidambaram, and I. Abraham.
PebblesDB: Building key-value stores using fragmented
log-structured merge trees. In Proc. of ACM SOSP,
2017.

[34] M. Saxena, M. M. Swift, and Y. Zhang. FlashTier: a
lightweight, consistent and durable storage cache. In
Proc. of ACM EuroSys, 2012.

[35] Z. Shen, F. Chen, Y. Jia, and Z. Shao. DIDACache:
A deep integration of device and application for flash
based key-value caching. In Proc. of USENIX FAST,
2017.

[36] K. Srinivasan, T. Bisson, G. R. Goodson, and K. Voru-
ganti. iDedup: latency-aware, inline data deduplication
for primary storage. In Proc. of USENIX FAST, 2012.

[37] Y. Tan, J. Xie, C. Xu, Z. Yan, H. Jiang, Y. Zhao, M. Fu,
X. Chen, D. Liu, and W. Xia. CDAC: Content-driven
deduplication-aware storage cache. In Proc. of MSST,
2019.

[38] H. Wang, X. Yi, P. Huang, B. Cheng, and K. Zhou.
Efficient SSD caching by avoiding unnecessary writes
using machine learning. In Proc. of ACM ICPP, 2018.

[39] N. Xia, C. Tian, Y. Luo, H. Liu, and X. Wang. UKSM:
Swift memory deduplication via hierarchical and adap-
tive memory region distilling. In Proc. of USENIX FAST,
2018.

[40] W. Xia, H. Jiang, D. Feng, and Y. Hua. Silo:
A similarity-locality based near-exact deduplication
scheme with low RAM overhead and high throughput.
In Proc. of USENIX ATC, 2011.

[41] Q. Yang, R. Jin, and M. Zhao. SmartDedup: Optimizing
deduplication for resource-constrained devices. In Proc.
of USENIX ATC, 2019.

[42] B. Zhu, K. Li, and R. H. Patterson. Avoiding the disk
bottleneck in the data domain deduplication file system.
In Proc. of USENIX FAST, 2008.

[43] J. Ziv and A. Lempel. A universal algorithm for se-
quential data compression. IEEE Trans. on Information
Theory, 23(3):337 – 343, May 1977.


	Introduction
	Background
	Deduplication and Compression
	Flash Caching
	Memory Amplification
	State-of-the-Art Flash Caches

	AustereCache Design
	Bucketization
	Fixed-Size Compressed Data Management
	Bucket-Based Cache Replacement

	Implementation
	Evaluation
	Traces
	Setup
	Comparative Analysis
	Sensitivity to Parameters
	Throughput and CPU Overhead

	Discussion
	Related Work
	Conclusion

