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Abstract

We propose repair pipelining, a technique that speeds up

the repair performance in general erasure-coded storage.

By pipelining the repair of failed data in small-size units

across storage nodes, repair pipelining reduces the repair

time to approximately the same as the normal read time

to the same amount of data in homogeneous environ-

ments. We further extend repair pipelining for hetero-

geneous environments. We implement a repair pipelin-

ing prototype called ECPipe and integrate it as a mid-

dleware system into two open-source distributed storage

systems HDFS and QFS. Experiments on a local testbed

and Amazon EC2 show that repair pipelining signifi-

cantly improves the performance of both degraded reads

and full-node recovery over existing repair techniques.

1 Introduction

Distributed storage systems rely on data redundancy to

provide fault tolerance, so as to maintain availability and

durability. Replication, which is traditionally used by

production systems [4, 11], provides the simplest form

of redundancy by keeping identical copies of data in dif-

ferent storage nodes. However, the raw storage cost of

replication is overwhelming, especially with the mas-

sive scale of data we face today. Erasure coding pro-

vides a low-cost redundancy alternative that incurs sig-

nificantly lower storage overhead than replication at the

same fault tolerance level [39]. In a nutshell, erasure cod-

ing transforms fixed-size units, called blocks, of original

data into a set of coded blocks, such that any subset of

a sufficient number of available coded blocks can recon-

struct all original data. Today’s distributed storage sys-

tems adopt erasure coding to protect data against failures

in clustered [10, 15, 29] or geo-distributed environments

[21, 33], and reportedly save PBs of storage [15, 21].

Although achieving storage efficiency, erasure coding

has a drawback of incurring high repair penalty. Specifi-

cally, the repair of a single failed coded block (either lost

or unavailable) needs to read multiple available coded

blocks for reconstruction; in other words, it reads more

available data than the actual amount of failed data. This

is in contrast to replication, whose repair can be simply

done by reading another replica that is of the same size

as the failed block. The excessive data not only increases

the read time to failed data as opposed to normal reads,

but also consumes bandwidth resources that could oth-

erwise be made available for other foreground jobs [29].

Thus, erasure coding in practice is mainly used for stor-

ing less frequently read (i.e., warm/cold) data that needs

long-term persistence [2, 15, 21], while frequently read

(i.e., hot) data remains replicated for efficient access.

To mitigate the repair penalty of erasure coding, prior

studies either propose new erasure codes that reduce the

amount of repair traffic (e.g., [8,15,17,25,28,30,34]), or

design fast repair approaches for existing erasure codes

(e.g., lazy repair [3, 37] or partial-parallel-repair (PPR)

[20]). While the repair time is effectively reduced, it re-

mains higher than the normal read time in general. In

view of this, we pose the following question: Can we

further reduce the repair time of erasure coding to al-

most the same as the normal read time? This creates op-

portunity for applying erasure coding to hot data for high

storage efficiency, while preserving read performance.

We present a new technique called repair pipelining

to speed up the repair performance in general erasure-

coded storage. Its main idea is to pipeline the repair of

a coded block in small-size units across storage nodes

(analogous to wormhole routing [22]), so as to distribute

repair traffic and fully utilize bandwidth resources across

storage nodes. Contrary to the conventional wisdom that

the repair of erasure coding is a slow operation, repair

pipelining can reduce the repair time of a failed coded

block to approximately the same as the read time of a

normal coded block, regardless of coding parameters,

in homogeneous environments (i.e., link bandwidths are

identical). It is also general to support various practical

erasure codes that are adopted by today’s production sys-

tems, including classical Reed-Solomon codes [32] and

recent Local Reconstruction Codes [15]. To summarize,

we make the following contributions.

• We design repair pipelining to address two types of

repair operations: degraded reads and full-node recov-

ery. We show that repair pipelining achieves O(1) re-

pair time in homogeneous environments.

• We extend repair pipelining to address heterogeneous

environments (i.e., link bandwidths are different). We

present two variants of repair pipelining. The first one

allows parallel reads of reconstructed data when the

bandwidth between the storage system and the node

that issues repair is limited, while the second one finds



an optimal repair path across storage nodes such that

the repair time is minimized.

• We implement a repair pipelining prototype called

ECPipe, which runs as a middleware layer atop an ex-

isting storage system and performs repair operations

on behalf of the storage system. As a proof of con-

cept, we integrate ECPipe into two widely adopted

open-source distributed storage systems HDFS [36]

and QFS [24]. Both integrations only make minor

changes (with no more than 200 lines of code) to the

code base of each storage system.

• We evaluate repair pipelining on a local cluster and

two geo-distributed Amazon EC2 clusters (one in

North America and one in Asia). We compare it with

two existing repair approaches: conventional repair

that is used by classical Reed-Solomon codes [32] and

achieves O(k) repair time, and the recently proposed

PPR [20] that achieves O(log k) repair time by paral-

lelizing partial repair operations in a hierarchical man-

ner (§2.2). Our experiments show that in many cases,

repair pipelining reduces the single-block repair time

by around 90% and 80% compared to conventional re-

pair and PPR, respectively. It also improves repair per-

formance in HDFS and QFS deployments.

2 Background and Motivation

2.1 Basics

We consider a distributed storage system (e.g., GFS [11],

HDFS [36], and Azure [4]) that manages large-scale

datasets and stores files as fixed-size blocks, which form

the basic read/write units. The block size is often large,

ranging from 64 MiB [11] to 256 MiB [30], to mitigate

I/O overhead. Erasure coding is applied to a collection

of blocks. Specifically, an erasure code is typically con-

figured with two integer parameters (n, k), where k < n.

An (n, k) code divides blocks into groups of k. For ev-

ery k (uncoded) blocks, it encodes them to form n coded

blocks, such that any k out of n coded blocks can be

decoded to the original k uncoded blocks. The set of

n coded blocks is called a stripe. A large-scale stor-

age system stores data of multiple stripes, all of which

are independently encoded. The n coded blocks of each

stripe are distributed across n distinct nodes to tolerate

any n−k node failures. Most practical erasure codes are

systematic, such that k of n coded blocks are identical to

the original uncoded blocks and hence can be directly ac-

cessed without decoding. Nevertheless, our design treats

both uncoded and coded blocks the same, so we simply

refer to them as “blocks”.

Many erasure code constructions have been proposed

in the literature (see survey [26] and §7). Among all era-

sure codes, Reed-Solomon (RS) codes [32] are the most

popular erasure codes that are widely deployed in pro-
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Figure 1: In erasure coding, blocks are partitioned into

words, such that words at the same offset of each block

of a stripe are encoded together.

duction [10, 24, 29]. Note that RS codes achieve the

minimum storage redundancy among any (n, k) codes,

and are said to be maximum distance separable (MDS).

Some erasure codes used in production, such as locally

repairable codes [15,34], introduce slightly higher redun-

dancy than RS codes for better repair performance.

Practical erasure codes, including RS codes and lo-

cally repairable codes, satisfy linearity. Specifically, for

each stripe of an (n, k) code, let {B1, B2, · · · , Bk} de-

note any k blocks of a stripe. Any block in the same

stripe, say B∗, can be computed from a linear combi-

nation of the k blocks as B∗ =
∑

k

i=1 aiBi, where ai’s

(1 ≤ i ≤ k) are decoding coefficients specified by a

given erasure code. All additions and multiplications are

based on Galois Field arithmetic over w-bit units called

words; in particular, an addition is equivalent to bitwise

XOR. Note that the additions of aiBi’s are associative.

Some constraints may be applied; for example, RS codes

require n ≤ 2w + 1 [27]. Each block is partitioned into

multiple w-bit words, such that the words at the same

offset of each block of a stripe are encoded together, as

shown in Figure 1.

2.2 Repair

In this paper, repair in erasure-coded storage can refer

to one of the following: (i) full-node recovery for restor-

ing lost blocks (e.g., due to disk crashes, sector errors,

etc.), or (ii) degraded reads to temporarily unavailable

blocks (e.g., due to power outages, network disconnec-

tion, system maintenance, etc.) or lost blocks that are

yet recovered. Each failed block (either lost or unavail-

able) is reconstructed on a destination termed requestor,

which can be a new node that replaces a failed node, or a

client that issues degraded reads. Note that there may be

one or multiple requestors when multiple failed blocks

are reconstructed.

Erasure coding triggers more repair traffic than the

size of failed data to be reconstructed. For example, for

(n, k) RS codes, repairing a failed block reads k avail-

able blocks of the same stripe from other nodes (i.e., k

times the block size). Some repair-friendly erasure codes

(e.g., [8, 15,17,25,28,30,34]) are designed to reduce re-

pair traffic, but the size of repair traffic per block remains

larger than the size of a block. In distributed storage sys-
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Figure 2: Examples of conventional repair and PPR.

tems, network bandwidth is often the most dominant fac-

tor in repair performance as extensively shown by previ-

ous work [8, 20, 37] (see further justifications in §2.3).

Thus, the amplification of repair traffic implies the con-

gestion at the downlink of the requestor, thereby increas-

ing the overall repair time.

To understand the repair penalty of erasure coding, we

use RS codes as an example and call this repair approach

conventional repair. Suppose that a requestor R wants

to repair a failed block B∗. It can be done by read-

ing k available blocks from any k working nodes, called

helpers. Without loss of generality, let R contact k helper

nodes N1, N2, · · · , Nk, which store available blocks B1,

B2, · · · , Bk, respectively. To make our discussion clear,

we divide the repair process into timeslots, such that only

one block can be transmitted across a network link in

each timeslot. Figure 2(a) shows the conventional repair

for k = 4. Since R needs to retrieve the k blocks B1, B2,

· · · , Bk, all k transmissions must traverse the downlink

of R. Overall, the repair takes four timeslots.

The drawback of conventional repair is that the band-

width usage distribution is highly skewed: the down-

link of the requestor is highly congested, while the links

among helpers are not fully utilized. PPR [20] builds on

the linearity and addition associativity of erasure coding

by decomposing a repair operation into multiple partial

operations that are distributed across all helpers. This

distributes bandwidth usage across the links of helpers.

Figure 2(b) shows how PPR repairs B∗ for k = 4. In the

first timeslot, N2 and N4 receive blocks a1B1 and a3B3

from N1 and N3, respectively. Since the transmissions

use different links, they can be done simultaneously in a

single timeslot. In the second timeslot, N2 combines the

received a1B1 and its locally stored block B2 to obtain

a1B1 + a2B2 and sends it to N4. In the third timeslot,

N4 combines all received blocks and its own block B4

to obtain a1B1 + a2B2 + a3B3 + a4B4, and sends it

to R. This hierarchical approach reduces the overall re-

pair time to only three timeslots. In general, PPR needs

⌈log2(k + 1)⌉ timeslots to repair a failed block.

2.3 Motivation

Although PPR reduces repair time, the bandwidth usage

distribution remains not fully balanced; for example, the

downlink of N4 in Figure 2(b) still carries more repair

traffic than other links. Thus, the repair time is still bot-

tlenecked by the link with the most repair traffic. This

motivates us to design a new repair scheme that can more

efficiently utilize bandwidth resources, with the primary

goal of minimizing repair time.

Minimizing repair time is critical to both availability

and durability. In terms of availability, field studies show

that transient failures (i.e., no data loss) account for over

90% of failure events [10]. Thus, most repairs are ex-

pected to be degraded reads rather than full-node recov-

ery. Since degraded reads are issued when clients request

unavailable data, achieving fast degraded reads not only

improves availability but is also critical for meeting cus-

tomer service-level agreements [15]. In terms of durabil-

ity, minimizing repair time also minimizes the window

of vulnerability before unrecoverable data loss occurs.

Our work targets distributed storage environments in

which network bandwidth is the bottleneck. Although

modern data centers scale to 10Gb/s or higher speeds,

they are shared by a mix of application workloads. Thus,

the network bandwidth available for repair tasks is often

throttled [15, 37]. Also, the cross-rack links of modern

data centers are oversubscribed [5], yet blocks are striped

across racks to tolerate rack failures [10, 15, 30, 34]. Re-

pair of failed blocks inevitably reads available blocks

from other racks, and its performance becomes con-

strained by the limited cross-rack bandwidth.

3 Repair Pipelining

We present the design of repair pipelining for both de-

graded reads and full-node recovery.

3.1 Goals and Assumptions

Repair pipelining also exploits the linearity and addition

associativity of erasure codes as in PPR [20], yet it par-

allelizes the repair across helpers in an inherently dif-

ferent way. It focuses on (i) eliminating bottlenecked

links (i.e., no link transmits more traffic than others) and

(ii) effectively utilizing bandwidth resources during re-

pair (i.e., links should not be idle for most times), so as

to ultimately achieve O(1) repair time in homogeneous

environments where all links have the same bandwidth.

In addition, we show that repair pipelining can be ex-

tended for practical distributed environments with het-

erogeneous links (§4), which are not addressed by PPR.

Repair pipelining is designed for speeding up the re-

pair of a single failed block per stripe, which accounts

for the most repair scenarios in practice [15, 29] (e.g.,

over 98% of cases [29]). If a stripe has multiple failed

blocks, we trigger a multi-failure repair, in which we re-

sort to conventional repair (§2.2) by reading a sufficient

number of available blocks. Optimizing single-block re-

pair is also the main design goal of repair-friendly era-

sure codes [8, 15, 17, 25, 28, 30, 34]. In this paper, we

study the single-block repair for one stripe and multiple

stripes. The former occurs when a requestor issues a de-



graded read to an unavailable block, which are the major-

ity (§2.3); the latter occurs when all lost data of a single

failed node is recovered at one or multiple requestors in

full-node recovery.

As in PPR, we do not design new repair-friendly era-

sure codes that minimize repair traffic; instead, each re-

pair of a single failed block still reads k blocks, yet it

spreads the repair traffic across all helpers to fully utilize

bandwidth resources and reduce the overall repair time.

3.2 Degraded Reads

We first study how repair pipelining reconstructs a sin-

gle block of a stripe at a requestor in a degraded read.

We start with a naı̈ve approach. Specifically, we ar-

range k helpers and the requestor as a linear path, i.e.,

N1 → N2 → · · · → Nk → R. At a high level, to repair a

lost block B∗, N1 sends a1B1 to N2. Then N2 combines

a1B1 with its own block B2 and sends a1B1 + a2B2 to

N3. The process repeats, and finally, Nk sends R the

combined result, which is B∗. The whole repair incurs

k transmissions that span across k different links. Thus,

there is no bottlenecked link. However, this naı̈ve ap-

proach underutilizes bandwidth resources, since there is

only one block-level transmission in each timeslot. The

whole repair still takes k timeslots, same as the conven-

tional repair (§2.2).

Thus, repair pipelining decomposes the repair of a

block into the repair of a set of s small fixed-size units

called slices S1, S2, · · · , Ss. It pipelines the repair of

each slice through the linear path, and each slice-level

transmission over a link only takes 1
s

timeslots. Figure 3

shows how repair pipelining works for k = 4 and s = 6.

A slice can have an arbitrarily small size, provided that

Galois Field arithmetic can be performed (§2.1). For RS

codes, the minimum size of a slice is a w-bit word; if

w = 8, a word denotes a byte. On the other hand, prac-

tical distributed storage systems store data in large-size

blocks, typically 64 MiB or even larger (§2.1). Since a

coding unit (i.e., word) has a much smaller size than a

read/write unit (i.e., block), we can parallelize a block-

level repair operation into more fine-grained slice-level

repair sub-operations. Having small-size slices can im-

prove parallelism, but also increases the overhead of is-

suing many requests for transmitting slices over the net-

work. We study the impact of the slice size in §6.

We analyze the time complexity of repair pipelining.

Here, we neglect the overheads due to computation and

disk I/O, which we assume cost less time than network

transmission; in fact, they can also be executed in paral-

lel with network transmission in actual implementation

(§5). Each slice-level transmission over a link takes 1
s

timeslots. The repair of each slice takes k

s
timeslots to

traverse the linear path, and N1 starts to transmit the last

slice after s−1
s

timeslots. Thus, the whole repair time,

N1 N2 N3 N4 RS1:

N1 N2 N3 N4 RS2:

N1 N2 N3 N4 RS3:

N1 N2 N3 N4 RS4:

N1 N2 N3 N4 RS5:

N1 N2 N3 N4 RS6:

Figure 3: Repair pipelining with k = 4 and s = 6.

which is given by the total number of timeslots to trans-

mit all slices through the linear path, is s−1+k

s
= 1+ k−1

s

timeslots. In practice, k is of moderate size to avoid large

coding overhead [27] (e.g., k = 12 in Azure [15] and

k = 10 in Facebook [29]), while s can be much larger

(e.g., s = 2,048 for 32 KiB slices in a 64 MiB block).

Thus, we have 1 + k−1
s

→ 1 as s is sufficiently large.

Repair pipelining connects multiple helpers as a chain,

so its repair performance is degraded by the presence of

poorly performed links/helpers (i.e., stragglers). We em-

phasize that any repair scheme of erasure coding faces

the similar problem, as it needs available data from mul-

tiple helpers for data reconstruction; for example, the

conventional repair of (n, k) MDS codes needs available

data from k helpers. We address the straggler problem by

taking into account heterogeneity and bypassing strag-

glers via helper selection (§4.2). Also, if any helper fails

during an ongoing repair, the progress of repair pipelin-

ing will be stalled. In this case, we restart the whole re-

pair process with a new set of available helpers and trig-

ger a multi-failure repair (§3.1), since the repaired stripe

now has multiple failed blocks; however, multi-failure

repairs are rare in practice [15, 29].

3.3 Full-Node Recovery

We now study how repair pipelining addresses multi-

stripe repair (one failed block per stripe) when recover-

ing a full-node failure. As the stripes are independently

encoded, we can parallelize the multiple single-stripe re-

pair operations. However, since each repair involves a

number of helpers, if one helper is chosen in many repair

operations of different stripes, it will become overloaded

and slow down the overall repair performance. In prac-

tice, each stripe is stored on a different set of storage

nodes spanning across the network. Our goal is to dis-

tribute the load of a multi-stripe repair across all avail-

able helpers as evenly as possible.

We adopt a simple greedy scheduling approach for the

selection of helpers. For each node in the storage sys-

tem, repair pipelining keeps track of a timestamp indi-

cating when the node was last selected as a helper for a

single-stripe repair. To repair a failed block of a stripe,

we select k out of n−1 available helpers in the stripe that

have the smallest timestamps; in other words, the k se-



lected helpers are the least recently selected in previous

requests. Choosing the k out of the n− 1 helpers can be

done in O(n) time using the quick select algorithm [13]

(based on repeated partitioning of quick sort). We use a

centralized coordinator to manage the selection process

(§5). Our greedy scheduling emphasizes simplicity in

deployment. We can also adopt a more sophisticated ap-

proach by weighting node preferences in real time [20].

Unlike the degraded read scenario, the multiple recon-

structed blocks can be stored on multiple requestors. Un-

der this condition, the gain of repair pipelining over con-

ventional repair decreases, as the latter can also paral-

lelize the repair across multiple requestors. Neverthe-

less, our evaluation indicates that repair pipelining still

provides repair performance improvements (§6).

Note that the number of requestors that can be selected

and the choices of requestors may also depend on various

deployment factors [20]. In this work, we assume that the

requestors are selected offline in advance.

4 Heterogeneity

In practice, the links of a distributed storage system have

different bandwidths [9, 18]. We now extend the design

of repair pipelining in §3 in two aspects: (i) a requestor

can read slices from multiple helpers in parallel, and (ii)

we solve a weighted path selection problem to find an

optimal path of k helpers that maximizes repair perfor-

mance. Each extension addresses a different heteroge-

neous setting.

4.1 Parallel Reads

In the original design of repair pipelining, a requestor al-

ways reads slices from one helper. This may lead to last-

mile congestion. For example, a client (requestor) sits

at the network edge and accesses a cloud storage system

that is far from the client. We propose a cyclic version

of repair pipelining that allows a requestor to read slices

from multiple helpers.

We now describe the cyclic version. Our discussion

assumes that all links are homogeneous and it takes

one timeslot to transmit a block size of data in a link.

The cyclic version again divides a failed block into s

fixed-size slices S1, S2, · · · , Ss, and repairs each slice

through some linear path to eliminate any bottlenecked

link. However, it now maps the k helpers N1, N2, · · · ,

Nk into different cyclic paths that can be cycled from

Nk through N1. Specifically, it partitions the s slices

into ⌈ s

k−1⌉ groups, each of which has k − 1 slices (the

last group has fewer than k − 1 slices if s is not divis-

ible by k − 1). The repair of each group of slices is

then performed in two phases. Without loss of gener-

ality, we only consider how to repair the first group S1,

S2, · · · , Sk−1. In the first phase, repairing each slice

Si (1 ≤ i ≤ k − 1) traverses through the cyclic path
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N1 N2 N3 N4

N2 N3 N4 N1

N4 N1 N2
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Figure 4: Cyclic version of repair pipelining with k = 4
and s = 6.

Ni → Ni+1 → · · ·Nk → N1 → · · ·Ni−1. We repair

all slices through different cyclic paths simultaneously,

and each slice-level transmission takes 1
s

timeslots. The

first phase can be done in k−1
s

timeslots. In the second

phase, the last helper of each cyclic path delivers the re-

paired slice to the requestor. The second phase is also

done in k−1
s

timeslots. Figure 4 shows the cyclic version

for k = 4 and s = 6.

Note that we can start repairing the slices of the next

group simultaneously while we deliver the repaired slices

for the current group. Specifically, while k − 1 helpers

simultaneously transmit slices for the repair in the next

group, there is one idle helper that can transmit the re-

paired slice for the current group to the requestor. They

can be done together in k−1
s

timeslots.

We analyze the time complexity of the cyclic version

under the homogeneous link assumption. We only con-

sider the case where s is divisible by k−1, while the same

result can be derived otherwise. Repairing each group of

slices takes
2(k−1)

s
timeslots, and the repair of the last

group starts after ( s

k−1 − 1)k−1
s

timeslots. The whole

repair time is ( s

k−1 − 1)k−1
s

+ 2(k−1)
s

= 1 + k−1
s

→ 1,

as s is sufficiently large.

Note that the cyclic version now allows a requestor to

read slices from k−1 helpers. If the repair bottleneck lies

on the network transfer from the helpers to the requestor,

our evaluation shows that the cyclic version significantly

outperforms the original design of repair pipelining (§6).

4.2 Weighted Path Selection

We now study a more general heterogeneous setting in

which link bandwidths can have arbitrary values. To

motivate, we consider geo-distributed data centers that

span multiple geographic regions [1, 10]. They typi-

cally stripe redundancy across regions to protect against

large-scale correlated failures. However, intra- and inter-

region bandwidths are highly different. Table 1 shows

one of our iperf [16] measurement tests for the intra-

and inter-region bandwidths on Amazon EC2 across four

regions respectively in North America and Asia. We ob-

serve that intra-region bandwidths are in general more

abundant than inter-region bandwidths, and inter-region

bandwidths have a high degree of variance.



Table 1: A test of intra- and inter-region bandwidth mea-

surements (in Mb/s) on Amazon EC2 in North America

and Asia. Each number is the measured bandwidth from

the row region to the column region.

(a) North America

Bandwidth California Canada Ohio Oregon

California 501.3 57.2 44.1 299.9

Canada 55.3 732.0 63.3 48.0

Ohio 46.3 65.7 332.5 95.6

Oregon 297.8 50.2 93.6 250.1

(b) Asia

Bandwidth Mumbai Seoul Singapore Tokyo

Mumbai 624.8 62.3 39.5 37.7

Seoul 63.8 265.7 86.1 183.2

Singapore 41.5 88.1 493.0 49.1

Tokyo 39.7 181.0 46.9 489.1

In the following, we extend repair pipelining to solve a

weighted path selection problem. We focus on extending

the design for the single-block repair (of a single stripe)

for degraded reads (§3.2). We later discuss how our ex-

tended design is applied to full-node recovery (§3.3).

4.2.1 Formulation

Recall that for a single-block repair, repair pipelining

transmits a number of slices along a path of k helpers,

say N1 → N2 → · · · → Nk → R. Suppose that the link

bandwidths are different. If the number of slices is suf-

ficiently large, then the slices are transmitted in parallel

through the path (Figure 3), and the performance of re-

pair pipelining will be bottlenecked by the link with the

minimum available bandwidth along the path. To mini-

mize the single-block repair time, we should find a path

that maximizes the minimum link bandwidth.

To repair a failed block, we need to find k out of n− 1
available helpers of the same stripe as the failed block,

and also find the sequence of link transmissions so that

the path along the k selected helpers and the requestor

minimizes the single-block repair time. Specifically,

there are a total of n nodes, including the n − 1 avail-

able helpers and the requestor. We associate a weight

with each (directed) link from one node to another node,

such that a higher weight implies a longer transmission

time along the link. For example, the weight can be rep-

resented by the inverse of the link bandwidth obtained by

periodic measurements on link utilizations [5]. Then our

objective is to find a path of k + 1 nodes (i.e., k selected

helpers and the requestor) that minimizes the maximum

link weight of the path. Here, we focus on link weights,

and the same idea is applicable if we associate weights

with nodes. Any straggler is assumed to be associated

with a large weight, so it will be excluded from the se-

lected path.

To solve the above problem, a naı̈ve approach is to per-

Algorithm 1 Weighted Path Selection

Input: link weights

Output: optimal path P
∗

1: procedure MAIN

2: P = R

3: P
∗

= null

4: w
∗

= ∞

5: N = set of n− 1 available helpers

6: EXTENDPATH

7: return P
∗

8: end procedure

9: function EXTENDPATH

10: if P .length < k + 1 then

11: for each node N ∈ N not in P do

12: if weight(N , head node of path P ) < w
∗ then

13: P = N → P

14: EXTENDPATH

15: remove N from P

16: end if

17: end for

18: else

19: P
∗

= P

20: w
∗

= maximum link weight of P

21: end if

22: end function

form a brute-force search on all possible candidate paths.

However, there are a total of
(n−1)!

(n−1−k)! permutations, and

the brute-force search becomes computationally expen-

sive even for moderate sizes of n and k. Since the link

weights vary over time, the path selection should be done

quickly on-the-fly based on the measured link weights.

4.2.2 Algorithm

We present a fast yet optimal algorithm that quickly iden-

tifies an optimal path. The algorithm builds on brute-

force search to ensure that all candidate paths are cov-

ered, but eliminates the search of infeasible paths. Our

insight is that if a link L has a weight larger than the

maximum weight of an optimal path candidate that is

currently found, then we no longer need to search for the

paths containing link L, since the maximum weight of

any path containing L must be larger than the maximum

weight of the optimal path candidate.

Algorithm 1 shows the pseudo-code of the weighted

path selection algorithm. Let P be the path that we cur-

rently consider, P ∗ be the optimal path candidate that we

have found, w∗ be the maximum link weight of P ∗, and

N be the set of n−1 available helpers. We first initialize

a path P with only the requestor R (Line 2), such that

R will be the tail node of P . We also initialize P ∗, w∗,

and N (Lines 3-5). We call the recursive function EX-

TENDPATH (Line 6) and finally return the optimal path

P ∗ (Line 7).

The function EXTENDPATH recursively extends P by



one node in N and appends the node to the head of P if

the link weight from the node to the current head node

of P is less than w∗; otherwise, the path containing the

link cannot minimize the maximum link weight as ar-

gued above. Specifically, the algorithm appends N ∈ N
to P if the current path length is less than k + 1 and the

weight from N to the head node of P is less than w∗

(Lines 10-13). It calls EXTENDPATH again to consider

candidate paths that now include N → P (Line 14). It

then removes N from P (Line 15), and tries other nodes

in N . If the length of P is now k + 1, it implies that all

of its links have weight less than w∗, so we update P as

the new optimal path P ∗ and w∗ as the maximum link

weight of P ∗ (Lines 19-20).

Algorithm 1 significantly reduces the search time. We

evaluate the search time for (14,10) codes using Monte-

Carlo simulations over 1,000 runs on a machine with

3.7 GHz Intel Xeon E5-1620 v2 CPU and 16 GiB mem-

ory. The brute-force search takes 27s on average, while

Algorithm 1 reduces the search time to only 0.9ms.

4.2.3 Discussion

Algorithm 1 also addresses full-node recovery (§3.3).

Specifically, we apply Algorithm 1 to each stripe. If we

apply greedy scheduling on helper selection, we simply

substitute N with the set of k selected helpers. Note that

the brute-force search for the optimal path on the k se-

lected helpers remains expensive, since it still needs to

consider k! permutations on the sequence of link trans-

missions along the path. Thus, Algorithm 1 still signifi-

cantly saves the search time in this case.

We can also apply Algorithm 1 to the cyclic version in

§4.1. Instead of searching for an optimal path, we now

search for an optimal cycle of k helpers that minimizes

the maximum link weight.

5 Implementation

We implemented a prototype called ECPipe to realize re-

pair pipelining. ECPipe runs as a middleware atop an ex-

isting storage system and performs repair operations on

behalf of the storage system. Moving the repair logic to

ECPipe greatly reduces changes to the code base of the

storage system to realize new repair techniques, while

we focus on optimizing ECPipe to maximize the repair

performance gain. We have integrated ECPipe with two

widely deployed distributed storage systems HDFS [36]

and QFS [24]. HDFS is written in Java, while QFS is

written in C++. Our ECPipe prototype is mostly written

in C++, and the part for HDFS integration is in Java. Our

ECPipe prototype has around 3,000 lines of code.

5.1 Erasure Coding in HDFS and QFS

HDFS: Erasure coding in HDFS is done by the HDFS-

RAID module [12]. HDFS-RAID deploys a RaidNode

atop HDFS for erasure coding management. HDFS ini-

tially stores data as fixed-size blocks (64 MiB by de-

fault) with replication; later, the RaidNode encodes repli-

cated blocks into coded blocks via MapReduce [7]. The

RaidNode also checks for any lost or corrupted coded

block (by verifying block checksums). If so, it repairs

the failed blocks, either by itself in local mode or via

a MapReduce job in distributed mode. Both modes will

issue reads to k available blocks of the same stripe in par-

allel from HDFS, reconstruct the failed block, and write

back to HDFS. HDFS-RAID also provides a RAID file

system client to access coded blocks. For a degraded read

to a failed block, the RAID file system reads k available

blocks of the same stripe in parallel and reconstructs the

failed block.

QFS: Different from HDFS, which stores data with both

replication and erasure coding, QFS stores all data in

erasure-coded format. QFS supports (9,6) RS codes [32].

The QFS client writes data into six 1 MiB buffers. When

the buffers fill up, it encodes the six 1 MiB buffers into

three 1 MiB parity buffers. It then appends the nine 1MB

buffers to nine data and parity blocks (the default block

size is 64 MiB) that are stored in nine storage nodes. To

repair any failed block, a storage node retrieves six avail-

able blocks from other storage nodes for reconstruction.

5.2 ECPipe Design

Figure 5 shows the ECPipe architecture. It uses a coordi-

nator to manage the repair operation between a requestor

and multiple helpers. ECPipe runs on top of a storage

system. To repair a failed block, the storage system cre-

ates a requestor object, which sends a repair request with

the failed block ID to the coordinator (step 1). The coor-

dinator uses the failed block ID to identify the locations

of k available blocks of the same stripe. It notifies all

helpers with the block locations (step 2). The helpers re-

trieve the blocks, perform repair pipelining in slices, and

deliver the repaired slices to the requestor (step 3).

We integrate ECPipe with a storage system in three as-

pects. First, we implement the requestor as a class (in

C++ and Java) that can be instantiated by the storage

system to reconstruct failed blocks. For HDFS, the re-

questor is created in either the RaidNode or the RAID file

system client; for QFS, it is created by the storage node

that starts a repair operation. Second, we implement each

helper as a daemon that is co-located with each storage

node to directly read the locally stored blocks. Our in-

sight is that both HDFS and QFS store each block in the

underlying native file system as a plain file, and use the

block ID to form the file name. Thus, each helper can di-

rectly read the stored blocks through the native file sys-

tem. This eliminates the need of helpers to fetch data

through the distributed storage system routine. It not

only reduces the burden of metadata management of the
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Figure 5: ECPipe architecture.

distributed storage system, but also improves repair per-

formance (§6.3). Finally, the coordinator needs to access

both block locations and the mappings of each block to

its stripe. For HDFS, we retrieve the information from

the RaidNode; for QFS, we retrieve the information from

a storage node when it starts a repair operation.

To simplify our implementation, ECPipe uses Redis

[31] to pipeline slices across helpers. Each helper main-

tains an in-memory key-value store based on Redis, and

uses the client interface of Redis to transmit slices among

helpers. In addition, each helper performs disk I/O, net-

work transfer, and computation via multiple threads for

performance speedup. Adding ECPipe into HDFS and

QFS only requires changes of around 110 and 180 lines

of code, respectively.

To provide fair comparisons (§6), we also implement

conventional repair (§2.2) and PPR [20] under the same

ECPipe framework, by only changing the transmission

flow of data during repair.

6 Evaluation

We conducted experiments on a local cluster and two

geo-distributed clusters deployed on Amazon EC2. We

show that repair pipelining outperforms both conven-

tional repair and PPR [20], for both degraded reads and

full-node recovery.

6.1 ECPipe Performance on a Local Cluster

6.1.1 Methodology

We first evaluate ECPipe when it runs as a standalone

system. We conducted experiments on a local cluster of

19 machines, each of which has a quad-core 3.1 GHz

Intel Core i5-2400 CPU, 8 GiB RAM, and a Seagate

ST31000524AS 1 TiB SATA hard disk. We host the co-

ordinator on one machine, and 18 helpers on the remain-

ing machines. All machines are connected via a 1 Gb/s

Ethernet switch. The 1 Gb/s bandwidth can be viewed as

modeling the cross-rack bandwidth available for repair

tasks in a production cluster [34], in which the blocks

of a stripe are stored in distinct racks and there will be

cross-rack transfers during repair.

Initially, we store coded blocks in the local file system

of each machine, and load block locations and stripe in-

formation into the coordinator. We simulate a “failed”

machine by erasing blocks there, and repair the failed

block of each stripe on a requestor. To fairly evaluate

the impact of network transfers on repair, we host the re-

questor on a machine that does not store any available

block of the repaired stripe, so as to ensure that the avail-

able blocks are always transmitted over the network. By

default, we configure 64 MiB block size, 32 KiB slice

size (for repair pipelining only), and (14,10) RS codes;

note that (14,10) RS codes are also used by Facebook

[30, 34]. We vary one of the settings at a time and evalu-

ate its impact.

We consider two versions of repair pipelining: the ba-

sic version in §3 and the cyclic version in §4.1. We com-

pare them with conventional repair (§2) and PPR [20].

We evaluate both degraded reads and full-node recov-

ery. For degraded reads (Figures 6(a)-(d) and 6(f)), we

measure the single-block repair time, defined as the la-

tency from issuing a degraded read request to a failed

block until the block is reconstructed. For full-node re-

covery (Figure 6(e)), we measure the recovery rate, de-

fined as the amount of recovered data by the total repair

time. All results are averaged over 10 runs. The standard

deviations are small and hence omitted from the plots.

6.1.2 Results

Slice size: Figure 6(a) shows the single-block repair time

versus the slice size in repair pipelining. It also plots the

transmission time of directly sending a single block over

a 1 Gb/s link (labeled as “Direct send”). Both basic and

cyclic versions of repair pipelining have high repair times

when the slice size is small, even though more slices

are pipelined during a repair (i.e., s is large). The rea-

son is that the overhead of issuing transmission requests

for many slices becomes significant. Nevertheless, the

repair times of both versions decrease as the slice size

increases up to 32 KiB (where s = 2,048) since fewer

transmission requests are issued, and then increase since

there are fewer slices in a block being pipelined. When

the slice size is 32 KiB, the basic version reduces the

single-block repair time by 90.9% and 80.4% compared

to conventional repair and PPR, respectively. The ba-

sic version achieves 10.7% less single-block repair time

than the cyclic version. The reason is that a helper in the

cyclic version sends data to both the requestor as well

as its next-hop helper, so the two transfers interfere with

one another and (slightly) increase the repair time.

Also, the direct send time of transferring a 64 MiB

block is 0.57s, which is almost network-bound in our

1 Gb/s network. The single-block repair time of the ba-

sic version is only 7.0% more than the direct send time,

showing the feasibility of achieving O(1) repair time.

Block size: Figure 6(b) shows the single-block repair

time versus the block size. The repair time reduction of
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Figure 6: ECPipe performance on a local cluster.

repair pipelining over conventional repair and PPR in-

creases with the block size as it can partition a block into

more slices for better network usage. The basic version

of repair pipelining reduces the single-block repair time

by up to 91.4% and 80.9% compared to conventional re-

pair and PPR, respectively. It is also faster than the cyclic

version by up to 16.7%.

Coding parameters: Figure 6(c) shows the single-block

repair time versus (n, k). The single-block repair times

of both conventional repair and PPR increase with k,

while that of repair pipelining is almost unchanged. As

k increases from 6 to 12, the repair time reduction of the

basic version increases from 85.1% to 92.1% compared

to conventional repair, and from 75.7% to 83.3% com-

pared to PPR.

Repair-friendly codes: We demonstrate how repair

pipelining is compatible with practical erasure codes. We

consider two state-of-the-art repair-friendly codes: LRC

[15] and Rotated RS codes [17]. LRC has higher stor-

age redundancy than RS codes by associating local par-

ity blocks with a subset of data blocks, so as to improve

single-block repair performance. On the other hand, ro-

tated RS codes arrange the layout of parity blocks to im-

prove the performance of a degraded read to a series of

data blocks. We configure LRC with k = 12 data blocks,

and Rotated RS codes with (n, k) = (16,12). LRC needs

to read only six blocks (five data blocks plus one local

parity block) for repairing a failed data block, while Ro-

tated RS codes on average read nine blocks for repairing

a failed data block. Here, we focus on the basic version

of repair pipelining.

Figure 6(d) shows the normalized single-block repair

time with respect to the conventional repair of (16,12)

RS codes. Although repair pipelining does not reduce

the amount of repair traffic as in LRC and Rotated RS

codes, its normalized repair time (around 0.1) is much

smaller than those of LRC and Rotated RS codes by ef-

fectively utilizing the bandwidth resources of all helpers.

We observe the same improvement in PPR, but its repair

time reduction is less than that of repair pipelining.

Full-node recovery: We now evaluate full-node recov-

ery with multiple requestors and our greedy scheduling

in helper selection (§3.3). We randomly write multiple

stripes of blocks across all 18 helpers in the local clus-

ter. We erase 64 blocks from 64 stripes (one block per

stripe) in one helper to mimic a single node failure, and

recover all the erased blocks simultaneously. We dis-

tribute the reconstructed blocks evenly across a number

of requestors (i.e., 1, 2, 4, 8, and 16).

We consider two cases of helper selection based on

the basic version of repair pipelining: (i) we index the

helpers from 1 to 18, and always select the available

blocks from the k helpers that have the smallest indexes

in a stripe for repair (labeled as “RP”); and (ii) we use

the greedy approach to select k helpers that are least re-

cently accessed for repair (labeled as “RP+scheduling”).

We also evaluate conventional repair and PPR, both of

which select helpers as in RP without greedy scheduling.

Figure 6(e) shows the recovery rates. As the number

of requestors increases, the recovery rates of all schemes

increase. Conventional repair sees the largest gain by

distributing the repair load across more requestors. Its



performance is also close to that of PPR as the number

of requestors increases. However, repair pipelining still

outperforms conventional repair by making bandwidth

utilization more balanced. Furthermore, our greedy

scheduling achieves a higher gain when there are more

requestors by better distributing the repair load across

all helpers. For example, when there are 16 requestors,

the recovery rate of repair pipelining without greedy

scheduling is 1.63× that of conventional repair, and our

greedy scheduling further improves the recovery rate of

repair pipelining by 27.9%.

Limited edge bandwidth: In previous tests, the ba-

sic version of repair pipelining always outperforms the

cyclic version. We now show the benefits of the cyclic

version when a requestor sits at the network edge and the

edge bandwidth from the storage system to the requestor

is limited (§4.1). We use the Linux command tc [38]

to limit the edge bandwidth from each helper to the re-

questor. Figure 6(f) shows the single-block repair time

versus the edge bandwidth. As the edge bandwidth de-

creases, the repair time of the basic version increases sig-

nificantly, while that of the cyclic version only increases

mildly by allowing the requestors to read repaired data

from multiple helpers in parallel. For example, the cyclic

version has 80.1% less repair time than the basic version

when the edge bandwidth is 100 Mb/s.

6.2 ECPipe Performance on Amazon EC2

Methodology: We evaluate ECPipe on two independent

Amazon EC2 clusters, one in North America and one in

Asia. Each cluster is deployed in four regions as shown

in Table 1. We deploy four EC2 instances per region per

cluster to host helpers (i.e., 16 helpers in total), and one

EC2 instance in Ohio and Singapore to host the coordi-

nator for the North America and Asia clusters, respec-

tively. Note that the overhead of accessing the coordi-

nator has negligible impact on the overall repair perfor-

mance. We focus on evaluating the degraded reads (in

terms of single-block repair time) issued by a requestor.

We host the requestor on an EC2 instance in each region

and study how the performance varies across regions. All

EC2 instances are of type t2.micro.

We configure 64 MiB block size and 32 KiB slice size

for repair pipelining. We use (16,12) RS codes and dis-

tribute the 16 blocks of each stripe across the 16 EC2

instances in four regions; this also provides fault toler-

ance against any single-region failure. We consider two

versions of repair pipelining: the basic version in §3 (la-

beled as “RP”), which finds a random path across k ran-

domly selected helpers, and the optimal version in §4.2

(labeled as “RP+optimal”), which finds an optimal path

via Algorithm 1. Note that the network bandwidth fluctu-

ates over time, although intra-region bandwidth remains

higher than inter-region bandwidth, as shown in Table 1.
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Figure 7: ECPipe performance on Amazon EC2.

Thus, the optimal version probes the network bandwidth

via iperf before each run of experiments. We average

our results over 10 runs, and also include the standard de-

viations as the results have higher variances than in our

local cluster.

Results: Figure 7 shows the single-block repair times

and the standard deviations of PPR and the two versions

of repair pipelining in both clusters; we do not show the

results of conventional repair, whose repair time goes be-

yond 200s. Repair pipelining (without weighted path

selection) achieves repair time saving over PPR in all

cases when the requestor is in different regions. The re-

pair time reduction is 62.7-78.0% for North America and

66.6-87.1% for Asia. Our weighted path selection further

reduces the repair time by 7.3-45.4% for North America

and 14.5-45.0% for Asia, compared to repair pipelining

without weighted path selection. Note that our weighted

path selection can be done in around 1ms (§4.2), which is

negligible compared to the repair time in our evaluation.

6.3 Performance on HDFS and QFS

Methodology: We evaluate the integration of ECPipe

into HDFS and QFS, both of which are deployed on our

local cluster (§6.1). We co-locate a helper daemon with

each storage node (18 nodes in total). By default, we set

the slice size of repair pipelining as 32 KiB and block

size as 64 MiB. For QFS, we use its default (9,6) RS

codes and vary the slice size and block size. For HDFS,

we vary (n, k). We consider three repair schemes: (i) the

original repair implementations of HDFS and QFS, both

of which are based on conventional repair, (ii) the con-

ventional repair under ECPipe, and (iii) the basic version

of repair pipelining in §3 under ECPipe. We evaluate

degraded reads (in terms of single-block repair time) is-

sued by a requestor that is attached with either an HDFS

or QFS client. We report averaged results over 10 runs as

in §6.1 (the standard deviations are small and omitted).

Results: Figure 8 shows the evaluation results. First, re-

pair pipelining under ECPipe significantly improves the

repair performance of the original repair implementa-
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Figure 8: Performance on HDFS and QFS.

tions of HDFS and QFS. It reduces the single-block re-

pair time by up to 86.3% when the slice size is 32 KiB

and the block size is 64 MiB (Figures 8(a) and 8(b)),

and by 84.4–92.4% for different coding parameters (Fig-

ure 8(c)). The results are consistent with those in §6.1.

We observe that moving the repair logic to ECPipe im-

proves repair performance. Specifically, conventional re-

pair under ECPipe reduces the single-block repair time

by up to 16.2% and 23.8% in HDFS and QFS, respec-

tively, compared to the original conventional repair im-

plementation. The reason of the performance gain is

that the helpers of ECPipe can directly access the stored

blocks via the native file system, instead of fetching the

blocks through the distributed storage system routine.

Nevertheless, we emphasize that the repair performance

gain mainly comes from repair pipelining, rather than the

implementation of ECPipe. Although moving repair to

ECPipe reduces repair time, the reduction is minor com-

pared to the reduction achieved by repair pipelining.

7 Related Work

Many new erasure codes have been proposed to mitigate

repair overhead, especially for single-node repair. To

name a few, regenerating codes [8] minimize repair traf-

fic by allowing storage nodes to send encoded data for

repair. Rotated RS codes [17] reduce repair traffic and

disk I/O of a degraded read to a sequence of data blocks.

Hitchhiker [30] extends RS codes [32] to piggyback par-

ity information of one stripe into another stripe, and is

shown to reduce both bandwidth and I/O for repair by

up to 45%. PM-RBT codes [28] are special regenerating

codes that simultaneously minimize bandwidth, I/O, and

storage redundancy. Butterfly codes [25] are systematic

regenerating codes that provide double-fault tolerance.

Locally repairable codes [15, 34] add local parity blocks

to mitigate repair I/O with extra storage.

Instead of constructing new erasure codes, we design

new repair strategies for general practical erasure codes

(including repair-friendly codes). Some prior studies are

also along this direction. Lazy repair [3, 37] defers im-

mediate repair action until a tolerable limit is reached.

To speed up full-node recovery, the repair of multiple

stripes can be parallelized across available nodes, as also

adopted by replicated storage [6, 23] and de-clustered

RAID arrays [14]. Degraded-first scheduling [19] tar-

gets MapReduce on erasure-coded storage by scheduling

map tasks to fully utilize bandwidth in degraded reads.

CAR [35] focuses on RS codes in data centers, and com-

putes partial repaired results in each rack to mitigate

cross-rack repair traffic. The most closely related work

to ours is PPR [20], which reduces repair time from O(k)
to O(log k). Repair pipelining further reduces it to O(1).
We also show how repair pipelining addresses heteroge-

neous environments with different link bandwidths.

8 Conclusions

Repair pipelining is a general technique to reduce the

repair time to almost the same as the normal read

time in erasure-coded storage. It pipelines the re-

pair of a failed block across storage nodes in units

of slices, so as to evenly distribute repair traffic and

fully utilize bandwidth resources across storage nodes.

Our contributions include: (i) the design of repair

pipelining for both degraded reads and full-node recov-

ery, (ii) the extensions of repair pipelining with par-

allel reads and weighted path selection for heteroge-

neous environments, (iii) a repair prototype ECPipe

and its integrations into HDFS and QFS, and (iv) ex-

periments that show the repair speedup through repair

pipelining on a local cluster and Amazon EC2. The

source code of our ECPipe prototype is available at:

http://adslab.cse.cuhk.edu.hk/software/ecpipe.

Acknowledgments: We thank our shepherd, Ryan

Huang, and the anonymous reviewers for their valu-

able comments. We thank Allen Poon for contribut-

ing to the early implementation. This work was sup-

ported in part by the Research Grants Council of Hong

Kong (GRF 14216316 and CRF C4047-14E), VC Dis-

cretionary Fund of CUHK (VCF2014007), and Cisco

University Research Program Fund (CG#593756) from

Silicon Valley Community Foundation.



References

[1] M. K. Aguilera. Geo-distributed Storage in Data Centers.

In Slides presented at OPODIS, 2013.
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