
RevDedup: A Reverse Deduplication Storage System Optimized for Reads

to Latest Backups

Chun-Ho Ng and Patrick P. C. Lee

Department of Computer Science and Engineering

The Chinese University of Hong Kong, Hong Kong

ngch.hk@gmail.com, pclee@cse.cuhk.edu.hk

Abstract

Deduplication is known to effectively eliminate dupli-

cates, yet it introduces fragmentation that degrades read

performance. We propose RevDedup, a deduplication

system that optimizes reads to the latest backups of vir-

tual machine (VM) images using reverse deduplication.

In contrast with conventional deduplication that removes

duplicates from new data, RevDedup removes duplicates

from old data, thereby shifting fragmentation to old data

while keeping the layout of new data as sequential as

possible. We evaluate our RevDedup prototype using a

12-week span of real-world VM image snapshots of 160

users. We show that RevDedup achieves high dedupli-

cation efficiency, high backup throughput, and high read

throughput.

1 Introduction

Many enterprises today run virtual machines (VMs) to

reduce hardware footprints. For disaster recovery, con-

ventional approaches schedule backups for each VM

disk image and keep different versions of each VM

backup. Today’s backup solutions mainly build on disk-

based storage. While the harddisk cost is low nowadays,

in the face of a large volume of VMs and a large vol-

ume of versions associated with each VM, scaling up the

backup storage for VM images (typically of size several

gigabytes each) remains a critical deployment issue.

Deduplication improves storage efficiency by elim-

inating redundant data. Instead of storing multiple

copies of data blocks with identical content, deduplica-

tion stores only one copy of identical blocks and refers

other blocks to that copy via smaller-size references.

Deduplication is mainly studied in backup systems (see

§2). It also provides space-efficient VM image storage

since VM images have high content similarities [5].

However, deduplication has a drawback of introducing

fragmentation [6, 8, 10, 14, 15], since some blocks of a

file may now refer to other identical blocks of a different

file. To illustrate, Figure 1(a) shows three snapshots of

a VM, denoted by VM1, VM2, and VM3, which are to

be written to disk that initially has no data. Figure 1(b)

shows how a conventional deduplication system writes

data. First, it writes VM1 with unique blocks A to H

sequentially. For VM2, which some of the blocks are

identical to those of VM1, the system stores only the ref-

erences that refer to those identical blocks, and appends

the unique blocks D’ and F’ to the end of the last write

position. Similarly, for VM3, the system only writes the

unique blocks B’, E’, F”, and H’ to the end of the last

write position. Hence, reading VM3 is no longer sequen-

tial, but requires additional disk seeks to the identical

blocks being referenced. This significantly degrades read

performance. On the other hand, we believe that achiev-

ing high read throughput is necessary in any backup sys-

tem. For instance, a fast restore operation can minimize

the system downtime during disaster recovery [10, 16].

In practice, users are more likely to access more recent

data. Our key insight is that traditional deduplication sys-

tems check if new blocks can be represented by any al-

ready stored blocks with identical contents. Thus, the

fragmentation problem of the latest backup is the most

severe since its blocks are scattered across all the prior

backups. To mitigate fragmentation in newer backups,

we propose to do the opposite, and check if any already

stored blocks can be represented by the new blocks to

be written. We remove any duplicate blocks that are al-

ready stored so as to reclaim storage, and refer them to

(a) Backups (b) Conventional deduplication (c) Reverse deduplication

Figure 1: An example of how conventional deduplication and reverse deduplication place data on disk.

the new blocks. This shifts the fragmentation problem

to the older backups, while keeping the storage layout

of the newer backups as sequential as possible. We call

this reverse deduplication, which is the core component

of our deduplication design. Figure 1(c) shows the disk

layout for the previous example when reverse deduplica-

tion is used, such that the blocks of VM3 (i.e., the latest

backup) are sequentially placed on disk. Also, VM2 is

less fragmented than VM1, in the sense that the blocks

of VM2 are less spread out on disk than those of VM1.

Thus, the newer a backup is, the less fragmentation over-

head the backup will experience.

In this paper, we propose RevDedup, a deduplication

system for VM image backup storage. RevDedup ex-

ploits content similarities of VM images using a hybrid

of inline and out-of-order deduplication approaches. It

applies coarse-grained global deduplication (inline) to

different VMs and removes any duplicates on the write

path, and further applies fine-grained reverse dedupli-

cation (out-of-order) to different backup versions of the

same VM and removes any duplicates from old backup

versions. We propose a configurable, threshold-based

block removal mechanism that combines hole-punching

[9] to remove duplicate blocks of old backup versions

and segment compaction to compact data segments with-

out duplicate blocks to reclaim contiguous space.

We implement RevDedup and experiment the proto-

type on a RAID disk array using real-life VM image

snapshots for 160 users over a 12-week span. We show

that RevDedup achieves (i) high deduplication efficiency

with around 97% of saving, (ii) high write throughput

at 4-7GB/s, and (iii) high read throughput for the latest

backup at 1.2-1.7GB/s. We also show that conventional

deduplication experiences throughput drop when retriev-

ing newer backups.

2 Related Work

Deduplication is first studied in Venti [13] for data

backup. To minimize memory usage for indexing, DDFS

[16] and Foundation [14] use the Bloom filter, while

other studies [1, 4, 7] exploit workload characteristics.

The above studies aim to achieve high write through-

put, low memory usage, and high storage efficiency in

deduplication, but put limited emphasis on read perfor-

mance. Kaczmarczyk et al. [6] also propose to improve

read performance for latest backups in deduplication as

in our work. Their system selectively rewrites dedupli-

cated data to disk to mitigate fragmentation, and removes

old rewritten blocks in the background. However, they

consider deduplication for different versions of a sin-

gle backup only, while we enable global deduplication

across multiple VMs. Nam et al. [10] propose to mea-

sure the fragmentation impact given the input workload

and activates selective deduplication on demand. Lillib-

ridge et al. [8] use the container capping and forward

assembly area techniques to improve the restore perfor-

mance. Unlike the previous studies [6, 8, 10] that aim to

remove duplicates from new data, we use a completely

different design by removing duplicates from old data

to maintain high deduplication efficiency and inherently

making older (newer) backups more (less) fragmented.

iDedup [15] also aims to optimize read performance in

deduplication, but it targets primary storage.

3 RevDedup

RevDedup is a deduplication system for backing up VM

images. It builds on a client-server model, in which a

server stores deduplicated VM images and the deduplica-

tion metadata, while multiple clients run the active VMs

and generate VM images. RevDedup considers a single

snapshot of a VM image as a backup. We call different

snapshots that belong to the same VM to be versions.

We assume that RevDedup applies fixed-size chunk-

ing to backup streams, i.e., we divide data into fixed-size

units each identified by a fingerprint, and determine if the

unit can be deduplicated. Fixed-size chunking shows sig-

nificant storage savings for VM images [5], while having

smaller chunking overhead than variable-size chunking.

3.1 Coarse-Grained Global Deduplication

RevDedup first applies coarse-grained global deduplica-

tion to the already stored VM snapshots. By coarse-

grained, we mean that RevDedup applies deduplication

to large fixed-size units called segments, each of which

has a size of several megabytes. By global, we mean that

we apply deduplication to all versions and eliminate du-

plicate segments that appear (i) in the same version, (ii)

in different versions of the same VM, or (iii) in different

versions of different VMs. Each segment is identified

pclee
Cross-Out

pclee
Sticky Note
should be "more"

by a fingerprint that is generated from the cryptographic

hash of the segment content.

With a large segment size, the disk seek time of locat-

ing segments only forms a small portion of the total time

of reading all segment contents of a VM image. Thus,

we mitigate fragmentation by amortizing disk seeks over

large-size segments [7, 15]. Evaluations on our real-

world dataset (see §4) show that coarse-grained global

deduplication itself still achieves high deduplication effi-

ciency. Nevertheless, we point out that it cannot maintain

the same level of deduplication efficiency as in existing

fine-grained deduplication approaches, as shown in §3.2.

3.2 Fine-Grained Reverse Deduplication

RevDedup also applies more fine-grained deduplication

on a sub-segment level to further eliminate duplicates.

We define smaller fixed-size sub-segments called blocks,

each of which has a size of several kilobytes (e.g., using

the native file system block size 4KB). Like segments,

each block is identified by a fingerprint given by the cryp-

tographic hash of the block content.

3.2.1 Reverse Deduplication on Unique Segments

We first consider how reverse deduplication operates on

different versions of a single VM, assuming that all seg-

ments are unique and there is no global deduplication

across segments. Note that different unique segments

may still share identical blocks.

Figure 2 shows how reverse deduplication works with

three versions VM1, VM2, and VM3. Each version con-

tains a number of block pointers, each of which holds

either a direct reference to the physical block content

of a segment, or an indirect reference to a block pointer

of a future version. An indirect reference indicates that

the block can be accessed through some future version.

In RevDedup, any latest version of a VM must have all

block pointers set to direct references.

Suppose that the system has already stored a version

VM1, and now a new version VM2 of the same VM is

submitted to the system. We compare VM1 and VM2 by

loading all their block fingerprints from disk (see §3.3).

If a matched block is found in both VM1 and VM2, we

remove the respective block of VM1, and update that

block with an indirect reference that refers to the identi-

cal block of VM2. Now if we write another version VM3

of the same VM, we compare its blocks with those of

VM2, and remove any duplicate blocks of VM2 as above.

Some blocks of VM1 now refer to those of VM3. To ac-

cess those blocks of VM1, we follow the references from

VM1 to VM2, and then from VM2 to VM3.

In general, when writing the ith version VMi, we com-

pare the block fingerprints of VMi with those of the pre-

Figure 2: An example of reverse deduplication for mul-

tiple versions of the same VM.

vious version VMi−1. We remove any duplicate blocks

of VMi−1 and update the block pointers to refer to the

identical blocks of VMi. To simplify the deduplication

process, one key assumption we make is that we only

compare the two most recent versions VMi and VMi−1.

Hence, we may miss the deduplication with the redun-

dant blocks of earlier versions (i.e., VMi−2, VMi−3, · · ·,

etc.). Nevertheless, the analysis of our real-world dataset

(see §4) indicates that such misses are unlikely and only

contribute 0.6% of additional space.

When reading VMi, we either follow the direct refer-

ence to access the physical block, or a chain of indirect

references to future versions (i.e., VMi+1, VMi+2, · · ·,

etc.) until a direct reference is hit.

3.2.2 Reverse Deduplication on Shared Segments

When segment-level global deduplication is in effect, we

cannot directly remove a block whose associated seg-

ment is shared by other versions or within the same ver-

sion. RevDedup uses reference counting to decide if a

block can be safely removed. We associate each block

with a reference count, which indicates the number of

direct references that currently refer to the block among

all versions of the same VM or different VMs.

Figure 3 shows an example of how reference counts

are used. Suppose that two VMs, namely VMA and

VMB, are stored. Let the segment size be four blocks.

The first versions VMA1 and VMB1 have the same set of

blocks. For the second versions, VMA2 has new blocks

(a) VM versions

(b) Reference counts

Figure 3: An example that shows how reference counts

are assigned when reverse deduplication is applied to

shared segments.

D’ and F’, while VMB2 has new blocks D’, E’, F”, and

H’. We see that any blocks with zero reference counts (in

the segment ABCD) can be safely removed.

With reference counting, we now describe the com-

plete reverse deduplication design. When a client writes

the ith version VMi of a VM, the server first applies

global deduplication with the segments of other VMs.

For each segment of VMi, if it is unique, then the ref-

erence counts of all associated blocks are initialized to

one; if the segment can be deduplicated with some ex-

isting segment, then the reference counts of all associ-

ated blocks of the existing segment are incremented by

one. Next, the server loads all the block fingerprints of

VMi−1 (the previous version) and VMi into memory. It

applies reverse deduplication and compares the block fin-

gerprints of VMi−1 and VMi. If a block of VMi−1 can be

deduplicated with some block of VMi, then the block of

VMi−1 will have its reference count decremented by one

and its direct reference updated to an indirect reference

that refers to the block of VMi. If the reference count

reaches zero, it implies that the block (of VMi−1) is not

pointed by any direct references, but instead can be rep-

resented by the same block of future versions. It can thus

be safely removed.

3.2.3 Removal of Duplicate Blocks

RevDedup builds on two approaches to remove duplicate

blocks from segments, namely block punching and seg-

ment compaction.

Block punching leverages the hole-punching mech-

anism available in Linux Ext4 and XFS file systems

[9], where we can issue in user space the system call

fallocate(FALLOC FL PUNCH HOLE) to a file region.

Any file system block covered by the hole-punched re-

gion will be deallocated and have its space released. The

respective block mappings of the file will be updated

in the file system. Block punching involves file system

metadata operations and is expected to incur small over-

head. However, block punching has a drawback of incur-

ring disk fragmentation (note that it is different from the

fragmentation problem in deduplication we discussed),

as non-contiguous free blocks appear across disk.

Segment compaction is to compact a segment that ex-

cludes the removed blocks. It operates by copying all

blocks of a segment, except those that are to be removed,

sequentially into a different segment. The original seg-

ment will be deleted and have its space released, and the

new segment is kept instead. Segment compaction miti-

gates disk fragmentation as it copies all remaining blocks

in sequence. However, it has large I/O overhead since

it reads and writes the actual data content of the non-

removed blocks.

Hence, we propose a threshold-based block removal

mechanism, which uses a pre-defined threshold (called

the rebuild threshold) to determine how to rebuild a seg-

ment excluding removed blocks. If the fraction of blocks

to be removed from a segment is smaller than the rebuild

threshold, then block punching will be used; otherwise,

segment compaction will be used. The rebuild thresh-

old is configured to trade between disk fragmentation and

segment copying time.

3.3 Indexing

We now describe how RevDedup performs indexing and

identifies duplicates. Currently we use 20-byte SHA-1

for both segment and block fingerprints. For global dedu-

plication, the server holds an in-memory index that keeps

track of the fingerprints and other metadata of all seg-

ments. We argue that the index has low memory usage

when using large-size segments. For example, suppose

that the segment size is 8MB. For every petabyte of stor-

age, we index 128 million entries. If each entry has size

32 bytes, which we believe suffice to store the fingerprint

and other metadata for each segment, then the index has

a total size of 4GB.

For reverse deduplication, we associate each segment

with a metadata file that keeps the block fingerprints and

reference counts of all blocks of the segment. All meta-

data files are stored on disk. When storing a version,

RevDedup builds the index on the fly by loading the

metadata files of all associated segments into memory.

To quantify the memory usage, we consider the follow-

ing parameters used in our evaluation: a 7.6GB VM im-

age, 4KB blocks, and 32-byte block-level index entries.

Since reverse deduplication operates by comparing two

versions of VM images (see §3.2.2), the total memory

usage is up to 2×7.6GB÷4KB×32 bytes = 121.6MB.

3.4 Implementation

Our RevDedup implementation builds on the client-

server model as shown in Figure 4. RevDedup uses

client-side deduplication to reduce the client-server com-

munication overhead. When a client is about to sub-

mit a version of a VM to the server, it first divides the

VM image snapshot into different segments and com-

putes both segment-level and block-level fingerprints for

the version. Next, the client queries the server, using the

segment fingerprints, whether the segments are already

stored in the server. If any segment has already been

stored, then the client discards the upload of that seg-

ment. The client then uploads the unique segments to

the server (e.g., via RESTful APIs). It also sends the

metadata information, including all segment and block

fingerprints for the whole VM image and the informa-

tion of the version (e.g., the VM that it belongs, the size

of the image, etc.). Note that we offload the server by

having the clients be responsible for both segment and

block fingerprint computations. This avoids overloading

the server when it is connected by too many clients.

Upon receiving the unique segments and metadata in-

formation of a version, the server writes them to disk

and links the version with the existing segments that are

already stored. The server performs reverse deduplica-

tion as described in §3.2, including: loading metadata

files and building the block fingerprint index on the fly,

searching for duplicates and updating direct/indirect ref-

erences, and removing duplicate blocks from segments

via block punching or segment compaction.

Our RevDedup prototype is implemented in C in

Linux. We use SHA-1 for both segment and block fin-

gerprint computations. The RevDedup server mounts its

data storage backend on a native file system. RevDedup

requires that the file system support hole-punching, and

here we use Ext4 for Linux. In the following, we address

several implementation details.

Mitigating interference. Since a client may perform

fingerprint computations for a running VM, minimizing

the interference to the running VM is necessary. Here,

we can leverage the snapshot feature that is available in

today’s mainstream virtualization platforms. The client

can directly operate on the mirror snapshot in the back-

ground and destroy the snapshot afterwards.

Communication. The client-server communication

of RevDedup is based on RESTful APIs, which are

HTTP-compliant. A client can retrieve a VM image by

issuing a correct HTTP request. The server can process

multiple requests from different simultaneously.

Multi-threading. RevDedup exploits multi-threading

to achieve high read/write performance. In writes, the

server uses multiple threads to receive segment uploaded

by the clients and to perform reverse deduplication. In

Figure 4: RevDedup’s client-server model.

reads, the server uses dedicated threads to pre-declare

the segment reads in kernel by using the POSIX function

posix fadvise(POSIX FADV WILLNEED). With read

pre-declaration, the kernel can make effective pre-

fetching of segments to improve read performance.

In addition, the server uses a separate thread to trace

the chains of indirect references of blocks when old ver-

sions are read. Once the direct reference is found, the

thread sends the block address to another thread for read-

ing the block content. Both threads run concurrently.

This reduces the overhead of tracing long indirect ref-

erence chains.

Handling of null blocks. In practice, VM images con-

tain a large number of null (or zero-filled) blocks [5]. In

RevDedup, the server skips the disk writes of any null

blocks appearing in the segments submitted by a client.

When a null block is to be read, the server generates null

data on the fly instead of reading it from disk.

4 Evaluation

We conduct testbed experiments on our RevDedup pro-

totype using real-life VM workloads. We show that

RevDedup achieves high deduplication efficiency, high

backup throughput, and high read throughput.

Testbed. Our experiments are conducted on a machine

with a 3.4GHz Intel Xeon E3-1240v2 quad-core, eight-

threaded processor, 32GB RAM, and a RAID-0 disk

array with eight ST1000DM003 7200RPM 1TB SATA

disks. We choose RAID-0 to maximize the disk array

throughput for stress tests. The machine runs Ubuntu

12.04 with Linux kernel 3.2.0. Our measurements in-

dicate that our testbed achieves the raw write and read

throughputs at 1.37GB/s and 1.27GB/s, respectively.

Configurations. We consider four segment sizes for

global deduplication: 4MB, 8MB, 16MB, and 32MB.

0.0

20.0

40.0

60.0

80.0

100.0

4MB 8MB 16MB 32MB

D
ed

u
p
li

ca
ti

o
n
 R

at
io

 (
%

)

Segment Size

Global dedup only

Reverse dedup

Figure 5: Deduplication ratio

0

2

4

6

8

10

 2 4 6 8 10 12

T
h
ro

u
g
h
p
u
t

(G
B

/s
)

Week

4MB
8MB
16MB
32MB
Conventional

Figure 6: Backup throughput

0.0

0.4

0.8

1.2

1.6

2.0

 0 2 4 6 8 10 12

T
h
ro

u
g
h
p
u
t

(G
B

/s
)

Week

4MB
8MB
16MB
32MB
Conventional

Figure 7: Read throughput

We fix the block size at 4KB for reverse deduplication

to match the file system block size. We set the default

rebuild threshold at 20% for our block removal mecha-

nism. Suppose that the clients can generate VM snap-

shots and compute fingerprints offline before connect-

ing to the server. Thus, we pre-compute all segment and

block fingerprints before benchmarking. Our throughput

results are averaged over five runs.

Dataset. We collected a dataset from a real-life vir-

tual desktop environment. The dataset contains image

snapshots of VMs used by university students in a com-

puter science programming course. We prepared a mas-

ter image of size 7.6GB with 32-bit Ubuntu 10.04 in-

stalled. We then cloned 160 VMs, and assigned one to

each student to work on three programming assignments

in a semester. We generated 12 weekly versions for each

VM. If no deduplication is applied, the total size of all

versions over the 12-week span is 14.3TB. If we exclude

null (zero-filled) blocks, there is 6.67TB of data. Note

that the way of cloning multiple images from a master

image is also used in enterprises to standardize the oper-

ating systems [2]. By no means do we claim that the

dataset can be generalized for any virtual desktop en-

vironments. We only aim to show the baseline perfor-

mance of RevDedup in a special real-life use case.

Storage efficiency. We first evaluate the storage ef-

ficiency of RevDedup when storing the 12 weekly ver-

sion sets. We measure the actual disk usage including

both data and metadata. We define the deduplication ra-

tio as the percentage of space saved with deduplication

to the total size of all VM images (excluding null blocks)

without deduplication. Here, we compare two variants of

RevDedup: (i) only coarse-grained global deduplication

is used, and (ii) both global and reverse deduplication ap-

proaches are used. Figure 5 shows the deduplication ra-

tios. Coarse-grained global deduplication itself achieves

space saving of 80.5-93.6%, while reverse deduplication

further removes duplicates and increases the saving to

96.8-97.3%. We also consider conventional deduplica-

tion that operates on data units of small size. Suppose

we choose the default block size 128KB used by Opend-

edup SDFS [12] and ZFS [3]. Then conventional dedu-

plication has a deduplication ratio 96.8% [11], which is

similar to that of RevDedup.

Backup throughput. Next, we compare the backup

throughput of RevDedup and that of conventional dedu-

plication. To evaluate the latter, we configure RevDedup

to use a 128KB segment size for global deduplication

and disable reverse deduplication. In our evaluation, the

server has no data initially. Then we submit the 12 ver-

sion sets in the order of their creation dates. We mea-

sure the time of the whole submission operation, starting

from when the clients submit all unique segments un-

til the server writes them to disk and performs reverse

deduplication (for RevDedup). We call sync() at the

end of each write to flush all data to disk. Here, we plot

the results starting from Week 2, in which RevDedup be-

gins to apply reverse deduplication to the version sets be-

ing stored. Figure 6 shows the throughput of RevDedup

and conventional deduplication in the backup of each

weekly version set. Conventional deduplication has

higher backup throughput than RevDedup, for example,

by an average of 30% compared to RevDedup with seg-

ment size 4MB. Nevertheless, RevDedup still achieves

high backup throughput in the range around 4-7GB/s

(about 3-5× of the raw write throughput) since it discards

duplicates on the write path in global deduplication. A

smaller segment size implies higher throughput as more

duplicates are discarded. Note that there is a throughput

drop in Week 4 due to significant modifications made to

the VMs.

Read throughput. We evaluate the read throughput of

RevDedup. After submitting all 12 version sets, we mea-

sure the time of reading each version set. Before each

measurement, we flush the file system cache using the

command “echo 3 > /proc/sys/vm/drop caches”.

Figure 7 shows the throughput of RevDedup in read-

ing earlier versions after storing all versions. We also

include the results of conventional deduplication here.

We observe that RevDedup confirms our design goal, as

the read throughput decreases with earlier versions being

read. For example, the read throughput for Week 1 is up

to 40% less than that for Week 12. The figure also shows

the fragmentation problem in conventional deduplica-

tion. For Week 1, the read throughput can only achieve

606MB/s (at least 25% less than RevDedup), mainly due

to fragmentation introduced in global deduplication with

the small segment size at 128KB. The read throughput

decreases further for later weeks. It drops to 266MB/s

for Week 12, which is only around 20% of the raw read

throughput (1.27GB/s).

Discussion. In our technical report [11], we present

additional experimental results. We conduct preliminary

microbenchmark experiments on a VM with a long chain

of versions. We evaluate the block removal time and the

disk fragmentation overhead of RevDedup for different

rebuild thresholds. We also evaluate the overhead in trac-

ing indirect references for earlier versions.

5 Conclusions and Future Work

We present RevDedup, a deduplication system designed

for VM disk image backup in virtualization environ-

ments. RevDedup has several design goals: high stor-

age efficiency, low memory usage, high backup perfor-

mance, and high restore performance for latest back-

ups. The core design component of RevDedup is reverse

deduplication, which removes duplicates of old backups

and mitigates fragmentation of latest backups. We ex-

tensively evaluate our RevDedup prototype and validate

our design goals. In future work, we plan to study the

impact of variable-size chunking on RevDedup and eval-

uate RevDedup using more representative workloads.

Availability. The source code of our RevDedup proto-

type presented in this paper is available for download at:

http://ansrlab.cse.cuhk.edu.hk/software/revdedup.

References

[1] D. Bhagwat, K. Eshghi, D.D.E. Long, and M. Lillibridge. Ex-

treme binning: Scalable, parallel deduplication for chunk-based

file backup. In Proc. IEEE MASCOTS, Sep 2009.

[2] A.T. Clements, I. Ahmad, M. Vilayannur, and J. Li. Decentralized

deduplication in SAN cluster file systems. In Proc. USENIX ATC,

Jun 2009.

[3] Scott Dickson. Sillyt ZFS dedup experiment. https:

//blogs.oracle.com/scottdickson/entry/sillyt_

zfs_dedup_experiment, Dec 2009.

[4] F. Guo and P. Efstathopoulos. Building a high performance dedu-

plication system. In Proc. USENIX ATC, Jun 2011.

[5] K. Jin and E.L. Miller. The effectiveness of deduplication on

virtual machine disk images. In Proc. SYSTOR, May 2009.

[6] M. Kaczmarczyk, M. Barczynski, W. Kilian, and C. Dubnicki.

Reducing impact of data fragmentation caused by in-line dedu-

plication. In Proc. SYSTOR, Jun 2012.

[7] E. Kruus, C. Ungureanu, and C. Dubnicki. Bimodal content de-

fined chunking for backup streams. In Proc. USENIX FAST, Feb

2010.

[8] Mark Lillibridge, Kave Eshghi, and Deepavali Bhagwat. Improv-

ing restore speed for backup systems that use inline chunk-based

deduplication. In Proc. of USENIX FAST, Feb 2013.

[9] LWN.net. Punching holes in files. http://lwn.net/

Articles/415889/.

[10] Y. Nam, D. Park, and D. Du. Assuring demanded read perfor-

mance of data deduplication storage with backup datasets. In

Proc. IEEE MASCOTS, 2012.

[11] C. Ng and P. Lee. RevDedup: A reverse deduplication storage

system optimized for reads to latest backups. Technical report,

CUHK, Jun 2013. http://arxiv.org/abs/1302.0621v3.

[12] Opendedup. http://www.opendedup.org/.

[13] S. Quinlan and S. Dorward. Venti: a new approach to archival

storage. In Proc. USENIX FAST, Jan 2002.

[14] S. Rhea, R. Cox, and A. Pesterev. Fast, inexpensive content-

addressed storage in foundation. In Proc. USENIX ATC, Jun

2008.

[15] K. Srinivasan, T. Bisson, G. Goodson, and K. Voruganti. iDedup:

Latency-aware, inline data deduplication for primary storage. In

Proc. USENIX FAST, Feb 2012.

[16] B. Zhu, K. Li, and H. Patterson. Avoiding the disk bottleneck

in the data domain deduplication file system. In Proc. USENIX

FAST, Feb 2008.

