

Horse Racing Simulation System

Prepared by

Ting Hin Chau

PTMsc Csc

Department of Computer Science

The Chinese University of Hong Kong

Supervised by

Professor Michael R. Lyu

Department of Computer Science

The Chinese University of Hong Kong

2004-04-28

Abstract ... 1

1 Introduction... 1

2 System Overview.. 3

2.1 Object Request Broker (VisiBroker for Java 4.0)....................................... 3

2.2 Database Server (Oracle 8i) .. 3

2.3 Server Objects... 3

2.4 Client Objects.. 4

3 Functional specification .. 6

3.1 Jockey Club... 6

3.2 Stable... 28

3.3 Gambler... 34

4 System Design .. 43

4.1 Component Interaction.. 43

4.2 Objects .. 44

4.3 Database.. 59

5 User Manual.. 65

5.1 Compilation... 65

5.2 Installation... 65

5.3 Uninstallation.. 65

5.4 Using the System .. 65

6 Conclusion .. 66

7 References... 67

Horse Racing Simulation System

P. 1

Abstract

This horse racing simulation system demonstrates how all the processes involved in horse

racing can be automated by a distributed system using the Common Object Request

Broker Architecture (CORBA). The processes refer to the interactions among the three

main identities in this system, namely the gamblers, the stables and the Jockey Club. A

distributed system environment can offer better scalability, transparency and failure

handling in this case.

1 Introduction

When people think about horse racing, people think about money. We are talking about

billions of money on any given horseracing day. In the past, people need to go to the

racecourse or off-course betting branches (OCB) of Jockey Club to place their bet and, if

fortunate enough, take the money they win. This is not at all very convenient. With the

advancement of technology, people should be given more channels to do transactions

with the Jockey Club. One way is to do it electronically, and most desirably, through the

Internet, which has become one of the most important ways of communication over the

past few years. This not only can be advantageous to the gamblers, but also the Jockey

Club as it can trim down its operating costs with these automated procedures. Given the

large amount of money and the frequency of transactions involved, the chance of making

an error is much bigger if everything has to be done manually. In a similar way, the

dividends can be credited into the gambler’s accounts instead of giving out in the form of

cash. Similarly, the interactions between the stable administrators and the Jockey Club

can be computerized.

To implement these services as a whole, the identities have to overcome the

heterogeneity among them and be able to seamlessly interact with one another. The

CORBA (Siegel, 2000) implementation would be one of the better solutions to this

challenge, as it can allow different objects to be written in different programming

Horse Racing Simulation System

P. 2

languages and to communicate across different hardware platforms on different

machines.

The next section will be an overview of the system. It provides details about the main

components in this system and depicts their relationship. Section 3 will be the functional

specification of the system. The functionalities of the 3 main identities, namely the

Jockey Club, the stables and the gamblers will be explained. Section 4 will be formal

description of the objects in the system, the database design and the user interface. The

last section will give a conclusion.

Horse Racing Simulation System

P. 3

2 System Overview

The system would be built under a distributed environment. The heterogeneity will be

masked by CORBA implementation. Client objects and the servers can lie on different

machines from within the local network or outside the local network. They communicate

through invocation of the methods defined in the interfaces of one another.

2.1 Object Request Broker (VisiBroker for Java 4.0)

The Object Request Broker enables CORBA objects to communicate with each

other. The ORB connects objects requesting services to the objects providing

them by performing object lookup and instantiation. VisiBroker for Java 4.0 will

be used in this project. It provides a complete CORBA 2.3 runtime that supports

development environment for building, deploying, and managing distributed Java

applications (Farley, 1998) to achieve openness, flexibility, and inter-operability.

Objects built with VisiBroker for Java can be accessed by Web-based applications

that communicate using OMG's Internet Inter-ORB Protocol (IIOP) standard for

communication between distributed objects through the Internet or through local

intranets. All machines containing the client Java applets and the server objects

have to be installed with VisiBroker for Java 4.0 to enable communication.

2.2 Database Server (Oracle 8i)

The database server provides a persistent storage of data. Information of horses,

stables, gamblers, races, as well as the bets will be stored in the database. Apart

from providing storage, the database manager built into Oracle 8i will also be

responsible for maintaining data integrity during concurrent accesses.

2.3 Server Objects

The server objects provide all the implementation of the services requested by the

clients. They also interact with the database server to store and retrieve

Horse Racing Simulation System

P. 4

transaction information. The functionalities of each server object are exposed to

clients through the interface it is implementing. As CORBA implementation will

be adopted in this project, the interface will be defined as standard CORBA/IDL

(IDL is the abbreviation of Interface Definition Language). The server objects

will be implemented in Java in this project. The server objects, however, will not

communicate with the client objects. Instead, as stated in above sections, they

communicate through the CORBA Object Request Broker.

2.4 Client Objects

The client objects are Java applets that request services from the server objects.

All the communication will go through the Object Request Broker, which will

maps the server names to remote objects. The client objects will not directly

interact with the database. For this system, the clients exist from within the

Intranet for performance and demonstration purposes. The clients are divided into

three categories. The first category is race administration clients from Jockey

Club. They are responsible for functions carried out by the staff of the Jockey

Club. The functions include race schedule setting, allowing bets, starting races

and paying out dividends. The second category is stable administration clients.

The functions they carry out include horse management, and race registration with

the Jockey Club for their horses. The last category is the gamblers. With the

client application, the gamblers can perform betting account management

transactions, queries on horses and races, as well as betting on a horse of a race.

The following diagram (Figure 1) depicts graphically the interaction between the various

components described above.

Horse Racing Simulation System

P. 5

Figure 1: The interaction among components.

Object Request Broker (VisiBroker for Java 4.0)

……….

 Database

 (Oracle 8i)

 Server

 Object 1

 Server

 Object N

 Client

 Object 1

 Client

 Object N

Java Applet

Internet Client

Horse Racing Simulation System

P. 6

3 Functional specification

The section will describe the functionalities of each of the 3 identities, Jockey Club,

stables and gamblers. Moreover, the business model of the Jockey Club will be

explained together with the assumptions of this project.

3.1 Jockey Club

It is responsible for provision of racing games by interacting with both stables and

the gamblers. It administers the schedule of each race, accepts bets, starts a race

and pays out dividends after the race is over. In this project, the result will be

simulated based on simple Monte Carlo algorithm using historical ranks of the

horses.

3.1.1 Major responsibilities and functionalities

1) Formulating Horseracing Schedule

This function will be requested by the race administration client

application. The Jockey Club first decides on which dates

horseracing will be taking place. Apart from the dates, it also

determines how many races there will be on each horseracing day.

In an attempt to reduce the system resource requirement of this

project, the race administrator can only set the schedule day by day

with the date equals to the current date. When the race

administrator wants to set a date as horseracing day, the

horseracing date and the race number have to be inputted. Each

race has to be inputted separately. Figure 2 shows the screen for

setting race schedule. Existing schedule will also be shown on this

page. Existing horseracing date, race event number and its

respective status will be shown. The 4 statuses of a race are ‘R’,

which stands for horse registration period, ‘B’, which stands for

Horse Racing Simulation System

P. 7

betting period, ‘D’, which stands for race over, and ‘P’, which

mean all dividends have been paid out.

Figure 2: The screen for setting race schedule. (Race Administration Client)

In reality, under the rules set when the Jockey Club was founded,

the horseracing dates are confined to Wednesdays, Saturdays,

Sundays or other public holidays of Hong Kong Special

Administrative Region (HKSAR). However, this limitation is

relaxed in this project.

 2) Stable Account Registration

This function will be requested by the stable administration client

application. It allows stables to register itself with the Jockey Club

to make it eligible for registering their horses and jockeys for a

race. A stable identity number and a password will be assigned to

Horse Racing Simulation System

P. 8

each registered stable. Upon registration, the Jockey Club can

query information about the horses and jockeys of the stable.

 3) Stable Account Removal

This function will be requested by the stable administration client

application. It allows stables to cancel its registration with the

Jockey Club. This would make them ineligible for registering their

horses and jockeys for a race. Upon successful account

cancellation, the gamblers can no longer query information about

the horses of the stable.

 4) Information Query by Stable

This function will be requested by the stable administration client

application. It allows stables to ask information about the

horseracing schedule.

 5) Processing Horse Registration for a Race by Stable

This function will be requested by the stable administration client

application. It allows them to register their horses for a race on a

valid horseracing day. No horse can register twice for any race, as

it is not possible to do so. The maximum number of horses in a

race is 14. The Jockey Club will assign the horses to different

lanes sequentially, with the first one registered assigned to lane 1.

 6) Changing a race status from registration to betting mode

This function will be requested by the race administration client

application. Only races with 4 or more starters are valid and will

be open to public for placing bets. In this project, registration has

to be done on the same day as the horseracing day. Once, the

mode changes to betting mode, no more horse can be registered for

Horse Racing Simulation System

P. 9

that particular race. Figure 3 shows the screen for changing the

status of a race from registration to betting mode.

Figure 3: The screen for changing a race from registration to betting mode. (Race

Administration Client)

 7) Betting Account Registration

This function will be requested by the gambler client application.

It allows gamblers to register with the Jockey Club and thereby

opening a betting account. To successfully open an account,

gamblers are required to provide a banking account as the source

of money for the betting account. In this project, there will be no

checking on the validity of the banking account and its balance.

Therefore, all transfer from banking account to betting account will

be treated as successful if the input amount is a valid number. An

identity number and a password will be assigned to each registered

Horse Racing Simulation System

P. 10

gambler. The name of the gambler will also be stored and

displayed.

 8) Betting Account Removal

This function will be requested by the gambler client application.

It allows gamblers to cancel its registration with the Jockey Club.

This would make them ineligible for betting on games through this

system.

9) Gambler Profile Update

This function will be requested by the gambler client application.

It allows gamblers to update their registered name, registered bank

account and their password.

10) Accepting Money Deposit

This function will be requested by the gambler client application.

It can handle money deposit from the bank account associated with

the gamblers’ account to the betting account.

11) Race Query by Gamblers

This function will be requested by the gambler client application.

It allows gamblers to ask information about a racehorse of a

particular race. The information includes the stable ID, horse ID,

the win odds and the place odds range will be shown.

 12) Accepting bets from Gamblers

This function will be requested by the gambler client application.

It accepts bets from gamblers. When a race is in betting mode,

gamblers can bet on it. As a result of this operation, money will be

deducted from the account of the gambler. There will be two types

of games in this project. The first one is called ‘Win’ and the

Horse Racing Simulation System

P. 11

second one is called ‘Place’. These two games will be elaborated

in the next section 3.1.2.

13) Calculating Odds

Every time a new bet is being placed on a particular horse, the

Jockey Club will recalculate the odds in the same pool of all the

horses participating in the same race. A detailed description of the

calculation will be described in the next section 3.1.2.

 14) Starting a Race

This function will be requested by the race administration client

application. The Jockey Club is responsible to cut off all betting

and start a race. In this project, there will not be a complete

simulation of the whole racing process, where horses overtake one

another over the course of the race. After the Jockey Club starts a

race, the result will then be generated based on Monte Carlo

Simulation using historical ranks of each participating horse. A

detailed description of the simulation will be described in the next

section 3.1.2. Figure 4 shows the screen for starting a race. Figure

5 shows the screen for the results of a race. Only the top 3 winners

will be shown.

Figure 4: The screen for starting a race. (Race Administration Client)

Horse Racing Simulation System

P. 12

Figure 5: The screen for the results of a race. (Race Administration Client)

Horse Racing Simulation System

P. 13

 15) Saving the Results into a Database

The results of a race will be saved into a database by the Jockey

Club after each race. No explicit request is needed. These results

will be used for paying out dividends, as well as inputs for future

race simulation.

16) Paying out Dividends to Gamblers

Concerning the interaction with the gamblers, it pays out dividends

to gamblers if their bets win after each race. As a result of this

operation, money will be credited to the betting account of the

gambler. The exact amount of dividends payable to gamblers

depends on the final odds of each horse under various betting types.

Horse Racing Simulation System

P. 14

3.1.2 Types of Bet

1) Win

With “Win”, a gambler picks one horse and if it turns out to be the

winner (1st), the gambler will be entitled to receive dividend,

otherwise, the gambler loses.

 2) Place

With “Place”, the gambler picks one horse and if it is the winner

(1
st
), the first runner-up (2nd), or second runner-up (3rd), the

gambler will be entitled to receive dividend. Otherwise, the

gambler loses.

Horse Racing Simulation System

P. 15

3.1.3 Calculation of Odds

The calculation assumes that the Jockey Club makes no profit out of the

pool. Please note that all odds will be initialized to 99.

1) Win

As stated in (3.1.2.1), only gamblers that have placed bets on the

eventual winner (1st) will win and all other gamblers in this pool

lose money. From the standpoint of the Jockey Club, whenever a

bet bw is placed on a horse, the Jockey Club will reduce its odds to

make sure that it will break even.

Suppose bw is the amount of bet on horse w, Σbi is the total amount

of bets and dw is the win odds of the horse.

Dividend payout = Amount of bets on winner *

odds of winner

Revenue = Total amount of bets

Net gain = 0

- bw * dw + Σbi = 0

dw = Σbi / bw -------- (1)

Every time a new bet is being placed on any horse, the odds of all

horses changes according to equation (1).

Horse Racing Simulation System

P. 16

To illustrate, suppose there are 4 horses, and let b1, b2, b3, b4 be the

bets on the 4 horses respectively and let d1, d2, d3, d4 be their

respective odds.

Four scenarios:

1) – b1 * d1 + b1 + b2 + b3 + b4 = 0

2) – b2 * d2 + b1 + b2 + b3 + b4 = 0

3) – b3 * d3 + b1 + b2 + b3 + b4 = 0

4) – b4 * d4 + b1 + b2 + b3 + b4 = 0

Suppose b1 = 100, b2 = 200, b3 = 400 and b4 = 500, then

d1 = (100 + 200 + 400 + 500) / 100 = 12

d2 = (100 + 200 + 400 + 500) / 200 = 6

d3 = (100 + 200 + 400 + 500) / 400 = 3

d4 = (100 + 200 + 400 + 500) / 500 = 2.4

 2) Place

With “Place”, the gambler picks one horse and if it is the winner

(1
st
), the first runner-up (2nd), or second runner-up (3rd) in a race,

the gambler will be entitled to receive dividend. Otherwise, the

gambler loses. Again, we assume the Jockey Club does not make

any profit out of the pool.

Suppose dw1 is the place odds of winner w1, Σbi is the total amount,

bw1 is the amount of bet on winner w1, bw2 is the amount of bet on

winner w2 and bw3 is the amount of bet on winner w3.

Dividend payout = Amount of bets on winners

* their respective odds

Revenue = Total amount of bets

Net gain = 0

 The equation for place odds is given by:

dw1 = (Σbi - bw1 - bw2 - bw3) /(3 * bw1) + 1

Horse Racing Simulation System

P. 17

dw2 = (Σbi - bw1 - bw2 - bw3) /(3 * bw2) + 1

dw3 = (Σbi - bw1 - bw2 - bw3) /(3 * bw3) + 1

As the place odds of a horse depends on the amounts of bets of the

other 2 winners, before the result of a race is known, there are

many possible place odds of a horse. Instead of calculating all

those possible place odds every time a gambler places a bet and

showing all those possible odds, the Jockey Club will use a range

to describe the place odds. Given a total amount of place bets on

all the horses, the place odds of a horse will be largest possible if

the amounts of bets of the two other horses are the smallest among

all the other place bets. Similarly, if the place odds of a horse will

be the smallest possible if the amounts of bets of the two other

horses are the largest among all the other place bets. To illustrate,

again, suppose there are 4 horses, and let b1, b2, b3, b4 be the bets

on the 4 horses respectively and let d1, d2, d3, d4 be their respective

odds. Also, we assume b1 < b2 < b3 < b4

The smallest possible value of d1 is when horse 3 and horse 4 are

the two other winners, as b3, b4 are the largest among all other

place bets. The largest possible value of d1 is when horse 2 and

horse 3 are the two other winners, as b2, b3 are the smallest among

all other place bets.

Suppose b1 = 100, b2 = 200, b3 = 400 and b4 = 500, then

dw1smallest = (Σbi - bw1 - b3 - b4) /(3 * bw1) + 1

= (b1 + b2+ b3 + b4 - b1 - b3 - b4) / (3 * b1) + 1

= 200/300 +1 = 1.66

(All odds are rounded down to 2 decimal places.)

dw1largest = (Σbi - bw1 - bw2 - bw3) /(3 * bw1) + 1

Horse Racing Simulation System

P. 18

= (b1 + b2+ b3 + b4 - b1 - b2 - b3) / (3 * b1) + 1

= 500/300 +1 = 2.66

Therefore, before the race results come out, the place odds of horse

1 will be specified by the range 1.66 – 2.66.

dw2smallest = (Σbi - bw2 - b3 - b4) /(3 * bw2) + 1

= (b1 + b2+ b3 + b4 - b2 - b3 - b4) / (3 * b2) + 1

= 100/600 +1 = 1.16

dw2largest = (Σbi - bw1 - bw2 - bw3) /(3 * bw2) + 1

= (b1 + b2+ b3 + b4 - b1 - b2 - b3) / (3 * b2) + 1

= 500/600 +1 = 1.83

Therefore, before the race results come out, the place odds of horse

2 will be specified by the range 1.16 – 1.83.

The respective range for place odds of horse 3 and horse 4 can be

calculated in similarly.

Horse Racing Simulation System

P. 19

3.1.4 Horseracing Simulation Model

This simulation model (Ross, 1989) is responsible for generating results

for each race. Monte Carlo simulation (Bickel and Doksum, 1977) will be

employed to perform the above task. In Monte Carlo simulation, samples

can be drawn from a given distribution (Chung, 1998) using a random

number and the distribution concerned as input. It is used to imitate a

random sampling from the input distribution (Hogg and Craig, 1970). In

this case, the distribution will be the historical statistics of a horse

(Wagner, 1969). These statistics can be relieved from the official website

of the Jockey Club (http://www.hongkongjockeyclub.com).

Instead of applying a theoretically derived parametric distribution like

Exponential distribution or Lognormal distribution (Conover and Whitten,

1980) to the statistics of the horses, nothing will be assumed about the

type of distributions (Hastings, 1975). General non-parametric

distribution will be used, which means that the mathematics of a

distribution will be defined by its range, the number of classes and the

frequency of each class. In this case, the data we have are previous

rankings of a horse in various races. The range of the rankings will be

from 1 to 14 and each integer from 1 to 14 represents a distinctive class.

From this raw frequency distribution, we generate the probability

distribution (Bratley, Fox, and Schrage, 1987) of this horse. (Figure 6)

P(X = x) is the probability P that the variable ranking (X) of the horse is

equals to a certain value x.

Horse Racing Simulation System

P. 20

Figure 6 The distribution of ranking of

a horse

0

0.05

0.1

0.15

0 5 10 15

Rank X

P
(X

 =
 x

)

Figure 7 The cumulative distribution

of a horse

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14

Rank X

F
(x

)
=

 P
 (

X
 <

=
 x

)

Figure 7 shows the cumulative distribution (Kendall, Stuart, and Ord,

1987) derived from the probability distribution in Figure 6. F(x) gives the

Horse Racing Simulation System

P. 21

probability P that the variable ranking X is less than or equal to x.

Mathematically, the relationship can be described as F(x) = P(X <= x).

(Vose, 1966) For example, F(5) refers to the probability of the ranking of

a horse to be less than 5 or equal to 5. In this project, rankings less than 5

or equal to 5 include 1, 2, 3, 4 and 5. It does not elaborate into the idea of

winning and losing.

Figure 8 The relationship between x,

F(x) and G(F(x))

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14

G(F(x)) = x

F
(x

)
=

 P
 (

X
 <

=
 x

)

Figure 8 in fact represents the same data sets as Figure 7. It simply

highlights the relationship between x, F(x) and G(F(x)). (Young, 1992)

As stated above, given x, the value of F(x) can be found. G(F(x)) is the

inverse function where G(F(x)) = x. This function is crucial in Monte

Carlo Simulation (Law and Kelton, 1991) because if a number from 0 to 1

is randomly generated and fed into the function G(), value of ranking X

can be randomly sampled based on its distribution as a result. It is worth

to note that the value of X does not have to be an integer, as it does not

represent the final ranking. Every horse in the same race will have its own

ranking distribution. Each will generate a random value Xi. The value of

Horse Racing Simulation System

P. 22

Xs will be compared and sorted. The horse with the smallest value of

ranking is the winner. This is the final ranking of the horse. The one with

the largest value of X will be assigned to the last position of the race. In

this way, the result of a race can be generated. As opposed to the discrete

distribution of rankings of a horse, the intermediate ‘ranking’ X sampled

has a continuous distribution. The final ranking, which will be obtained

by comparing the values of Xs, will be discrete in nature, meaning that it

can only take one of a set of identifiable values. In this case, the value

ranges from 1 to the number of starters in that race and the maximum is 14.

However, the above model presents a problem given the rules of the

Jockey Club. As there can be 4 to 14 horses in a race, the rank of a race

can be misleading. After all, it should be easier to rank 4th in a race with

4 horses than a race with 14 horses! Therefore, instead of adopting the

model described above directly, some modifications have to be made.

Another other factor, which is the total number of horses participated in a

race, has to be taken into account. The input distribution will be changed

from rank to rank divided by the total number of horses. For instance, if a

horse ranks 4th in a race with 8 horses, the number will be 4 divided by 8

which is 2. It can be seen that if a horse ranks 7th in a race with 14 horses,

the number will be again 2. This number depicts the relative position of a

horse instead of absolute position of a horse in a race. After this

transformation, a frequency distribution of rank/(number of horses) of

each horse will be obtained. The rest of the steps are just the same as

described before. Figure 9 shows the distribution of rank/(number of

horses).

Horse Racing Simulation System

P. 23

Figure 9 The distribution of

rank/(number of horses) of a horse

0

0.05

0.1

0.15

0.2

0 0.5 1

Rank/(Number of Horses) X

P
(X

 =
 x

)

Horse Racing Simulation System

P. 24

In the process of randomly sampling from the distribution of a horse, the

model being used in this project makes the following assumptions:

1) The distribution of a horse is independent of other horses. The

distributions are uncorrelated.

2) The ranking of a horse in a race only depends on historical data

and the random number generated. Factors including location of

racecourse, lane, and jockey are insignificant in determining

estimating the ‘future’ rankings of a horse. The first two

assumptions allow each horse to generate an intermediate value for

X without the knowledge of their opponents. The simulation

procedure only depends on its historical data and the random

number generated.

3) The randomness of the above sampling method means that it will

over-sample and under-sample from various parts of the

distribution and cannot be relied upon to replicate the input

distribution’s shape unless a very large number of iterations are

performed. As this project is concerned about horseracing, which

allows for huge upsets, this randomness is assumed to be

acceptable.

4) The data from the 10 most recent races a horse participated in will

be used as the input distribution frequency. If the horse has not

participated in 10 races, the missing values of rank/(number of

horses) will be randomly generated within the range 0.45 to 0.55.

This implies that if there are insufficient data about the horse, the

horse will be perceived to perform around average in those missing

races.

Horse Racing Simulation System

P. 25

To illustrate the above model, consider there is a race with 4 horses with

the following input data. R refers to rank, N refers to number of horses in

that race and P refers to relative position of the horse and equals R/N.

Please note that horse 3 only has participated in 9 races before and horse 4

has only participated in 8 races before. Missing values are randomly

generated within the range 0.45 to 0.55.

Table 1: Historical Ranks of Participating Horses

 Horse 1 Horse 2 Horse 3 Horse 4

Race R N R/N R N R/N R N R/N R N R/N

1 2 8 0.25 4 10 0.4 3 10 0.3 5 10 0.5

2 3 10 0.3 6 12 0.5 2 8 0.25 6 11 0.54545

3 1 14 0.07143 5 10 0.5 3 12 0.25 6 12 0.5

4 1 9 0.11111 4 8 0.5 4 11 0.36364 8 14 0.57143

5 4 14 0.28571 4 10 0.4 3 9 0.33333 12 12 1

6 3 12 0.25 7 14 0.5 1 7 0.14286 13 14 0.92857

7 2 8 0.25 8 12 0.66667 1 8 0.125 8 14 0.57143

8 1 10 0.1 8 14 0.57143 5 12 0.41667 6 10 0.6

9 1 10 0.1 6 10 0.6 4 10 0.4 N/A N/A 0.5355

10 2 8 0.25 5 8 0.625 N/A N/A 0.4805 N/A N/A 0.5010

As the total number of data sets input for each horse is 10, the probability

of occurring for each R/N value is 0.1. Also, Table 1 can be reduced to

Table 2 because only the values of R/N will be used for calculation. For

calculation purposes, the R/N values are sorted in ascending order.

Table 2: Cumulative Probability Distribution of (R/N) of Participating Horses

Cumulative

Probability

(R/N)

Horse 1 R/N Horse 2 R/N Horse 3 R/N Horse 4 R/N

0 0 0 0 0

0.1 0.071429 0.4 0.125 0.5

0.2 0.1 0.4 0.142857 0.5

0.3 0.1 0.5 0.25 0.501

0.4 0.111111 0.5 0.25 0.5355

0.5 0.25 0.5 0.3 0.545455

0.6 0.25 0.5 0.333333 0.571429

0.7 0.25 0.571429 0.363636 0.571429

Horse Racing Simulation System

P. 26

0.8 0.25 0.6 0.4 0.6

0.9 0.285714 0.625 0.416667 0.928571

1 0.3 0.666667 0.4805 1

After the cumulative distribution for (R/N) for each of the participating

horses has been drawn up, a random number from 0 to 1 will be generated

for each of the horse as the other input for Monte Carlo Simulation. This

value corresponds to the value of F(X) in Figure 8. With this random

number, the corresponding R/N value will be calculated. The R/N values

of each horse will then be compared with one another and horse with a

lower R/N value beats out horse with a higher R/N value. In case two

horses have the same score, their position will be randomly determined.

For instance, random numbers 0.5379783655654367,

0.21096296234313094, 0.02229991816731558 and 0.4920612612595172

are generated for the above four horses respectively. For horse 1,

0.5379783655654367 is in the range 0.5 to 0.6 of the cumulative

probability. Two points on the cumulative distribution (x1, y1) and (x2,

y2) corresponding to (0.25, 0.5) and (0.25, 0.6) will be used to calculate

the final score of a horse, based on the random number generated. The

corresponding R/N value can be calculated using simple linear equation.

Also suppose rand1, rand2, rand3 and rand4 are the random numbers

generated for horse 1, horse 2, horse 3 and horse 4 respectively.

As mentioned, for horse 1, point 1 (x1, y1) is (0.4, 0.2) and point 2 (x2, y2)

is (0.5, 03)

R/N of horse 1

= (rand1-y1)*((x2-x1)/(y2-y1)) + x1

= (0.5379783655654367 – 0.2)* (0.25 – 0.25)/(0.6-0.5) + 0.25

= 0.25

For horse 2, point 1 (x1, y1) is (0.4, 0.2) and point 2 (x2, y2) is (0.5, 0.3).

Horse Racing Simulation System

P. 27

R/N of horse 2

= (rand2-y1)*((x2-x1)/(y2-y1)) + x1

= (0.21096296234313094 – 0.2)* (0.5 – 0.4)/(0.3-0.2) + 0.4

= 0.410962962

For horse 3, point 1 (x1, y1) is (0, 0) and point 2 (x2, y2) is (0.125, 0.1).

R/N of horse 3

= (rand2-y1)*((x2-x1)/(y2-y1)) + x1

= (0.02229991816731558 – 0)* (0.125 – 0)/(0.1-0) + 0

= 0.027874898

For horse 4, point 1 (x1, y1) is (0.5355, 0.4) and point 2 (x2, y2) is

(0.545455, 0.5).

R/N of horse 3

= (rand2-y1)*((x2-x1)/(y2-y1)) + x1

= (0.4920612612595172 – 0.4)* (0.545455 – 0.5355)/(0.5-0.4) + 0.5355

= 0.544664699

After all the R/N values have been computed, they will be compared with

one another to get the final rank of a horse in a race. From the above

results, horse 3 will rank 1st, followed by horse 1 and then horse 2. Horse

4 will be the last one.

Horse Racing Simulation System

P. 28

3.2 Stable

It is an entity where horses and jockeys belong. It maintains their information. It

is responsible for accommodation of horses and registering them together with

jockeys with the Jockey Club for a race. It is also responsible for withdrawing

horses and jockeys from a race. Before registering with the Jockey Club, a stable

has to open a stable account with the Jockey Club. Gamblers can query

information about the horses of the stable.

3.2.1 Major functionalities and responsibilities

1) Stable Account Registration

This function will be requested by the stable administration client

application. It allows stables to register itself with the Jockey Club

to make it eligible for registering their horses for a race. A stable

identity number will be assigned to each registered stable. Figure

10 shows the screen for stable account registration.

Figure 10: The screen for stable account registration. (Stable Administration Client)

Horse Racing Simulation System

P. 29

2) Stable Account Removal

This function will be requested by the stable administration client

application. It allows stables to cancel its registration with the

Jockey Club. This would make them ineligible for registering their

horses for a race. Upon successful account cancellation, the

gamblers can no longer query information about the horses of the

stable. Figure 11 shows the screen for stable account cancellation.

Figure 11: The screen for stable account cancellation. (Stable Administration Client)

Horse Racing Simulation System

P. 30

3) Adding a horse to the stable

This function will be requested by the stable administration client

application. It allows stables to add a horse to the stable. The gamblers

can then query information about the horses of the stable. Figure 12

shows the screen for adding a horse.

Figure 12: The screen for adding a horse to a stable. (Stable Administration Client)

Horse Racing Simulation System

P. 31

4) Removing a horse from the stable

This function will be requested by the stable administration client

application. It allows stables to remove a horse to the stable. Upon

deletion, the gamblers can no longer query information about that horse.

Figure 13 shows the screen for removing a horse.

Figure 13: The screen for removing a horse from a stable. (Stable Administration Client)

5) Horse Query by Gamblers

This function will be requested by the gambler client application. It

allows gamblers to ask information about a horse of a stable. The

information includes the name, the birthday, and the weight of a horse.

Horse Racing Simulation System

P. 32

6) Information Query on Current Race Schedule

This function will be requested by the stable administration client

application. Stable can ask information from the Jockey Club

about the horseracing schedule. If there exists any races on the

current date, the races together with their respective statuses will

be shown. The 4 statuses of a race are ‘R, which stands for horse

registration period, ‘B’, which stands for betting period, ‘D’, which

stands for race over, and ‘P’, which mean all dividends have been

paid out. Figure 14 shows the screen for querying race schedule.

Figure 14: The screen for checking schedule on current date. (Stable Administration

Client)

Horse Racing Simulation System

P. 33

7) Horse Registration for a Race

This function will be requested by the stable administration client

application. Stables can register their horses for a race on a valid

horseracing day. No horse can register twice for any race, as it is

not possible to do so. Figure 15 shows the screen for horse

registration for a race.

Figure 15: The screen for horse registration for a race. (Stable Administration Client)

Horse Racing Simulation System

P. 34

3.3 Gambler

It is an entity that places bets on horses. It can query various kinds of information

from the Jockey Club. It can also query information about the horses of a stable.

Before betting on races, gamblers are required to register themselves with the

Jockey Club to open a betting account, which will be associated with a bank

account of the gambler where he/she can deposit money to the betting account.

The gamblers can then place bet on a race. If the bet wins, dividends will be

transferred from the Jockey Club to the betting account directly. The gamblers

can also cancel their betting account with the Jockey Club.

3.3.1 Major responsibilities and functionalities

1) Betting Account Registration

This function will be requested by the gambler client application.

Gamblers are required to register with the Jockey Club before they

can place bet through this system. To successfully open an

account, gamblers need to provide a banking account as the source

of money for the betting account. An identity number will be

assigned to each registered gambler. Figure 16 shows the screen

for betting account registration.

Horse Racing Simulation System

P. 35

Figure 16: The screen for betting account registration. (Gambler Client)

2) Betting Account Removal

This function will be requested by the gambler client application.

Gamblers can cancel its registration with the Jockey Club. This

would make them ineligible for betting on games through this

system. Figure 17 shows the screen for betting account

cancellation.

Horse Racing Simulation System

P. 36

Figure 17: The screen for betting account cancellation. (Gambler Client)

3) Update Gambler Profile

This function will be requested by the gambler client application.

Gamblers can update the profile associated with the betting account

include the name, ID and password of the gambler. Figure 18 shows the

screen for updating profile.

Horse Racing Simulation System

P. 37

Figure 18: The screen for updating profile. (Gambler Client)

4) Depositing Money to Betting Account

This function will be requested by the gambler client application.

Gamblers can deposit money from the bank account associated with the

gamblers’ account to the betting account. Please note that there will be no

validation on the balance of the bank account. Figure 19 shows the screen

for money deposit.

Horse Racing Simulation System

P. 38

Figure 19: The screen for money deposit. (Gambler Client)

5) Horse Query

This function will be requested by the gambler client application.

Gamblers can ask information about horses of a stable. Figure 20

shows the screen for horse query.

Horse Racing Simulation System

P. 39

Figure 20: The screen for horse query. (Gambler Client)

6) Race Query

This function will be requested by the gambler client application.

Gamblers can ask information about horses of a stable. In the first

step, gamblers input the race event number. The lanes with horse

registered will have a “Show Details” button shown. Details

including stable ID, horse ID, win odds and place odds range of the

horse in that lane will be displayed if the user clicks on the “Show

Details” button. Figure 21 –Figure 23 show the screens for horse

query.

Horse Racing Simulation System

P. 40

Figure 21: The screen for race query – step 1. (Gambler Client)

Figure 22: The screen for race query – step 2. (Gambler Client)

Horse Racing Simulation System

P. 41

Figure 23: The screen for race query – step 3. (Gambler Client)

7) Placing Bets

This function will be requested by the gambler client application.

If there is any race on the current date, gamblers with valid

accounts can place bets on the races where the status is “betting

mode”. As a result of this operation, money will be deducted from

the betting account of the gambler. The two types of games in this

project are ‘Win’ and ‘Place’, as described in section 3.1.2. Figure

24 shows the screens for placing bets.

Horse Racing Simulation System

P. 42

Figure 24: The screen for placing bets. (Gambler Client)

Horse Racing Simulation System

P. 43

4 System Design

This section will discuss the design of the system. The interaction between different

components and their respective architecture will be described in detail. The design of

database will be discussed first. Then the server objects and client objects will be

covered. In particular, the interfaces of the server objects implementing the

functionalities of each of the 3 identities, Jockey Club, stables and gamblers will be

described. Their interfaces will be put down in the form of CORBA/IDL, as this project

uses the CORBA (Visibroker for Java) implementation. In the following, ‘Client’ should

be considered as client objects under the context of CORBA. ‘Client’ does not refer to

gambler.

4.1 Component Interaction

Figure 25 depicts the interaction between the components of the system. Except for the

interaction between the server objects and database access objects, all interaction between

objects goes through the Object Request Broker. The three GUI applications, namely

RaceAdminClient, StableClient and BuyerClient, do not directly communicate with the

database to do transactions. Rather, they request services from the server objects, which

in turn perform the transactions on behalf of the clients. The interfaces of the server

objects are exposed through CORBA/IDL. These server objects then save the state of

transaction to the database via the database access objects. The use of database access

objects is to hide database specific details from the server objects.

Horse Racing Simulation System

P. 44

Figure 25: Interaction between components

4.2 Objects

A race administrator client will serve as a proxy for the Jockey Club. It can be

used to formulate horseracing schedule. Stables and gamblers can query

information about the horseracing schedule. Stables can also register their horses

with the Jockey Club for a race. The race administrator then decides on when to

end the registration period of a race and allow gamblers to bet on a race. As it

accepts bets from gamblers, it updates the win odds and place odds of each horse

based on the amount of bet on each horse and the total amount of bet in the pool.

Gamblers can query information about the horses participating in a race. Another

Database

Access

Objects

Database

Horse Racing Simulation System

P. 45

important function that the race administrator can carry out is to start a race.

Once the race is started, the simulation stated in section 3.1.4 will kick off to

generate the result for the race. In turn, the race results will be saved into a

database. Lastly, it pays out the dividends to gamblers. All the functions of the

Jockey Club are implemented by the Race server object. The RaceAdminClient

object provides a GUI for administrators of Jockey Club to request the above

functions to be executed.

A stable administrator client will be used to manage a stable. Unlike the Jockey

Club, there can be over 1 stable operating concurrently. A stable consists of a

number of horses and jockeys. A stable administrator client is allowed to register

a stable with the Jockey Club, as well as canceling the stable account. Registering

with the Jockey Club allows it to have the information of its horses available for

query by gamblers. Of course, it can update the information. One important

function that the stable administrator can perform is to register a horse to join a

race. The StableClient object provides a GUI for administrators of stables to

request the above functions to be executed. These functions will be performed by

the Stable object. The StableProcessor object plays the role of managing all the

Stable objects.

A buyer client will be used to perform various operations for the gambler.

Multiple buyer clients can be used by a number of gamblers concurrently. It

enables a person to register with the Jockey Club and open a betting account,

which should be associated with a bank account for settlement. The gambler will

then obtain a pair of gambler identification number and password to logon the

system. The gambler can then query information about a horse of a stable, check

the odds of the starters and place a bet on races. Account balance query, money

transfer between the betting account and the bank account also go through this

gambler client. The Buyer object is the server object responsible for serving the

requests of the gamblers from the GUI object BuyerClient. The BuyerProcessor

object plays the role of managing all the Buyer objects.

Horse Racing Simulation System

P. 46

4.1.1 Interface Race

A Race object does not refer to a single racing game. Here, it provides the

whole platform to perform most of the operations for the Jockey Club,

stables and gamblers. However, at any time, there will only be one Race

Object, which deals with the current racing date. In this project, the Race

object only handles races on the current date. This limitation simplifies

hierarchy of the system. Figure 26 shows the defined types of Race

object.

Horse Racing Simulation System

P. 47

interface Race {

 typedef sequence<unsigned long> ULongArr;

 typedef sequence<unsigned long> ULongArr4;

 typedef sequence<string> stringArr;

 struct RaceSchedule {

 string RaceDate;

 unsigned long RaceEventNumber;

 string TxnStatus;

 };

 struct RaceHorse {

 unsigned long StableID;

 unsigned long HorseID;

 unsigned long HLane;

 float Odds;

 ULongArr Buyers;

 ULongArr Amount;

 float PlaceHighOdds;

 float PlaceLowOdds;

 float PlaceOdds;

 ULongArr PlaceBuyers;

 ULongArr PlaceAmount;

 float Score;

 unsigned long Rank;

 };

 struct HorseRank {

 string RaceDate;

 unsigned long RaceEventNumber;

 unsigned long HorseID;

 unsigned long Rank;

 unsigned long HorseTotal;

 };

 typedef sequence<RaceHorse> RaceHorseArr;

typedef sequence<RaceSchedule> RaceScheduleArr;

struct RaceEvent {

 RaceHorseArr RaceHorseArray;

 };

Figure 26: The idl of Race interface

Horse Racing Simulation System

P. 48

typedef sequence<RaceEvent> RaceEventArr;

 attribute string CurrentRaceDate;

 attribute RaceEventArr RaceNumber;

 readonly attribute RaceScheduleArr RaceSch;

 attribute ULongArr4 RaceResult;

 attribute unsigned long CurrentRaceEvent;

 readonly attribute unsigned long CanStart;

 exception HorseAlreadyRegistered { };

 exception InvalidRaceEventNumber { };

 exception InvalidHorseNumber { };

 exception InvalidStableID { };

 exception InvalidStablePassword { };

 exception InvalidHorseID { };

 exception FullRaceHorse { };

 exception DuplicatedHorseNumber { };

 exception NotEnoughMoney { };

 exception PlaceBetNotAvailable{};

 exception RegisterHorseNotAvailable{};

 exception GetRaceResultNotAvailable{};

 exception InvalidInput { };

 exception RaceAlreadyStarted { };

 exception InvalidRaceDate { };

 exception RaceSimulationError{};

 void insertRaceDates (in string raceDate,

 in unsigned long raceEventNumber)

 raises(InvalidInput);

 void setRace (in string raceDate,

 in unsigned long raceEventNumber);

 void updateRaceStatus (in string raceDate,

 in unsigned long raceEventNumber,

 in string txnStatus)

 raises(InvalidRaceDate,

 InvalidRaceEventNumber);

Horse Racing Simulation System

P. 49

 void buyerBet (in string raceDate,

 in unsigned long raceEventNumber,

 in unsigned long hlane,

 in string betType,

 in unsigned long betAmount,

 in unsigned long buyerID)

 raises(InvalidRaceEventNumber,

 InvalidHorseNumber,

 NotEnoughMoney,

 PlaceBetNotAvailable,

 RaceAlreadyStarted,

 InvalidInput,

 InvalidRaceDate);

 void registerRace (in string raceDate,

 in unsigned long raceEventNumber,

 in unsigned long stableID,

 in string stablePassword,

 in unsigned long horseID

)

 raises(HorseAlreadyRegistered,

 InvalidRaceEventNumber,

 InvalidStableID,

 InvalidStablePassword,

 InvalidHorseID,

 FullRaceHorse,

 InvalidInput,

 RegisterHorseNotAvailable,

 RaceAlreadyStarted,

 InvalidRaceDate);

 stringArr getRaceResult (in string raceDate,

 in unsigned long raceEventNumber

)

 raises (RaceSimulationError,

 GetRaceResultNotAvailable,

 RaceAlreadyStarted,

 InvalidRaceDate,

 InvalidRaceEventNumber);

Horse Racing Simulation System

P. 50

RaceHorse queryRaceHorse (in unsigned long raceEventNumber,

 in unsigned long hlane)

 raises (InvalidRaceEventNumber,

 InvalidHorseNumber,

 InvalidRaceDate);

 long canStartBetting(in string raceDate,

 in unsigned long raceEventNumber)

 raises (InvalidRaceDate,

 InvalidRaceEventNumber);

 };

Figure 27: The relationship between Race, RaceEvent and RaceHorses.

Race RaceEvent
 6 1 holds

RaceHorse RaceEvent
1 4..14 start

Horse Racing Simulation System

P. 51

Figure 28: Simple class diagram of Race

Explanation:

The Race object keeps tracks of the racing event schedule, racing game result,

and also the win bet amount and place bet amount of various gamblers. The

operation insertRaceDates is used by race administrator to input race schedule.

The operation setRace is used to set the values of current race date and current

race event number. The operation updateRaceStatus is used to change the

status of each race. For stance, it can be used to change a race from

“registration mode” to “betting mode”, thus allowing a race to proceed

properly. The operation BuyerBet is used to record the amount that the

gamblers bet on the races. The amount of bets on each horse affects the odds

for the all horses. Theoretically, the odds should be updated every time a new

bet is being placed on a horse. The operation registerRace is used by stable

administrators to schedule the horses in their stables for a certain race. The

identity number of the stable (StableID), the identity number of the racehorse

(HorseID) will be associated with the racehorse. The operation getRaceResult

is used by race administrator to start a race, which will automatically generate

the result by the simulation process described in section 3.1.4. The results

Race

CurrentRaceDate

RaceNumber

RaceSch

RaceResult

CurrentRaceEvent

insertRaceDates

setRace

updateRaceStatus

buyerBet

registerRace

getRaceResult

queryRaceHorse

Horse Racing Simulation System

P. 52

will automatically be saved in the database by this operation. Dividends will

also be paid out by this method. The operation queryRaceHorse is used by

gamblers to query information about the participating horses.

Horse Racing Simulation System

P. 53

interface Stable {

 struct Horse {

 string HorseName;

 unsigned long StableID;

 unsigned long HorseID;

 string Birthday;

 unsigned long HorseWeight;

 unsigned long RacesWon;

 };

 typedef sequence<Horse> HorseArr;

 typedef sequence<string> stringArr;

 readonly attribute HorseArr HorseArray;

 attribute string Trainer;

 attribute unsigned long StableID;

 readonly attribute unsigned long HorseTotal;

 attribute string StablePassword;

 exception InvalidBirthday { };

 exception NoSuchHorseID { };

 exception FullHorse { };

 exception HorseIDCrash { };

 void addHorse (in string name,

 in unsigned long horseID,

 in string birthday,

 in unsigned long horseWeight,

 in unsigned long racesWon)

 raises(InvalidBirthday, FullHorse, HorseIDCrash);

 void deleteHorse (in unsigned long horseID)

 raises(NoSuchHorseID);

4.1.2 Interface Stable

The Stable object basically serves to contain horses. Figure 29 shows the

defined types of Stable object.

Figure 29: The idl of Stable interface

Horse Racing Simulation System

P. 54

Horse queryHorse (in unsigned long horseID)

 raises(NoSuchHorseID);

 stringArr getRaceSchedules();

 };

Explanation:

The operation addHorse is used to add a horse into a particular stable,

while the operation deleteHorse is used to delete a horse from a particular

stable. The operation queryHorse allows gamblers to retrieve the profile

of a specified horse. Finally, the operation getRaceSchedules allows

stable administrators to check the schedule of horse races.

Horse Racing Simulation System

P. 55

interface StableProcessor {

 typedef sequence<Stable> StableArr;

 readonly attribute StableArr StableArray;

 readonly attribute unsigned long StableTotal;

 readonly attribute unsigned long HorseIDNumber;

 exception NoSuchStableID { };

 exception StableNotEmpty { };

 exception NoSuchSourceStableID { };

 exception NoSuchTargetStableID { };

 exception NoSuchHorseID { };

 exception FullStable { };

 exception PasswordNotMatch { };

 exception SourceStablePasswordNotMatch { };

 exception TargetStablePasswordNotMatch { };

 exception TargetStableFullHorse { };

 unsigned long createStable (

 in string stablePassword)

 raises(FullStable);

 void removeStable (in unsigned long stableID,

 in string stablePassword)

 raises(NoSuchStableID, StableNotEmpty, PasswordNotMatch);

 Stable queryStable (in unsigned long stableID)

 raises(NoSuchStableID);

 };

4.1.3 Interface StableProcessor

The StableProcessor is used to manage all stables. It is also responsible

for registering a stable with the Jockey Club, and if necessary, cancel the

stable account with the Jockey Club. Figure 30 shows the defined types of

StableProcessor object.

Figure 30: The idl of StableProcessor interface

Horse Racing Simulation System

P. 56

Explanation:

The operation createStable is for registering the stable with the Jockey

Club. On the contrary, the operation removeStable is for canceling the

account with the Jockey Club. The operation queryStable is used to

retrieve the information about a stable.

Horse Racing Simulation System

P. 57

interface Buyer {

 attribute unsigned long BuyerID;

 attribute string BuyerPassword;

 attribute string BuyerName;

 attribute float Balance;

 attribute string AccountNumber;

 exception NotEnoughMoneyInAccount { };

 void deposit(in float amount);

 void withdraw(in unsigned long amount)

 raises(NotEnoughMoneyInAccount);

 void edit(in string buyerName,

 in string buyerPassword,

 in string accountNumber);

 };

4.1.4 Interface Buyer

The Buyer object stores information including the betting account balance

and the profile of the gambler. Figure 31 shows the details of this

interface.

Figure 31: The idl of Buyer interface

Explanation:

One Buyer object stores the information of a gambler. The operation

deposit is used to transfer money from the bank account associated with

this BuyerID to the betting account. The operation withdraw is used to

transfer money away from the betting account. The operation edit is used

to update the personal information of the gambler.

Horse Racing Simulation System

P. 58

interface BuyerProcessor {

 typedef sequence<Buyer> BuyerArr;

 readonly attribute BuyerArr BuyerArray;

 readonly attribute unsigned long BuyerTotal;

 exception NoSuchBuyerID { };

 exception PasswordNotMatch { };

 exception FullBuyer{ };

unsigned long createBuyer (in string name,

in string password,

in string accountNumber)

 raises(FullBuyer);

 void removeBuyer (in unsigned long buyerID,

 in string buyerPassword)

 raises(NoSuchBuyerID,PasswordNotMatch);

 Buyer queryBuyer (in unsigned long buyerID)

 raises(NoSuchBuyerID);

 };

4.1.5 Interface BuyerProcessor

The BuyerProcessor is mainly used to manage all Buyer objects and

betting account opening and cancellation. Figure 32 shows the defined

types of BuyerProcessor object.

Figure 32: The idl of BuyerProcessor interface

Explanation:

The operation createBuyer registers a gambler with the Jockey Club while

the operation removeBuyer removes the gambler’s betting account. The

operation queryBuyer is used for retrieving the information of a particular

gambler by giving a BuyerID.

Horse Racing Simulation System

P. 59

4.3 Database

This section describes design of the database. E-R diagram and the schema of the

tables will be discussed. The E-R diagram depicts the relationship between the

entities. From this E-R diagram, the schema will be defined and it will be

reduced to tables.

Horse Racing Simulation System

P. 60

Figure 33: E-R Diagram

Stable_t

Password SID

Status

Horse_t

HID

Weight

Birthday

Status

Gambler_

t

Password GID

Status

Gambler

Name

Account

Num

BetAcco

untBal

Race_t

HLane RaceEventN

umber

RaceDate TxnStatus

HorseRank

Joins

Owns

Bet_t

BetType

BetAmount

Gamb

ler-bet

Race-

bet

Horse Racing Simulation System

P. 61

The above E-R diagram can be reduced to the following tables.

4.2.1 STABLE_T (SID, Password, Status)

SID refers to the stable id and status refers to the account status. If it is ‘Y’,

the stable account is active. If it is ‘N’, it is cancelled.

4.2.2 HORSE_T (HID , SID, HorseName, Birthday, Weight, Status)

HID refers to the horse id and status refers to the status of the horse. If it is

‘Y’, the horse is active. If it is ‘N’, it is removed.

4.2.3 GAMBLER_T (GID, Password, GamblerName, AccountNum,

BetAccountBal, Status)

GID refers to the gambler id and status refers to the status of the betting

account. If it is ‘Y’, the betting account is active. If it is ‘N’, it is

cancelled.

4.2.4 RACE_T (RaceDate, RaceEventNumber, HLane, HID, HorseRank,

TxnStatus)

HLane refers to a particular lane of the race. TxnStatus refers to the

transaction status of a race. The 4 statuses of a race are ‘R’, which stands

for horse registration period, ‘B’, which stands for betting period, ‘D’,

which stands for race over, and ‘P’, which mean all dividends have been

paid out.

4.2.5 BET_T (RaceDate, RaceEventNumber, HLane, GID, BetType,

BetAmount, TxnStatus)

BetType refers to the type of betting. The 2 types of betting are ‘Win’ and

‘Place’. A detailed description is given in section 3.1.2.

The above table structure can be proved to be complied with third normal form.

The column type of each table will be given below.

Horse Racing Simulation System

P. 62

STABLE_T

Column Type Description

SID CHAR (8) Stable ID

Password CHAR (8) Stable Login Password

Status CHAR (1) Stable Account Status

HORSE_T

Column Type Description

HID CHAR (8) Horse ID

SID CHAR (8) Stable ID

HorseName CHAR (40) Horse Name

Birthday CHAR(8) Birthday of Horse

Weight CHAR(3) Weight of Horse

Status CHAR (1) Horse Status

GAMBLER_T

Column Type Description

GID CHAR (8) Gambler ID

Password CHAR (8) Gambler Login Password

GamblerName CHAR(40) Name of Gambler

AccountNum VARCHAR (14) Bank Account Number

BetAccountBal CHAR(13) Betting Account Balance

Status CHAR (1) Betting Account Status

RACE_T

Column Type Description

RaceDate CHAR (8) Date of Event

TotRaceEvent CHAR (2) Total number of races

HLane CHAR (2) Lane number of the race

Horse Racing Simulation System

P. 63

HID CHAR (*) Horse ID

HorseRank CHAR (2) Rank of the horse on this

lane

TxnStatus CHAR(1) Game status

R – allow register

B – No register, allow

bets

D – Result generated

P – Dividends paid

BET_T

Column Type Description

RaceDate CHAR (8) Date of Event

RaceEventNumber CHAR (2) Race Number

HLane CHAR (2) Lane number of race

GID CHAR (8) Gambler ID

BetType CHAR (1) Type of Bet

W – Win

P - Place

BetAmount CHAR (11) Amount of Bet from this

gambler on a Horse

TxnStatus CHAR(1) Game status

- no use currently

Database access object will interact with the above tables to save and retrieve data.

There are 21 database access objects and 1 class responsible for getting

connection from database. Figure 34 shows the whole list of database related

classes.

Horse Racing Simulation System

P. 64

Figure 34: Database Access Objects

Object Name Usage

DbConManager Get database connection

CreateDB Create database tables

DbDeleteStable Remove stable

DbUpdateRace Update race details

DbDeleteHorse Remove horse

DbCreateHorse Add horse

DbCreateStable Create stable account

DbDeleteBuyer Remove betting account

DbInsertRaceDates Set race schedule

DbUpdateRaceStatus Update the transaction status of a race

DbInsertResult Insert race result

DbUpdateBuyerBet Update the status of a bet – no use

currently

DbGetResult Retrieve historic ranks of a horse

DbGetHorse Retrieve horses

DbGetStable Retrieve stables

DbGetBuyer Retrieve gamblers

DbGetRaceDates Retrieve race schedule

DbRegisterHorse Save horse registration

DbCreateBuyer Create betting account

DbUpdateBuyer Update gambler’s profile

DbBuyerBet Place a buyer’s bet

Horse Racing Simulation System

P. 65

5 User Manual

5.1 Compilation

After extracting all the files into a directory, type “make” to compile the whole system.

Then all the Java classes will be generated.

5.2 Installation

To install the server program, type “make install” after compilation. Then the server will

be set up.

5.3 Uninstallation

To clean up everything, type “make clean”. Then all the Java classes together with the

current database will be removed. But once you have uninstalled the system, all the data

in the database will be lost.

5.4 Using the System

The system contains 3 interfaces – the buyer, the stable administrator and the race

administrator. After setting up the server, type “./start_buyer” to start the buyer interface.

Type “./start_stable” to start the stable administrator interface. Type “./start_race” to

start the race administrator interface.

Horse Racing Simulation System

P. 66

6 Conclusion

This horse racing simulation project demonstrates how all the processes involved in horse

racing can be automated by a distributed system using the Common Object Request

Broker Architecture (CORBA) and how the results of horseracing can be simulated

through simple Monte Carlo Simulation.

Theoretically, CORBA implementation allows objects to be implemented using different

languages under different platforms. This can be highly beneficial to system integration

and flexibility. Though only Java programming language was used in this project, it

demonstrates how objects can communicate under CORBA based on operations defined

in CORBA/IDL. However, as the popularity of CORBA has yet to drive it to become

industry standard, CORBA implementation may be thus confined to internal system

integration and can hardly be spread among the community to a large extent.

Regarding the Monte Carlo Simulation to generate race results, there are a few areas that

can be improved. First, factors such as racecourse location, race distance can be taken

into account to further refine the model. Second, instead of running through the model

once to generate the results, each horse can go through the model a few times to reduce

the effect of the randomness of the model. An alternative to simulation is modeling,

which set the rank of a horse as the dependent variable and other factors as independent

variables.

Horse Racing Simulation System

P. 67

7 References

Bickel, P. J. and Doksum, K. A.: Mathematical Statistics: Basic Ideas and Selected

Topics, Holden-Day, San Francisco (1977).

Bratley, P., Fox, B. L., and Schrage, L. E.: A Guide to Simulation, 2d ed., Springer-

Verlag, New York (1987)

Conover, A. C., and Whitten, B. J.: Estimation in the Three Parameter Lognormal

Distribution, J. Am. Statist. 2d ed., John Wiley, New York (1980)

Chung, K. L.: A Course in Probability Theory, 2d ed., Academic Press, New York (1974).

Farley, J: Java Distributed Computing, 1st ed, O'Reilly, CA (1998)

Hastings, N. A. J., and Peacock, J. B.: Statistical Distributions, John Wiley, New York

(1975).

Hogg, R. V. and Craig, A.F.: Introduction to Mathematical Statistics, 3d ed., Macmillan,

New York (1970).

Kendall, M. G., Stuart, A. and Ord, J. K.: The Advanced Theory of Statistics, Vol. 1, 5
th

ed., Oxford University Press, New York (1987).

Law, A. M. and Kelton, W. D.: Simulation Modeling & Analysis, McGraw-Hill, 267 –

297 (1991)

Ross, S. M.: Introduction to Probability Models, 4th ed., Academic Press, San Diego

(1989)

Siegel, J.: CORBA 3 Fundamentals and Programming, 2nd ed, John Wiley, New York

(2000)

Vose, D: Quantitative Risk Analysis, John Wiley, New York, 39 – 56 (1996)

Vose, D: Quantitative Risk Analysis, John Wiley, New York, 103 – 135 (1996)

Wagner, H. M.: Principles of Operations Research, Prentice-Hall, Englewood Cliffs, N.J.

(1969)

Young, Donovan: Modern Engineering Economy, Wiley, 411 – 415 (1992)

