
i

Design and Implementation of

Three-tier Distributed VoiceXML-based Speech System

BY

Thomas C.K. Cheng

Supervised by

Professor Michael R. Lyu

A report submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

Copyright by Thomas C.K. Cheng May 2002

Department of Computer Science and Engineering

The Chinese University of Hong Kong

ii

AUTHORIZATION

I hereby declare that I am the sole author of the thesis.

I authorize the Chinese University of Hong Kong to lend this thesis to other institutions or

individuals for the purpose of scholarly research.

I further authorize the Chinese University of Hong Kong to reproduce the thesis by photocopying

or by other means, in total or in part, at the request of other institutions or individuals for the

purpose of scholarly research.

iii

SIGNATURE

APPROVED:

Prof. Michael R. Lyu, SUPERVISOR

Department of Computer Science and Engineering

May, 2002

iv

ACKNOWLEDGEMENT

I would like to acknowledge my supervisor Professor Michael Lyu, who provided many valuable

opinions and guidance for me throughout the project.

I would also like to thank my parents, brother, sister and my fiancée for their support.

v

 TABLE OF CONTENTS

AUTHORIZATION .. ii

SIGNATURE .. iii

ACKNOWLEDGEMENT.. iv

TABLE OF CONTENTS .. v

LIST OF FIGURES... vii

ABSTRACT .. ix

Chapter 1 INTRODUCTION ... 2

Chapter 2 SPEECH TECHNOLOGY.. 4

2.1 Speech Recognition.. 4

2.1.1 Variability in the Speech Signal.. 5

2.1.2 Feature Extraction .. 10

2.1.3 Hidden Markov Models .. 12

2.1.4 Decoding .. 15

2.2 Text-to-Speech Synthesis ... 19

2.3 Distributed Speech Recognition..

2.4 Voice eXtensible Markup Language .. 24

Chapter 3 SYSTEM REQUIREMENT.................................... 27

vi

Chapter 4 SOFTWARE DESIGN .. 29

4.1 System Architecture ... 29

4.2 Platform ... 31

4.3 VoiceXML file .. 32

4.4 HMM training by HTK .. 34

4.5 Terminal... 36

4.6 Speech Browser.. 45

Chapter 5 IMPLEMENTATION ... 47

5.1 HMM Training by HTK ... 47

5.2 Terminal... 59

5.3 Speech Browser.. 60

Chapter 6 RESULT AND DISCUSSION................................. 61

Chapter 7 CONCLUSION .. 63

Chapter 8 REFERENCES .. 64

vii

LIST OF FIGURES

Figure 1 The Markov generation model M....................................... 14

Figure 2 Recognition Network Levels ... 16

Figure 3 Basic system architecture of a TTS system........................ 19

Figure 4 Block diagram of DSR system .. 23

Figure 5 VoiceXML architecture model ... 24

Figure 6 A sample VoiceXML document and one possible corresponding

dialog ... 26

Figure 7 Components of a typical speech recognition system.......... 27

Figure 8 Description of components in various speech recognition system

... 28

Figure 9 A client-server model of speech recognition system 29

Figure 10 Components of a typical TTS synthesis system 30

Figure 11 A client-server model of TTS synthesis system................ 30

Figure 12 Three-tier speech system model.. 31

Figure 13 Scheme of ASR system functions 36

Figure 14 System architecture (Terminal).. 37

Figure 15 Examples of terminals ... 37

Figure 16 A Java applet running as a terminal 39

Figure 17 Block diagram of the DSR front-end................................ 40

viii

Figure 18 System architecture (Speech browser) 46

Figure 19 Grammar for Credit Card Authorization........................ 48

ix

ABSTRACT

There are plenty of speech recognition research results and development applications targeting on

embedded systems, desktops and servers. Each of them has its own limitation. We may have a

command and control application on mobile devices, a speaker-dependent dictation application

on home PCs and a speaker-independent interactive voice response (IVR) application on call-

center servers. Advances in speech recognition technology, wireless technology and growth of

the Internet lead us to establish a universal solution to break all the limitations.. In particular, we

propose a new three-tier speech system which can make us access information more seamlessly

and more naturally.

In this project, we design and implement a three-tier distributed VoiceXML-based speech system

to demonstrate our model. The system is comprised of three components, namely terminal,

speech browser and document server, forming the three-tier model. The terminal usually has

small sizes with limited computing powers, small memories and limited bandwidth networks; for

example, mobile phones, PDA with bluetooth, analog phone plus PC with telephone interface.

Owing to the capabilities, it acts as a front end that uses data channel to send/receive the

parameterized representation of speech to/from the speech browser. The speech browser is a

cluster of powerful servers acting as a back-end that performs the core recognition, synthesis

processes and the interpretation of VoiceXML files retrieved from the document server. The

document server is a web site containing the VoiceXML files.

x

This model adds mobile devices the dialog-based speech capability to access the enormous

multilingual information in the Internet without breaking the size, memory and computation

limitations. By adding the features of load balancing and fault tolerance to the speech browser, a

reliable back-end service can be guaranteed. Our goal is to find a complete solution to fit into

this model by applying various technologies.

2

Chapter 1 INTRODUCTION

Nowadays, most mobile devices as well as computers utilize a graphical user

interface (GUI), based on graphically represented interface objects and functions such

as windows, icons, menus, and pointers. Most computer operating systems and

applications also depend on a user’s keyboard strokes, mouse clicks, button presses

and pen actions. Speech, however, is the most natural and efficient way for human to

communicate. Starting from 1970s, many researchers have built a theoretical

framework on the speech recognition technology and until recently, advances in

computer technology and speech algorithm brought the speech recognition

technology to the practical uses in various areas.

Today, the speech recognition technology is quite mature and we can have a speaker

independent large vocabulary continuous speech recognition system running on a

powerful PC. In fact, the capability of speech recognition system depends on how

much computational and memory resources are used. Mobile devices normally have

a CPU running at the range from several to hundreds of million instructions per

second (MIPS) and a RAM device of size hundreds of kilobytes to tens of megabytes.

With this limited resources in mobile devices, only a simple command and control

application or a speaker dependent small vocabulary speech recognition application

can be achieved.

3

In order to break all the above limitations, a three-tier model is proposed to achieve a

unified speech system in different environments. To demonstrate how this three-tier

distributed VoiceXML-based speech system works, a credit card authorization

application was developed by using JAVA. The outline of the report is as follows.

Chapter 1 is the introduction. Chapter 2 is the speech technology. Chapter 3 is the

system requirement. Chapter 4 is the system design. Chapter 5 is the implementation.

Chapter 6 is the result and discussion. Chapter 7 is the conclusion.

4

Chapter 2 SPEECH TECHNOLOGY

2.1 Speech Recognition

After years of research and development, accuracy of automatic speech recognition

remains one of the most important research challenges. A number of well-known

factors determine accuracy; those most noticeable are variations in context, in speaker,

and in environment. Acoustic modeling plays a critical role in improving accuracy

and is arguably the central part of any speech recognition system.

For the given acoustic observation X = X1X2…Xn, the goal of speech recognition is to

find out the corresponding word sequence Ŵ = w1w2…wm that has the maximum

posterior probability P(W | X) as expressed by

)(
)|()(maxarg)|(maxargˆ

XP
WXPWPXWPW

ww
== Equation 1

Since the maximization of Equation 1 is carried out with the observation X fixed, the

above maximization is equivalent to maximization of the following equation

)|()(maxargˆ WXPWPW
w

= Equation 2

The practical challenge is how to build accurate acoustic models, P(X | W), and

language models, P(W), that can truly reflect the spoken language to be recognized.

5

For large vocabulary speech recognition, since there are a large number of words, we

need to decompose a word into a subword sequence. Thus P(X | W) is closely related

to phonetic modeling. P(X | W) should take into account speaker variations,

pronunciation variations, environment variations, and context-dependent phonetic

coarticulation variations. Last, but not least, any static acoustic or language model

will not meet the needs of real applications. So it is vital to dynamically adapt both

P(W) and P(X | W) to maximize P(X | W) while using the spoken language system.

The decoding process of finding the best matched word sequence W to match the

input speech signal X in speech recognition systems is more than a simple pattern

recognition problem, since in continuous speech recognition you have an infinite

number of word patterns to search.

2.1.1 Variability in the Speech Signal

The research community has produced technologies that, with some constraints, can

accurately recognize spoken input. Admittedly, today’s state-of-the-art systems still

cannot match human performance. Although we can build a very accurate speech

recognizer for a particular speaker, in a particular language and speaking style, in a

particular environment, and limited to a particular task, it remains a research

challenge to build a recognizer that can essentially understand anyone’s speech, in

any language, on any topic in any free-flowing style, and in almost any speaking

environment.

6

Accuracy and robustness are the ultimate measures for the success of speech

recognition algorithms. There are many reasons why existing algorithms or systems

did not deliver what people want. In the sections the follow we summarize the major

factors involved.

2.1.1.1 Context Variability

Spoken language interaction between people requires knowledge of word meanings,

communication context, and common sense. Words with widely different meanings

and usage patterns may have the same phonetic realization. Consider the challenge

represented by the following utterance.

Mr. Wright should write to Ms. Wright right away about his Ford or four door Honda.

For a given word with the same pronunciation, the meaning could be dramatically

different, as indicated by Wright, write, and right. What makes it even more difficult

is that Ford or and Four Door are not only phonetically identical, but also

semantically relevant. The interpretation is made within a given word boundary.

Even with smart linguistic and semantic information, it is still impossible to decipher

the correct word sequence, unless the speaker pauses between words or uses

intonation to set apart these semantically confusable phrases.

In addition to the context variability at word and sentence level, you can find

dramatic context variability at phonetic level. The acoustic realization of phoneme

7

/ee/ for word peat and wheel depends on its left and right context. The dependency

becomes more important in fast speech or spontaneous speech conversation, since

many phonemes are not fully realized.

2.1.1.2 Style Variability

To deal with acoustic realization variability, a number of constraints can be imposed

on the use of the speech recognizer. For example, we can have an isolated speech

recognition system, in which users have to pause between each word. Because the

pause provides a clear boundary for the word, we can easily eliminate errors such as

Ford or and Four Door. In addition isolated speech provides a correct silence

context to each word so that it is easier to model and decode the speech, leading to a

significant reduction in computational complexity and error rate. In practice, the

word-recognition error rate of an isolated speech recognizer can typically be reduced

by more than a factor of three (from 7% to 2%) as compared with to a comparable

continuous speech recognition system. The disadvantage is that such an isolated

speech recognizer is unnatural to most people. The throughput is also significantly

lower than that for continuous speech.

In continuous speech recognition, the error rate for casual, spontaneous speech, as

occurs in our daily conversation, is much higher than for carefully articulated read-

aloud speech. The rate of speech also affects the word recognition rate. It is typical

that the higher the speaking rate (words/minute), the higher the error rate. If a person

8

whispers, or shouts, to reflect his or her emotional changes, the variation increases

more significantly.

2.1.1.3 Speaker Variability

Every individual speaker is different. The speech he or she produces reflects the

physical vocal tract size, length and width of the neck, a range of physical

characteristics, age, sex, dialect, health, education, and personal style. As such, one

person’s speech patterns can be entirely different from those of another person. Even

if we exclude these interspeaker differences, the same speaker is often unable to

precisely produce the same utterance. Thus, the shape of the vocal tract movement

and rate of delivery may vary from utterance to utterance, even with dedicated effort

to minimize the variability.

For speaker-independent speech recognition, we typically use more than 500 speakers

to build a combined model. Such an approach exhibits large performance

fluctuations among new speakers because of possible mismatches in the training data

between existing speakers and new ones. In particular, speakers with accents have a

tangible error-rate increase of 2 to 3 times.

To improve the performance of a speaker-independent speech recognizer, a number

of constraints can be imposed on its use. For example, we can have a user enrollment

that requires the use to speak for about 30 minutes. With the speaker-dependent data

9

and training, we may be able to capture various speaker-dependent acoustic

characteristics that can significant improve the speech recognizer’s performance. In

practice, speaker-dependent speech recognition offers not only improved accuracy but

also improved speed, since decoding can be more efficient with an accurate acoustic

and phonetic model. A typical speaker-dependent speech recognition system can

reduce the word recognition error by more than 30% as compared with a comparable

speaker-independent speech recognition system.

The disadvantage of speaker-dependent speech recognition is that it takes time to

collect speaker-dependent data, which may be impractical for some applications such

as an automatic telephone operator. Many applications have to support walk-in

speakers, so speaker-independent speech recognition remains an important feature.

When the amount of speaker-dependent data is limited, it is important to make use of

both speaker-dependent and speaker-independent data using speaker-adaptive

training techniques. Even for speaker-independent speech recognition, you can still

use speaker-adaptive training based on recognition results to quickly adapt to each

individual speaker during the usage.

2.1.1.4 Environment Variability

The world we live in is full of sounds of varying loudness from different sources.

When we interact with computers, we may have people speaking in the background.

Someone may slam the door, or the air conditioning may start humming without

10

notice. If speech recognition is embedded in mobile devices, such as PDAs or

cellular phones, the spectrum of noises varies significantly because the owner moves

around. These external parameters, such as the characteristics of the environmental

noise and the type and placement of the microphone, can greatly affect speech

recognition system performance. In addition to the background noises, we have to

deal with noises made by speakers, such as lip smacks and non-communication words.

Noise may also be present from the input device itself, such as the microphone and

A/D interference noises.

In a similar manner to speaker-independent training, we can build a system by using a

large amount of data collected from a number of environments; this is referred to as

multistyle training. We can use adaptive techniques to normalize the mismatch

across different environment conditions in a manner similar to speaker-adaptive

training. Despite the progress being made in the field, environment variability

remains as one of the most severe challenges facing today’s state-of-the-art speech

systems.

2.1.2 Feature Extraction

The human ear resolves frequencies non-linearly across the audio spectrum and

empirical evidence suggests that designing a front-end to operate in a similar non-

linear manner improves recognition performance. A popular alternative to linear

prediction based analysis is therefore filterbank analysis since this provides a much

11

more straightforward route to obtaining the desired non-linear frequency resolution.

However, filterbank amplitudes are highly correlated and hence, the use of a cepstral

transformation in this case is virtually mandatory if the data is to be used in a HMM

based recognizer with diagonal covariances.

The filters used are triangular and they are equally spaced along the mel-scale which

is defined by

)
700

1(log2595)(10
ffMel += Equation 3

To implement this filterbank, the window of speech data is transformed using a

Fourier transform and the magnitude is taken. The magnitude coefficients are then

binned by correlating them with each triangular filter. Here binning means that each

FFT magnitude coefficient is multiplied by the corresponding filter gain and the

results accumulated. Thus, each bin holds a weighted sum representing the spectral

magnitude in that filterbank channel.

Mel-Frequency Cepstral Coefficients (MFCCs) are calculated from the log filterbank

amplitudes {mj} using the Discrete Cosine Transform

∑
=

−
⋅

=
N

j
ji j

N
im

N
c

1
))5.0(cos(2 π Equation 4

where N is the number of filterbank channels.

12

MFCCs are the parameterization of choice for many speech recognition applications.

They give good discrimination and lend themselves to a number of manipulations. In

particular, the effect of inserting a transmission channel on the input speech is to

multiply the speech spectrum by the channel transfer function. In the log cepstral

domain, this multiplication becomes a simple addition that can be removed by

subtracting the cepstral mean from all input vectors. In practice, of course, the mean

has to be estimated over a limited amount of speech data so the subtraction will not be

perfect. Nevertheless, this simple technique is very effective in practice where it

compensates for long-term spectral effects such as those caused by different

microphones and audio channels.

2.1.3 Hidden Markov Models

Let each spoken word be represented by a sequence of speech vectors or observations

O, defined as

ToooO ,...,, 21= Equation 5

where oT is the speech vector observed at time t. The recognition problem can then

be regarded as that of computing

)}|({maxarg OwP ii
 Equation 6

13

where wi is the i’th vocabulary word. This probability is not computable directly but

using Bayes’ Rule gives

)(
)()|(

)|(
OP

wPwOP
OwP ii

i = Equation 7

Thus, for a given set of prior probabilities P(wi), the most probable spoken word

depends only on the likelihood P(O|wi). Given the dimensionality of the observation

sequence O, the direct estimation of the joint conditional probability P(o1,o2,…|wi)

from examples of spoken words is not practicable. However, if a parametric model of

word production such as a Markov model is assumed, then estimation from data is

possible since the problem of estimating the class conditional observation densities

P(O|wi) is replaced by the much simpler problem of estimating the Markov model

parameters.

In HMM-based speech recognition, it is assumed that the sequence of observed

speech vectors corresponding to each word is generated by a Markov model as shown

in Figure 7. A Markov model is a finite state machine which changes state once

every time unit and each time t that a state j is entered, a speech vector ot is generated

from the probability density bj(ot). Furthermore, the transition from state i to state j is

also probabilistic and is governed by the discrete probability aij. Figure 7 show an

example of this process where the six state model moves through the state sequence X

= 1, 2, 2, 3, 4, 4, 5, 6 in order to generate the sequence o1 to o6. Notice that in HTK,

14

the entry and exit states of a HMM are non-emitting. This is to facilitate the

construction of composite models as explained in more detail later.

The joint probability that O is generated by the model M moving through the state

sequence X is calculated simply as the product of the transition probabilities and the

output probabilities. So for the state sequence X in Figure 7

)...()()()|,(332322221212 obaobaobaMXOP = Equation 8

However, in practice, only the observation sequence O is known and the underlying

state sequence X is hidden. This is why it is called a Hidden Markov Model.

Figure 1 The Markov generation model M

Given that X is unknown, the required likelihood is computed by summing over all

possible state sequences X = x(1), x(2), x(3),…,x(T), that is

∑ ∏
=

+=
X

T

t
txtxttxxx aobaMOP

1
)1()()()1()0()()|(Equation 9

o6 o5 o4 o3 o2 o1

b5(o6) b4(o5) b4(o4) b3(o3) b2(o2)

a22

b2(o1)

a33 a55 a44

a35 a24

a23 a34 a45 a56 a12
1 2 3 4 5 6

15

where x(0) is constrained to be the model entry state and x(T+1) is constrained to be

the model exit state.

Given a set of models MI corresponding to words wi, equation 2 (i.e. recognition

problem) is solved by using equation 3 and assuming that

)|()|(ii MOPwOP = Equation 10

Given a set of training examples corresponding to a particular model, the parameters

of that model can be determined automatically by a robust and efficient re-estimation

procedure. Thus, provided that a sufficient number of representative examples of

each word can be collected then a HMM can be constructed which implicitly models

all of the many sources of variability inherent in real speech [1].

2.1.4 Decoding

Given a grammar network, its associated set of HMMs, and an unknown utterance,

the probability of any path through the network can be computed. The task of a

decoder is to find those paths which are most likely.

Decoding in HTK uses the token passing paradigm to find the best path and,

optionally, multiple alternative paths. In the latter case, it generates a lattice

containing the multiple hypotheses which can if required be converted to an N-best

list.

16

Decoding is controlled by a recognition network compiled from a word-level network,

a dictionary and a set of HMMs. The recognition network consists of a set of nodes

connected by arcs. Each node is either a HMM model instance or word-end Each

model node is itself a network consisting of states connected by arcs. Thus, once

fully compiled, a recognition network ultimately consists of HMM states connection

by arcs. Thus, once fully compiled, a recognition network ultimately consists of

HMM states connected by transitions. However it can be viewed at three different

levels: word, model and state.

Figure 2 Recognition Network Levels

For an unknown input utterance with T frames, every path from the start node to the

exit node of the network which passes through exactly T emitting HMM states is a

potential recognition hypothesis. Each of these paths has a log probability which is

computed by summing the log probability of each individual transition in the path and

HMM level

wn-1 wn wn+1

p1 p2 p3

s1 s2 s3

Word level

Network level

17

the log probability of each emitting state generating the corresponding observation.

Within-HMM transitions are determined from the HMM parameters, between-model

transitions are constant and word-end transitions are determined by the language

model likelihoods attached to the word level networks.

The job of the decoder is to find those paths through the network which have the

highest log probability. These paths are found using a Token Passing algorithm. A

token represents a partial path through the network extending from time 0 through to

time t. At time 0, a token is placed in every possible start node.

Each time step, tokens are propagated along connecting transitions stopping

whenever they reach an emitting HMM state. When there are multiple exits from a

node, the token is copied so that all possible paths are explored in parallel. As the

token passes across transitions and through nodes its log probability is incremented

by the corresponding transition and emission probabilities. A network node can hold

at most N tokens. Hence, at the end of each time step, all but the N best tokens in any

node are discarded.

As each token passes through the network it must maintain a history recording its

route. The amount of detail in this history depends on the required recognition output.

Normally, only word sequences are wanted and hence, only transitions out of word-

end nodes need be recorded. However, for some purposes, it is useful to know the

actual model sequence and the time of each model to model transition. Sometimes a

18

description of each path down to the state level is required. All of this information,

whatever level of detail is required, can conveniently be represented using a lattice

structure.

Of course, the number of tokens allowed per node and the amount of history

information requested will have a significant impact on the time and memory needed

to compute the lattices. The most efficient configuration is N = 1 combined with just

word level history information and this is sufficient for most purposes.

A large network will have many nodes and one way to make a significant reduction in

the computation needed is to only propagate tokens which have some chance of being

amongst the eventual winners. This process is called pruning. It is implemented at

each time step by keeping a record of the best token overall and de-activating all

tokens whose log probabilities fall more than a beam-width below the best. For

efficiency reasons, it is best to implement primary pruning at the model rather than

the state level. Thus, models are deactivated when they have no tokens in any state

within the beam and they are reactivated whenever active tokens are propagated into

them. State-level pruning is also implemented by replacing any token by a null (zero

probability) token if it falls outside of the beam. If the pruning beam-width is set too

small then the most likely path might be pruned before its token reaches the end of

the utterance. This results in a search error. Setting the beam-width is thus a

compromise between speed and avoiding search errors.

19

2.2 Text-to-Speech Synthesis

The task of a text-to-speech system can be viewed as speech recognition in reverse –

a process of building a machinery system that can generate human-like speech from

any text input to mimic human speakers. The basic components in a TTS system are

shown in Figure 3.

Figure 3 Basic system architecture of a TTS system

TTS Engine

controls

Phonetic Analysis

- Grapheme-to-Phoneme Conversion

Text Analysis

- Document Structure Detection

- Text Normalization

- Linguistic analysis

Prosodic Analysis

- Pitch and Duration Attachment

Speech Synthesis

- Voice Rendering

tagged phones

tagged text

Raw text or

tagged text

20

The text analysis component normalizes the text to the appropriate form so that it

becomes speakable. The input can be either raw text or tagged. These tags can be

used to assist text, phonetic, and prosodic analysis. The phonetic analysis component

converts the processed text into the corresponding phonetic sequence, which is

followed by prosodic analysis to attach appropriate pitch and duration information to

the phonetic sequence. Finally, the speech synthesis component takes the parameters

from the fully tagged phonetic sequence to generate the corresponding speech

waveform.

The text analysis module is responsible for indicating all knowledge about the text or

message that is not specifically phonetic or prosodic in nature. Very simple systems

do little more than convert nonorthographic items, such as numbers, into words.

More ambitious systems attempt to analyze whitespaces and punctuations to

determine document structure, and perform sophisticated syntax and semantic

analysis on sentences to determine attributes that help the phonetic analysis to

generate correct phonetic representation and prosodic generation to construct superior

pitch contours. As shown in Figure 3, text analysis for TTS involves three related

processes:

• Document structure detection – Document structure is important to provide a

context for all later processes. In addition, some elements of document structure,

such as sentence breaking and paragraph segmentation, may have direct

implications for prosody.

21

• Text normalization – text normalization is the conversion from the variety

symbols, numbers, and other nonorthographic entities of text into a common

orthographic transcription suitable for subsequent phonetic conversion.

• Linguistic analysis – Linguistic analysis recovers the syntactic constituency and

semantic features of words, phrases, clauses, and sentences, which is important

for both pronunciation and prosodic choices in the successive processes.

The task of the phonetic analysis is to convert lexical orthographic symbols to

phonemic representation along with possible diacritic information, such as stress

placement. Phonetic analysis is thus often referred to grapheme-to-phoneme

conversion. The purpose is obvious, since phonemes are the basic units of sound.

Even though future TTS systems might be based on word sounding units with

increasing storage technologies, homograph disambiguation and phonetic analysis for

new words (either true new words being invented over time or morphologically

transformed words) are still necessary for systems to correctly utter every word.

Grapheme-to-phoneme conversion is trivial for languages where there is a simple

relationship between orthography and phonology. Such a simple relationship can be

well captured by a handful of rules. Languages such as Spanish and Finnish belng to

this category and are referred to as phonetic languages. English, on the other hand, is

remote from phonetic language because English words often have many distinct

origins. It is generally believed that the following three services are necessary to

produce accurate pronunciations.

22

• Homograph disambiguation – It is important to disambiguate words with different

senses to determine proper phonetic pronunciations, such as object (/ah b jh eh k

t/) as a verb or as a noun (/aa b jh eh k t/).

• Morphological analysis – Analyzing the component morphemes provides

important cues to attain the pronunciations for inflectional and derivational words.

• Letter-to-sound conversion – The last stage of the phonetic analysis generally

includes general letter-to-sound rules (or modules) and a dictionary lookup to

produce accurate pronunciations for any arbitrary word.

23

2.3 Distributed Speech Recognition

In a distributed speech recognition (DSR) architecture the recognizer front-end is

located in the terminal and is connected over a data network to a remote back-end

recognition server. DSR provides particular benefits for applications for mobile

devices such as improved recognition performance compared to using the voice

channel and ubiquitous access from different networks with a guaranteed level of

recognition performance. To enable all these benefits in a wide market containing a

variety of players including terminal manufacturers, operators server providers and

recognition vendors, a standard for front-end is needed to ensure compatibility

between the terminal and the remote recognizer. The STQ-Aurora DSR Working

Group within ETSI has been actively developing this standard and as a result of this

work the first DSR standard was published by ETSI in February, 2000 [2].

Figure 4 Block diagram of DSR system

wireless data channel – 4.8kbit/s

Terminal DSR Front-end

Parameterization
Mel-Cepstrum

Compression
Split VQ

Frame structure &
error protection

Server DSR Back-end

Error detection
& mitigation

Decompression Recognition
decoder

24

2.4 Voice eXtensible Markup Language

The VoiceXML Forum is an industry organization founded by AT&T, IBM, Lucent

and Motorola. It was established to develop and promote the Voice eXtensible

Markup Language (VoiceXML), a new computer language designed to make Internet

content and information accessible via voice and phone [3].

Figure 5 VoiceXML architecture model

A document server (e.g. a web server) processes requests from a client application,

the VoiceXML Interpreter, through the VoiceXML interpreter context. The server

produces VoiceXML documents in reply, which are processed by the VoiceXML

Interpreter. The VoiceXML interpreter context may monitor user inputs in parallel

Document
n

Request

Document
Server

VoiceXML

Interpreter

Context

VoiceXML
Interpreter

Implementation
Platform

25

with the VoiceXML interpreter. For example, one VoiceXML interpreter context

may always listen for a special escape phrase that takes the user to a high-level

personal assistant, and another may listen for escape phrases that alter user

preferences like volume or text-to-speech characteristics.

The implementation platform is controlled by the VoiceXML interpreter context and

by the VoiceXML interpreter. For instance, in an interactive voice response

application, the VoiceXML interpreter context may be responsible for detecting an

incoming call, acquiring the initial VoiceXML document, and answering the call,

while the VoiceXML interpreter conducts the dialog after answer. The

implementation platform generates events in response to user actions (e.g. spoken or

character input received, disconnect) and system events (e.g. timer expiration). Some

of these events are acted upon by the VoiceXML interpreter itself, as specified by the

VoiceXML document, while others are acted upon by the VoiceXML interpreter

context.

<?xml version=”1.0”?>

<vxml version=”1.0”>

 <form id=”tapered”>

<block>

 <prompt bargein=”false”>Welcome to the ice cream survey.</prompt>

</block>

 <field name=”flavor”>

26

 <grammar>vanilla | chocolate | strawberry</grammar>

 <prompt count=”1”>What is your favorite flavor?</prompt>

 <prompt count=”2”>Say chocolate, vanilla, or strawberry.</prompt>

</field>

 </form>

</vxml>

The dialog might go something like this:

C: Welcome to the ice cream survey.

C: What is your favorite flavor?

H: Pecan praline.

C: I do not understand. (the “flavor” field’s prompt counter is 1)

C: What is your favorite flavor?

H: Pecan praline.

C: Say chocolate, vanilla, or strawberry. (the prompt counter is now 2)

H: What if I hate those?

C: I do not understand.

Figure 6 A sample VoiceXML document and one possible corresponding dialog

27

Chapter 3 SYSTEM REQUIREMENT

The Automatic Speech Recognition (ASR) has a history of around 50 years, which

can be traced back to 1952, when a first word recognizer, Audrey was built by Daveis,

Biddulph and Balashek to recognize digits by approximating the formants. The

progress made in ASR was very slow until in 1974, Hidden Markov Models (HMMs)

was applied to speech recognition by Baker in the Dragon project. It was later

developed by IBM (Baker, Jalinek, Bahl, Mercer) in 1976-1993. Now, it is the

dominant technology for both isolated word and continuous speech recognition. The

extraction of speech feature plays a critical role in the robustness of the speech

recognizer. John Bridle proposed Mel Cepstra, which was used in the second major

(D)ARPA ASR project in 1980’s. Its variant, Mel Frequency Cepstral Coefficients

(MFCC) is still one of the best feature sets used in speech recognition today [4][5][6].

Figure 7 Components of a typical speech recognition system

Speech Wave

Recognition

Preprocessing Feature
Extraction

Search and
Match

Acoustic
Model

Lexical
Model

Language
Model

Speech Word

28

We can represent all speech recognition systems ranging from command and control,

dictation to IVR applications as in Figure 8. Each of them is comprised of a

preprocessor, a feature extractor and a recognizer with different algorithm and

complexity (Figure 2).

Applications
Components

Command and
control

Dictation IVR

Preprocessing simple noise
filtering

low-complexity
noise cancellation

high-complexity
noise cancellation

Feature Extraction formant MFCCs MFCCs
Recognition dynamic time

warping (DTW)
without models

HMM with acoustic,
lexical and language

model

HMM with acoustic,
and lexical model

and grammar

Figure 8 Description of components in various speech recognition system

We are proposing a new three-tier distributed VoiceXML-based speech system,

which is modified from the typical one as above. To summarize all the requirements

in such a system, we have,

1. Low computational power and small memory in terminal

2. Low communication bandwidth between terminal and speech browser

3. Easy incorporation of various recognition engines and text-to-speech (TTS)

synthesizers onto speech browser

4. Provision of reliable service by speech browser

29

Chapter 4 SOFTWARE DESIGN

4.1 System Architecture

Several modifications shown in Figure 10 are done to meet the above requirements

[7].

1. Make the terminal to perform the low-complexity preprocessing and feature

extraction parts excluding the high-complexity recognition part, which is now

assigned to speech browser

2. Add the compressor and decompressor in between terminal and speech browser to

achieve a low-bit-rate data transmission between them.

Figure 9 A client-server model of speech recognition system

Similarly, we can represent all TTS synthesis system as in Figure 4. To meet the

requirements, similar modifications shown in Figure 5 are done [8].

Speech Word Speech Wave

Terminal (Client)

Speech Browser (Server)

Preprocessing
and Feature
Extraction

Compression Decompression Recognizer

30

Figure 10 Components of a typical TTS synthesis system

Figure 11 A client-server model of TTS synthesis system

Furthermore, load balancing and replication strategy will also be considered in speech

browser

Our objectives are to:

1. Design the preprocessing and feature extraction algorithm specially for mobile

devices

Speech Text

Text and Linguistic Analysis

Speech Synthesis

Speech Wave

Text
Preprocessing

Accent
Assignment

Word
Pronunciation

Intonational
Phrasing

Segmental
Durations

F0 Contour
Computation

Phoneme to
Unit Mapping

Unit
Concatenation

Waveform
Synthesis

Speech Wave Speech Text

Speech Browser (Server)

Terminal (Client)

Text and Linguistic
Analysis

Speech
Synthesis

31

2. Design the compression algorithm to achieve a low-bit-rate data transmission

between terminals and speech browser

3. Implement the speech browser as distributed such that recognition engines and

TTS synthesizers are server objects that may locate at different hosts.

4. Break down and replicate the high-complexity above-mentioned server objects so

as to achieve the advantages of load balancing, fault tolerance, scalability and

parallelism.

5. Implement a recognition engine and a TTS synthesizer.

The three-tier speech system model is formed by three components, namely terminal,

speech browser and document server. To realize this model, we will make a

demonstration.

Figure 12 Three-tier speech system model

4.2 Platform

The language, platform and tools we will use in this project are as follows. Our Java

platform is Jbuilder 6.0 Enterprise which incorporates Java SDK 1.4.

Components Tools
Terminal Java Sound API [9]

VoiceXML interpreter Open VXI, SAXParser
Recognition engine HTK

TTS synthesizer FreeTTS [10]

Document
Server

Speech
Browser

http request

http reply
Terminal

parameters for
recognition

parameters
for synthesis

32

4.3 VoiceXML file

A VoiceXML file for the credit card authorization was prepared as follows.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE vxml SYSTEM "voicexml1-0.dtd">

<vxml version="1.0">

 <form>

 <block>We now need your name, credit card type, number and expiration date.</block>

 <field name="name">

 <prompt>What is your name?</prompt>

 <!-- This is an in line grammar. -->

 <grammar>

 thomas cheng {thomascheng}

 | wendy how {wendyhow}

 | peter sun {petersun}

 | may wong {maywong}

 </grammar>

 </field>

 <field name="card_type">

 <prompt>What kind of credit card do you have?</prompt>

 <!-- This is an in line grammar. -->

 <grammar>

 visa {visa}

 | master [card] {mastercard}

33

 | american [express] {americanexpress}

 </grammar>

 </field>

 <field name="card_num" type="digits">

 <prompt>What is your card number?</prompt>

 </field>

 <field name="expiry_date" type="digits">

 <prompt>What is your card's expiration date?</prompt>

 </field>

 <field name="confirm" type="boolean">

 <prompt><value expr="name"/>, I have a <value expr="card_type"/>

 number <value expr="card_num"/> expiring on <value expr="expiry_date"/>.

 To go on say yes, to reenter say no.</prompt>

 <filled>

 <if cond="confirm">

 <submit next="place_order.asp"

 namelist="name card_type card_num expiry_date"/>

 </if>

 </filled>

 </field>

 </form>

</vxml>

The dialog might go something like this:

34

S – Speech browser

T – Terminal

S: Welcome to credit card centre.

S: We now need your name, credit card type, number and expiration date.");

S: What is your name?

T: Thomas Cheng.

S: What kind of credit card do you have?

T: Visa

S: What is your card number?

T: 1 2 3 4 5 6 7 8

S: What is your card's expiration date?

T: 1 2 0 3

S: Thomas Cheng, I have a Visa number 1 2 3 4 5 6 7 8 expiring on 1 2 0 3.

S: To go on say yes, to reenter say no.

T: Yes

4.4 HMM training by HTK

Here are the ten examples of sentence that might be recognized by the speech browser

based on the above VoiceXML file.

1. ZERO SIX SIX NINE

35

2. MASTER CARD

3. NO

4. MAY WONG

5. WENDY HOW

6. SEVEN TWO TWO SEVEN

7. AMERICAN

8. YES

9. PETER SUN

10. THOMAS CHENG

In this project, we implement a speech recognition engine using a open source HMM

toolkit (HTK), that is primarily designed for building HMM-based speech processing

tools, in particular recognizers. Firstly, the HTK training tools are used to estimate

the parameters of a set of HMMs using training utterances and their associated

transcriptions. Secondly, unknown utterances are transcribed using the HTK

recognition tools [11].

Our target is to build a large-vocabulary dialog-based speaker-independent speech

recognizer (LVCSR). Large-vocabulary generally means that the systems have a

vocabulary of roughly 5,000 to 60,000 words. The term dialog-based means that the

words are run together in a restricted way defined in grammars. Speaker-independent

means that the systems are able to recognize speech from people whose speech the

system has never been exposed to before.

36

Figure 13 Scheme of ASR system functions

The thirty-year old research activity in the speech recognition area has produced a

well-consolidated technology based on Hidden Markov Models (HMMs) that is also

firmly supported theoretically. The HMM technology, that has the powerful

capability of modeling complex (non-stationary phenomena and the availability of

efficient algorithms managing very large amounts of data, is now available for

Automatic Speech Recognition (ASR) tasks owing to low-cost high-performance

commercial products [12][13].

4.5 Terminal

Terminal usually has small sizes, limited computing powers, small memories and

limited bandwidth networks. It acts as a front-end distributed speech recognizer as

well as a front-end distributed text-to-speech synthesizer. A Java applet, running on

the top of JVM inside a web browser, makes use of Java Sound API and Java

Network API.

Speech Data

Unknown Speech

Transcription
s

Training
Data

Models

Transcription

Training
Tools

Recognizer

37

Figure 14 System architecture (Terminal)

Figure 15 Examples of terminals

In the recognition path, it performs voice capturing, feature extraction, compression

and then data sending to speech browser. In the synthesis path, it performs data

retrieval from speech browser, speech decoder and then voice playback.

Our configuration of speech input will be 16-bit linear quantization and 16kHz

sampling rate while that of speech output will be 8-bit linear quantization and 8kHz

sampling rate, which are adequate to maintain the recognition accuracy and speech

intelligibility.

G.723.1
Coefficients

Speech
Output

Compressed
MFCCs Speech

Input

Terminal

Feature
Extraction

Compression

Speech
Decoder

PDA with wireless
capability

Access
Point

Mobile phone Gateway

Analog phone

Bluetooth

WiFi
GSM
data

2.5G/3G
PSTN

PC with
Telephone
Interface

Speech
Browser

MFCCs

G.723.1

38

The feature vectors after feature extraction are 13-dimensional vectors consisting of

mel-cepstral features and they are computed every 10ms, which is the typical frame

rate in most speech recognition systems. Owing to the high correlation (in time)

between subsequent feature vector, we take the difference between adjacent feature

vectors, which is a 1-step (scalar) linear prediction such that it can be compressed

very much before sending to speech browser. Further compression can be achieved

by multi-stage vector quantizing these error vectors.

We cannot use the text and linguistic processing part in IBM ViaVoice TTS SDK for

Windows as a separate module, which originally will be our back-end TTS. To solve

it, we add a pair of 5.3kbps G.723.1 speech encoder and decoder into the whole

system. In speech browser, ViaVoice TTS accompanying with the encoder, which is

responsible for compressing the TTS output, will be our back-end TTS. In terminal, a

corresponding decoder is responsible for recovering the TTS output.

Figure 16 shows the terminal running as a Java applet. When the applet starts, it

makes a socket connection to the speech browser to request a particular VoiceXML

file by using Java Network API. The speech browser goes to retrieve the file in the

Internet via HTTP protocol. This file is then processed by the VoiceXML interpreter

running in the speech browser and the dialog will start automatically. A welcome

speech specified in the dialog is always generated by the speech browser and it is sent

to the terminal for playback.

39

The terminal can respond the speech browser in three different ways. By selecting

the “Enable Audio Input” box, it starts the recording. A endpoint detector, based on

the energy threshold and zero crossing, distinguish between the speech and silence.

The feature extraction works only when the speech is detected and the resulting

feature will be sent to speech browser.

You can also input the text directly or playback a pre-stored wave file to respond the

speech browser. These methods are normally used in the debug mode or when the

environment is too noisy. All the speeches coming from the terminal and the speech

browser will be displayed on the screen.

Figure 16 A Java applet running as a terminal

40

Figure 17 shows a block diagram of the DSR front-end

Figure 17 Block diagram of the DSR front-end

1. Signal Acquisition

Two parameters should be determined, sampling rate and A/D precision.

As we target PDAs, mobile phones and analog phones as the terminals, the best

affordable parameters should be set. Mobile phones and PDAs have enough power to

do the feature extraction at the sufficient high sampling rate and A/D precision.

Usually, 16-bit A/D precision is used.

It shows some empirical relative word recognition error increase using a number of

different sampling rates. If we take the 8 kHz sampling as our baseline, we can

reduce the word recognition error with a comparable recognizer by about 10% if we

increase the sampling rate to 11 kHz. If we further increase the sampling rate to 16

kHz, the word recognition error rate can be further reduced by additional 10%.

Further increasing the sampling rate to 22 kHz does not have any additional impact

Windowing Frame
Blocking

Preemphasis s’(n) xt(n)

N M

s(n) xt’(n)

FFT Mel-scale
Filterbank

DCT mj Xt(n) ci

41

on the word recognition errors, because most of the salient speech features are within

8 kHz bandwidth.

Relative error rate reduction with different sampling rates

Sampling Rate Relative Error-Rate Reduction

8 kHz Baseline

11 kHz +10%

16 kHz +10%

22 kHz +0%

3. End-point detection

To lower the workload of the terminal and speech browser, we implement a end-point

detection. Feature extraction starts only when the speech is detected.

4. Preemphasis

The digitized speech signal, s(n), was put through a preemphasizer (typically a

first-order FIR filter), to spectrally flatten the signal and to make it less

susceptible to finite precision effects later in the signal processing. In this project,

we chose 0.97 as the preemphasis coefficient.

0.19.0,1)(1 ≤≤−= − aazzH Equation 11

5. Frame Blocking

42

In this step the preemphasized speech signal, s’(n), was blocked into frames of N

samples, with adjacent frames being separated by M samples. We chose N = 320

and M = 160.

6. Windowing

The next step in the preprocessing was to window each individual frame so as to

minimize the signal discontinuities at the beginning and end of each frame.

Hamming window is used, which has the form

10),
1

2cos(46.054.0)(−≤≤
−

−= Nn
N

nnw π Equation 12

7. Finally, 39 coefficients were generated for each frame. This number, 39, was

computed from the length of parameterised static vectors (MFCC_0 = 13) plus the

delta coefficients (+13) plus the acceleration coefficients (+13) after the standard

FFT, Mel-scale filterbank and DCT, described in 2.1.2 above.

In general, time-domain features are much less accurate than frequency-domain

features such as the mel-frequency cepstral coefficients (MFCC). This is because

many features such as formants, useful in discriminating vowels, are better

characterized in the frequency domain with a low-dimension feature vector.

Temporal changes in the spectra play an important roles in human perception. One

43

way to capture this information is to use delta coefficients that measure the change in

coefficients over time.

When 16 kHz sampling rate is used, a typical state-of-the-art speech system can be

built based on the following features

13th-order MFCC ck;

13th-order 40-msec 1st-order delta MFCC computed from ∆ck = ck+2 – ck-2;

13th-order 2nd-order delta MFCC computed from ∆∆ck = ∆ck+1 - ∆ck-1;

The 13th-order MFCC outperforms 13th-order LPC cepstrum coefficients, which

indicates that perception-motivated mel-scale representation indeed helps recognition.

In a similar manner, perception-based LPC features such as PLP can achieve similar

improvement. The MFCC order has also been studied experimentally for speech

recognition. The higher-order MFCC does not further reduce the error rate in

comparison with the 13th-order MFCC, which indicates that the first 13 coefficients

already contain most salient information needed for speech recognition. In addition

to mel-scale representation, another percepion-motivated feature such as the first- and

second-order delta features can significantly reduce the word recognition error, which

the higher-order delta features provide no further information.

Relative error rate reduction with different features

Feature Set Relative Error-Rate Reduction

13th-order LPC cepstrum coefficients Baseline

13th-order MFCC +10%

44

16th-order MFCC +0%

+1st- and 2nd-order dynamic features +20%

+3rd-order dynamic features +0%

If we make units context dependent, we can significantly improve the recognition

accuracy, provided there are enough training data to estimate these context-dependent

parameters. Context-dependent phonemes have been widely used for large-

vocabulary speech recognition, thanks to its significantly improved accuracy and

trainability. A context usually refers to the immediately left and/or right neighboring

phones.

A triphone model is a phonetic model that takes into consideration both the left and

the right neighboring phones. If two phones have the same identity but different left

or right contexts, they are considered different triphones.

The left and right contexts used in triphones, while important, are only two of many

important contributing factors that affect the realization of a phone. Triphone models

are powerful because they capture the most important coarticulatory effects. They are

generally much more consistent than context-independent phone models. However,

as context-dependent models generally have increased parameters, trainability

becomes a challenging issue. We need to balance the trainability and accuracy with a

number of parameter-sharing techniques.

45

If we use context-independent phone (monophone) as our baseline, we can reduce the

word recognition error with a comparable recognizer by about 25% if we use context-

dependent phone (triphone, for example). Clustered triphone and seone gives us

much better the word recognition error rate than the others.

Relative error reductions for different modeling units.

Feature Set Relative Error-Rate Reduction

Context-independent phone Baseline

Context-dependent phone +25%

Clustered triphone +15%

Senone +24%

4.6 Speech Browser

Speech browser is a cluster of powerful servers acting as a back-end that performs the

core recognition and synthesis processes as well as the interpretation of VoiceXML

files retrieved from the document server.

The implementation platform was based on the Sourceforge Project: Open VXI

VoiceXML Interpreter V4.0 using SAXParser, HMM recognizer and FreeTTS

synthesizer.

46

The speech browser was implemented in the client/server architecture. Different

objects had different requirement on the platform at which they are located. Speech

recognition is a computation-intensive process while TTS synthesis is memory-

intensive.

Figure 18 System architecture (Speech browser)

XML Interface

Recognition Prompt Translation Telephony

Open VXI

R
ec

og
ni

tio
n

En
gi

ne

TT
S

Sy
nt

he
si

ze
r

A
ud

io
 F

ile

C

al
l C

on
tro

l

Se

m
an

tic
s

an
d

Tr
an

sl
at

io
n

Server
Objects

Resource Bus
VoiceXML
interpreter

47

Chapter 5 IMPLEMENTATION

5.1 HMM Training by HTK

Here were the steps to train the HMM models by HTK.

1. The task grammar was expressed as a grammar definition language provided by

HTK. For the credit card authorization application above, the suitable grammar

should be

$name = THOMAS CHENG | WENDY HOW | PETER SUN | MAY WONG;

$card = VISA | MASTER [CARD] | AMERICAN [EXPRESS];

$digit = ONE | TWO | THREE | FOUR | FIVE | SIX | SEVEN | EIGHT | NINE | OH |

ZERO;

$yesno = YES | NO;

(SENT-START ($name | $card | <$digit> | $yesno) SENT-END)

where the vertical bars denote alternatives, the square brackets denote optional items

and the angle braces denote one or more repetitions. The complete grammar can be

depicted as a network as shown in Figure 19.

48

Figure 19 Grammar for Credit Card Authorization

The above high level representation of a task grammar was provided for user

convenience. The HTK recognizer actually requires a word network to be defined

using a low level notation called HTK Standard Lattice Format (SLF) in which each

word instance and each word-to-word transition is listed explicitly.

SENT-

START

SENT-

END

ONE

TWO

THREE

ZERO

… etc

THOMAS CHENG

WENDY HOW

PETER SUN

MAY WONG

VISA

MASTER

AMERICAN

CARD

EXPRESS

YES

NO

49

In this SLF file, the total number of nodes and links were 32 and 63 respectively.

VERSION=1.0

N=32 L=63

I=0 W=SENT-END

I=1 W=NO

I=2 W=!NULL

I=3 W=YES

I=4 W=ZERO

I=5 W=!NULL

I=6 W=OH

I=7 W=NINE

I=8 W=EIGHT

I=9 W=SEVEN

I=10 W=SIX

I=11 W=FIVE

I=12 W=FOUR

I=13 W=THREE

I=14 W=TWO

I=15 W=ONE

I=16 W=EXPRESS

I=17 W=AMERICAN

I=18 W=CARD

50

I=19 W=MASTER

I=20 W=VISA

I=21 W=WONG

I=22 W=MAY

I=23 W=SUN

I=24 W=PETER

I=25 W=HOW

I=26 W=WENDY

I=27 W=CHENG

I=28 W=THOMAS

I=29 W=SENT-START

I=30 W=!NULL

I=31 W=!NULL

J=0 S=0 E=30

J=1 S=1 E=2

J=2 S=2 E=0

J=3 S=3 E=2

J=4 S=4 E=5

J=5 S=5 E=0

J=6 S=5 E=15

J=7 S=5 E=14

J=8 S=5 E=13

J=9 S=5 E=12

51

J=10 S=5 E=11

J=11 S=5 E=10

J=12 S=5 E=9

J=13 S=5 E=8

J=14 S=5 E=7

J=15 S=5 E=6

J=16 S=5 E=4

J=17 S=6 E=5

J=18 S=7 E=5

J=19 S=8 E=5

J=20 S=9 E=5

J=21 S=10 E=5

J=22 S=11 E=5

J=23 S=12 E=5

J=24 S=13 E=5

J=25 S=14 E=5

J=26 S=15 E=5

J=27 S=16 E=2

J=28 S=17 E=16

J=29 S=17 E=0

J=30 S=18 E=2

J=31 S=19 E=18

J=32 S=19 E=0

52

J=33 S=20 E=2

J=34 S=21 E=2

J=35 S=22 E=21

J=36 S=23 E=2

J=37 S=24 E=23

J=38 S=25 E=2

J=39 S=26 E=25

J=40 S=27 E=2

J=41 S=28 E=27

J=42 S=29 E=3

J=43 S=29 E=1

J=44 S=29 E=20

J=45 S=29 E=19

J=46 S=29 E=17

J=47 S=29 E=28

J=48 S=29 E=26

J=49 S=29 E=24

J=50 S=29 E=22

J=51 S=29 E=15

J=52 S=29 E=14

J=53 S=29 E=13

J=54 S=29 E=12

J=55 S=29 E=11

53

J=56 S=29 E=10

J=57 S=29 E=9

J=58 S=29 E=8

J=59 S=29 E=7

J=60 S=29 E=6

J=61 S=29 E=4

J=62 S=31 E=29

2. Build the dictionary containing a sorted list of the required words

A dictionary that contained the pronunciations for each word used in the application.

AMERICAN ax m eh r ih k ax n sp

CARD k aa d sp

CHENG ch ae ng sp

EIGHT ey t sp

EXPRESS ih k s p r eh s sp

FIVE f ay v sp

FOUR f ao r sp

FOUR f ao sp

HOW hh aw sp

MASTER m aa s t ax r sp

MASTER m aa s t ax sp

54

MAY m ey sp

NINE n ay n sp

NO n ow sp

OH ow sp

ONE w ah n sp

PETER p iy t ax r sp

PETER p iy t ax sp

SENT-END sil sp

SENT-START sil sp

SEVEN s eh v n sp

SIX s ih k s sp

SUN s ah n sp

THOMAS t oh m ax s sp

THREE th r iy sp

TWO t uw sp

VISA v iy z ax sp

WENDY w eh n d iy sp

WONG k oh ng sp

YES y eh s sp

ZERO z ia r ow sp

A list of 34 phones was output.

55

ax, m, eh, r, ih, k, n, sp, aa, d, ch, ae, ng, ey, t, s, p, f, ay, v, ao, hh, aw, ow,

w, ah, iy, oh, th, uw, z, y, ia, sil

A list of 92 triphones was output. The HMMs was continuous density mixture

Gaussian tied-state triphones with clustering performed using phonetic decision trees.

sil, z+ia, z-ia+r, ia-r+ow, r-ow, sp, s+ih, s-ih+k, ih-k+s, k-s, n+ay, n-ay+n, ay-n, th+r,

th-r+iy, r-iy, s+eh, s-eh+v, eh-v+n, v-n, f+ay, f-ay+v, ay-v, m+aa, m-aa+s, aa-s+t, s-

t+ax, t-ax, k+aa, k-aa+d, aa-d, w+ah, w-ah+n, ah-n, f+ao, f-ao, ey+t, ey-t, t+uw, t-uw,

ow, n+ow, n-ow, m+ey, m-ey, k+oh, k-oh+ng, oh-ng, w+eh, w-eh+n, eh-n+d, n-d+iy,

d-iy, hh+aw, hh-aw, f-ao+r, ao-r, ax+m, ax-m+eh, m-eh+r, eh-r+ih, r-ih+k, ih-k+ax,

k-ax+n, ax-n, y+eh, y-eh+s, eh-s, p+iy, p-iy+t, iy-t+ax, s+ah, s-ah+n, t+oh, t-oh+m,

oh-m+ax, m-ax+s, ax-s, ch+ae, ch-ae+ng, ae-ng, v+iy, v-iy+z, iy-z+ax, z-ax, t-ax+r,

ax-r, ih+k, k-s+p, s-p+r, p-r+eh, r-eh+s

3. Record and label the 200 training data

There is a HTK tool for both waveform recording and labeling. 200 training

utterances were recorded and labeled according to the defined grammar.

56

4. Create monophone HMMs

For the state-dependent left-to-right HMM, the most important parameter in

determining the topology is the number of states. The choice of model topology

depends on available training data and what the model is used for. In our case, each

HMM is used to represent a phone, at least three to five output distributions are

needed.

~o <VecSize> 39 <MFCC_0_D_A>

~h "proto"

<BeginHMM>

57

 <NumStates> 5

 <State> 2

 <Mean> 39

 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

 <Variance> 39

 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

 <State> 3

 <Mean> 39

 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

 <Variance> 39

 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

 <State> 4

 <Mean> 39

 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

 <Variance> 39

 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

 <TransP> 5

58

 0.0 1.0 0.0 0.0 0.0

 0.0 0.6 0.4 0.0 0.0

 0.0 0.0 0.6 0.4 0.0

 0.0 0.0 0.0 0.7 0.3

 0.0 0.0 0.0 0.0 0.0

<EndHMM>

5. A series of training was then carried out including creating flat start monophones,

fixing the silence models, realigning the training data, making tied-state triphones

from monophones. The recognizer was complete and its performance can be

evaluated.

The line starting with SENT: indicates that of the 200 test utterances, 187 (93.5%)

were correctly recognized. The following line starting with WORD: gives the

word level statistics and indicates that of the 990 words in total, 990 (100%) were

recognized correctly. There was no deletion error (D), no substitution error (S)

and 14 insertion error (I). The accuracy figure (Acc) of 98.59% is lower than the

percentage correct (Cor) because it takes amount of the insertion errors which the

latter ignores.

====================== HTK Results Analysis =======================

 Date: Fri May 17 02:44:46 2002

 Ref : testref.mlf

 Rec : recout.mlf

59

------------------------ Overall Results --------------------------

SENT: %Correct=93.50 [H=187, S=13, N=200]

WORD: %Corr=100.00, Acc=98.59 [H=990, D=0, S=0, I=14, N=990]

===

5.2 Terminal

The terminal is mainly responsible for voice/text input, endpoint detection, feature

extraction and parameters passing with speech browser.

Class Name Main Function

WaveDataInputStream read the 16-bit sampled waveform from the wave file

FeatureExtraction transform sampled waveform to parameter representation

for recognition, i.e. MFCC

FeatureDecode transform a parameter representation for synthesis to

sampled waveform

FeatureOutputStream send the parameter representation for recognition, i.e.

MFCC to the speech browser

FeatureInputStream receive the parameter representation for synthesis to the

speech browser

60

5.3 Speech Browser

The speech browser is mainly responsible for parameters passing with terminal,

VoiceXML file request and interpretation, speech recognition and synthesis.

Class Name Main Function

FeatureOutputStream send the parameter representation for synthesis to the

terminal

FeatureInputStream receive the parameter representation for recognition, i.e.

MFCC from the terminal

VXMLInterpret request and interpret the VoiceXML file

SpeechRecognize transform the parameter representation for recognition, i.e.

MFCC to the text

SpeechSynthesize transform the text to the parameter representation for

synthesis

61

Chapter 6 RESULT AND DISCUSSION

The result was shown as below. When the terminal started, it automatically loaded a

credit card authorization application from the speech browser. The user followed the

dialog specified in the VoiceXML and the terminal finally retrieved the name and

credit card information of the user via his/her voices.

Some improvements can be made in the future.

• Speaker adaptation

62

Since the speech browser knows who is calling from in the terminal side, it is possible

to include the speaker adaptation algorithm in the current model in order to improve

the accuracy.

• To make the speech browser become CORBA-based

The computation and memory requirements of speech recognition and speech

synthesis tasks are different and it is more suitable to let them run in different hosts.

In addition, the loading of the speech browser may vary very much from time to time

since the number of terminals using the speech browser is unpredictable. In this case,

a CORBA-based system should be introduced to make the system to be more efficient

and robust where some loading balancing and fault tolerant features is added.

63

Chapter 7 CONCLUSION

In this project, we introduce a three-tier distributed VoiceXML-based speech system

and demonstrate a credit card authorization application as one of the examples.

Under this model, the service of a high performance speech system can be provided

to enormous users via mobile devices in a unified way.

64

Chapter 8 REFERENCES

1 X.D. Huang, Y. Ariki and M.A. Jack, Hidden Markov models for speech

recognition, Edinburgh University Press, c1990

2 Aurora Project: Distributed speech recognition,

http://www.etsi.org/technicalactiv/dsr.htm

3 Voice eXtensible Markup Language Version 1.00, Voice Forum, c2000

4 Lawrence R. Rabiner, Ronald W. Schafer, Digital processing of speech signals,

c1978

5 John R. Deller, Jr., John G. Proakis, John H.L. Hansen, Discrete-time processing

of speech signals

6 Lawrence Rabiner, Biing-Hwang Juang, Fundamentals of speech recognition,

Prentice Hall, c1997

7 Ganesh N. Ramaswamy, Ponani S. Gopalakrishnan, Compression of acoustic

features for speech recognition in network environments, IBM Thomas J.

Watson Research Center

8 Bell Labs Voice and Audio Technologies For Portable MP3 Players,

http://www.lucentssg.com/speech/MP3.pdf

9 Java sound API programmer’s guide, Sun Microsystems, Inc., c2000

10 FreeTTS 1.1 - A speech synthesizer written entirely in the JavaTM programming

language, http://freetts.sourceforge.net/

http://www.etsi.org/technicalactiv/dsr.htm
http://www.lucentssg.com/speech/MP3.pdf
http://freetts.sourceforge.net/

65

11 Steve Young, Dan Kershaw, Julian Odell, Dave Ollason, Valtcho Valtchev, Phil

Woodland, The HTK book (for HTK Version 3.0), Microsoft Corporation, c2000

12 Caludio Becchetti and Lucio Prina Ricotti, Speech recognition – theory and C++

implementation, John Wiley & Sons, c1999

13 L. Rabiner, Fundamental of speech recognition, Prentice Hall, c1993

