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ABSTRACT 

 

There are plenty of speech recognition research results and development applications targeting on 

embedded systems, desktops and servers.  Each of them has its own limitation.  We may have a 

command and control application on mobile devices, a speaker-dependent dictation application 

on home PCs and a speaker-independent interactive voice response (IVR) application on call-

center servers.  Advances in speech recognition technology, wireless technology and growth of 

the Internet lead us to establish a universal solution to break all the limitations..  In particular, we 

propose a new three-tier speech system which can make us access information more seamlessly 

and more naturally. 

 

In this project, we design and implement a three-tier distributed VoiceXML-based speech system 

to demonstrate our model.  The system is comprised of three components, namely terminal, 

speech browser and document server, forming the three-tier model.  The terminal usually has 

small sizes with limited computing powers, small memories and limited bandwidth networks; for 

example, mobile phones, PDA with bluetooth, analog phone plus PC with telephone interface.  

Owing to the capabilities, it acts as a front end that uses data channel to send/receive the 

parameterized representation of speech to/from the speech browser.  The speech browser is a 

cluster of powerful servers acting as a back-end that performs the core recognition, synthesis 

processes and the interpretation of VoiceXML files retrieved from the document server.  The 

document server is a web site containing the VoiceXML files. 
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This model adds mobile devices the dialog-based speech capability to access the enormous 

multilingual information in the Internet without breaking the size, memory and computation 

limitations.  By adding the features of load balancing and fault tolerance to the speech browser, a 

reliable back-end service can be guaranteed.  Our goal is to find a complete solution to fit into 

this model by applying various technologies.  
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Chapter 1  INTRODUCTION 

 

Nowadays, most mobile devices as well as computers utilize a graphical user 

interface (GUI), based on graphically represented interface objects and functions such 

as windows, icons, menus, and pointers.  Most computer operating systems and 

applications also depend on a user’s keyboard strokes, mouse clicks, button presses 

and pen actions.  Speech, however, is the most natural and efficient way for human to 

communicate.  Starting from 1970s, many researchers have built a theoretical 

framework on the speech recognition technology and until recently, advances in 

computer technology and speech algorithm brought the speech recognition 

technology to the practical uses in various areas. 

 

Today, the speech recognition technology is quite mature and we can have a speaker 

independent large vocabulary continuous speech recognition system running on a 

powerful PC.  In fact, the capability of speech recognition system depends on how 

much computational and memory resources are used.  Mobile devices normally have 

a CPU running at the range from several to hundreds of million instructions per 

second (MIPS) and a RAM device of size hundreds of kilobytes to tens of megabytes.  

With this limited resources in mobile devices, only a simple command and control 

application or a speaker dependent small vocabulary speech recognition application 

can be achieved. 
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In order to break all the above limitations, a three-tier model is proposed to achieve a 

unified speech system in different environments.  To demonstrate how this three-tier 

distributed VoiceXML-based speech system works, a credit card authorization 

application was developed by using JAVA.  The outline of the report is as follows.  

Chapter 1 is the introduction.  Chapter 2 is the speech technology.  Chapter 3 is the 

system requirement.  Chapter 4 is the system design.  Chapter 5 is the implementation.  

Chapter 6 is the result and discussion.  Chapter 7 is the conclusion. 



4 

Chapter 2  SPEECH TECHNOLOGY 

 

2.1 Speech Recognition 

 

After years of research and development, accuracy of automatic speech recognition 

remains one of the most important research challenges.  A number of well-known 

factors determine accuracy; those most noticeable are variations in context, in speaker, 

and in environment.  Acoustic modeling plays a critical role in improving accuracy 

and is arguably the central part of any speech recognition system. 

 

For the given acoustic observation X = X1X2…Xn, the goal of speech recognition is to 

find out the corresponding word sequence Ŵ  = w1w2…wm that has the maximum 

posterior probability P(W | X) as expressed by 

)(
)|()(maxarg)|(maxargˆ

XP
WXPWPXWPW

ww
==   Equation 1 

 

Since the maximization of Equation 1 is carried out with the observation X fixed, the 

above maximization is equivalent to maximization of the following equation 

)|()(maxargˆ WXPWPW
w

=    Equation 2 

 

The practical challenge is how to build accurate acoustic models, P(X | W), and 

language models, P(W), that can truly reflect the spoken language to be recognized.  
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For large vocabulary speech recognition, since there are a large number of words, we 

need to decompose a word into a subword sequence.  Thus P(X | W) is closely related 

to phonetic modeling.  P(X | W) should take into account speaker variations, 

pronunciation variations, environment variations, and context-dependent phonetic 

coarticulation variations.  Last, but not least, any static acoustic or language model 

will not meet the needs of real applications.  So it is vital to dynamically adapt both 

P(W) and P(X | W) to maximize P(X | W) while using the spoken language system.  

The decoding process of finding the best matched word sequence W to match the 

input speech signal X in speech recognition systems is more than a simple pattern 

recognition problem, since in continuous speech recognition you have an infinite 

number of word patterns to search. 

 

2.1.1 Variability in the Speech Signal 

 

The research community has produced technologies that, with some constraints, can 

accurately recognize spoken input.  Admittedly, today’s state-of-the-art systems still 

cannot match human performance.  Although we can build a very accurate speech 

recognizer for a particular speaker, in a particular language and speaking style, in a 

particular environment, and limited to a particular task, it remains a research 

challenge to build a recognizer that can essentially understand anyone’s speech, in 

any language, on any topic in any free-flowing style, and in almost any speaking 

environment. 
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Accuracy and robustness are the ultimate measures for the success of speech 

recognition algorithms.  There are many reasons why existing algorithms or systems 

did not deliver what people want.  In the sections the follow we summarize the major 

factors involved. 

 

2.1.1.1 Context Variability 

 

Spoken language interaction between people requires knowledge of word meanings, 

communication context, and common sense.  Words with widely different meanings 

and usage patterns may have the same phonetic realization.  Consider the challenge 

represented by the following utterance. 

Mr. Wright should write to Ms. Wright right away about his Ford or four door Honda. 

 

For a given word with the same pronunciation, the meaning could be dramatically 

different, as indicated by Wright, write, and right.  What makes it even more difficult 

is that Ford or and Four Door are not only phonetically identical, but also 

semantically relevant.  The interpretation is made within a given word boundary.  

Even with smart linguistic and semantic information, it is still impossible to decipher 

the correct word sequence, unless the speaker pauses between words or uses 

intonation to set apart these semantically confusable phrases. 

 

In addition to the context variability at word and sentence level, you can find 

dramatic context variability at phonetic level.  The acoustic realization of phoneme 
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/ee/ for word peat and wheel depends on its left and right context.  The dependency 

becomes more important in fast speech or spontaneous speech conversation, since 

many phonemes are not fully realized. 

 

2.1.1.2 Style Variability 

 

To deal with acoustic realization variability, a number of constraints can be imposed 

on the use of the speech recognizer.  For example, we can have an isolated speech 

recognition system, in which users have to pause between each word.  Because the 

pause provides a clear boundary for the word, we can easily eliminate errors such as 

Ford or and Four Door.  In addition isolated speech provides a correct silence 

context to each word so that it is easier to model and decode the speech, leading to a 

significant reduction in computational complexity and error rate.  In practice, the 

word-recognition error rate of an isolated speech recognizer can typically be reduced 

by more than a factor of three (from 7% to 2%) as compared with to a comparable 

continuous speech recognition system.  The disadvantage is that such an isolated 

speech recognizer is unnatural to most people.  The throughput is also significantly 

lower than that for continuous speech. 

 

In continuous speech recognition, the error rate for casual, spontaneous speech, as 

occurs in our daily conversation, is much higher than for carefully articulated read-

aloud speech.  The rate of speech also affects the word recognition rate.  It is typical 

that the higher the speaking rate (words/minute), the higher the error rate.  If a person 
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whispers, or shouts, to reflect his or her emotional changes, the variation increases 

more significantly. 

 

2.1.1.3 Speaker Variability 

 

Every individual speaker is different.  The speech he or she produces reflects the 

physical vocal tract size, length and width of the neck, a range of physical 

characteristics, age, sex, dialect, health, education, and personal style.  As such, one 

person’s speech patterns can be entirely different from those of another person.  Even 

if we exclude these interspeaker differences, the same speaker is often unable to 

precisely produce the same utterance.  Thus, the shape of the vocal tract movement 

and rate of delivery may vary from utterance to utterance, even with dedicated effort 

to minimize the variability. 

 

For speaker-independent speech recognition, we typically use more than 500 speakers 

to build a combined model.  Such an approach exhibits large performance 

fluctuations among new speakers because of possible mismatches in the training data 

between existing speakers and new ones.  In particular, speakers with accents have a 

tangible error-rate increase of 2 to 3 times. 

 

To improve the performance of a speaker-independent speech recognizer, a number 

of constraints can be imposed on its use.  For example, we can have a user enrollment 

that requires the use to speak for about 30 minutes.  With the speaker-dependent data 
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and training, we may be able to capture various speaker-dependent acoustic 

characteristics that can significant improve the speech recognizer’s performance.  In 

practice, speaker-dependent speech recognition offers not only improved accuracy but 

also improved speed, since decoding can be more efficient with an accurate acoustic 

and phonetic model.  A typical speaker-dependent speech recognition system can 

reduce the word recognition error by more than 30% as compared with a comparable 

speaker-independent speech recognition system. 

 

The disadvantage of speaker-dependent speech recognition is that it takes time to 

collect speaker-dependent data, which may be impractical for some applications such 

as an automatic telephone operator.  Many applications have to support walk-in 

speakers, so speaker-independent speech recognition remains an important feature.  

When the amount of speaker-dependent data is limited, it is important to make use of 

both speaker-dependent and speaker-independent data using speaker-adaptive 

training techniques.  Even for speaker-independent speech recognition, you can still 

use speaker-adaptive training based on recognition results to quickly adapt to each 

individual speaker during the usage. 

 

2.1.1.4 Environment Variability 

 

The world we live in is full of sounds of varying loudness from different sources.  

When we interact with computers, we may have people speaking in the background.  

Someone may slam the door, or the air conditioning may start humming without 
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notice.  If speech recognition is embedded in mobile devices, such as PDAs or 

cellular phones, the spectrum of noises varies significantly because the owner moves 

around.  These external parameters, such as the characteristics of the environmental 

noise and the type and placement of the microphone, can greatly affect speech 

recognition system performance.  In addition to the background noises, we have to 

deal with noises made by speakers, such as lip smacks and non-communication words.  

Noise may also be present from the input device itself, such as the microphone and 

A/D interference noises. 

 

In a similar manner to speaker-independent training, we can build a system by using a 

large amount of data collected from a number of environments; this is referred to as 

multistyle training.  We can use adaptive techniques to normalize the mismatch 

across different environment conditions in a manner similar to speaker-adaptive 

training.  Despite the progress being made in the field, environment variability 

remains as one of the most severe challenges facing today’s state-of-the-art speech 

systems. 

 

2.1.2 Feature Extraction 

 

The human ear resolves frequencies non-linearly across the audio spectrum and 

empirical evidence suggests that designing a front-end to operate in a similar non-

linear manner improves recognition performance.  A popular alternative to linear 

prediction based analysis is therefore filterbank analysis since this provides a much 
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more straightforward route to obtaining the desired non-linear frequency resolution.  

However, filterbank amplitudes are highly correlated and hence, the use of a cepstral 

transformation in this case is virtually mandatory if the data is to be used in a HMM 

based recognizer with diagonal covariances. 

 

The filters used are triangular and they are equally spaced along the mel-scale which 

is defined by 

)
700

1(log2595)( 10
ffMel +=    Equation 3 

 

To implement this filterbank, the window of speech data is transformed using a 

Fourier transform and the magnitude is taken.  The magnitude coefficients are then 

binned by correlating them with each triangular filter.  Here binning means that each 

FFT magnitude coefficient is multiplied by the corresponding filter gain and the 

results accumulated.  Thus, each bin holds a weighted sum representing the spectral 

magnitude in that filterbank channel. 

 

Mel-Frequency Cepstral Coefficients (MFCCs) are calculated from the log filterbank 

amplitudes {mj} using the Discrete Cosine Transform 

∑
=

−
⋅

=
N

j
ji j

N
im

N
c

1
))5.0(cos(2 π    Equation 4 

 

where N is the number of filterbank channels. 
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MFCCs are the parameterization of choice for many speech recognition applications.  

They give good discrimination and lend themselves to a number of manipulations.  In 

particular, the effect of inserting a transmission channel on the input speech is to 

multiply the speech spectrum by the channel transfer function.  In the log cepstral 

domain, this multiplication becomes a simple addition that can be removed by 

subtracting the cepstral mean from all input vectors.  In practice, of course, the mean 

has to be estimated over a limited amount of speech data so the subtraction will not be 

perfect.  Nevertheless, this simple technique is very effective in practice where it 

compensates for long-term spectral effects such as those caused by different 

microphones and audio channels. 

 

2.1.3 Hidden Markov Models 

 

Let each spoken word be represented by a sequence of speech vectors or observations 

O, defined as 

ToooO ,...,, 21=     Equation 5 

 

where oT  is the speech vector observed at time t.  The recognition problem can then 

be regarded as that of computing 

)}|({maxarg OwP ii
    Equation 6 
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where wi is the i’th vocabulary word.  This probability is not computable directly but 

using Bayes’ Rule gives 

)(
)()|(

)|(
OP

wPwOP
OwP ii

i =     Equation 7 

 

Thus, for a given set of prior probabilities P(wi), the most probable spoken word 

depends only on the likelihood P(O|wi).  Given the dimensionality of the observation 

sequence O, the direct estimation of the joint conditional probability P(o1,o2,…|wi) 

from examples of spoken words is not practicable.  However, if a parametric model of 

word production such as a Markov model is assumed, then estimation from data is 

possible since the problem of estimating the class conditional observation densities 

P(O|wi) is replaced by the much simpler problem of estimating the Markov model 

parameters. 

 

In HMM-based speech recognition, it is assumed that the sequence of observed 

speech vectors corresponding to each word is generated by a Markov model as shown 

in Figure 7.  A Markov model is a finite state machine which changes state once 

every time unit and each time t that a state j is entered, a speech vector ot is generated 

from the probability density bj(ot).  Furthermore, the transition from state i to state j is 

also probabilistic and is governed by the discrete probability aij.  Figure 7 show an 

example of this process where the six state model moves through the state sequence X 

= 1, 2, 2, 3, 4, 4, 5, 6 in order to generate the sequence o1 to o6.  Notice that in HTK, 
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the entry and exit states of a HMM are non-emitting.  This is to facilitate the 

construction of composite models as explained in more detail later. 

 

The joint probability that O is generated by the model M moving through the state 

sequence X is calculated simply as the product of the transition probabilities and the 

output probabilities.  So for the state sequence X in Figure 7 

)...()()()|,( 332322221212 obaobaobaMXOP =   Equation 8 

 

However, in practice, only the observation sequence O is known and the underlying 

state sequence X is hidden.  This is why it is called a Hidden Markov Model. 

 

 

 

 

 

 

 

Figure 1  The Markov generation model M 

Given that X is unknown, the required likelihood is computed by summing over all 

possible state sequences X = x(1), x(2), x(3),…,x(T), that is 

∑ ∏
=

+=
X

T

t
txtxttxxx aobaMOP

1
)1()()()1()0( )()|(    Equation 9 

o6 o5 o4 o3 o2 o1 

b5(o6) b4(o5) b4(o4) b3(o3) b2(o2) 

a22 

b2(o1) 

a33 a55 a44 

a35 a24 

a23 a34 a45 a56 a12 
1 2 3 4 5 6 
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where x(0) is constrained to be the model entry state and x(T+1) is constrained to be 

the model exit state. 

 

Given a set of models MI corresponding to words wi, equation 2 (i.e. recognition 

problem) is solved by using equation 3 and assuming that 

)|()|( ii MOPwOP =    Equation 10 

 

Given a set of training examples corresponding to a particular model, the parameters 

of that model can be determined automatically by a robust and efficient re-estimation 

procedure.  Thus, provided that a sufficient number of representative examples of 

each word can be collected then a HMM can be constructed which implicitly models 

all of the many sources of variability inherent in real speech [1]. 

 

2.1.4 Decoding 

 

Given a grammar network, its associated set of HMMs, and an unknown utterance, 

the probability of any path through the network can be computed.  The task of a 

decoder is to find those paths which are most likely. 

Decoding in HTK uses the token passing paradigm to find the best path and, 

optionally, multiple alternative paths.  In the latter case, it generates a lattice 

containing the multiple hypotheses which can if required be converted to an N-best 

list. 
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Decoding is controlled by a recognition network compiled from a word-level network, 

a dictionary and a set of HMMs.  The recognition network consists of a set of nodes 

connected by arcs.  Each node is either a HMM model instance or word-end Each 

model node is itself a network consisting of states connected by arcs.  Thus, once 

fully compiled, a recognition network ultimately consists of HMM states connection 

by arcs.  Thus, once fully compiled, a recognition network ultimately consists of 

HMM states connected by transitions.  However it can be viewed at three different 

levels:  word, model and state. 

 

 

 

 

 

 

 

 

Figure 2  Recognition Network Levels 

 

For an unknown input utterance with T frames, every path from the start node to the 

exit node of the network which passes through exactly T emitting HMM states is a 

potential recognition hypothesis.  Each of these paths has a log probability which is 

computed by summing the log probability of each individual transition in the path and 

HMM level 

wn-1 wn wn+1 

p1 p2 p3 

s1 s2 s3 

Word level 

Network level 



17 

the log probability of each emitting state generating the corresponding observation.  

Within-HMM transitions are determined from the HMM parameters, between-model 

transitions are constant and word-end transitions are determined by the language 

model likelihoods attached to the word level networks. 

 

The job of the decoder is to find those paths through the network which have the 

highest log probability.  These paths are found using a Token Passing algorithm.  A 

token represents a partial path through the network extending from time 0 through to 

time t.  At time 0, a token is placed in every possible start node. 

 

Each time step, tokens are propagated along connecting transitions stopping 

whenever they reach an emitting HMM state.  When there are multiple exits from a 

node, the token is copied so that all possible paths are explored in parallel.  As the 

token passes across transitions and through nodes its log probability is incremented 

by the corresponding transition and emission probabilities.  A network node can hold 

at most N tokens.  Hence, at the end of each time step, all but the N best tokens in any 

node are discarded. 

 

As each token passes through the network it must maintain a history recording its 

route.  The amount of detail in this history depends on the required recognition output.  

Normally, only word sequences are wanted and hence, only transitions out of word-

end nodes need be recorded.  However, for some purposes, it is useful to know the 

actual model sequence and the time of each model to model transition.  Sometimes a 
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description of each path down to the state level is required.  All of this information, 

whatever level of detail is required, can conveniently be represented using a lattice 

structure. 

 

Of course, the number of tokens allowed per node and the amount of history 

information requested will have a significant impact on the time and memory needed 

to compute the lattices.  The most efficient configuration is N = 1 combined with just 

word level history information and this is sufficient for most purposes. 

 

A large network will have many nodes and one way to make a significant reduction in 

the computation needed is to only propagate tokens which have some chance of being 

amongst the eventual winners.  This process is called pruning.  It is implemented at 

each time step by keeping a record of the best token overall and de-activating all 

tokens whose log probabilities fall more than a beam-width below the best.  For 

efficiency reasons, it is best to implement primary pruning at the model rather than 

the state level.  Thus, models are deactivated when they have no tokens in any state 

within the beam and they are reactivated whenever active tokens are propagated into 

them.  State-level pruning is also implemented by replacing any token by a null (zero 

probability) token if it falls outside of the beam.  If the pruning beam-width is set too 

small then the most likely path might be pruned before its token reaches the end of 

the utterance.  This results in a search error.  Setting the beam-width is thus a 

compromise between speed and avoiding search errors. 
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2.2 Text-to-Speech Synthesis 

 

The task of a text-to-speech system can be viewed as speech recognition in reverse – 

a process of building a machinery system that can generate human-like speech from 

any text input to mimic human speakers.  The basic components in a TTS system are 

shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3  Basic system architecture of a TTS system 

TTS Engine 

controls 

Phonetic Analysis 

- Grapheme-to-Phoneme Conversion 

Text Analysis 

- Document Structure Detection 

- Text Normalization 

- Linguistic analysis 

Prosodic Analysis 

- Pitch and Duration Attachment 

Speech Synthesis 

- Voice Rendering 

tagged phones 

tagged text 

Raw text or 

tagged text 



20 

The text analysis component normalizes the text to the appropriate form so that it 

becomes speakable.  The input can be either raw text or tagged.  These tags can be 

used to assist text, phonetic, and prosodic analysis.  The phonetic analysis component 

converts the processed text into the corresponding phonetic sequence, which is 

followed by prosodic analysis to attach appropriate pitch and duration information to 

the phonetic sequence.  Finally, the speech synthesis component takes the parameters 

from the fully tagged phonetic sequence to generate the corresponding speech 

waveform. 

 

The text analysis module is responsible for indicating all knowledge about the text or 

message that is not specifically phonetic or prosodic in nature.  Very simple systems 

do little more than convert nonorthographic items, such as numbers, into words.  

More ambitious systems attempt to analyze whitespaces and punctuations to 

determine document structure, and perform sophisticated syntax and semantic 

analysis on sentences to determine attributes that help the phonetic analysis to 

generate correct phonetic representation and prosodic generation to construct superior 

pitch contours.  As shown in Figure 3, text analysis for TTS involves three related 

processes: 

 

• Document structure detection – Document structure is important to provide a 

context for all later processes.  In addition, some elements of document structure, 

such as sentence breaking and paragraph segmentation, may have direct 

implications for prosody. 
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• Text normalization – text normalization is the conversion from the variety 

symbols, numbers, and other nonorthographic entities of text into a common 

orthographic transcription suitable for subsequent phonetic conversion. 

• Linguistic analysis – Linguistic analysis recovers the syntactic constituency and 

semantic features of words, phrases, clauses, and sentences, which is important 

for both pronunciation and prosodic choices in the successive processes. 

 

The task of the phonetic analysis is to convert lexical orthographic symbols to 

phonemic representation along with possible diacritic information, such as stress 

placement.  Phonetic analysis is thus often referred to grapheme-to-phoneme 

conversion.  The purpose is obvious, since phonemes are the basic units of sound.  

Even though future TTS systems might be based on word sounding units with 

increasing storage technologies, homograph disambiguation and phonetic analysis for 

new words (either true new words being invented over time or morphologically 

transformed words) are still necessary for systems to correctly utter every word. 

 

Grapheme-to-phoneme conversion is trivial for languages where there is a simple 

relationship between orthography and phonology.  Such a simple relationship can be 

well captured by a handful of rules.  Languages such as Spanish and Finnish belng to 

this category and are referred to as phonetic languages.  English, on the other hand, is 

remote from phonetic language because English words often have many distinct 

origins.  It is generally believed that the following three services are necessary to 

produce accurate pronunciations. 
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• Homograph disambiguation – It is important to disambiguate words with different 

senses to determine proper phonetic pronunciations, such as object (/ah b jh eh k 

t/) as a verb or as a noun (/aa b jh eh k t/). 

• Morphological analysis – Analyzing the component morphemes provides 

important cues to attain the pronunciations for inflectional and derivational words. 

• Letter-to-sound conversion – The last stage of the phonetic analysis generally 

includes general letter-to-sound rules (or modules) and a dictionary lookup to 

produce accurate pronunciations for any arbitrary word. 
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2.3 Distributed Speech Recognition 

 

In a distributed speech recognition (DSR) architecture the recognizer front-end is 

located in the terminal and is connected over a data network to a remote back-end 

recognition server.  DSR provides particular benefits for applications for mobile 

devices such as improved recognition performance compared to using the voice 

channel and ubiquitous access from different networks with a guaranteed level of 

recognition performance.  To enable all these benefits in a wide market containing a 

variety of players including terminal manufacturers, operators server providers and 

recognition vendors, a standard for front-end is needed to ensure compatibility 

between the terminal and the remote recognizer.  The STQ-Aurora DSR Working 

Group within ETSI has been actively developing this standard and as a result of this 

work the first DSR standard was published by ETSI in February, 2000 [2]. 

 

 

 

 

 

 

 

 

Figure 4  Block diagram of DSR system 
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2.4 Voice eXtensible Markup Language 

 

The VoiceXML Forum is an industry organization founded by AT&T, IBM, Lucent 

and Motorola.  It was established to develop and promote the Voice eXtensible 

Markup Language (VoiceXML), a new computer language designed to make Internet 

content and information accessible via voice and phone [3]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5  VoiceXML architecture model 
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with the VoiceXML interpreter.  For example, one VoiceXML interpreter context 

may always listen for a special escape phrase that takes the user to a high-level 

personal assistant, and another may listen for escape phrases that alter user 

preferences like volume or text-to-speech characteristics. 

 

The implementation platform is controlled by the VoiceXML interpreter context and 

by the VoiceXML interpreter.  For instance, in an interactive voice response 

application, the VoiceXML interpreter context may be responsible for detecting an 

incoming call, acquiring the initial VoiceXML document, and answering the call, 

while the VoiceXML interpreter conducts the dialog after answer.  The 

implementation platform generates events in response to user actions (e.g. spoken or 

character input received, disconnect) and system events (e.g. timer expiration).  Some 

of these events are acted upon by the VoiceXML interpreter itself, as specified by the 

VoiceXML document, while others are acted upon by the VoiceXML interpreter 

context. 

 

<?xml version=”1.0”?> 

<vxml version=”1.0”> 

     <form id=”tapered”> 

<block> 

      <prompt bargein=”false”>Welcome to the ice cream survey.</prompt> 

</block> 

 <field name=”flavor”> 
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      <grammar>vanilla | chocolate | strawberry</grammar> 

     <prompt count=”1”>What is your favorite flavor?</prompt> 

      <prompt count=”2”>Say chocolate, vanilla, or strawberry.</prompt> 

</field> 

     </form> 

</vxml> 

 

The dialog might go something like this: 

 

C: Welcome to the ice cream survey. 

C: What is your favorite flavor? 

H: Pecan praline. 

C: I do not understand.   (the “flavor” field’s prompt counter is 1) 

C: What is your favorite flavor? 

H: Pecan praline. 

C: Say chocolate, vanilla, or strawberry. (the prompt counter is now 2) 

H: What if I hate those? 

C: I do not understand.  

 

Figure 6  A sample VoiceXML document and one possible corresponding dialog 
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Chapter 3  SYSTEM REQUIREMENT 

 

The Automatic Speech Recognition (ASR) has a history of around 50 years, which 

can be traced back to 1952, when a first word recognizer, Audrey was built by Daveis, 

Biddulph and Balashek to recognize digits by approximating the formants.  The 

progress made in ASR was very slow until in 1974, Hidden Markov Models (HMMs) 

was applied to speech recognition by Baker in the Dragon project.  It was later 

developed by IBM (Baker, Jalinek, Bahl, Mercer) in 1976-1993.  Now, it is the 

dominant technology for both isolated word and continuous speech recognition.  The 

extraction of speech feature plays a critical role in the robustness of the speech 

recognizer.  John Bridle proposed Mel Cepstra, which was used in the second major 

(D)ARPA ASR project in 1980’s.  Its variant, Mel Frequency Cepstral Coefficients 

(MFCC) is still one of the best feature sets used in speech recognition today [4][5][6]. 

 

 

 

 

 

 

 

 

Figure 7  Components of a typical speech recognition system 
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We can represent all speech recognition systems ranging from command and control, 

dictation to IVR applications as in Figure 8.  Each of them is comprised of a 

preprocessor, a feature extractor and a recognizer with different algorithm and 

complexity (Figure 2).   
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HMM with acoustic, 
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and grammar 

Figure 8  Description of components in various speech recognition system 

 

We are proposing a new three-tier distributed VoiceXML-based speech system, 

which is modified from the typical one as above.  To summarize all the requirements 

in such a system, we have, 

 

1. Low computational power and small memory in terminal 

2. Low communication bandwidth between terminal and speech browser 

3. Easy incorporation of various recognition engines and text-to-speech (TTS) 

synthesizers onto speech browser 

4. Provision of reliable service by speech browser 
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Chapter 4  SOFTWARE DESIGN 

 

4.1 System Architecture 

 

Several modifications shown in Figure 10 are done to meet the above requirements 

[7]. 

 

1. Make the terminal to perform the low-complexity preprocessing and feature 

extraction parts excluding the high-complexity recognition part, which is now 

assigned to speech browser 

2. Add the compressor and decompressor in between terminal and speech browser to 

achieve a low-bit-rate data transmission between them. 

 

 

 

 

 

Figure 9  A client-server model of speech recognition system 
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Figure 10  Components of a typical TTS synthesis system 

 

 

 

 

 

Figure 11  A client-server model of TTS synthesis system 

 

Furthermore, load balancing and replication strategy will also be considered in speech 

browser 

 

Our objectives are to: 

 

1. Design the preprocessing and feature extraction algorithm specially for mobile 

devices 

Speech Text 

Text and Linguistic Analysis 

 
 
 

Speech Synthesis 

Speech Wave 

Text 
Preprocessing 

Accent 
Assignment 

Word 
Pronunciation 

Intonational 
Phrasing 

Segmental 
Durations 

F0 Contour 
Computation 

Phoneme to 
Unit Mapping 

Unit 
Concatenation 

Waveform 
Synthesis 

Speech Wave Speech Text 

 
 
 
 

Speech Browser (Server) 

 
 
 
 

Terminal (Client) 

Text and Linguistic 
Analysis 

Speech 
Synthesis 



31 

2. Design the compression algorithm to achieve a low-bit-rate data transmission 

between terminals and speech browser 

3. Implement the speech browser as distributed such that recognition engines and 

TTS synthesizers are server objects that may locate at different hosts. 

4. Break down and replicate the high-complexity above-mentioned server objects so 

as to achieve the advantages of load balancing, fault tolerance, scalability and 

parallelism. 

5. Implement a recognition engine and a TTS synthesizer. 

 

The three-tier speech system model is formed by three components, namely terminal, 

speech browser and document server.  To realize this model, we will make a 

demonstration. 

 

 

Figure 12  Three-tier speech system model 
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4.3 VoiceXML file 

 

A VoiceXML file for the credit card authorization was prepared as follows. 

 

<?xml version="1.0" encoding="UTF-8"?> 

<!DOCTYPE vxml SYSTEM "voicexml1-0.dtd"> 

<vxml version="1.0"> 

     <form> 

          <block>We now need your name, credit card type, number and expiration date.</block> 

 

          <field name="name"> 

               <prompt>What is your name?</prompt> 

               <!-- This is an in line grammar. --> 

               <grammar> 

              thomas cheng {thomascheng} 

            | wendy how  {wendyhow} 

            | peter sun  {petersun} 

            | may wong  {maywong} 

                </grammar> 

         </field> 

 

          <field name="card_type"> 

               <prompt>What kind of credit card do you have?</prompt> 

               <!-- This is an in line grammar. --> 

               <grammar> 

              visa   {visa} 

            | master [card]  {mastercard} 
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                 | american [express] {americanexpress} 

               </grammar> 

          </field> 

 

          <field name="card_num" type="digits"> 

               <prompt>What is your card number?</prompt> 

          </field> 

 

          <field name="expiry_date" type="digits"> 

               <prompt>What is your card's expiration date?</prompt> 

          </field> 

 

          <field name="confirm" type="boolean"> 

               <prompt><value expr="name"/>, I have a <value expr="card_type"/> 

                    number <value expr="card_num"/> expiring on <value expr="expiry_date"/>. 

       To go on say yes, to reenter say no.</prompt> 

           <filled> 

           <if cond="confirm"> 

                <submit next="place_order.asp" 

                     namelist="name card_type card_num expiry_date"/> 

                        </if> 

      </filled> 

          </field> 

     </form> 

</vxml> 

 

The dialog might go something like this: 
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S – Speech browser 

T – Terminal 

 

S: Welcome to credit card centre. 

S: We now need your name, credit card type, number and expiration date."); 

S: What is your name? 

T: Thomas Cheng. 

S: What kind of credit card do you have? 

T: Visa 

S: What is your card number? 

T: 1 2 3 4 5 6 7 8 

S: What is your card's expiration date? 

T: 1 2 0 3 

S: Thomas Cheng, I have a Visa number 1 2 3 4 5 6 7 8 expiring on 1 2 0 3. 

S: To go on say yes, to reenter say no. 

T: Yes 

 

4.4 HMM training by HTK 

 

Here are the ten examples of sentence that might be recognized by the speech browser 

based on the above VoiceXML file. 

 

1. ZERO SIX SIX NINE 
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2. MASTER CARD 

3. NO 

4. MAY WONG 

5. WENDY HOW 

6. SEVEN TWO TWO SEVEN 

7. AMERICAN 

8. YES 

9. PETER SUN 

10. THOMAS CHENG 

 

In this project, we implement a speech recognition engine using a open source HMM 

toolkit (HTK), that is primarily designed for building HMM-based speech processing 

tools, in particular recognizers.  Firstly, the HTK training tools are used to estimate 

the parameters of a set of HMMs using training utterances and their associated 

transcriptions.  Secondly, unknown utterances are transcribed using the HTK 

recognition tools [11]. 

 

Our target is to build a large-vocabulary dialog-based speaker-independent speech 

recognizer (LVCSR).  Large-vocabulary generally means that the systems have a 

vocabulary of roughly 5,000 to 60,000 words.  The term dialog-based means that the 

words are run together in a restricted way defined in grammars.  Speaker-independent 

means that the systems are able to recognize speech from people whose speech the 

system has never been exposed to before. 
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Figure 13  Scheme of ASR system functions 

 

The thirty-year old research activity in the speech recognition area has produced a 

well-consolidated technology based on Hidden Markov Models (HMMs) that is also 

firmly supported theoretically.  The HMM technology, that has the powerful 

capability of modeling complex (non-stationary phenomena and the availability of 

efficient algorithms managing very large amounts of data, is now available for 

Automatic Speech Recognition (ASR) tasks owing to low-cost high-performance 

commercial products [12][13]. 

 

4.5 Terminal 

 

Terminal usually has small sizes, limited computing powers, small memories and 

limited bandwidth networks.  It acts as a front-end distributed speech recognizer as 

well as a front-end distributed text-to-speech synthesizer.  A Java applet, running on 

the top of JVM inside a web browser, makes use of Java Sound API and Java 

Network API. 
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Figure 14  System architecture (Terminal) 

 

 

 

 

 

 

Figure 15  Examples of terminals 
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The feature vectors after feature extraction are 13-dimensional vectors consisting of 

mel-cepstral features and they are computed every 10ms, which is the typical frame 

rate in most speech recognition systems.  Owing to the high correlation (in time) 

between subsequent feature vector, we take the difference between adjacent feature 

vectors, which is a 1-step (scalar) linear prediction such that it can be compressed 

very much before sending to speech browser.  Further compression can be achieved 

by multi-stage vector quantizing these error vectors. 

 

We cannot use the text and linguistic processing part in IBM ViaVoice TTS SDK for 

Windows as a separate module, which originally will be our back-end TTS.  To solve 

it, we add a pair of 5.3kbps G.723.1 speech encoder and decoder into the whole 

system. In speech browser, ViaVoice TTS accompanying with the encoder, which is 

responsible for compressing the TTS output, will be our back-end TTS.  In terminal, a 

corresponding decoder is responsible for recovering the TTS output.  

 

Figure 16 shows the terminal running as a Java applet.  When the applet starts, it 

makes a socket connection to the speech browser to request a particular VoiceXML 

file by using Java Network API.  The speech browser goes to retrieve the file in the 

Internet via HTTP protocol.  This file is then processed by the VoiceXML interpreter 

running in the speech browser and the dialog will start automatically.  A welcome 

speech specified in the dialog is always generated by the speech browser and it is sent 

to the terminal for playback. 
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The terminal can respond the speech browser in three different ways.  By selecting 

the “Enable Audio Input” box, it starts the recording.  A endpoint detector, based on 

the energy threshold and zero crossing, distinguish between the speech and silence.  

The feature extraction works only when the speech is detected and the resulting 

feature will be sent to speech browser. 

 

You can also input the text directly or playback a pre-stored wave file to respond the 

speech browser.  These methods are normally used in the debug mode or when the 

environment is too noisy.  All the speeches coming from the terminal and the speech 

browser will be displayed on the screen. 

 

Figure 16  A Java applet running as a terminal 
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Figure 17 shows a block diagram of the DSR front-end 

 

 

 

 

 

 

Figure 17  Block diagram of the DSR front-end 
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do the feature extraction at the sufficient high sampling rate and A/D precision.  
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on the word recognition errors, because most of the salient speech features are within 

8 kHz bandwidth. 

Relative error rate reduction with different sampling rates 

Sampling Rate Relative Error-Rate Reduction 

8 kHz Baseline 

11 kHz +10% 

16 kHz +10% 

22 kHz +0% 

 

3. End-point detection 

To lower the workload of the terminal and speech browser, we implement a end-point 

detection.  Feature extraction starts only when the speech is detected. 

 

4. Preemphasis 

The digitized speech signal, s(n), was put through a preemphasizer (typically a 

first-order FIR filter), to spectrally flatten the signal and to make it less 

susceptible to finite precision effects later in the signal processing.  In this project, 

we chose 0.97 as the preemphasis coefficient. 

0.19.0,1)( 1 ≤≤−= − aazzH    Equation 11 

 

5. Frame Blocking 
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In this step the preemphasized speech signal, s’(n), was blocked into frames of N 

samples, with adjacent frames being separated by M samples.  We chose N = 320 

and M = 160. 

 

6. Windowing 

The next step in the preprocessing was to window each individual frame so as to 

minimize the signal discontinuities at the beginning and end of each frame.  

Hamming window is used, which has the form 

10),
1

2cos(46.054.0)( −≤≤
−

−= Nn
N

nnw π   Equation 12 

 

7. Finally, 39 coefficients were generated for each frame.  This number, 39, was 

computed from the length of parameterised static vectors (MFCC_0 = 13) plus the 

delta coefficients (+13) plus the acceleration coefficients (+13) after the standard 

FFT, Mel-scale filterbank and DCT, described in 2.1.2 above. 

 

 

In general, time-domain features are much less accurate than frequency-domain 

features such as the mel-frequency cepstral coefficients (MFCC).  This is because 

many features such as formants, useful in discriminating vowels, are better 

characterized in the frequency domain with a low-dimension feature vector.  

Temporal changes in the spectra play an important roles in human perception.  One 
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way to capture this information is to use delta coefficients that measure the change in 

coefficients over time. 

 

When 16 kHz sampling rate is used, a typical state-of-the-art speech system can be 

built based on the following features 

13th-order MFCC ck; 

13th-order 40-msec 1st-order delta MFCC computed from ∆ck = ck+2 – ck-2; 

13th-order 2nd-order delta MFCC computed from ∆∆ck = ∆ck+1 - ∆ck-1; 

 

The 13th-order MFCC outperforms 13th-order LPC cepstrum coefficients, which 

indicates that perception-motivated mel-scale representation indeed helps recognition.  

In a similar manner, perception-based LPC features such as PLP can achieve similar 

improvement.  The MFCC order has also been studied experimentally for speech 

recognition.  The higher-order MFCC does not further reduce the error rate in 

comparison with the 13th-order MFCC, which indicates that the first 13 coefficients 

already contain most salient information needed for speech recognition.  In addition 

to mel-scale representation, another percepion-motivated feature such as the first- and 

second-order delta features can significantly reduce the word recognition error, which 

the higher-order delta features provide no further information. 

Relative error rate reduction with different features 

Feature Set Relative Error-Rate Reduction 

13th-order LPC cepstrum coefficients Baseline 

13th-order MFCC +10% 
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16th-order MFCC +0% 

+1st- and 2nd-order dynamic features +20% 

+3rd-order dynamic features +0% 

 

If we make units context dependent, we can significantly improve the recognition 

accuracy, provided there are enough training data to estimate these context-dependent 

parameters.  Context-dependent phonemes have been widely used for large-

vocabulary speech recognition, thanks to its significantly improved accuracy and 

trainability.  A context usually refers to the immediately left and/or right neighboring 

phones. 

 

A triphone model is a phonetic model that takes into consideration both the left and 

the right neighboring phones.  If two phones have the same identity but different left 

or right contexts, they are considered different triphones. 

 

The left and right contexts used in triphones, while important, are only two of many 

important contributing factors that affect the realization of a phone.  Triphone models 

are powerful because they capture the most important coarticulatory effects.  They are 

generally much more consistent than context-independent phone models.  However, 

as context-dependent models generally have increased parameters, trainability 

becomes a challenging issue.  We need to balance the trainability and accuracy with a 

number of parameter-sharing techniques. 
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If we use context-independent phone (monophone) as our baseline, we can reduce the 

word recognition error with a comparable recognizer by about 25% if we use context-

dependent phone (triphone, for example).  Clustered triphone and seone gives us 

much better the word recognition error rate than the others. 

Relative error reductions for different modeling units. 

Feature Set Relative Error-Rate Reduction 

Context-independent phone Baseline 

Context-dependent phone +25% 

Clustered triphone +15% 

Senone +24% 

 

 

4.6 Speech Browser 

 

Speech browser is a cluster of powerful servers acting as a back-end that performs the 

core recognition and synthesis processes as well as the interpretation of VoiceXML 

files retrieved from the document server. 

 

The implementation platform was based on the Sourceforge Project: Open VXI 

VoiceXML Interpreter V4.0 using SAXParser, HMM recognizer and FreeTTS 

synthesizer. 
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The speech browser was implemented in the client/server architecture.  Different 

objects had different requirement on the platform at which they are located.  Speech 

recognition is a computation-intensive process while TTS synthesis is memory-

intensive. 

 

 

 

 

 

 

Figure 18  System architecture (Speech browser) 
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Chapter 5   IMPLEMENTATION 

 

5.1 HMM Training by HTK 

 

Here were the steps to train the HMM models by HTK. 

 

1. The task grammar was expressed as a grammar definition language provided by 

HTK.  For the credit card authorization application above, the suitable grammar 

should be 

 

$name  = THOMAS CHENG | WENDY HOW | PETER SUN | MAY WONG; 

$card = VISA | MASTER [CARD] | AMERICAN [EXPRESS]; 

$digit = ONE | TWO | THREE | FOUR | FIVE | SIX | SEVEN | EIGHT | NINE | OH | 

ZERO; 

$yesno = YES | NO; 

( SENT-START ( $name | $card | <$digit> | $yesno ) SENT-END ) 

 

where the vertical bars denote alternatives, the square brackets denote optional items 

and the angle braces denote one or more repetitions.  The complete grammar can be 

depicted as a network as shown in Figure 19. 
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Figure 19  Grammar for Credit Card Authorization 

 

The above high level representation of a task grammar was provided for user 

convenience.  The HTK recognizer actually requires a word network to be defined 

using a low level notation called HTK Standard Lattice Format (SLF) in which each 

word instance and each word-to-word transition is listed explicitly. 
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In this SLF file, the total number of nodes and links were 32 and 63 respectively. 

 

VERSION=1.0 

N=32   L=63    

I=0    W=SENT-END             

I=1    W=NO                   

I=2    W=!NULL                

I=3    W=YES                  

I=4    W=ZERO                 

I=5    W=!NULL                

I=6    W=OH                   

I=7    W=NINE                 

I=8    W=EIGHT                

I=9    W=SEVEN                

I=10   W=SIX                  

I=11   W=FIVE                 

I=12   W=FOUR                 

I=13   W=THREE                

I=14   W=TWO                  

I=15   W=ONE                  

I=16   W=EXPRESS              

I=17   W=AMERICAN             

I=18   W=CARD                 
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I=19   W=MASTER               

I=20   W=VISA                 

I=21   W=WONG                 

I=22   W=MAY                  

I=23   W=SUN                  

I=24   W=PETER                

I=25   W=HOW                  

I=26   W=WENDY                

I=27   W=CHENG                

I=28   W=THOMAS               

I=29 W=SENT-START           

I=30   W=!NULL                

I=31   W=!NULL                

J=0     S=0    E=30    

J=1     S=1    E=2     

J=2     S=2    E=0     

J=3     S=3    E=2     

J=4     S=4    E=5     

J=5     S=5    E=0     

J=6     S=5    E=15    

J=7     S=5    E=14    

J=8     S=5    E=13    

J=9     S=5    E=12    
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J=10    S=5    E=11    

J=11    S=5    E=10    

J=12    S=5    E=9     

J=13    S=5    E=8     

J=14    S=5    E=7     

J=15    S=5    E=6     

J=16    S=5    E=4     

J=17    S=6    E=5     

J=18    S=7    E=5     

J=19    S=8    E=5     

J=20    S=9    E=5     

J=21    S=10   E=5     

J=22    S=11   E=5     

J=23    S=12   E=5     

J=24    S=13   E=5     

J=25    S=14   E=5     

J=26    S=15   E=5     

J=27    S=16   E=2     

J=28    S=17   E=16    

J=29    S=17   E=0     

J=30    S=18   E=2     

J=31    S=19   E=18    

J=32    S=19   E=0     
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J=33    S=20   E=2     

J=34    S=21   E=2     

J=35    S=22   E=21    

J=36    S=23   E=2     

J=37    S=24   E=23    

J=38    S=25   E=2     

J=39    S=26   E=25    

J=40    S=27   E=2     

J=41    S=28   E=27    

J=42    S=29   E=3     

J=43    S=29   E=1     

J=44    S=29   E=20    

J=45    S=29   E=19    

J=46    S=29   E=17    

J=47    S=29   E=28    

J=48    S=29   E=26    

J=49    S=29   E=24    

J=50    S=29   E=22    

J=51    S=29   E=15    

J=52    S=29   E=14    

J=53    S=29   E=13    

J=54    S=29   E=12    

J=55    S=29   E=11    
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J=56    S=29   E=10    

J=57    S=29   E=9     

J=58    S=29   E=8     

J=59    S=29   E=7     

J=60    S=29   E=6     

J=61    S=29   E=4     

J=62    S=31   E=29 

 

2. Build the dictionary containing a sorted list of the required words 

 

A dictionary that contained the pronunciations for each word used in the application. 

 

AMERICAN        ax m eh r ih k ax n sp 

CARD            k aa d sp 

CHENG           ch ae ng sp 

EIGHT           ey t sp 

EXPRESS         ih k s p r eh s sp 

FIVE            f ay v sp 

FOUR            f ao r sp 

FOUR            f ao sp 

HOW             hh aw sp 

MASTER          m aa s t ax r sp 

MASTER          m aa s t ax sp 



54 

MAY             m ey sp 

NINE            n ay n sp 

NO              n ow sp 

OH              ow sp 

ONE             w ah n sp 

PETER           p iy t ax r sp 

PETER           p iy t ax sp 

SENT-END        sil sp 

SENT-START      sil sp 

SEVEN           s eh v n sp 

SIX             s ih k s sp 

SUN             s ah n sp 

THOMAS          t oh m ax s sp 

THREE           th r iy sp 

TWO             t uw sp 

VISA            v iy z ax sp 

WENDY           w eh n d iy sp 

WONG            k oh ng sp 

YES             y eh s sp 

ZERO            z ia r ow sp 

 

A list of 34 phones was output. 
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ax, m, eh, r, ih, k, n, sp, aa,  d,  ch,  ae,  ng,  ey,  t,  s,  p,  f,  ay,  v,  ao,  hh,  aw,  ow,  

w,  ah,  iy,  oh,  th,  uw,  z,  y,  ia,  sil 

 

A list of 92 triphones was output.  The HMMs was continuous density mixture 

Gaussian tied-state triphones with clustering performed using phonetic decision trees. 

 

sil, z+ia, z-ia+r, ia-r+ow, r-ow, sp, s+ih, s-ih+k, ih-k+s, k-s, n+ay, n-ay+n, ay-n, th+r, 

th-r+iy, r-iy, s+eh, s-eh+v, eh-v+n, v-n, f+ay, f-ay+v, ay-v, m+aa, m-aa+s, aa-s+t, s-

t+ax, t-ax, k+aa, k-aa+d, aa-d, w+ah, w-ah+n, ah-n, f+ao, f-ao, ey+t, ey-t, t+uw, t-uw, 

ow, n+ow, n-ow, m+ey, m-ey, k+oh, k-oh+ng, oh-ng, w+eh, w-eh+n, eh-n+d, n-d+iy, 

d-iy, hh+aw, hh-aw, f-ao+r, ao-r, ax+m, ax-m+eh, m-eh+r, eh-r+ih, r-ih+k, ih-k+ax, 

k-ax+n, ax-n, y+eh, y-eh+s, eh-s, p+iy, p-iy+t, iy-t+ax, s+ah, s-ah+n, t+oh, t-oh+m, 

oh-m+ax, m-ax+s, ax-s, ch+ae, ch-ae+ng, ae-ng, v+iy, v-iy+z, iy-z+ax, z-ax, t-ax+r, 

ax-r, ih+k, k-s+p, s-p+r, p-r+eh, r-eh+s 

 

3. Record and label the 200 training data  

 

There is a HTK tool for both waveform recording and labeling.  200 training 

utterances were recorded and labeled according to the defined grammar. 
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4. Create monophone HMMs 

 

For the state-dependent left-to-right HMM, the most important parameter in 

determining the topology is the number of states.  The choice of model topology 

depends on available training data and what the model is used for.  In our case, each 

HMM is used to represent a phone, at least three to five output distributions are 

needed. 

 

~o <VecSize> 39 <MFCC_0_D_A> 

~h "proto" 

<BeginHMM> 
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 <NumStates> 5 

 <State> 2 

    <Mean> 39 

      0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

    <Variance> 39 

      1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0  

 <State> 3 

    <Mean> 39 

      0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  

    <Variance> 39 

      1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0  

 <State> 4 

    <Mean> 39 

      0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  

    <Variance> 39 

      1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0  

 <TransP> 5 
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  0.0 1.0 0.0 0.0 0.0 

  0.0 0.6 0.4 0.0 0.0 

  0.0 0.0 0.6 0.4 0.0 

  0.0 0.0 0.0 0.7 0.3 

  0.0 0.0 0.0 0.0 0.0 

<EndHMM> 

 

5. A series of training was then carried out including creating flat start monophones, 

fixing the silence models, realigning the training data, making tied-state triphones 

from monophones.  The recognizer was complete and its performance can be 

evaluated. 

 

The line starting with SENT: indicates that of the 200 test utterances, 187 (93.5%) 

were correctly recognized.  The following line starting with WORD: gives the 

word level statistics and indicates that of the 990 words in total, 990 (100%) were 

recognized correctly.  There was no deletion error (D), no substitution error (S) 

and 14 insertion error (I).  The accuracy figure (Acc) of 98.59% is lower than the 

percentage correct (Cor) because it takes amount of the insertion errors which the 

latter ignores. 

 

====================== HTK Results Analysis ======================= 

  Date: Fri May 17 02:44:46 2002 

  Ref : testref.mlf 

  Rec : recout.mlf 
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------------------------ Overall Results -------------------------- 

SENT: %Correct=93.50 [H=187, S=13, N=200] 

WORD: %Corr=100.00, Acc=98.59 [H=990, D=0, S=0, I=14, N=990] 

=================================================================== 

 

5.2 Terminal 

 

The terminal is mainly responsible for voice/text input, endpoint detection, feature 

extraction and parameters passing with speech browser.  

 

Class Name Main Function 

WaveDataInputStream read the 16-bit sampled waveform from the wave file 

FeatureExtraction transform sampled waveform to parameter representation 

for recognition, i.e. MFCC 

FeatureDecode transform a parameter representation for synthesis to 

sampled waveform 

FeatureOutputStream send the parameter representation for recognition, i.e. 

MFCC to the speech browser 

FeatureInputStream receive the parameter representation for synthesis to the 

speech browser 
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5.3 Speech Browser 

 

The speech browser is mainly responsible for parameters passing with terminal, 

VoiceXML file request and interpretation, speech recognition and synthesis. 

 

Class Name Main Function 

FeatureOutputStream send the parameter representation for synthesis to the 

terminal 

FeatureInputStream receive the parameter representation for recognition, i.e. 

MFCC from the terminal 

VXMLInterpret request and interpret the VoiceXML file 

SpeechRecognize transform the parameter representation for recognition, i.e. 

MFCC to the text 

SpeechSynthesize transform the text to the parameter representation for 

synthesis 
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Chapter 6  RESULT AND DISCUSSION 

 

 

The result was shown as below.  When the terminal started, it automatically loaded a 

credit card authorization application from the speech browser.  The user followed the 

dialog specified in the VoiceXML and the terminal finally retrieved the name and 

credit card information of the user via his/her voices. 

 

Some improvements can be made in the future. 

 

• Speaker adaptation 
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Since the speech browser knows who is calling from in the terminal side, it is possible 

to include the speaker adaptation algorithm in the current model in order to improve 

the accuracy. 

• To make the speech browser become CORBA-based 

The computation and memory requirements of speech recognition and speech 

synthesis tasks are different and it is more suitable to let them run in different hosts.   

In addition, the loading of the speech browser may vary very much from time to time 

since the number of terminals using the speech browser is unpredictable.  In this case, 

a CORBA-based system should be introduced to make the system to be more efficient 

and robust where some loading balancing and fault tolerant features is added. 
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Chapter 7  CONCLUSION 

 

In this project, we introduce a three-tier distributed VoiceXML-based speech system 

and demonstrate a credit card authorization application as one of the examples.  

Under this model, the service of a high performance speech system can be provided 

to enormous users via mobile devices in a unified way. 
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