
A Computer Aided Despatch System on

Java/CORBA Platform

Progress Report

by

Chau Chi Wing

The Chinese University of Hong Kong

April 2000

The Chinese University of Hong Kong holds the copyright of this thesis. Any

person(s) intending to use a part or whole of the materials in the thesis in a proposed

publication must seek copyright release from the Dean of the Graduate School.

 1

Abstract

In this report, the design and implementation of a Computer Aided Despatch

(CAD) system on Java/CORBA platform is described. CAD systems, like many

other mission critical systems, were traditionally implemented on mainframe

computers, and increasingly on client/server platforms. Mainframe computers

have excellent reliability, but the capital investment and maintenance cost are

both very high. Client/server platforms provide fancy user interface at

relatively low capital investment, but the maintenance cost can be even higher

than those of mainframe computers, due to the many system management issues

of the fat clients. In this project, a 3-tier CAD system is implemented on

Java/CORBA platform, with the client running as Java applet inside a web

browser, and the server objects and RDBMS running on separate computers.

The goal is to demonstrate the viability of using Java and CORBA to built the

next generation enterprise-ready systems which are easy to maintain, extend,

customize and interface with other systems

 2

Contents

ABSTRACT..1

1 INTRODUCTION...4

2 COMMON OBJECT REQUEST BROKER ARCHITECTURE...5

2.1 OBJECT MANAGEMENT ARCHITECTURE...5

2.2 OBJECT REQUEST BROKER..6

2.3 ANATOMY OF A CORBA 2.0 ORB...8

3 DISTRIBUTED SYSTEMS ON CORBA ... 10

3.1 CITY OF PITTSBURGH – CRIME INFORMATION SYSTEM ... 10

3.2 ALLIED SIGNAL – VACATION TIME TRACKING SYSTEM .. 11

3.3 STANDARD CHARTERED BANK – CUSTOMER SERVICE TERMINAL 13

3.4 HARVARD UNIVERSITY – EDUCATIONAL RECORDS SYSTEM .. 14

4 COMPUTER AIDED DESPATCH (CAD) SYSTEM ... 16

4.1 INFORMATION FLOW ... 17

4.2 INTERACTION WITH OTHER SYSTEMS .. 17

5 SYSTEM REQUIREMENTS.. 19

5.1 FUNCTIONAL REQUIREMENTS ... 19

5.2 PERFORMANCE REQUIREMENTS .. 20

5.3 SYSTEM MANAGEMENT REQUIREMENTS ... 20

6 OUTLINE SOFTWARE DESIGN SPECIFICATION ... 21

6.1 PLATFORM ... 21

6.2 SYSTEM ARCHITECTURE ... 22

6.3 USER INTERFACE .. 23

7 DETAILED SOFTWARE DESIGN SPECIFICATION ... 23

7.1 GENERAL ... 23

7.2 DATABASE SCHEMA SPECIFICATION... 24

7.3 FUNCTION SPECIFICATION... 27

7.4 INTERFACE DEFINITIONS... 39

7.5 SERVER-SIDE CLASSES.. 51

7.6 CLIENT-SIDE CLASSES... 51

8 PROJECT SCHEDULE.. 52

 3

9 REFERENCES.. 52

 4

1 Introduction

Computer Aided Despatch (CAD) systems are used in the service industry to

provide prompt service to their clients. The nature of services provided varies

greatly, ranging from taxi-calling service, electric maintenance service, and the

like, to emergency services and the military. The CAD systems deployed are

mission critical as their failure could cause customer dissatisfaction, financial

lost, or even lost of lives.

Even nowadays, many such systems still run on mainframe computers, with

text-based terminals as the user interface. Their survival is partly due to their

large size, which implies high cost for replacement. The other reason is their

proven track record, in line with the high reliability of mainframe computers.

However, the maintenance cost of these systems is very high, because their

hardware is proprietary and personnel with mainframe expertise is becoming

rare.

Some newer CAD systems are implemented as 2-tier client-server systems.

These systems have fancy GUI and is reasonably reliable. However, they are

difficult to manage due to their fat client architecture, which requires installation

and periodic upgrading of many drivers and programs in many PC clients.

Another problem is that they are not designed for wide distribution; if they are

used in wide area networks, their performance suffers.

In this project, a baseline CAD system will be implemented on Java/CORBA

platform. The goal is to built a system that is easy to maintain, extend,

customize and interface with other systems and can be used over both intranets

and the Internet. With appropriate customization, this system can be adapted to

other specific environments.

The main purpose of this project is to demonstrate the use of Java and CORBA

to build enterprise-ready system. Various useful concepts and mechanism, like

Java applet, drag-and-drop (DnD) mechanism, CORBA and JDBC will be

demonstrated.

 5

2 Common Object Request Broker Architecture

2.1 Object Management Architecture

[2] The Common Object Request Broker Architecture (CORBA) is the most

important middleware project ever undertaken by the computing industry. It is

the product of the Object Management Group (OMG), which includes over 800

companies, representing the entire spectrum of the industry. The CORBA

object bus defines the shape of the components that lives within it and how they

interoperate.

CORBA is important because it defines middleware that has the potential of

subsuming every other form of existing client/server middleware. At the same

time, it provides a solid foundation for a component-based future.

CORBA was designed to allow intelligent components to discover each other

and interoperate on an object bus. However, CORBA goes beyond just

interoperability. It also specifies an extensive set of bus-related services for

creating and deleting objects, accessing them by name, storing them in persistent

Figure 1. The OMG Object Management Architecture.

 6

stores, externalizing their states, and defining ad hoc relationships between them.

CORBA support inheritance, that means you can create an ordinary object and

then make it transactional, secure, lockable, and persistent by making the object

multiply-inherit from the appropriate services.

In the fall of 1990, the OMG first published the Object Management Architecture

Guide (OMA Guide). It was revised in September 1992. The details of the

Common Facilities, however, were added later in January 1995. Figure 1

shows the four main elements of the architecture: 1) Object Request Broker

(ORB) defines the CORBA object bus; 2) CORBAservices define the

system-level object frameworks that extend the bus; 3) CORBAfacilities define

horizontal and vertical application frameworks that are used directly by business

objects; and 4) Application Objects are the business objects and applications -

they are the ultimate consumers of the CORBA infrastructure. The following

sections provide a top-level view of the most fundamental element – the ORB.

2.2 Object Request Broker

The Object request broker (ORB) is the object bus which allows objects to

transparently make requests to and receive responses from other objects located

locally or remotely. The client is not aware of the mechanisms used to

communicate with, activate, or store the server objects. The CORBA 1.1

specifications introduced in 1991 specified the Interface Definition Language

(IDL), language bindings and APIs for interfacing to the ORB. CORBA 2.0

specifies interoperability across vendor ORBs.

A CORBA ORB provides a wide variety of distributed middleware services.

The ORB lets objects discover each other at run time and invoke each other’s

services. An ORB is much more sophisticated than alternative forms of

client/server middleware, including the traditional Remote Procedure Calls

(RPCs), Message-Oriented Middleware (MOM), database store procedures, and

peer-to-peer services.

Benefits that every CORBA ORB provides:

Static and dynamic method invocations - A CORBA ORB allows developers to

statically define method invocations at compile time, or dynamically discover

them at run time. Hence, developers can get strong type checking at compile

 7

time or maximum flexibility associated with late (run-time) binding. On the

contrary, most other forms of middleware only support static bindings.

High-level language bindings - A CORBA ORB allows developers to invoke

methods on server objects using their own choice. CORBA separates interface

from implementation and provides language-neutral data type that make it

possible to call objects across language and operating system boundaries. In

contrast, other types of middleware typically provide low-level,

language-specific, API libraries. Also they do not separate implementation from

specification. The API is tightly bound to the implementation, which makes it

very sensitive to changes.

Self-describing system - CORBA provides run-time metadata for describing

every server interface known to the system. Every CORBA ORB supports an

Interface Repository (IR) that contains real-time information describing the

functions a server provides and their parameters. The clients use the metadata

to discover how to invoke services at run time. It also helps tools to generate

code on-the-fly. The metadata is generated automatically either by an

IDL-language precompiler or by compilers that know how to generate IDL

directly form an OO language, e.g. Visigenic/Netscape’s Caffeine generates IDL

directly from Java bytecode. CORBA is the first and also the most mature

middleware to provide this type of run-time metadata and language-independent

definitions of all its services.

Location transparency - An ORB can run in standalone mode on a laptop, or it

can be interconnected to every other ORB in the universe using CORBA Internet

Inter-ORB Protocol (IIOP). An ORB can broker inter-object calls within a

single process, multiple processes running within the same machine, or multiple

processes running across networks and operating systems. This is completely

transparent to objects

Built-in security and transactions - The ORB includes context information in

its messages to handle security and transactions across machine and ORB

boundaries.

Polymorphic messaging - In contrast to other forms of middleware, an ORB

does not simply invoke a remote function. It invokes a function on a target

object, which means that the same function call will have different effects,

depending on the object receives it.

 8

Coexistence with existing systems - CORBA’s separation of an object’s

definition from its implementation is perfect for encapsulating existing

application. Using CORBA IDL, a developer can make his own existing code

look like an object on the ORB, even if it is implementation in stored procedures.

This enables CORBA an evolutionary solution.

2.3 Anatomy of a CORBA 2.0 ORB

Figure 2 shows the client and server sides of a CORBA ORB. The client does

not have to be aware of where the object is loaded, its programming language, its

operating system, or any other system aspects that are not part of an object’s

interface.

The client IDL stubs provide the static interfaces to the object services. These

precompiled stubs define how clients invoke corresponding services on the

servers. From a client’s perspective, the stub acts like a local call. It is a

proxy for a remote server object. The stub perform marshaling so that the

operations and the parameters are encoded and decoded into flattened message

formats to send to the server.

The Dynamic Invocation Interface (DII) allows the discovery of methods to be

invoked at run time. CORBA defines standard APIs for looking up the

metadata that defines the server interface, generating the parameters, issuing the

remote call and getting back the results.

The Interface Repository APIs let developers obtain and modify the descriptions

of all the registered component interfaces, the methods they support, and the

Figure 2. The Structure of a CORBA 2.0 ORB.

 9

parameters they required. CORBA calls these description method signatures.

The Interface Repository is a run-time distributed database that contains

machine-readable versions of the IDL-defined interfaces. The APIs allow

components to dynamically accessed, tore, and update metadata information.

This pervasive use of metadata allows every components that lives on the ORB

to have self-describing interface.

The ORB Interface consists of a few APIs to local services that may be of

interest to an application. For example, CORBA provides APIs to convert an

object reference to a string, and vice versa. These calls can be very useful if the

object reference is to be stored or communicated.

The Server IDL Skeletons provide static interfaces to each service exported by

the server. These skeletons, like the stubs on the client, are created using an

IDL compiler.

The Dynamic Skeleton Interface (DSI), introduced in CORBA 2.0, provides a

run-time binding mechanisms for servers that need to handle incoming method

calls for components that do not have IDL-based complied skeletons. The

Dynamic Skeleton looks at parameter values in an incoming message to figure

out the target object and method. In contrast, normal compiled skeletons are

defined for a particular object class and expect a method implementation for each

IDL-defined method. Dynamic Skeletons are very useful for implementing

generic bridges between ORBs. They can also be used by interpreters and

scripting languages to dynamically generate object implementation. The DSI is

the server equivalent of a DII. It can receive either static or dynamic client

invocations.

The Object Adapter sits on top of the ORB’s core communication services and

accepts request for service on behalf of the server’s objects. It provides the

run-time environment for instantiating server objects, passing requests to them,

and assigning them object references. The Object Adapter also registers the

classes it supports and their run-time instances with the Implementation

Repository (below). CORBA specifies that each ORB must support a standard

adapter called the Basic Object Adapter (BOA). Servers may support more

than one object adapter.

The Interface Repository provides a run-time repository of information about the

classes a server supports, the objects that are instantiated, and their IDs. It also

 10

serves as a common place to store additional information associated with the

implementation of ORBs, including trace information, audit trails, security and

other administrative data.

The ORB Interface consists of a few APIs to local services that are identical to

those provided on the client side.

3 Distributed Systems on CORBA

3.1 City of Pittsburgh – Crime Information System

[7]For Police, Fire, and other emergency personnel, historic information about

the addresses that they are servicing can be lifesaving. For example, if the

address in question has been visited 4 times in the past 30 days for domestic

disputes, possible drug dealings, or recovery of a stolen weapon, emergency

personnel would know to use an extra degree of caution. In Pittsburgh, this

type of information has traditionally been kept in separate departments,

divisional databases and servers across the city. Without easy access to this

valuable information, emergency personnel had no way to know what dangers

they might be facing when responding to a call.

Previously, to obtain crime and address history information, the police

commander had to call City Information Systems (CIS) to submit a request.

CIS would then write queries to extract the appropriate data from several

disparate data sources, including 4 different databases on 4 different servers.

These data sources stored Mayor's Service Center complaint calls, police records,

building permits information, and 911 calls. The requested data would be

merged, filtered, sorted, printed on paper and delivered to the police commander.

This process could take hours, sometimes days, depending on the complexity of

the information request and the workload of CIS. But CIS could not meet data

requests within seconds, so emergency personnel were despatched to locations

with no knowledge of incidents at that location.

CIS and Cerebellum Software teamed to design an end-user application that

would deliver information to police and crime personnel within seconds. The

easy-to-use application, called Street Smarts, offers a Web-based graphical user

interface (GUI) that allows users to perform database searches by selecting

appropriate criteria. For example, a police officer using Street Smarts can

access a variety of useful information, including all the burglaries reported for a

 11

specific zone or address, crimes in the last 24 hours and the history of an address.

With mobile data computers, Street Smarts can be used in the field. The

solution is based on Cerebellum Software Inc.'s Cerebellum v1.2, which uses

CORBA and the Java 2 platform to enable operating system and data

independence. CORBA is used within the Cerebellum product to provide a

communications layer between objects on different machines that need to share

information. The use of CORBA enables Cerebellum and the City of Pittsburgh

to integrate data from the various databases for presentation through one simple

interface, without actually moving the data from the original sources.

CIS contracted Cerebellum Software, Inc. to implement the software and to train

the IT staff to use the product and to develop new applications that could quickly

and easily access data from disparate sources. The development of the Street

Smarts application took approximately two months from concept through final

presentation. Cerebellum makes fast application development possible because

it eliminates the data access and integration work necessary to build new

applications.

Because of the secure and personal nature of much of the crime and address

information being accessed, Cerebellum's GUI allows CIS database

administrators to manage user access. The Street Smarts application was also

designed to limit the information that would be presented to end users.

3.2 Allied Signal – Vacation Time Tracking System

[7]AlliedSignal gathered requirements for a vacation system to track vacation

time for employees across multiple business units and multiple sites with a

deadline of two months. Specifically, AlliedSignal needed to monitor accruals,

vacation days, partial days, exception days, historical information, and other

vacation scheduling items. For tracking and monitoring purposes, external

management reports needed to be printed and outside access to the vacation

system was necessary.

AlliedSignal had to ensure the vacation system was secure, as it was storing and

displaying Human Resources information. Employees needed access to their

individual information in a secure manner, without the concern of unauthorized

entry.

AlliedSignal had to implement the vacation system changes in a distributed

environment while considering other factors such as a large user base and a very

 12

short delivery schedule. There were multiple sites on wide area networks and

almost one million transactions flowed into the database — 200,000 of which

were complex high levels object calls. The total user population requiring

access was approximately 250 users with most of the transactions happening on

just three or four days of the month.

The final plan was a CORBA-based vacation system that was easy to use,

scaleable, and performed well in a distributed architecture. Previously, the

tracking, allocation, and scheduling tasks were not combined into a single system

and information about unused vacation was not readily available. Now, when

vacation information is entered into the vacation system, it is immediately

available to those with access via web browsers. The vacation system is simple

and most operations can be performed using only the mouse. It is accessible

from any web browser and allows for widespread access and simplified

configuration management since no part of the application is stored on the client

machine.

Two previously built framework components are used to ensure security. First,

the Security component addresses all authentication, authorization, and

encryption. Second, a component called Trace is used to track requests for

information throughout the vacation system and provide an audit trail. Using a

Java-based applet calendar control, the user simply clicks their way through the

vacation system to enter vacation days and make changes to the schedule.

Vacation accruals are loaded through a batch process from the Payroll system.

The primary benefits are ease of use for employees, simplified maintenance and

support for the I/S staff, and lower cost for AlliedSignal. The vacation system

utilizes a pre-built framework constructed in Java, C++, and Oracle.

The presentation layer of the vacation system uses Java applets. The business

logic, which is stored on the server, was constructed in C++ and utilizes a

pre-built framework for security, auditing, messaging, and communicating with

the database. This framework is comprised of reused CORBA components which

were built in 1995 and were awarded the "Best Application Utilizing Reusable

Components" award at ObjectWorld ’97.

Use of CORBA has allowed AlliedSignal to leverage the benefits of the Java

language (for portability), the benefits of the C++ language (for performance),

and existing heterogeneous hardware (previous investments) in this vacation

system. Additionally, the benefits of building reusable CORBA components

(e.g. framework) has allowed for rapid development and reuse in other

 13

applications to minimize costs and reduce cycle times.

The vacation system enjoys high employee satisfaction with the ability to control

individual vacation time and better plan vacation usage. With the programmed

complexities hidden with-in the vacation system, the end user is left with a

simple point and click inter-face. Further, the vacation system was leveraged

by other Business Units and is flexible enough to add additional employees

dynamically.

3.3 Standard Chartered Bank – Customer Service

Terminal

[6]Standard Chartered Bank in Hong Kong is using Orbix, a CORBA

implementation by IONA Technologies, as the core infrastructure within its new

application, the "Smart Customer Service Terminal", or SCST. SCST enables

Customer Service Representatives (CSRs) to access a variety of service from a

single desktop, helping them provide a timely and quality service to the bank's

credit card customers. The application provides automation of one-stop

services, for example, credit balance inquiry and bonus point inquiry. In

addition, the SCST system automates general workflow, such as temporary credit

limit increases, reporting of lost cards, and card repayment. Scripting is also

automated to cater for product information and marketing promotion.

The SCST system takes a 3-tier client server approach, using Sybase 11 as a

database engine running on RS/6000. Sun Microsystems' SunLink Gateway is

used to connect Orbix Servers to the MVS host using LU 6.2. Web browsing

capability is provided by Netscape Enterprise Server 3.0, while IE Active-X

Control is used to integrate the Desktop and Web pages, in order to provide

context sensitive scripting and a help facility. Bringing all these diverse

technologies together as a single cohesive application is Orbix.

Orbix enables the connectivity required for a multi-tier architecture. Meanwhile

Standard Chartered have also deployed OrbixNames in order to provide load

balancing and facilitate location transparency between servers and clients. The

implementation of OrbixManager for system management is also expected by the

end of 1998.

The SCST is a large-scale CORBA project. Over 1,400 man-days have been

spent developing the core of the SCST application, with an additional 400 to 600

 14

to be expended during the rollout to the Asia Pacific region. At present the

system supports 196 clients in the Asia Pacific region. CORBA was recognized

early on as the integration technology of choice, enabling multi-platform

interoperability and multi-tier architecture support. In addition, CORBA

provides support for the end-to-end transaction-based workflow processing

model used in the Smart Customer Service Terminal application. CORBA also

facilitates the reuse of developed services, for example, the mainframe wrapper

and the message macing server.

3.4 Harvard University – Educational Records

System

[5]The Harvard Educational Records System was put into operation in the late

1970s. The system provided transaction processing for 11,000 undergraduate

and graduate students in Harvard College and the Graduate School of Arts and

Sciences. Like many systems of its time, it was efficient but complex to use,

requiring highly trained operators. Furthermore, extracting analytical

information for strategic decision making was extremely difficult. Increasingly,

students, faculty, and administrators required direct access to critical information.

To meet the needs of these constituents, a myriad of shadow systems had been

developed.

The University administration recognized the need to replace this legacy system

with a new information environment. The new system had to be Web-based to

facilitate installation and support; it had to facilitate the rapid development of

information access applications for students, faculty, and staff; and it had to

integrate not only the existing legacy system, but multiple legacy data sources

throughout the institution as well. Considering a variety of design alternatives,

Harvard recognized that this mission-critical information system would need to

meet as-yet-undefined needs over a long period of time. The ability to enhance

and extend the system capabilities, therefore, was extremely important, as was

the requirement for scalability to accommodate the extensions that would surely

come.

Harvard elected to implement a three-tiered, distributed object solution. IT

management selected Nevo Technologies to develop the system, considering the

solution provider's extensive experience with Java and objects, as well as its

proven implementation methodologies for introducing change into a large

 15

operating organizations. Harvard's commitment to thin clients was critical to

meeting two of the project's goals: ease of enhancement and reduced long-term

support costs. With Java as the language of choice for both client and server

development, and with Oracle already chosen for the primary database, the

selection of the middleware component became the most important design

decision. For this, Nevo selected VisiBroker from Inprise because of its

dominance as the leading CORBA ORB, the overall maturity of the tool, its

functional strength, and its complete integration with the Java environment.

Development of HERS-2, the second generation of the Harvard Educational

Records System, got underway in July 1997. Beta release of the first modules

occurred in December 1997, with full production release two months later in

February 1998. The Faculty of Arts and Sciences Course Catalog, an 800-page

document describing each of the 4,000 courses available to students, is the most

visible output from the new system. The new system is dramatically easier to

learn and use than its predecessor, HERS. Training time, formerly measured in

months, now takes just hours. Most importantly, senior staff in the Office of the

Registrar are freed to concentrate their efforts on larger professional

responsibilities, rather than managing the nuts and bolts of operating a complex,

cryptic computer system.

VisiBroker, a CORBA implementation from Inprise Corporation, enabled a

system that maintains both the Oracle database and legacy UNIX files

automatically, without any burden on either the application developers or end

users. The benefit to Harvard is both a smooth transition to the new system

from the old, and a complete integration of the legacy environment. Any

functions that still await migration to HERS-2 can still be run by the legacy

HERS-1.

The benefits to Harvard of a three-tiered architecture with thin clients, distributed

business objects, and persistent data storage are substantial throughout the life

cycle of the system. In development, the combination of Java and VisiBroker

produce major gains in programmer productivity through both abstraction and

reuse. In deployment, the use of thin clients eliminates the need to configure

client machines and load drivers and software on each one. Furthermore,

because the entry point to the applications is a browser, the environment is

inherently familiar and comfortable, reducing training time and costs. In the

maintenance area, Harvard benefits by eliminating the need to update client

software and maintain and upgrade client configurations. Each time the user

points his browser to the application location, the latest software is delivered.

 16

The only requirement is that the browser be Java-enabled. Finally, and most

importantly, the careful design of CORBA business objects provides a powerful,

easy-to-use mechanism for the ongoing extension and enhancement of these

applications in the future by clearly defining the interfaces, and, through the

Visibroker ORB, providing universal access to them.

4 Computer Aided Despatch (CAD) System

Figure 3. Information flow of a computer aided despatch system.

Incident

Incident

creation

Assign resource

to incident

Incident

closing

Resource

creation

Resource

Resource

deletion

Historic

incident

Historic

resource

Arrive resource

at incident

Release resource

from incident

Resource

update

Resource

display

Resource

log display

Incident

update

Incident

display

Incident

log input

Incident

log display

 17

4.1 Information Flow

Figure 3 shows the information flow within a computer aided system. When an

incident occurs, an operator enters it into the system using the incident creation

function. After creation, the incident is either taken care of by resources,

tracked using the resource assignment, resource arrival or resource release

funcitons, or it is closed using incident closing function directly, possibly due to

duplication or error. The resource assignment function may be omitted, since a

resource may discover an incident before the incident is reported by informants;

in such case, assignment of resource is implied by the use of the resource arrival

function. After all necessary immediate action is done, the incident can be

transferred to other unit for follow up and the incident can be closed using the

incident closing funciton. Notes that the incident is not physical purged, but it

becomes an historical incident which is archived and used for reference in the

future and for data analysis. During the lifetime of the incident, the incident

update and incident display functions can be used to update and display the

details of the incident respectively. Incident logs, which record the progress of

the incident, can be input and displayed using the incident log input and incident

log display functions.

When a resource begins its duty, an operator enters it into the system using the

resource creation function. After that, the resource can be used with the

resource assignemnt, resource arrival and resource release functions. When

the duty time of the resource ends, the resource is removed from the system

using the resource deletion function. Similar to handling of incidents, the

resource is not physically purged, but it becomes an historical resource and is

archived for future reference and data analysis. During the lifetime of the

resource (in the particular duty), its details can be updated and displayed using

the resource update and resource display functions. Resource logs, which

record the interaction of the resource with incidents, can be displayed using the

resource log display function.

4.2 Interaction with Other Systems

 18

A CAD system interact with many systems in order to obtain data for tracking

incidents and resources, and to transfer out data for analysis. The private

automatic branch exchange (PABX) switches and records telephone calls, and

provides call data, like caller ID and caller address. Incidents are mostly

reported through telephone calls. Operators also request assistance from other

entities, like public utility companies and public transportation companies, by

phone.

The mobile radio systems is the prime communication channel among resources

and operators. The progress of incidents are mostly reported to the operator

through the radio system. The system also generate call information, like caller

Figure 4. Interaction of a computer aided system with other systems.

Computer Aided

Despatch System

Telephone call

from public

network

Private Automatic

Branch Exchange

(PABX)

Management

Information

System (MIS)

Historic incident &

historic resource

Address

information

Geographic

Information

System (GIS)

Radio call

information

Mobile Radio

Systems

 19

radio ID.

The geographic information system (GIS) provides accurate address information

of incident location and resource location. These information enable the quick

and efficient handling of incidents. The nearest resource can easily be located

and assignment to an incident. The environment in the proximity of the

incident scene can also be monitored, for example, availability of facilities and

presence of danger can be seen and informed decisions can be made.

The historical data is transferred to the management information system (MIS)

for analysis. Together with data from other data sources, online analysis

processing (OLAP) and data mining can be done to extract valuable information.

5 System Requirements

5.1 Functional Requirements

There are two main entities in a CAD system: incident and resource. Incident is

also called occurrence, problem report and something else depending on the

target environment; it can be a taxi call, a electric fault report or a fire or robbery

report. Resource can be a taxi, a technician, a team of fire fighters, or a team of

police officers. The most important function of a CAD system is to despatch

resource to incident, so that the incident is taken care of promptly.

Incident related functions include, but not limited to: incident creation, incident

detail amendment, assignment of resource to incident, arrival of resource to

incident, release of resource from incident, input of incident logs and closing of

incident.

Resource related functions include, also not exhaustive: resource book-on,

resource book-off, input of resource logs and resource detail amendment.

To enable prompt arrival of resource at incident location, some methods should

be provided to indicate the closest resource to an incident. The best mean is the

integration of Geographical Information System (GIS) with CAD system. GIS

provide accurate location information of both resource and incident graphically,

thus allowing precise matching of resource and incident. However, such

integration is an extensive, involved exercise requiring man-years of work. In

this project, a simple, yet effective, text-based gazetteer will be implemented to

provide location information.

 20

A CAD system essentially models the real world of incidents and resources.

The user should be able to view the model in real time, that is, any change in the

model should be reflected in the user interface immediately. This functionality

requires the client to take the role of a server, to accept requests from server

objects to update the incident and resource displays.

5.2 Performance Requirements

A CAD system is a kind of Online Transaction Processing (OLTP) system. The

fundamental requirement is the quick and reliable processing of small unit of

works, or transactions. To minimize the processing time taken by the system,

both the computing time and the network transmission time should be

minimized.

To minimized the computing time, efficient algorithms and protocols should be

designed, and high performance database engine should be used. For example,

when large amount of data is to be sent to the client, they should be sent one

screenful at a time, triggered by paging command entered by the user. Server

objects should be prestarted and any operations that are invariant of the requests,

like connecting to the database engine, should be done when the server object is

started, not when a request is coming. Care must be taken to write efficient

SQL statements, and static SQL should be used where possible. Multithreading

should be used in the user interface to reduce the perceived response time.

To minimized the network transmission time, interactions between remote

objects should be kept at the minimum and interface definitions should be kept

small, using the smallest possible date types.

In a production CAD system, the system response time is not simply the

processing time taken by the software and hardware, but includes the handling

time of the operator. To minimize the handling time, the user interface should

be intuitive, and multiple means for giving command should be provided to suit

users with different preferences. Drag-and-drop mechanism can be

implemented to enable the user to manipulate incidents and resources as concrete

objects, rather than abstract concepts. Both menus and command line should be

provided to control the system.

5.3 System Management Requirements

A big problem in today's computer-enabled enterprises is system management.

 21

No software is perfect, they need bugfixes and enhancements. In conventional

2-tier client-server systems, sophisticated yet complicated system management

software is used to accomplish these tasks. Effort and time spent is substantial

because of the fat clients running on heterogeneous platforms.

3-tier system together with Java applet provides a much better solution. By

using the Java platform, only one version of the client software is needed, in

spite of the potentially heterogeneous platforms. The client, implemented as a

Java applet, is download to the client machine on its startup and on user request,

so bugfixes and enhancements can be applied easily. The client in a 3-tier

system is thin, so the downloading time is short. The middle tier of a 3-tier

system, in which the business logic is implemented, runs on centrally managed

servers, so their management is easy.

6 Outline Software Design Specification

6.1 Platform

Both the client and server objects will be written in Java and run in Java Virtual

Machine (JVM), and the communication between them will be handled by

CORBA ORB. The server objects will connect to a Relational Database

Management System (RDBMS) via Java Database Connectivity (JDBC) for

persistent storage. The client will be run as an Java applet inside Java-enabled

Web browsers. The server will be run as standalone Java application,

optionallly activated by the Object Activation Daemon.

The specific software used in this project will be:

• Java Platform: Sun Microsystems Java Development Kit 1.2.2

• CORBA ORB: Inprise Visibroker for Java 3.4

• RDBMS: Oracle8i

Implementing the client and server using Java carries the "write once, run

everywhere" Java advantage. Running the client as an applet eliminate the need

to install ORB software in the client machine. Using CORBA as the

middleware enable structuring the system in a 3-tier architecture. Running

business logic and database operations in the middle tier – the server objects, the

client is responsible only for the user interface and can be made thin, therefore

 22

the downloading time of the applet is short and upgrading of database driver is

done in the server, not the many clients.

6.2 System Architecture

Client - The whole client runs inside the JVM of a Web browser, as an applet.

The client consists of the ORB libraries and user-written objects, both of them

are downloaded from a HTTP server as a result of the invocation of the Web

page hosting the applet.

Server – The server also consists of the ORB libraries and user-written objects,

but one or more server objects may run in a JVM, and several JVMs may be used

to run the whole server.

RDBM S – The RDBMS has JDBC driver that the server objects can call to

manipulate data using Structured Query Language (SQL).

JVM

JVM

JVM

Browser JVM

Client objects

ORB ORB RDBMS

IIOP JDBC

Server objects

Operation calls

Callbacks

 23

6.3 User Interface

The user interface consists of three windows. One window is used for general

interactions, like data input and inquiry data display. The other two windows

are dynamic windows, that is, they are driven by the server as a result of data

changes by the current user or other users. One of the dynamic windows is the

incident queue, in which incidents are listed in reverse chronological order, that

is, the latest incident is at the top of the queue. The other dynamic window is

the resource list, in which resources under the user’s control are displayed. The

incidents and resources in the dynamic windows are not just lines of text, but

behave like concrete entities. An incident can be dragged and dropped on an

resource, and vice versa, to invoke operations between them. By double

clicking on them, operations and inquiries can also be made.

7 Detailed Software Design Specification

7.1 General

The system is targeted for a fictitious emergency service. The services

 24

provided include those provided by police, fire, ambulance and military

departments. The area of the serviced region is in the order of hundreds of

square kilometers, so that the whole region can be covered by tens of districts

which is identified by district codes.

7.2 Database Schema Specification

Incident / Historic incident
Field Data type Remark
incident year CHAR(4) 4-digit
incident number CHAR(7) 1-9999999, restarted from one every year
description VARCHAR
location VARCHAR
district code CHAR(4) together with resources’ district code, used

to despatch resource to incident
reporting phone number CHAR(10) only local phone number are accepted,

from Caller Number Display (CND)
contact phone number CHAR(10) only local phone number are accepted
create time DATE YYYYMMDDhhmmss
occur time DATE YYYYMMDDhhmmss
close time DATE YYYYMMDDhhmmss
status CHAR(1) A – awaiting action

O – open (i.e. assigned or arrived
resource)
C – close

in-charge resource CHAR(8) leader resource identifier
close reason CHAR(1) R – resolved

D – duplicated
T – transferred
E – error
X - test

user CHAR(8) owner of the incident

Resource / Historic resource
Field Data type Remark
resource identifier CHAR(8)
type CHAR(1) P – Police

F – Fire
A – Ambulance
M – military

radio identifier CHAR(6) resources carry walkie-talkie
leader resource identifier CHAR(5) “00000” if itself is a leader
district code CHAR(4) together with incidents’ district code, used

to despatch resource to incident
on-duty time DATE
off-duty time DATE

 25

status CHAR(1) A – available
D – deployed (assigned or arrived)
M – meal
O – other

user CHAR(8) owner of the resource

Operator

Operator corresponds to the person using the system. It is used for access control

and as subject of accountability.
Field Data type Remark
operator CHAR(5)
password CHAR(8) stored in encrypted form
last accessing date DATE used to detect unauthorized access and

house-keeping
last password change date DATE used to enforce password policies

User

User owns incidents and resources. Because the number of incidents and rescues

can be very large, ownership is used to divide the workload, in order to guarantee the

performance level. Because the underlying business services are provided for

extended hours, or even on 24 x 7 basis, operators are on shift. Since incidents and

working hours of resources may span across shifts, operator can not be used as owner

of incidents and resources.
Field Data type Remark
user CHAR(8)
operator log-on count NUMBER(3) used to enforce at least one operator is

logged-on

Incident log
Field Data type Remark
incident number CHAR(7)
log time DATE together with incident number, forms a

unique key
log text VARCHAR

 26

Resource log
Field Data type Remark
resource identifier CHAR(8)
log time DATE together with incident number, forms a

unique key
log text VARCHAR

Incident-resource relation
Field Data type Remark
incident number CHAR(7)
resource identifier CHAR(8)
relation time DATE the latest relation is the current relation
relation type CHAR(1) A – assign

V – arrive
R – release

 27

7.3 Function Specification

Incident creation
Operator action Computer processing
Enter “IC” in the command line or invoke
the menu incident->create

Display the incident creation panel

Enter information in the incident creation
panel:
• description
• location
• district code (via choice box)
• reporting phone number
• contact phone number
• occur time (if it is a past incident)
and click the OK button.

Insert an incident record into the database:
• Set incident year to the current year
• Set incident number maximum used +

1
• Set create time to the current time
• If occur time is not entered, set occur

time to the current time
• Set status to A

Insert the incident into all dynamic incident
queues of the current user.

Display message panel with message
“Incident creation succeeded”

 28

Incident update
Operator action Computer processing
Enter “IU <incident number>” in the
command line or invoke menu
incident->update and enter incident
number in the dialog box.

Display the incident update panel.

Update information in the incident update
panel and click the OK button.

Update the incident record in the database

Update the incident in all dynamic incident
queues of the current user.

Display message panel with message
“Incident update succeeded”.

 29

Incident display
Operator action Computer processing
Enter “ID <incident number>” in the
command line or invoke menu
incident->display and enter incident
number in the dialog box.

Display the incident display panel with
information of target incident.

 30

Incident closing
Operator action Computer processing
Enter “ICL <incident number>” in the
command line or invoke menu
incident->close and enter incident number
in the dialog box.

Display the incident closing panel.

Enter information in the incident closing
panel and click the OK button.

Move the incident record to the historic
incident table:
• set state to “C”
• set close time to current time

Remove the incident from all dynamic
incident queues of the current user.

Display message panel with message
“Incident closing succeeded”.

 31

Incident log input
Operator action Computer processing
Enter “IL <incident number>” in the
command line or invoke menu
incident->add log and enter incident
number in the dialog box.

Display the incident log input panel with
information of the target incident in short
form.

Input logs in the incident log input panel
and click the OK button.

Insert an incident log record into the
database.

Display the message panel with message
“Incident log input succeeded”.

 32

Incident log display
Operator action Computer processing
Enter “ILD <incident number>” in the
command line or invoke menu
incident->display log and enter incident
number in the dialog box.

Display the incident log display panel with
information of the target incident in short
form and all logs.

 33

Resource creation
Operator action Computer processing
Enter “RC” in the command line or invoke
the menu resource->create

Display the resource creation panel

Enter information in the incident creation
panel:
• resource identifier
• type (via choice box)
• radio number
• leader resource identifier
and click the OK button.

Insert an incident record into the database:
• Set on-duty time to the current time
• Set status to A

Insert the resource into all dynamic
resource lists of the current user.

Display message panel with message
“Resource creation succeeded”

 34

Resource update
Operator action Computer processing
Enter “RU <resource identifier>” in the
command line or invoke menu
resource->update and enter resource
identifier in the dialog box.

Display the resource update panel.

Update information in the resource update
panel and click the OK button

Update the resource record in the database

Update the incident in all dynamic resource
lists of the current user.

 35

Resource display
Operator action Computer processing
Enter “RD <resource identifier>” in the
command line or invoke menu
resource->display and enter resource
identifier in the dialog box.

Display the resource display panel with
information of target resource.

Remark: either one of "Leader" or "Team" can have value, because a resource

can be either leader or team member, but not both.

 36

Resource log display
Operator action Computer processing
Enter “RLD <resource identifier>” in the
command line or invoke menu
resource->display log and enter resource
identifier in the dialog box.

Display the resource log display panel with
logs of the target resource.

 37

Resource delete
Operator action Computer processing
Enter “RX <resource identifier>” in the
command line or invoke menu
resource->delete and enter resource
identifier in the dialog box.

Validate that the resource status is available

Move the resource record to historic
resource table:
• set off-duty time to current time

Assign resource to incident
Operator action Computer processing
Enter “IRAS <incident number>
<resource identifier>” in the command
line or invoke menu action->assign and
enter incident number and resource
identifier in the dialog box.

Insert an incident-resource relation record
of type “assign” into the database.

Insert an incident log record into the
database with text
“Resource <resource identifier> is
assigned.”

Insert a resource log record into the
database with text
“Assigned to incident <incident number>.”

Update the incident record in the database:
• set in-charge to <resource identifier>

Update the incident in all dynamic incident
queues of the current user.

Update the resource in all dynamic
resource lists of the current user.

Display the message panel with message
“Resource assignment succeeded”.

Arrive resource at incident
Operator action Computer processing
Enter “IRAR <incident number>
<resource identifier>” in the command
line or invoke menu action->arrive and
enter incident number and resource
identifier in the dialog box.

Insert an incident-resource relation record
of type “arrive” into the database.

Insert an incident log record into the
database with text
“Resource <resource identifier> arrives.”

Insert a resource log record into the
database with text
“Arrive at incident <incident number>.”

 38

Update the incident record in the database:
• set in-charge to <resource identifier>

Update the incident in all dynamic incident
queues of the current user.

Update the resource in all dynamic
resource lists of the current user.

Display the message panel with message
“Resource assignment succeeded”.

Release resource from incident
Operator action Computer processing
Enter “IRRL <resource identifier>” in the
command line or invoke menu
action->release and enter resource
identifier in the dialog box.

Insert an incident-resource relation record
of type “release” into the database.

Insert an incident log record into the
database with text
“Resource <resource identifier> is
released.”

Insert a resource log record into the
database with text
“Released from incident <incident
number>.”

Update the incident in all dynamic incident
queues of the current user.

Update the resource in all dynamic
resource lists of the current user.

Display the message panel with message
“Resource release succeeded”.

 39

7.4 Interface Definitions

��������� �
	�����

� ��� ��� ��� � ����� � ������� �
 �� ����� ��� ���
��!"!���� #����$!�� ���
��� % ��� � &

� � �� ��#�� ��� ��' � � ��� ��� ��� � ��� � � ����� � � � � � � � !�(

��)����� � � � � *� � ������!��,+$� � ������! � � � ��' ����!�!�� ' ��-/. -

��)����� � � � ��0 ���� � � � � ��1 ��� � ������! � � � ��' ����!�!�� ' ��-/. -

� ��� ��� � ����� � � ��� ��� ��� �

#���� �
��� ��� � ��2 � � ! � � � ��' ����!���� � � � � �,&

� � ! � � � ��' � ����� � � � �,&

� � ! � � � ��' ��� ! � � � � � &

� � ! � � � ��' 	43� &

� � ! � � � ��' �5�� � �,3���� &

� � ! � � � ��' ��������� 67� ��� &

� � ! � � � ��' ��!���� 8

� ��� !���!�2$*� � ������!��,+$� � ���,8 -

 40

#���� ���� ���� � ��2 � � ! � � � ��' � � �/9*����� &

� � ! � � � ��' � � ��3����
����� &

� � ! � � � ��' ����!���� � � � � �,&

� � ! � � � ��' � ����� � � � �,&

� � ! � � � ��' ��� ! � � � � � &

� � ! � � � ��' 	43� &

� � ! � � � ��' �5�� � �,3���� &

� � ! � � � ��' ��������� 67� ��� &

� � ! � � � ��' ��!���� 8

� ��� !���!�2$*� � ������!��,+$� � ��� &

0 ���� � � � � ��1 ��� � ���
8 -

#���� �
��� !� �� ��:�2 � � ! � � � ��' � � ��3����
����� &

��� � ! � � � ��' � � �/9*����� &

��� � ! � � � ��' ����!���� � � � � �,&

��� � ! � � � ��' � ����� � � � �,&

��� � ! � � � ��' ��� ! � � � � � &

��� � ! � � � ��' 	43� &

 41

��� � ! � � � ��' �5�� � �,3���� &

��� � ! � � � ��' ��� ��� � ��67� ��� &

��� � ! � � � ��' ��������� 67� ��� &

��� � ! � � � ��' ��� ��!���67� ����8

� ��� !���!�2$*� � ������!��,+$� � ��� &

0 ���� � � � � ��1 ��� � ���
8 -

#���� �
��� ��!���2 � � ! � � � ��' � � ��3����
����� &

� � ! � � � ��' ��� ��!��,;*����!�� � 8

� � ! � � � ��' ��!���� 8

� ��� !���!�2$*� � ������!��,+$� � ��� &

0 ���� � � � � ��1 ��� � ���
8 -

#���� ��� � �� � < � ' 2 � � ! � � � ��' � � ��3����
����� &

� � ! � � � ��' � � ' 6$��) � &

� � ! � � � ��' ��!���� 8

� ��� !���!�2$*� � ������!��,+$� � ��� &

0 ���� � � � � ��1 ��� � ���
8 -

 42

#���� �
��� !� �� ��: < � ' 2 � � ! � � � ��' � � ��3����
����� &

� � ! � � � ��' � ��! � ;*������67� ��� &

��� � ! � � � ��' � � ' 6$��) � 8

� ��� !���!�2$*� � ������!��,+$� � ��� &

0 ���� � � � � ��1 ��� � ���
8 -

#���� �
��!�!�� '�� ;*��!������ ����2 � � ! � � � ��' � � ��3����
����� &

� � ! � � � ��' � ��! � &

� � ! � � � ��' ��!���� 8

� ��� !���!�2$*� � ������!��,+$� � ��� &

0 ���� � � � � ��1 ��� � ���
8 -

#���� �
��� � � #��,;*��!������ ����2 � � ! � � � ��' � � ��3����
����� &

� � ! � � � ��' � ��! � &

� � ! � � � ��' ��!���� 8

� ��� !���!�2$*� � ������!��,+$� � ��� &

0 ���� � � � � ��1 ��� � ���
8 -

#���� ��� ��� ����!��,;*��!������ ����2 � � ! � � � ��' � ��! � &

 43

� � ! � � � ��' ��!���� 8

� ��� !���!�2$*� � ������!��,+$� � ��� &

0 ���� � � � � ��1 ��� � ���
8 -

. -

� ��� ��� ��� � ����� � ������� �
 �� ����� ��� ���
��!"!���� #����$!�� ���
��� % ��� � &

� � �� ��#�� ��� ��' � ��!������ ���=� ��� � � ����� � � � � � � � !�(

� ��� ��� � �����>;*��!������ �����

#���� �
��� ��� � ��2 � � ! � � � ��' � ��! � &

� � ��5���� � :� �� &

� � ! � � � ��' � ����� � � &

� � ! � � � ��' � ��������� ;*��! � &

� � ! � � � ��' ��!���� 8

� ��� !���!�2$*� � ������!��,+$� � ��� &

0 ���� � � � � ��1 ��� � ���
8 -

#���� ���� ���� � ��2 � � ! � � � ��' � ��! � &

 44

� � ��5���� � :� �� &

� � ! � � � ��' � ����� � � &

� � ! � � � ��' � ��������� ;*��! � &

� � ! � � � ��' ��!���� 8

� ��� !���!�2$*� � ������!��,+$� � ��� &

0 ���� � � � � ��1 ��� � ���
8 -

#���� �
��� !� �� ��:�2 � � ! � � � ��' � ��! � &

��� � ��5���� � :� �� &

��� � ! � � � ��' � ����� � � &

��� � ! � � � ��' � ��������� ;*��! � &

��� � ! � � � ��' � � �� � :�67� ��� &

��� � ! � � � ��' ��� � �� � :�67� ��� &

��� � ��5�����! � � � ��!�8

� ��� !���!�2$*� � ������!��,+$� � ��� &

0 ���� � � � � ��1 ��� � ���
8 -

#���� �
����� � � ��2 � � ! � � � ��' � ��! � &

� � ! � � � ��' ��!���� 8

 45

� ��� !���!�2$*� � ������!��,+$� � ��� &

0 ���� � � � � ��1 ��� � ���
8 -

#���� �
��� !� �� ��: < � ' 2 � � ! � � � ��' � ��! � &

� � ! � � � ��' � ��! � ;*������67� ��� &

��� � ! � � � ��' � � ' 6$��) � 8

� ��� !���!�2$*� � ������!��,+$� � ��� &

0 ���� � � � � ��1 ��� � ���
8 -

. -

� ��� ��� ��� � ����� � ������� �
 �� ����� ��� ���
��!?��� � � ��� !�� ���
��� % ��� � &

� � � ��� � 5��
����� & �� ���� � �
� � �
����� � � �
����� ��� � � ��!�� �?� 5��

� � ��: � ���
� �?� � ��� ��� ����@ �������
� � ��� ��!������ ����� � ! � (

� ��� ��� � ����� � � ��A?���������

#���� �
����� � � ��2 � � ! � � � ��' � � ��3���� &

� � ! � � � ��' ����!���� � � � � �,&

� � ! � � � ��' � ����� � � � �,&

 46

� � ! � � � ��' ��� ! � � � � � &

� � ! � � � ��' � � 	B5���� ' �,;*��! &

� � ��5�����! � � � ��!�8

� ��� !���!�2 0 ���� � � � � ��1 ��� � ���
8 -

#���� ���� ���� � � � � ��2 � � ! � � � ��' � � ��3���� &

� � ! � � � ��' ����!���� � � � � �,&

� � ! � � � ��' � ����� � � � �,&

� � ! � � � ��' ��� ! � � � � � &

� � ! � � � ��' � � 	B5���� ' �,;*��! &

� � ��5�����! � � � ��!�8

� ��� !���!�2 0 ���� � � � � ��1 ��� � ���
8 -

#���� �
����� � � � � � ��2 � � ! � � � ��' � � ��3�����8

� ��� !���!�2 0 ���� � � � � ��1 ��� � ���
8 -

. -

� ��� ��� ��� � ����� � ������� �
 �� ����� ��� ���
��!?��� � � ��� !�� ���
��� % ��� � &

� � � ��� � 5��
����� & �� ���� � �
� � �
����� � � �
����� ��� � � ��!�� �?� 5��

 47

� � ��: � ���
� �?� ��!������ ����� � ! � (

� ��� ��� � �����>;*��! < � ! � �

#���� �
�����,;*��!�2 � � ! � � � ��' � ��! � &

� � ��5���� � :� �� &

� � ��5�����! � � � ��! &

� � ! � � � ��' � � 	B5���� ' � � � ��8

� ��� !���!�2 0 ���� � � � � ��1 ��� � ���
8 -

#���� ���� ���� � �,;*��!�2 � � ! � � � ��' � ��! � &

� � ��5���� � :� �� &

� � ��5�����! � � � ��! &

� � ! � � � ��' � � 	B5���� ' � � � ��8

� ��� !���!�2 0 ���� � � � � ��1 ��� � ���
8 -

#���� �
����� � � �,;*��!�2 � � ! � � � ��' � ��! � *8

� ��� !���!�2 0 ���� � � � � ��1 ��� � ���
8 -

. -

 48

� ��� ��� ��� � ����� � ������� �
 �� ����� ��� ���
��!"!���� #����$!�� ���
��� % ��� � &

� � ��!?�
��� ��� � ��� !/C"� � ��5�� ��' ���� ��� ������: � ���
� �BC"� � ����CB!

� � �� ���� � ��� � @ ����! � !�(

� ��� ��� � �����>7: � ��DE� ��F � � ��� �����

#���� ��� � ' � ! � ��� 2 � ��� � ��A?����� � ��A?��� &

� � ! � � � ��' ��!���� 8

� ��� !���!�2$*� � ������!��,+$� � ��� &

0 ���� � � � � ��1 ��� � ���
8 -

#���� ��� � ' � ! � ��� 2 � � ;*��! < � ! � � ��! < � ! � &

� � ! � � � ��' ��!���� 8

� ��� !���!�2$*� � ������!��,+$� � ��� &

0 ���� � � � � ��1 ��� � ���
8 -

#���� �
����� � � ��2 � � ! � � � ��' ��!���� &

� � ! � � � ��' � � ��3���� &

 49

� � ! � � � ��' ����!���� � � � � �,&

� � ! � � � ��' � ����� � � � �,&

� � ! � � � ��' ��� ! � � � � � &

� � ! � � � ��' � � 	B5���� ' �,;*��! &

� � ��5�����! � � � ��!�8

� ��� !���!�2$*� � ������!��,+$� � ��� &

0 ���� � � � � ��1 ��� � ���
8 -

#���� ���� ���� � � � � ��2 � � ! � � � ��' ��!���� &

� � ! � � � ��' ����!���� � � � � �,&

� � ! � � � ��' � ����� � � � �,&

� � ! � � � ��' ��� ! � � � � � &

� � ! � � � ��' � � 	B5���� ' �,;*��! &

� � ��5�����! � � � ��!�8

� ��� !���!�2$*� � ������!��,+$� � ��� &

0 ���� � � � � ��1 ��� � ���
8 -

#���� �
����� � � � � � ��2 � � ! � � � ��' ��!���� &

� � ! � � � ��' � � ��3�����8

 50

� ��� !���!�2$*� � ������!��,+$� � ��� &

0 ���� � � � � ��1 ��� � ���
8 -

#���� �
�����,;*��!�2 � � ! � � � ��' ��!���� &

� � ! � � � ��' � ��! � &

� � ��5���� � :� �� &

� � ��5�����! � � � ��! &

� � ! � � � ��' � � 	B5���� ' � � � ��8

� ��� !���!�2$*� � ������!��,+$� � ��� &

0 ���� � � � � ��1 ��� � ���
8 -

#���� ���� ���� � �,;*��!�2 � � ! � � � ��' ��!���� &

� � ! � � � ��' � ��! � &

� � ��5���� � :� �� &

� � ��5�����! � � � ��! &

� � ! � � � ��' � � 	B5���� ' � � � ��8

� ��� !���!�2$*� � ������!��,+$� � ��� &

0 ���� � � � � ��1 ��� � ���
8 -

 51

#���� �
����� � � �,;*��!�2 � � ! � � � ��' ��!���� &

� � ! � � � ��' � ��! � *8

� ��� !���!�2$*� � ������!��,+$� � ��� &

0 ���� � � � � ��1 ��� � ���
8 -

. -

. -

7.5 Server-side Classes

CORBA Object implementations

IncidentImpl – implements the Incident interface

ResourceImpl – implements the Resource interface

DynaWinHandlerImpl – implements the DynaWinHandler (Dynamic Windows

Handler) interface

Object Servers

IncidentServer – instantiates and runs IncidentImpl

ResourceServer – instantiates and runs ResourceImpl

DynaWinHandlerServer – instantiates and runs DynaWinHandlerImpl

7.6 Client-side Classes

CORBA Object implementations

IncQueImpl – implements IncQue interface

ResListImpl – implements ResList interface

Applet

CADApplet – instantiates and runs IncQueImpl, ResListImpl, and handles user

actions.

 52

PnlIncCreate – extends JPanel and handles the incident creation function.

PnlIncUpdate – extends JPanel and handles the incident update function.

PnlIncDisplay – extends JPanel and handles the incident display function.

PnlIncClose – extends JPanel and handles the incident closing function.

PnlIncLogInput – extends JPanel and handles the incident log input function.

PnlIncLogDisplay – extends JPanel and handles the incident log display

function.

PnlResCreate – extends JPanel and handles the resource creation function.

PnlResUpdate – extends JPanel and handles the resource update function.

PnlResLogDisplay – extends JPanel and handles the resource log display

function.

PnlResDisplay – extends JPanel and handles the resource display function.

8 Project Schedule

From To Task Remark
mid January mid February Prepare project proposal
mid February mid March Prepare detailed software

design specification
Interfaces in IDL,
function of classes
and their methods.

mid March mid April Build user interface
mid April mid May Build server classes
mid May mid June Build database

connectivity

mid June mid July Perform system
integration and testing

mid July mid August Prepare documentation

9 References

1. Andreas Vogel and Keith Dubby, Java Programming With CORBA, 2nd edition

(Wiley, 1998)

2. Robert Orfali and Dan Harkey, Client/Server Programming with Java and

CORBA, 2nd edition (Wiley, 1998)

3. Douglas Bell and Mike Parr, Java for Students, 2nd edition (Prentice Hall Europe,

 53

1999)

4. G. Coulouris, J. Dollimore and T. Kindberg, Distributed Systems: Concepts and

Design, 2nd edition (Addison-Wesley, 1994)

5. Inprise Corporation, VisiBroker Case Study (2000)

<http://www.inprise.com/visibroker/cases>

6. IONA Technologies, IONA Customers (2000)

<http://www.iona.com/info/aboutus/customers/index.html>

7. Object Management Group, CORBA Success Stories (2000)

<http://www.corba.org/>

8. Java Development Kit 1.2.2, Sun Microsystems, 1999

9. Thomas J. Mowbray and Raphael C. Malveau, CORBA Design Patterns (John

Wiley & Sons, Inc., 1997)

10. Thomas J. Mowbray and William A. Ruh, Inside CORBA: Distributed Object

Standards and Applications (Addison Wesley Longman, Inc., 1997)

