A Computer Aided Despatch System on CORBA/Java Platform

Project Report

by

Chau Chi Wing

98018040

(The Chinese University of Hong Kong

August 2000

The Chinese University of Hong Kong holds the copyright of this thesis. Any person(s) intending to use a part or whole of the materials in the thesis in a proposed publication must seek copyright release from the Dean of the Graduate School.

Abstract

In this report, the design and implementation of a Computer Aided Despatch (CAD) system on CORBA/Java platform is described. CAD systems, like many other mission-critical systems, were traditionally implemented on mainframe computers, and increasingly on client/server platforms. Mainframe computers have excellent reliability, but the capital investment and maintenance cost are both very high. Client/server platforms provide fancy user interface at relatively low capital investment, but the maintenance cost can be even higher than those of mainframe computers, due to the many system management issues of the fat clients. In this project, a 3-tier CAD system is implemented on CORBA/Java platform, with the client running as Java applet inside a web browser, and the server objects and RDBMS running on centrally managed computers. The goal is to demonstrate the viability of using CORBA and Java to built the next generation enterprise systems which are easy to maintain, extend, customize and interface with other systems

CONTENTS

1Abstract

1
Introduction
4
2
Common Object Request Broker Architecture
5
2.1 Object Management Architecture
5
2.2
Object Request Broker
6
2.3
Anatomy of a CORBA 2.0 ORB
8
2.4
Distributed Systems on CORBA
10
3
The Java Platform
16
4
Computer Aided Despatch (CAD) System
17
4.1
Information Flow
17
4.2
Interaction with Other Systems
19
5
System Requirements
21
5.1
Functional Requirements
21
5.2
Performance Requirements
22
5.3
System Management Requirements
22
6
Design Considerations
24
6.1
3-tier Architecture
24
6.2
CORBA
24
6.3
Front-end
24
6.4
Middle-tier
25
6.5
Back-end
26
7
Outline Software Design Specification
27
7.1
Platform
27
7.2 User Interface
28
7.3
System Architecture
34
8 Detailed Software Design Specification
37
8.1
Database Schema Specification
37
8.2
Function Specification
40
8.3
Interface Definition in CORBA IDL
54
9
Future Directions
62
10 Conclusion
63
11
References
64
12 Appendix A: Administrator Guide
65
12.1
System Setup
65
12.2
Trouble Shooting
65
13 Appendix B: List of Source Files
66

Introduction

Computer Aided Despatch (CAD) systems are used in the service industry to provide prompt service to their clients. The nature of services varies greatly, ranging from taxi-calling service, electric maintenance service, and the like, to emergency services. The CAD systems deployed are mission critical as their failure could cause customer dissatisfaction, financial lost, or even lost of lives.

Even nowadays, many such systems still run on mainframe computers, with text-based terminals as their user interface. Their survival is partly due to their large size, which implies high cost for replacement. The other reason is their proven track record, in line with the high reliability of mainframe computers. However, the maintenance cost of these systems is very high, because their hardware is proprietary and personnel with mainframe expertise is becoming rare.

Some newer CAD systems are implemented as 2-tier client/server systems. These systems have fancy GUI and is reasonably reliable. However, they are difficult to manage due to their fat client architecture, which requires installation and periodic upgrading of many drivers and programs in many client machines. Another problem is that they are not designed for wide distribution; if they are used in wide area networks, their performance suffers.

In this project, a prototype CAD system will be implemented on CORBA/Java platform. The goal is to built a system that is easy to maintain, extend, customize and interface with other systems and can be used over both intranets and the Internet. With appropriate customization, this system can be adapted to many specific domains.

The main purpose of this project is to demonstrate the use of CORBA and Java to build enterprise-ready system. Various useful concepts and mechanisms, like 3-tier architecture, Java applet, drag-and-drop (DnD) mechanism, CORBA and JDBC will be demonstrated.

Common Object Request Broker Architecture

Figure 1. The OMG Object Management Architecture.

1.1 [image: image1.wmf]CadApplet

ResList

IncQueue

AccessControl

Resource

Incident

DynaWinHandler

incident operations

addRes/updateRes/deleteRes

addRes/updateRes/deleteRes

addInc/updateInc/deleteInc

addInc/updateInc/deleteInc

Object Management Architecture

[2] The Common Object Request Broker Architecture (CORBA) is the most important middleware project ever undertaken by the computing industry. It is the product of the Object Management Group (OMG), which includes over 800 companies, representing the entire spectrum of the industry. The CORBA object bus defines the shape of the components that lives within it and how they interoperate.

CORBA is important because it defines middleware that has the potential of subsuming every other form of existing client/server middleware. At the same time, it provides a solid foundation for a component-based future.

CORBA was designed to allow intelligent components to discover each other and interoperate on an object bus. However, CORBA goes beyond just interoperability. It also specifies an extensive set of bus-related services for creating and deleting objects, accessing them by name, storing them in persistent stores, externalizing their states, and defining ad hoc relationships between them.

CORBA support inheritance, that means you can create an ordinary object and then make it transactional, secure, lockable, and persistent by making the object multiply-inherit from the appropriate services.

In the fall of 1990, the OMG first published the Object Management Architecture Guide (OMA Guide). It was revised in September 1992. The details of the Common Facilities, however, were added later in January 1995. Figure 1 shows the four main elements of the architecture: 1) Object Request Broker (ORB) defines the CORBA object bus; 2) CORBAservices define the system-level object frameworks that extend the bus; 3) CORBAfacilities define horizontal and vertical application frameworks that are used directly by business objects; and 4) Application Objects are the business objects and applications - they are the ultimate consumers of the CORBA infrastructure. The following sections provide a top-level view of the most fundamental element – the ORB.

1.2 Object Request Broker

The Object request broker (ORB) is the object bus which allows objects to transparently make requests to and receive responses from other objects located locally or remotely. The client is not aware of the mechanisms used to communicate with, activate, or store the server objects. The CORBA 1.1 specifications introduced in 1991 specified the Interface Definition Language (IDL), language bindings and APIs for interfacing to the ORB. CORBA 2.0 specifies interoperability across vendor ORBs.

A CORBA ORB provides a wide variety of distributed middleware services. The ORB lets objects discover each other at run time and invoke each other’s services. An ORB is much more sophisticated than alternative forms of client/server middleware, including the traditional Remote Procedure Calls (RPC’s), Message-Oriented Middleware (MOM), database store procedures, and peer-to-peer services.

Benefits that every CORBA ORB provides:

Static and dynamic method invocations - A CORBA ORB allows developers to statically define method invocations at compile time, or dynamically discover them at run time. Hence, developers can get strong type checking at compile time or maximum flexibility associated with late (run-time) binding. On the contrary, most other forms of middleware only support static bindings.

High-level language bindings - A CORBA ORB allows developers to invoke methods on server objects using language of their own choice. CORBA separates interface from implementation and provides language-neutral data type that make it possible to call objects across language and operating system boundaries. In contrast, other types of middleware typically provide low-level, language-specific, API libraries. Also they do not separate implementation from specification. The API is tightly bound to the implementation, which makes it very sensitive to changes.

Self-describing system - CORBA provides run-time metadata for describing every server interface known to the system. Every CORBA ORB supports an Interface Repository (IR) that contains real-time information describing the functions a server provides and their parameters. The clients use the metadata to discover how to invoke services at run time. It also helps tools to generate code on-the-fly. The metadata is generated automatically either by an IDL-language precompiler or by compilers that know how to generate IDL directly form an OO language, e.g. Visigenic/Netscape’s Caffeine generates IDL directly from Java bytecode. CORBA is the first and also the most mature middleware to provide this type of run-time metadata and language-independent definitions of all its services.

Location transparency - An ORB can run in standalone mode on a laptop, or it can be interconnected to every other ORB in the universe using CORBA Internet Inter-ORB Protocol (IIOP). An ORB can broker inter-object calls within a single process, multiple processes running within the same machine, or multiple processes running across networks and operating systems. This is completely transparent to objects

Built-in security and transactions - The ORB includes context information in its messages to handle security and transactions across machine and ORB boundaries.

Polymorphic messaging - In contrast to other forms of middleware, an ORB does not simply invoke a remote function. It invokes a function on a target object, which means that the same function call will have different effects, depending on the object receives it.

Coexistence with existing systems - CORBA’s separation of an object’s definition from its implementation is perfect for encapsulating existing application. Using CORBA IDL, a developer can make his own existing code look like an object on the ORB, even if it is implementation in legacy software like CICS. This makes CORBA an evolutionary solution.

Figure 2. The Structure of a CORBA 2.0 ORB.

[image: image2.wmf]CadApplet

ResList

IncQueue

AccessControl

Resource

Incident

DynaWinHandler

resource

operations

addRes/updateRes/deleteRes

addInc/updateInc/deleteInc

addRes/updateRes/deleteRes

addInc/updateInc/deleteInc

1.3 Anatomy of a CORBA 2.0 ORB

Figure 2 shows the client and server sides of a CORBA ORB. The client does not have to be aware of where the object is loaded, its programming language, its operating system, or any other system aspects that are not part of an object’s interface.

The client IDL stubs provide the static interfaces to the object services. These precompiled stubs define how clients invoke corresponding services on the servers. From a client’s perspective, the stub acts like a local call. It is a proxy for a remote server object. The stub perform marshaling so that the operations and the parameters are encoded and decoded into flattened message formats to send to the server.

The Dynamic Invocation Interface (DII) allows the discovery of methods to be invoked at run time. CORBA defines standard APIs for looking up the metadata that defines the server interface, generating the parameters, issuing the remote call and getting back the results.

The Interface Repository APIs let developers obtain and modify the descriptions of all the registered component interfaces, the methods they support, and the parameters they required. CORBA calls these description method signatures. The Interface Repository is a run-time distributed database that contains machine-readable versions of the IDL-defined interfaces. The APIs allow components to dynamically access, store, and update metadata information. This pervasive use of metadata allows every components that lives on the ORB to have self-describing interface.

The ORB Interface consists of a few APIs to local services that may be of interest to an application. For example, CORBA provides APIs to convert an object reference to a string, and vice versa. These calls can be very useful if the object reference is to be stored or communicated.

The Server IDL Skeletons provide static interfaces to each service exported by the server. These skeletons, like the stubs on the client, are created using an IDL compiler.

The Dynamic Skeleton Interface (DSI), introduced in CORBA 2.0, provides a run-time binding mechanisms for servers that need to handle incoming method calls for components that do not have IDL-based complied skeletons. The Dynamic Skeleton looks at parameter values in an incoming message to figure out the target object and method. In contrast, normal compiled skeletons are defined for a particular object class and expect a method implementation for each IDL-defined method. Dynamic Skeletons are very useful for implementing generic bridges between ORBs. They can also be used by interpreters and scripting languages to dynamically generate object implementation. The DSI is the server equivalent of a DII. It can receive either static or dynamic client invocations.

The Object Adapter sits on top of the ORBs core communication services and accepts request for service on behalf of the server’s objects. It provides the run-time environment for instantiating server objects, passing requests to them, and assigning them object references. The Object Adapter also registers the classes it supports and their run-time instances with the Implementation Repository. CORBA specifies that each ORB must support a standard adapter called the Basic Object Adapter (BOA). Servers may support more than one object adapter.

The Implementation Repository provides a run-time repository of information about the classes a server supports, the objects that are instantiated, and their IDs. It also serves as a common place to store additional information associated with the implementation of ORBs, including trace information, audit trails, security and other administrative data.

The ORB Interface consists of a few APIs to local services that are identical to those provided on the client side.

1.4 Distributed Systems on CORBA

City of Pittsburgh – Crime Information System
[7]For Police, Fire, and other emergency personnel, historic information about the addresses that they are servicing can be lifesaving. For example, if the address in question has been visited 4 times in the past 30 days for domestic disputes, possible drug dealings, or recovery of a stolen weapon, emergency personnel would know to use an extra degree of caution. In Pittsburgh, this type of information has traditionally been kept in separate departments, divisional databases and servers across the city. Without easy access to this valuable information, emergency personnel had no way to know what dangers they might be facing when responding to a call.

Previously, to obtain crime and address history information, the police commander had to call City Information Systems (CIS) to submit a request. CIS would then write queries to extract the appropriate data from several disparate data sources, including 4 different databases on 4 different servers. These data sources stored Mayor's Service Center complaint calls, police records, building permits information, and 911 calls. The requested data would be merged, filtered, sorted, printed on paper and delivered to the police commander. This process could take hours, sometimes days, depending on the complexity of the information request and the workload of CIS. But CIS could not meet data requests within seconds, so emergency personnel were despatched to locations with no knowledge of incidents at that location.

CIS and Cerebellum Software teamed to design an end-user application that would deliver information to police and crime personnel within seconds. The easy-to-use application, called Street Smarts, offers a Web-based graphical user interface (GUI) that allows users to perform database searches by selecting appropriate criteria. For example, a police officer using Street Smarts can access a variety of useful information, including all the burglaries reported for a specific zone or address, crimes in the last 24 hours and the history of an address. With mobile data computers, Street Smarts can be used in the field. The solution is based on Cerebellum Software Inc.'s Cerebellum v1.2, which uses CORBA and the Java 2 platform to enable operating system and data independence. CORBA is used within the Cerebellum product to provide a communications layer between objects on different machines that need to share information. The use of CORBA enables Cerebellum and the City of Pittsburgh to integrate data from the various databases for presentation through one simple interface, without actually moving the data from the original sources.

CIS contracted Cerebellum Software, Inc. to implement the software and to train the IT staff to use the product and to develop new applications that could quickly and easily access data from disparate sources. The development of the Street Smarts application took approximately two months from concept through final presentation. Cerebellum makes fast application development possible because it eliminates the data access and integration work necessary to build new applications.

Because of the secure and personal nature of much of the crime and address information being accessed, Cerebellum's GUI allows CIS database administrators to manage user access. The Street Smarts application was also designed to limit the information that would be presented to end users.

Allied Signal – Vacation Time Tracking System

[7]AlliedSignal gathered requirements for a vacation system to track vacation time for employees across multiple business units and multiple sites with a deadline of two months. Specifically, AlliedSignal needed to monitor accruals, vacation days, partial days, exception days, historical information, and other vacation scheduling items. For tracking and monitoring purposes, external management reports needed to be printed and outside access to the vacation system was necessary.

AlliedSignal had to ensure the vacation system was secure, as it was storing and displaying Human Resources information. Employees needed access to their individual information in a secure manner, without the concern of unauthorized entry.

AlliedSignal had to implement the vacation system changes in a distributed environment while considering other factors such as a large user base and a very short delivery schedule. There were multiple sites on wide area networks and almost one million transactions flowed into the database — 200,000 of which were complex high levels object calls. The total user population requiring access was approximately 250 users with most of the transactions happening on just three or four days of the month.

The final plan was a CORBA-based vacation system that was easy to use, scaleable, and performed well in a distributed architecture. Previously, the tracking, allocation, and scheduling tasks were not combined into a single system and information about unused vacation was not readily available. Now, when vacation information is entered into the vacation system, it is immediately available to those with access via web browsers. The vacation system is simple and most operations can be performed using only the mouse. It is accessible from any web browser and allows for widespread access and simplified configuration management since no part of the application is stored on the client machine.
Two previously built framework components are used to ensure security. First, the Security component addresses all authentication, authorization, and encryption. Second, a component called Trace is used to track requests for information throughout the vacation system and provide an audit trail. Using a Java-based applet calendar control, the user simply clicks their way through the vacation system to enter vacation days and make changes to the schedule. Vacation accruals are loaded through a batch process from the Payroll system. The primary benefits are ease of use for employees, simplified maintenance and support for the I/S staff, and lower cost for AlliedSignal. The vacation system utilizes a pre-built framework constructed in Java, C++, and Oracle.
The presentation layer of the vacation system uses Java applets. The business logic, which is stored on the server, was constructed in C++ and utilizes a pre-built framework for security, auditing, messaging, and communicating with the database. This framework is comprised of reused CORBA components which were built in 1995 and were awarded the "Best Application Utilizing Reusable Components" award at ObjectWorld ’97.

Use of CORBA has allowed AlliedSignal to leverage the benefits of the Java language (for portability), the benefits of the C++ language (for performance), and existing heterogeneous hardware (previous investments) in this vacation system. Additionally, the benefits of building reusable CORBA components (e.g. framework) has allowed for rapid development and reuse in other applications to minimize costs and reduce cycle times.

The vacation system enjoys high employee satisfaction with the ability to control individual vacation time and better plan vacation usage. With the programmed complexities hidden with-in the vacation system, the end user is left with a simple point and click inter-face. Further, the vacation system was leveraged by other Business Units and is flexible enough to add additional employees dynamically.
Standard Chartered Bank – Customer Service Terminal

[6]Standard Chartered Bank in Hong Kong is using Orbix, a CORBA implementation by IONA Technologies, as the core infrastructure within its new application, the "Smart Customer Service Terminal", or SCST. SCST enables Customer Service Representatives (CSRs) to access a variety of service from a single desktop, helping them provide a timely and quality service to the bank's credit card customers. The application provides automation of one-stop services, for example, credit balance inquiry and bonus point inquiry. In addition, the SCST system automates general workflow, such as temporary credit limit increases, reporting of lost cards, and card repayment. Scripting is also automated to cater for product information and marketing promotion.

The SCST system takes a 3-tier client server approach, using Sybase 11 as a database engine running on RS/6000. Sun Microsystems' SunLink Gateway is used to connect Orbix Servers to the MVS host using LU 6.2. Web browsing capability is provided by Netscape Enterprise Server 3.0, while IE Active-X Control is used to integrate the Desktop and Web pages, in order to provide context sensitive scripting and a help facility. Bringing all these diverse technologies together as a single cohesive application is Orbix.

Orbix enables the connectivity required for a multi-tier architecture. Meanwhile Standard Chartered have also deployed OrbixNames in order to provide load balancing and facilitate location transparency between servers and clients. The implementation of OrbixManager for system management is also expected by the end of 1998.

The SCST is a large-scale CORBA project. Over 1,400 man-days have been spent developing the core of the SCST application, with an additional 400 to 600 to be expended during the rollout to the Asia Pacific region. At present the system supports 196 clients in the Asia Pacific region. CORBA was recognized early on as the integration technology of choice, enabling multi-platform interoperability and multi-tier architecture support. In addition, CORBA provides support for the end-to-end transaction-based workflow processing model used in the Smart Customer Service Terminal application. CORBA also facilitates the reuse of developed services, for example, the mainframe wrapper and the message macing server.
Harvard University – Educational Records System

[5]The Harvard Educational Records System was put into operation in the late 1970s. The system provided transaction processing for 11,000 undergraduate and graduate students in Harvard College and the Graduate School of Arts and Sciences. Like many systems of its time, it was efficient but complex to use, requiring highly trained operators. Furthermore, extracting analytical information for strategic decision making was extremely difficult. Increasingly, students, faculty, and administrators required direct access to critical information. To meet the needs of these constituents, a myriad of shadow systems had been developed.

The University administration recognized the need to replace this legacy system with a new information environment. The new system had to be Web-based to facilitate installation and support; it had to facilitate the rapid development of information access applications for students, faculty, and staff; and it had to integrate not only the existing legacy system, but multiple legacy data sources throughout the institution as well. Considering a variety of design alternatives, Harvard recognized that this mission-critical information system would need to meet as-yet-undefined needs over a long period of time. The ability to enhance and extend the system capabilities, therefore, was extremely important, as was the requirement for scalability to accommodate the extensions that would surely come.

Harvard elected to implement a three-tiered, distributed object solution. IT management selected Nevo Technologies to develop the system, considering the solution provider's extensive experience with Java and objects, as well as its proven implementation methodologies for introducing change into a large operating organizations. Harvard's commitment to thin clients was critical to meeting two of the project's goals: ease of enhancement and reduced long-term support costs. With Java as the language of choice for both client and server development, and with Oracle already chosen for the primary database, the selection of the middleware component became the most important design decision. For this, Nevo selected VisiBroker from Inprise because of its dominance as the leading CORBA ORB, the overall maturity of the tool, its functional strength, and its complete integration with the Java environment.

Development of HERS-2, the second generation of the Harvard Educational Records System, got underway in July 1997. Beta release of the first modules occurred in December 1997, with full production release two months later in February 1998. The Faculty of Arts and Sciences Course Catalog, an 800-page document describing each of the 4,000 courses available to students, is the most visible output from the new system. The new system is dramatically easier to learn and use than its predecessor, HERS. Training time, formerly measured in months, now takes just hours. Most importantly, senior staff in the Office of the Registrar are freed to concentrate their efforts on larger professional responsibilities, rather than managing the nuts and bolts of operating a complex, cryptic computer system.
VisiBroker, a CORBA implementation from Inprise Corporation, enabled a system that maintains both the Oracle database and legacy UNIX files automatically, without any burden on either the application developers or end users. The benefit to Harvard is both a smooth transition to the new system from the old, and a complete integration of the legacy environment. Any functions that still await migration to HERS-2 can still be run by the legacy HERS-1.

The benefits to Harvard of a three-tiered architecture with thin clients, distributed business objects, and persistent data storage are substantial throughout the life cycle of the system. In development, the combination of Java and VisiBroker produce major gains in programmer productivity through both abstraction and reuse. In deployment, the use of thin clients eliminates the need to configure client machines and load drivers and software on each one. Furthermore, because the entry point to the applications is a browser, the environment is inherently familiar and comfortable, reducing training time and costs. In the maintenance area, Harvard benefits by eliminating the need to update client software and maintain and upgrade client configurations. Each time the user points his browser to the application location, the latest software is delivered. The only requirement is that the browser be Java-enabled. Finally, and most importantly, the careful design of CORBA business objects provides a powerful, easy-to-use mechanism for the ongoing extension and enhancement of these applications in the future by clearly defining the interfaces, and, through the VisiBroker ORB, providing universal access to them.

The Java Platform

The Java platform is a fundamentally new way of computing, based on the power of networks and the objective to run the same software on different kinds of computers.

Java is completely object oriented, supports multithreading, manages memory by garbage collection, handles errors by exceptions and has built-in network support. All these make it easy to write robust networked objects.

Java is more than just another language with CORBA bindings. Java is a mobile code system. It simplifies the development, management and deployment of distributed applications. The Java source needs to be compiled only once, and the bytecode produced can be run on all computers supporting the Java technology. The latest version of an application can be accessed by simply clicking in a Web page. Application can be distributed to millions of clients by putting it on a Web server – installation and update is easy.

Java is also good for servers. Services can be moved to where they are needed most. As computer hardware technology advance, existing software can be moved to and run on faster machines, without even recompilation.

CORBA and Java complement each other well. CORBA deals with network transparency, while Java deals with implementation transparency. CORBA provides the link between the Java portable application environments.

Computer Aided Despatch (CAD) System

Figure 3. Information flow of a computer aided despatch system.

[image: image3.png]Common Facilities (CORBAfaciIities)\
: ~ Vertical Common Facilities

Application
Objects

Horizontal Common Facilities

D@‘ tr(blg‘tcd lnfgmagon 5y‘étc“m5 Task
 |Dogumentts Management | Managemént | Management

-4

‘Ektc’nna zatl'qn' ‘Ev;cnt«s‘ Trans,agﬂona e Kcla‘lrhips Srartup
‘ Common Object Services (CORBAservices)

[image: image4.png]" Implementation

(L) (14

D
Interface ‘
Repository B Dynamic |

& nvocation |

[image: image5.wmf]CadApplet

ResList

IncQueue

AccessControl

Resource

Incident

DynaWinHandler

logout

un

registerResList

unregisterIncQueue

[image: image6.wmf]CadApplet

ResList

IncQueue

AccessControl

Resource

Incident

DynaWinHandler

login

registerResList

registerIncQueue

fillIncQueue

fillResList

[image: image7.png]Computer Aided Despatch System on Java/CORBA platform - Netscape [-[o[x]

Fille Edit ¥iew Go Communicator Help

IEEEP- Y-8 o

7| i "Bookmarks J Location: [itpspare57 cos cuhlk edu Rk 5000ad il | @7 Whats Relsted
Login succeeded Leader_Type Status District Iucident
e[|| [rcszsra 3 185/PERSON COLLAPSED
Foeoes ¥ o
hiczzzs2 o
peioot P st
Pc32101 P eH 182/ROBBERY
[nc-mn Description Location Dist_Inc ke
0000185 GANG FIGHT PLAYGROVD NEAR ELOCK 4, § NP 0
0000185 PERSON COLLAPSED 3101, BOCK 1, NGAL TAU NP ACAS6TE A
oocotes crom conTRoL VICTORIA PARK w 0
0000185 TRAFFIC ACCTDENT TAL PO RD - WA LIV SHIT N ST 0
oot RoBBERY CHOV TAL FODK TEVELLERY, WCH BCS2101 A
oovote: FIRE CROSS HARBOTR TONNEL W A

[T [Dosoumeat: Do

[image: image8.png]omd |

Incident Creation

Description
Location
District
cND

Phone no.
Occur time
Scene URL
Map URL

(GANG FiGHT]

[

Inc-m Description
0000185 PERSON COLLAESED
10000184 CROWD CONTROL

Location
3101, BLOCK
VICTORIA PARK

Dist
1, NGAL TAU NE
'3

Inc-cha §
KCAS6TE A
0

[image: image9.png]omd |

Incident Update

IncYr & No
Status.
Create time
Description
Location
District
Occur time
cND

Phone no.
Scene URL
Map URL

pomo-iat

F

pomousze135067

FIRE

[CROSS HARBOUR TUNNEL

WCH

20000629135057

12345679

164464645

Meiticsc7 251 cadicam-hkijng

eiticse7 251 fcadimaptunnel it

Inc-m Descript ion Location Dist
0000186 GANG FIGHT PLAYGROUD NEAR BLOCK 4, § NE
0000185 PERSON COLLAESED 3101, BLOCK 1, NGAT TAU NE

Inc-cha §
[
56T h

[image: image10.png]Common Facilities (CORBAfaciIities)\
: ~ Vertical Common Facilities

Application
Objects

Horizontal Common Facilities

D@‘ tr(blg‘tcd lnfgmagon 5y‘étc“m5 Task
 |Dogumentts Management | Managemént | Management

-4

‘Ektc’nna zatl'qn' ‘Ev;cnt«s‘ Trans,agﬂona e Kcla‘lrhips Srartup
‘ Common Object Services (CORBAservices)

[image: image11.png]" Implementation

(L) (14

D
Interface ‘
Repository B Dynamic |

& nvocation |

[image: image12.png]omd |

Incident Display
IncYr &No PODB-181
satus B
Createtime POD0020135057
Description [FiRE

Location [(ROSS RARBOUR TURNEL
District JFCA

Occurtime PODO0G29135057

o [f2375670

Phoneno. [i6463616

Incharge inc pCT001

User o

Scene Map

Inc-m Descript ion Location Dist Inc-che §
0000186 GANG FIGHT PLAYGROUD NEAR BLOCK 4, § NE [
10000185 PERSON COLLABSED 301, BLOCK 1, NGAL TAU NP ACAS678 A

[image: image13.png]omd |

Incident Close
IncYr &No pO00-181

satus 8

Description [FIRE

Location [FROSS RARBOUR TURNEL
District JFCA

Close reason [Test

Inc-m Descript ion Location Dist Inc-che §
0000186 GANG FIGHT PLAYGROUD NEAR BLOCK 4, § NE [
10000185 PERSON COLLABSED 301, BLOCK 1, NGAL TAU NP ACAS678 A

[image: image14.png]omd |

Incident Log Input
Inc Yr &No' PODB-181

Status R

Description [FiRE

Location ~[CROSS HARBOUR TUNNEL
District JFCA

verything is under control

| ox |

Inc-m Descript ion Location Dist Inc-che §
0000186 GANG FIGHT PLAYGROUD NEAR BLOCK 4, § NE [
10000185 PERSON COLLAPSED 3101, BLOCK 1, NGAI TAU NP ACASET8 A

[image: image15.png]omd |

Incident Log Display
Inc Yr &No_ PODB-181
Status R
Description [FiRE

Location ~[CROSS HARBOUR TUNNEL
District JFCA

000-06-29 14:10:10
esaurce BCI001 released

000-06-29 14:10:15
esaurce BCI001 arrived

Inc-m Descript ion Location Inc-cha §
0000186 GANG FIGHT PLAYGROUD NEAR BLOCK 4, § NE [
0000185 PERSON COLLAESED 3101, BLOCK 1, NGAT TAU NP ACASETS A

[image: image16.png]cmd

Resource Creation
Resource D [PC35329]
Tywe Poiice

Radio number

Leader
District
Off duty time.

Inc-m Descript ion Location Dist Inc-che §
0000186 GANG FIGHT PLAYGROUD NEAR BLOCK 4, § NE [
10000185 PERSON COLLABSED 3101, BLOCK 1, NGAI TAU NP ACASE7S A

[image: image17.png]omd |

Resource Update
Resource D [pCT00T
Te Poice
Raio number [1001
Leader
District[WoR,

Off duty time {20000630080000

Inc-m Descript ion Location Dist Inc-che §
0000186 GANG FIGHT PLAYGROUD NEAR BLOCK 4, § NE [
0000185 PERSON COLLAPSED 3101, BLOCK 1. NGAI TAU NP ACASE78 4

[image: image18.png]omd |

Resource Display
Resource!D pCi0oT
Tywe Paica
Radio number [i07
Leader
District fAiCH

Off dutytime]20000630080000
User o
Inchargeinc. i1
Team i

Inc-m Descript ion Location Dist Inc-che §
0000186 GANG FIGHT PLAYGROUD NEAR BLOCK 4, § NE [
10000185 PERSON COLLAPSED 3101, BLOCK 1, NGAI TAU NP ACASET8 A

[image: image19.png]omd |

Resource Log Display.

Resource D PCa2T0T

e omce

000-06-29 14:17:30
esaurce created

000-06-29 14:22:21
rrived at incident 182

Inc-m Descript ion
0000186 GANG FIGHT
10000185 PERSON COLLAPSED

Location
PLAYGROUD NEAR BLOCK 4, § NE
3101, BLOCK 1, NGAI TAU NP

Inc-cha §
[
AC4SETB A

[image: image20.png]! —

Inc-mn Description Location Dist_Inc ke
0000185 NG FIGHT LAYGROTD NEAR BLOCK 4, § NP 0
0000185 PERSON COLLAPSED 3001, BLOCK 1, NGHI TAU NP ACHSGTS A
000184 CROVD CONTROL VICTORIA PARK e 0
0000183 TRAFFIC ACCIDENT THL B0 BD - WA LIV SHIL N ST 0
loo0o1e2 RoBBERY CHON TAL FODK JEVELLERY, WCH PCR2101 A
000181 FIRE WARBOIR TINEL ¥CH BCIODI A

Update

Display log
Input log

Close

[image: image21.png]Type Status District Incident

1185/PERSON COLLABSED
Update

Display log
Release

(D 181 /FIRE
weH 182/ROBBERY
weH

[image: image22.png]Inc-m Descript ion

Location Dist Inc-che §

0000185 NG FIGHT LAYGROTD NEAR BLOCK 4, § NP 0
0000185 PERSON COLLAPSED 3001, BLOCK 1, NGHI TAU NP ACHSGTS A
000184 CROVD CONTROL VICTORIA PARK 3 0
000183 TRAFFIC ACCIENT TAL B0 RD - WA LIU SHIL N ST 0
0000162 RoBBERY CHO TAL FODK JEVELLERY, WCH PC32101

loooote1 FIRe CROSS WAREOUR TINNEL WCH A

[image: image23.png]Type Status District Incident

a G 185/PERSON COLLAPSED
F o

[o

» st

3 e 162/ROBBERY ky

[image: image24.png]Type Status District Incident

A w 185/PERSON COLLAPSED
¥ o

[o

B st

® e 182/ROBBERY T,

[image: image25.png]Inc-m Descript ion

0000185 NG FIGHT
0000185 PERSON COLLAPSED
000184 CROVD CONTROL
0000183 TRAFFIC ACCIDENT
0000162 RoBBERY

loooote1 FIRe

Location Dist_Inc cke §
LAYGROTD NEAR BLOCK 4, § NP 0
3001, BLOCK 1, NGHI TAU NP ACHSGTS A
VICTORIA PARK e 0

TAL 20 RD - WA LIV SHUL N ST
CHOV TAL FODK JEWELLERY, YCH B
CROSS HAREOUR TINMEL WCH

[image: image26.png]Login
Operator [smith
Password [~
User [UsERY]

| ox |

[nc-mw Descript ion Location Dist _Inc-che §

[image: image27.png]comd [

Incident Display
IncYr &No PODG-181
Status 8

Create time PO0U0G20135057
Description [FIRE

Location [(ROSS ARBOUR TUNNEL
District G

Occurtime Po0U029135057

o [r23w5670

Phoneno. [i61463615

Incharge inc

User i

Scene Map

District Incident

Type_Status

lhcasere & e 185/PERSON COLLABSED
Foomoes T weH

22252 W weH

Pcion P s

o101 P weH 182/ROBBERY

JPEG image 320x240 pixels ... JH[=]|

File Edit ¥iew Go Communicator Help

Inc-mo Description Location Dist_Inccte
0000185 NG FIGHT LAYGROTD NEAR BLOCK 4, § NP 0
0000185 PERSON COLLABSED 3001, BLOCK 1, NGHI TAU NP ACHSGTS A
000184 CROVD CONTROL VICTORIA BARK e 0
0000183 TRAFFIC ACCIDENT THL B0 RD - W LIV SHIT N ST 0
loo0o1e2 RoBBERY CHO TAL FODK JEVELLERY, WCH PCR2101 A
loonote1 FIRe CROSS WAREOUR TINNEL WcH A

[image: image28.png]omd |

Incident Display
IncYr &No PODB-181
satus B

Createtime POD0020135057
Description [FiRE

District Incident

Type_Status

lhcasers h e 185/PERSON COLLABSED
Foomses F weH

22252 W weH

Poions P s

Por101 P weH 182/ROBBERY

GIF image 800x600 pixels - Netscape [H[=]

File Edit View Go Communicator Help
A —
R
T e

Location [(ROSS RARBOUR TURNEL
District JFCA
Occurtime PODO0G29135057
o [f2375670
Phoneno. [i6463616
Incharge inc
User o

scene | [map
[nc-mn Deseription Location Dist_Inccte
0000185 GANG FIGHT PLALGROTD NEAR BLOCK 4, § NP 0
o0oo18s PERSON COLLAESED 301, BLOCK 1, NGHL TAT NP ACHSED A
ooootes caom contzoL VICTORIA PARK 3 0
0000183 TRAFFIC AccIDENT TAL B0 BD - WA LIV SHUL N ST 0
ooootez wopeRy CHOW TAL FOOK JEVELLERY, WCH FCR2101 A
ooooten Fize CROSS WARBOTR TOMEL W A

1.5 Information Flow

Figure 3 shows the information flow within a computer aided despatch system. When an incident occurs, an operator enters it into the system using the incident creation function. After creation, the incident is either taken care of by resources, tracked using the resource assignment, resource arrival or resource release functions, or it is closed using incident closing function directly, possibly due to duplication or error. The resource assignment function may be omitted, since a resource may discover an incident before the incident is reported by informants; in such case, assignment of resource is implied by the use of the resource arrival function. After all necessary immediate actions have been done, the incident can be transferred to other units for follow-up and the incident can be closed using the incident closing function. Notes that the incident is not physical purged, but it becomes an historical incident which is archived and used for reference in the future and for data analysis. During the lifetime of the incident, the incident update and incident display functions can be used to update and display the details of the incident respectively. Incident logs, which record the progress of the incident, can be input and displayed using the incident log input and incident log display functions respectively.

When a resource begins its duty, an operator enters it into the system using the resource creation function. After that, the resource can be used with the resource assignment, resource arrival and resource release functions. When the duty of the resource ends, the resource is removed from the system using the resource deletion function. Similar to handling of incidents, the resource is not physically purged, but it becomes an historical resource and is archived for future reference and data analysis. During the lifetime of the resource, its details can be updated and displayed using the resource update and resource display functions respectively. Resource logs, which record the interaction of the resource with various incidents, can be displayed using the resource log display function.

1.6 Interaction with Other Systems

Figure 4. Interaction of a computer aided system with other systems.

A CAD system interacts with many systems in order to obtain data for tracking incidents and resources, and to transfer out data for analysis, as depicted in Figure 4. The private automatic branch exchange (PABX) switches and records telephone calls, and provides call data, like caller ID and caller address. Incidents are mostly reported through telephone calls. Operators also request assistance from other bodies, like public utility companies and public transportation companies, by phone.

The mobile radio systems is the prime communication channel among resources and operators. The progress of incidents are mostly reported to the operator through the radio system. The radio system also generate call information, like caller radio ID.

The geographic information system (GIS) and global positioning system (GPS) provides accurate address information of incident location and resource location. These information enable the quick and efficient handling of incidents. The nearest resource can be located and assignment to an incident. The environment in the proximity of the incident scene can also be monitored, for example, availability of facilities and presence of danger can be depicted and informed decisions can be made.

The historical data is transferred to the management information system (MIS) for analysis. Together with data from other data sources, online analytic processing (OLAP) and data mining can be done to extract valuable information.
The CAD system is also connected to many external systems. For example, identity card information is sent to the immigration department and driving license information is sent to the transportation department, for validation.

System Requirements

1.7 Functional Requirements

There are two main entities in a CAD system: incident and resource. Incident is also called occurrence, problem report and something else depending on the target environment; it can be a taxi call, a electric fault report or a fire report. Resource can be a taxi, a technician, a team of fire fighters, or a team of police officers. The most important function of a CAD system is to despatch resource to incident, so that the incident is taken care of promptly.

Incident related functions include: incident creation, incident update, assignment of resource to incident, arrival of resource at incident, release of resource from incident, input of incident logs, display of incident logs and closing of incident.

Resource related functions include: resource creation, resource deletion, display of resource logs and resource update.

To enable prompt arrival of resource at incident location, some means should be provided to indicate the closest resource to an incident. The best mean is the integration of GIS and GPS with CAD system. They provide accurate location information of both resource and incident graphically, thus allowing precise matching of resource and incident.
A CAD system essentially models the real world of incidents and resources. The user should be able to view the model in real time, that is, any change in the model should be reflected in the user interface immediately. This functionality requires the client to take the role of a server, to accept requests from server objects to update the incident and resource displays.

CAD systems must support different communication patterns. In addition to the basic client to server communication, server to client and client to client communications are also needed. For instance, to inform all related clients that an incident has been created, a screen update requests are sent from the server to the clients; to provide peer-to-peer communication service, like the UNIX talk, screen update requests may be sent from one client to another.

1.8 Performance Requirements
A CAD system is a kind of Online Transaction Processing (OLTP) system. The fundamental requirement is the quick and reliable processing of small unit of works, or transactions. To minimize the processing time taken by the system, both the computing time and the network transmission time should be minimized.

To minimized the computing time, efficient algorithms and protocols should be designed, and high performance database engine should be used. Server objects should be prestarted and any operations that are invariant of the requests, like connecting to the database engine, should be done when the server object is started, not when a request is received. Care must be taken to write efficient SQL statements, and dynamic SQL should be avoided where possible. Multithreading should be used in the user interface to reduce the perceived response time.

To minimized the network transmission time, interactions between remote objects should be kept at the minimum and interface definitions should be kept small, using the smallest possible date types.

In a production CAD system, the total response time is not just the processing time taken by the software and hardware, but includes the handling time of the operator. To minimize the handling time, the user interface should be intuitive, and multiple means for giving command should be provided to suit users with different preferences. Drag-and-drop mechanism can be implemented to enable the user to manipulate incidents and resources as concrete objects, rather than abstract concepts. Both menus and command line should be provided to control the system.

1.9 System Management Requirements

A big problem in computer-enabled enterprises nowadays is system management. No software is perfect, they need bugfixes and enhancements. In conventional 2-tier client-server systems, sophisticated yet complicated system management software is used to accomplish these tasks. Effort and time spent is substantial because of the huge number of client machines and the complexity of the fat clients on different platforms.

3-tier system together with Java applet provides a much better solution. By using the Java platform, only one version of the client software is needed, in spite of the potentially heterogeneous platforms. The client, implemented as a Java applet, is download to the client machine on its startup and on user request, so bugfixes and enhancements can be applied easily. The client in a 3-tier system is thin, so the code size is small and the downloading time is short. The middle-tier of a 3-tier system, in which the business logic is implemented, runs on centrally managed servers, so their management is easy.
Design Considerations

1.10 3-tier Architecture

3-tier architecture is used to support the complex business rules yet allowing the front-end to be thin.

The front-end implements mostly GUI-related logic and so the code size is small. The thin front-end uses less computing resource in the client machine and is quick to launch.

The business logic are mainly implemented in the middle-tier, which is run in centralized server machines. This promotes sharing of computing resources and eases management of the application software.

The back-end is a RDBMS providing persistent storage for data.

1.11 CORBA

CORBA is used to connect the front-end and the middle-tier because it is a well defined, widely accepted framework supporting all the required communication patterns.

Since CORBA is cross-platform, the CAD system can interface with other systems easily. Even if the target system supports only Microsoft DCOM, CORBA-DCOM bridges are widely available.

By implementing CORBA objects in both the front-end and the middle-tier, all the necessary communication patterns, that is, client-to-server, server-to-client and client-to-client communications are supported.

1.12 Front-end

The front-end is implemented as a Java applet, using Swing of the Java 2 standard.

Java has the write-once-run-anywhere advantage. This is important because of the diversity of client hardware and software types.

To cope with the different look-and-feel of GUI on different machine types, Swing is used to construct the GUI. Swing provides a set of all-Java language components that, to the maximum degree possible, work the same on all platforms. Java also enables very fine control of the GUI. The GUI is described and constructed in Java itself, unlike conventional GUI development environment such as Borland Delphi, in which the GUI code is stored in a separate proprietary file. All Java facilities are thus available to control the GUI.

Applet solves the software distribution problem and makes the CAD system easily extensible. An applet is downloaded from the Web server and run inside the Java virtual machine of the Web browser. After the applet code is modified, either because of enhancement or bugfix, it can be distributed to the client machines by simply placing it in the Web server. When the applet is launched next time, the new code will be downloaded and used automatically. With Java Plugin 1.3, the downloading time can be shortened – it caches the applet code in the plugin itself and only downloads the portions of the applet code that have been modified.

With the CAD front-end running as an applet, all the browser facilities and the thousands of browser-plugins are available to it. For example, the browser can be used to replay audio messages and display documents in HTML. GIS and video browser-plugins can be used to display maps and video-feeds of the incident location respectively. As new browser plugins are being written everyday by software vendors to Web-enable their product, the functionality of the CAD systems is potentially unlimited.

1.13 Middle-tier

The business logic are implemented as CORBA objects, written in Java and running inside Java virtual machines on centralized server machines.

CORBA’s cross-platform property coupled with Java’s write-once-run-anywhere advantage have two implications in this circumstance. The major implication is that vendor lock-in is largely lifted. The choice of server platform can be made solely upon functionality, performance and services, rather than migration effort or market share.

The minor implication is that development environment can be setup in platform cheaper than the production one. In critical computer systems, development environments physically separated from the production environments are setup to develop and test enhancements and bugfixes, before they are released for production use. Because Java is platform neutral, the development machine can be a conventional PC while the production machine is a super-computer, yet the Java code developed and tested in the development machine can be copied to the production machine and run right away, without even re-compilation.

In case performance the major concern then Java may not be the best choice for the middle-tier. By virtue of CORBA’s cross-language property, the middle-tier can be written using the server machine’s native language, for example, the C or C++ languages for UNIX machines, yet without changing a single line of front-end code.

If the business logic implemented in proven legacy software, for example, CICS in IBM mainframes, need to be reused, CORBA can still help. Many vendors have developed tools to generated wrapper around those legacy software, so that they can be used in the CORBA environment.

1.14 Back-end

The persistent data storage is taken care by a relational database management system (RDBMS). The back-end and the middle-tier communicates using Java Database Connectivity (JDBC). Mainstream RDBMS’s are complex and sophisticated software that have many features to increase functionality, performance and reliability. In this system, transactions are used to protect data integrity and a sequence is used to generate a system-wide increasing unique number, as an incident identifier.

To increase performance, connection to the RDBMS should be opened on startup of middle-tier CORBA objects and maintained over their lifetime, so that the connection is always ready when a request from the front-end comes in. Dynamic SQL should be avoided because they are compiled by the RDBMS on-the-fly when they are executed, which is computationally expensive.

Outline Software Design Specification

1.15 Platform
Both the client and server objects are written in Java and run in Java Virtual Machine (JVM), and the communication between them is handled by CORBA ORBs. The server objects connect to a RDBMS via Java Database Connectivity (JDBC) for persistent storage. The client runs as an Java applet inside Java-enabled Web browsers. The server runs as standalone Java application.

The specific software used in this project are:

· Java Platform:
Sun Microsystems Java Development Kit 1.3

· CORBA ORB:
Inprise VisiBroker for Java 3.4

· RDBMS:
Oracle8i

1.16 User Interface

The user interface, as shown in Figure 5, consists of three panels. The upper left panel is used for general user-computer interactions, like data input and inquiry data display. The other two panels are dynamic, that is, they can be updated by the server as a result of data changes made by the current user or other users. The lower left panel is the dynamic incident queue, in which incidents are listed in reverse chronological order, that is, the latest incident is at the top of the queue. The right panel is the dynamic resource list, in which resources under the user’s control are displayed. The incidents and resources in the dynamic panels are not just lines of text, but behave like concrete entities. An incident can be dragged and dropped on an resource, and vice versa, to invoke operations between them. By clicking on them, operations can also be made via the popup menu.

Command line

All functions can be invoked by entering commands in the command line. This enables operation without a pointing device, which is inconvenient in some situations, and is not preferred by some users.

Context-sensitive popup menu

To invoke functions on an incident or a resource, the user can click the entry in the dynamic panels to display the context-sensitive popup menu, shown in Figure 6 and 7. Functions related to either incident or resource are listed in the popup menu, as menu items. This feature saves the user the effort to lookup the incident number or resource ID in the dynamic panels and to type them into the command line.

Drag-and-drop operations

To invoke functions relating to both an incident and a resource, the user can drag the incident entry to the resource entry in the dynamic panels, or vice versa. When the incident or resource is dropped, a popup menu would show up, listing the available functions. This feature saves the user the effort to lookup the details in the dynamic panels and type them into the command line, and make the interface much more intuitive. This feature is illustrated in Figure 8-11.

1.17 System Architecture
Figure 12. The architecture of the CAD system.

Front-end

The whole front-end runs inside the Java virtual machine (JVM) of a Web browser, as an Java applet. The front-end code consists of the ORB libraries and user-written classes, all of them are downloaded from a HTTP server as a result of the invocation of the Web page anchoring the applet.

The two CORBA objects, ResList and IncQueue, are responsible for receiving callbacks from the server objects to update the dynamic resource list and the dynamic incident queues respectively. Figure 13-16 show the interactions amongst client-side and server-side objects when various functions are performed.

During login, the AccessControl object authenticates the request and registers the IncQueue and ResList objects with the DynaWinHandler object, so that subsequent screen update requests can be sent to them. When resource or incident functions are performed and screen updates are needed, the screen update requests are sent to the DynaWinHandler object. Because the ResList and IncQueue object have been registered with the DynaWinHandler object, the requests can be forwarded to them. Note that the DynaWinHandler object may need to forward a single screen update request it received to multiple IncQueue and ResList objects, because multiple front-ends may be running and monitoring the same sets of incidents and resources. During logout, the AccessControl object does the clean-up and unregisters the IncQueue and ResList objects from the DynaWinHandler object, as screen update is no longer needed.

Middle-tier

The middle-tier consists of the ORB libraries and user-written classes of server objects. As depicted above, the DynaWinHandler object is responsible for the multicasting of screen update requests. The AccessControl object authenticates login requests and then setup the front-end. It also cleans up session information on logout. The Resource and Incident object provides functions related to resource and incident respectively.

Back-end

The back-end is responsible for maintaining data persistence. A RDBMS provides the persistence nicely. The RDBMS has JDBC driver that the server objects can call to manipulate data using Structured Query Language (SQL).

2 Detailed Software Design Specification

2.1 Database Schema Specification

Incident / Historic incident

Field
Data type
Remark

incident year
CHAR(4)
in format YYYY

incident number
CHAR(7)
1-9999999, restarted from one every year

description
CHAR(80)

location
CHAR(80)

district code
CHAR(4)
together with resources’ district code, used to despatch resource to incident

reporting phone number
CHAR(10)
only local phone number are accepted, from Caller Number Display (CND)

contact phone number
CHAR(10)
only local phone number are accepted

create time
DATE
YYYYMMDDhhmmss

occur time
DATE
YYYYMMDDhhmmss

close time
DATE
YYYYMMDDhhmmss

status
CHAR(1)
A – awaiting action

O – open (i.e. assigned or arrived resource)

C – close

in-charge resource
CHAR(8)
leader resource identifier

close reason
CHAR(1)
R – resolved

D – duplicated

T – transferred

E – error

X - test

Scene URL
CHAR(200)
URL of scene image or video

Map URL
CHAR(200)
URL of map containing incident location

user
CHAR(8)
owner of the incident

Resource / Historic resource

Field
Data type
Remark

resource identifier
CHAR(8)

type
CHAR(1)
P – Police

F – Fire

A – Ambulance
M – military

radio identifier
CHAR(6)
resources carry walkie-talkie

leader resource identifier
CHAR(8)
null if itself is a leader

district code
CHAR(4)
together with incidents’ district code, used to despatch resource to incident

on-duty time
DATE

off-duty time
DATE

status
CHAR(1)
A – available

D – deployed (assigned or arrived)

M – meal

O – other

user
CHAR(8)
owner of the resource

Operator

Operator corresponds to the person using the system. It is used for access control and as subject of accountability.

Field
Data type
Remark

operator
CHAR(5)

password
CHAR(8)

last accessing date
DATE
used to detect unauthorized access and house-keeping

last password change date
DATE
used to enforce password policies

User

User owns incidents and resources. Because the number of incidents and rescues can be very large, ownership is used to divide the workload, in order to guarantee the performance level. Because the underlying business services are provided for extended hours, or even on 24 x 7 basis, operators are on shift. Since incidents and working hours of resources may span across shifts, operator can not be used as owner of incidents and resources.

Field
Data type
Remark

user
CHAR(8)

operator log-on count
NUMBER(3)
used to enforce at least one operator is logged-on

Incident log / Historic incident log

Field
Data type
Remark

incident number
CHAR(7)

log time
DATE
together with incident number, forms a unique key

log text
CHAR(1024)

Resource log / Historic resource log

Field
Data type
Remark

resource identifier
CHAR(8)

log time
DATE
together with incident number, forms a unique key

log text
CHAR(1024)

Incident-resource relation

Field
Data type
Remark

incident number
CHAR(7)

resource identifier
CHAR(8)

relation time
DATE
the latest relation is the current relation

relation type
CHAR(1)
A – assigned

V – arrived

Incident queue

There may be multiple records for the same user, but with different incident queue IOR. This is because multiple front-ends are running and are logon with the same user. The same set of incidents are display in all such front-ends

Field
Data type
Remark

Incident queue IOR
CHAR(512)
Stringified Interoperable Object Reference of incident queue objects

user
CHAR(8)

Resource list

There may be multiple records for the same user, but with different resource list IOR. This is because multiple front-ends are running and are logon with the same user. The same set of resources are display in all such front-ends

Field
Data type
Remark

Resource list IOR
CHAR(512)
Stringified Interoperable Object Reference of resource list objects

user
CHAR(8)

Function Specification

Login

Operator action
Computer processing

Enter information in the login screen

· operator

· password

· user

and click the OK button.
Check that the information is valid

· Operator exists and password in correct

· User exists

Populate the dynamic incident queue and the dynamic resource list with data owned by the user.

Display message “Login succeeded”

Incident creation

Operator action
Computer processing

Enter “IC” in the command line.
Display the incident creation panel

Enter information in the incident creation panel:

· description

· location

· district code (via choice box)

· CND phone number

· reporting phone number

· occur time (if it is a past incident)

· Scene URL

· Map URL

and click the OK button.
Insert an incident record into the database:

· Set incident year to the current year

· Set incident number to maximum used + 1

· Set create time to the current time

· If occur time is not entered, set occur time to the current time

· Set status to A

Insert the incident into all dynamic incident queues of the current user.

Display message “Incident creation succeeded”

Incident update

Operator action
Computer processing

Enter “IU <incident number>” in the command line or click the incident in the dynamic incident queue and click Update in the popup menu.
Display the incident update panel.

Update information in the incident update panel and click the OK button.
Update the incident record in the database

Update the incident in all dynamic incident queues of the current user.

Display message “Incident update succeeded”.

Incident display

Operator action
Computer processing

Enter “ID <incident number>” in the command line or click the incident in the dynamic incident queue and click Display in the popup menu.
Display the incident display panel with information of the incident.

Click the Scene button
Display the scene in a new window

Click the Map button
Display the map in a new window

Incident close

Operator action
Computer processing

Enter “ICL <incident number>” in the command line or click the incident in the dynamic incident queue and click Close in the popup menu.
Display the incident close panel.

Enter information in the incident close panel and click the OK button.
Move the incident record to the historic incident table:

· set state to “C”

· set close time to current time

Remove the incident from all dynamic incident queues of the current user.

Display message “Incident close succeeded”.

Incident log input

Operator action
Computer processing

Enter “IL <incident number>” in the command line or click the incident in the dynamic incident queue and click Input log in the popup menu.
Display the incident log input panel with information of the target incident in short form.

Input logs in the incident log input panel and click the OK button.
Insert an incident log record into the database.

Display message

“Incident log input succeeded”.

Incident log display

Operator action
Computer processing

Enter “ILD <incident number>” in the command line or click the incident in the dynamic incident queue and click Display log in the popup menu.
Display the incident log display panel with information of the target incident in short form and all logs.

Resource creation

Operator action
Computer processing

Enter “RC” in the command line.
Display the resource creation panel

Enter information in the incident creation panel:

· resource ID

· type (via choice box)

· radio number

· leader resource ID

· district code (via choice box)

· off duty time

and click the OK button.
Insert an incident record into the database:

· Set on-duty time to the current time

· Set status to blank

Insert the resource into all dynamic resource lists of the current user.

Display message “Resource creation succeeded”

Resource update

Operator action
Computer processing

Enter “RU <resource identifier>” in the command line or click the resource in the dynamic resource list and click Update in the popup menu.
Display the resource update panel.

Update information in the resource update panel and click the OK button
Update the resource record in the database

Update the resource in all dynamic resource lists of the current user.

Display message “Resource update succeeded”

Resource display

Operator action
Computer processing

Enter “RD <resource identifier>” in the command line or click the resource in the dynamic resource list and click Display in the popup menu.
Display the resource display panel with information of the target resource.

Remark: either one of "Leader" or "Team" can have value, but one both - because a resource can be either leader or team member, but not both.

Resource log display

Operator action
Computer processing

Enter “RLD <resource identifier>” in the command line or click the resource in the dynamic resource list and click Display log in the popup menu.
Display the resource log display panel with logs of the target resource.

Resource delete

Operator action
Computer processing

Enter “RX <resource identifier>” in the command line or click the resource in the dynamic resource list and click Delete in the popup menu.
Validate that the resource status is available

Move the resource record to historic resource table:

· set off-duty time to current time

Delete the resource from all dynamic resource lists of the current user.

Display message “Resource delete succeeded”

Assign resource to incident

Operator action
Computer processing

Enter “IRAS <incident number> <resource identifier>” in the command line

OR

Drag the resource from the dynamic resource list to the incident in the dynamic incident queue and click Assign in the popup menu.

OR

Drag the incident from the dynamic incident queue to the resource in the dynamic resource list and click Assign in the popup menu.

Insert an incident-resource relation record of type “assign” into the database.

Insert an incident log record into the database indicating the assignment

Insert a resource log record into the database indicating the assignment

Update the incident record in the database:

· set in-charge to <resource identifier>

Update the incident in all dynamic incident queues of the current user.

Update the resource in all dynamic resource lists of the current user.

Display the message panel with message

“Resource assignment succeeded”.

Arrive resource at incident

Operator action
Computer processing

Enter “IRAR <incident number> <resource identifier>” in the command line OR

Drag the resource from the dynamic resource list to the incident in the dynamic incident queue and click Arrive in the popup menu.

OR

Drag the incident from the dynamic incident queue to the resource in the dynamic resource list and click Arrive in the popup menu.

Insert an incident-resource relation record of type “arrive” into the database.

Insert an incident log record into the database indicating the arrival

Insert a resource log record into the database indicating the arrival.

Update the incident record in the database:

· set in-charge to <resource identifier>

Update the incident in all dynamic incident queues of the current user.

Update the resource in all dynamic resource lists of the current user.

Display the message panel with message

“Resource assignment succeeded”.

Release resource from incident

Operator action
Computer processing

Enter “IRRL <resource identifier>” in the command line or click the resource in the dynamic resource list and click Release in the popup menu.
Insert an incident-resource relation record of type “release” into the database.

Insert an incident log record into the database indicating the release.

Insert a resource log record into the database indicating the release.

Update the incident in all dynamic incident queues of the current user.

Update the resource in all dynamic resource lists of the current user.

Display the message panel with message

“Resource release succeeded”.

Interface Definition in CORBA IDL

module cad {

exception OperationFailed { string message; };

// Interface to be implemented as server-side object,

// providing incident-related functions.

interface Incident {

void create(in string description,

 in string location,

 in string district,

 in string CND,

 in string phoneNumber,

 in string occurTime,

 in string sceneUrl,

 in string mapUrl,

 in string user)

raises(OperationFailed);

void update(in string incNumber,

in string description,

in string location,

in string district,

in string CND,

in string phoneNumber,

in string occurTime,

in string sceneUrl,

in string mapUrl,

in string user)

raises(OperationFailed);

void display(in string incNumber,

out string incYear,

out string description,

out string location,

out string district,

out string CND,

out string phoneNumber,

out string createTime,

out string occurTime,

out string closeTime,

out char status,

out string inchargeRes,

out char closeReason,

out string sceneUrl,

out string mapUrl,

out string user)

raises(OperationFailed);

void close(in string incNumber,

in char closeReason,

in string user)

raises(OperationFailed);

void inputLog(in string incNumber,

in string logText,

in string user)

raises(OperationFailed);

void displayLog(in string incNumber,

in string lastReadTime,

out string logText)

raises(OperationFailed);

void assignResource(in string incNumber,

in string resID,

in string user)

raises(OperationFailed);

void arriveResource(in string incNumber,

in string resID,

in string user)

raises(OperationFailed);

void releaseResource(in string resID,

in string user)

raises(OperationFailed);

};

typedef sequence<string> stringSeq;

// Interface to be implemented as server-side object,

// providing resource-related functions.

interface Resource {

void create(in string resID,

in char type,

in string radioID,

in string leaderResID,

in string district,

in string offDutyTime,

in string user)

raises(OperationFailed);

void update(in string resID,

in char type,

in string radioID,

in string leaderResID,

in string district,

in string offDutyTime,

in string user)

raises(OperationFailed);

void display(in string resID,

out char type,

out string radioID,

out string leaderResID,

out string district,

out string onDutyTime,

out string offDutyTime,

out char status,

out string inchargeInc,

out string user)

raises(OperationFailed);

void displayTeam(in string resID,

out stringSeq teamSeq)

raises(OperationFailed);

void delete(in string resID,

in string user)

raises(OperationFailed);

void displayLog(in string resID,

in string lastReadTime,

out string logText)

raises(OperationFailed);

};

// Interface to be implemented as client-side object,

// for the add, update and delete of entries in the

// dynamic incident queue.

struct IncQueueEntry {

string incNum;

string description;

string location;

string district;

string inChargeRes;

char status;

};

typedef sequence<IncQueueEntry> IncQueueEntrySeq;

interface IncQueue {

void addInc(in string incNum,

in string description,

in string location,

in string district,

in string inChargeRes,

in char status)

raises(OperationFailed);

void updateInc(in string incNum,

in string description,

in string location,

in string district,

in string inChargeRes,

in char status)

raises(OperationFailed);

void deleteInc(in string incNum)

raises(OperationFailed);

void fillInc(in IncQueueEntrySeq incQueueEntrySeq)

raises(OperationFailed);

};

// Interface to be implemented as client-side object,

// for the add, update and delete of entries in the

// dynamic resource list.

struct ResListEntry {

string resID;

char type;

char status;

string district;

string inChargeInc;

};

typedef sequence<ResListEntry> ResListEntrySeq;

interface ResList {

void addRes(in string resID,

in char type,

in char status,

in string district,

in string inChargeInc)

raises(OperationFailed);

void updateRes(in string resID,

in char type,

in char status,

in string district,

in string inChargeInc)

raises(OperationFailed);

void deleteRes(in string resID)

raises(OperationFailed);

void fillRes(in ResListEntrySeq resListEntrySeq)

raises(OperationFailed);

};

interface AccessControl {

void login(in string operator,

in string password,

in string user,

in ResList resList,

in IncQueue incQueue)

raises(OperationFailed);

void logout(in string operator,

in string user,

in ResList resList,

in IncQueue incQueue)

raises(OperationFailed);

};

// Interface to be implemented as server-side object,

// as a central switching point of dynamic windows

// (multicast) update requests.

interface DynaWinHandler {

void registerIncQueue(in IncQueue incQueue,

in string user)

raises(OperationFailed);

void registerResList(in ResList resList,

in string user)

raises(OperationFailed);

void unregisterIncQueue(in IncQueue incQueue,

in string user)

raises(OperationFailed);

void unregisterResList(in ResList resList,

in string user)

raises(OperationFailed);

void addInc(in string user,

in string incNum,

in string description,

in string location,

in string district,

in string inChargeRes,

in char status)

raises(OperationFailed);

void updateInc(in string user,

in string incNum,

in string description,

in string location,

in string district,

in string inChargeRes,

in char status)

raises(OperationFailed);

void deleteInc(in string user,

in string incNum)

raises(OperationFailed);

void addRes(in string user,

in string resID,

in char type,

in char status,

in string district,

in string inChargeInc)

raises(OperationFailed);

void updateRes(in string user,

in string resID,

in char type,

in char status,

in string district,

in string inChargeInc)

raises(OperationFailed);

void deleteRes(in string user,

in string resID)

raises(OperationFailed);

};

};

3 Future Directions

The CAD system is functioning but it lacks some key attributes of a mission-critical system – manageability, scalability and high reliability. These are all answered by Enterprise Java Bean (EJB) technology, the Java server-side component architecture.

CORBA server objects written as EJB components can be managed by CORBA Object Transaction Monitors (OTMs) or EJB Containers. CORBA OTM/EJB Container take the role of TP monitor in mainframe systems. They can manage millions of server objects and their state. They can also distribute server loads across multiple processors and provide a single system image to the clients, and can prestart server objects and cache their state. They can automatically switchover to another server object instance during server object failure.

Conclusion

In this project, CORBA and Java is proven to be capable of building enterprise computing systems that are cross platform. CORBA provides a solid and versatile distributed object foundation. It enables the invocation of methods on objects, with network transparency. CORBA callbacks can be used to control client from the server side.

Swing of the Java 2 standard enables the construction of sophisticated GUI, with user-friendly features like drag-and-drop mechanism and popup menu, that has consistent look-and-feel across platforms. With the help of Java Just-In-Time (JIT) compiler, the performance of applet and server objects are excellent.

The last but not the least advantage is that both Java and CORBA are open standards – vendor lock-in is eliminated and so hardware and software can be chosen based solely on performance, features and services.

References

1. Andreas Vogel and Keith Dubby, Java Programming With CORBA, 2nd edition (Wiley, 1998)

2. Robert Orfali and Dan Harkey, Client/Server Programming with Java and CORBA, 2nd edition (Wiley, 1998)

3. Douglas Bell and Mike Parr, Java for Students, 2nd edition (Prentice Hall Europe, 1999)

4. G. Coulouris, J. Dollimore and T. Kindberg, Distributed Systems: Concepts and Design, 2nd edition (Addison-Wesley, 1994)

5. Inprise Corporation, VisiBroker Case Study (2000) <http://www.inprise.com/visibroker/cases>

6. IONA Technologies, IONA Customers (2000) <http://www.iona.com/info/aboutus/customers/index.html>

7. Object Management Group, CORBA Success Stories (2000) <http://www.corba.org/>
8. Java Development Kit 1.3, Sun Microsystems, 2000

9. Thomas J. Mowbray and Raphael C. Malveau, CORBA Design Patterns (John Wiley & Sons, Inc., 1997)

10. Thomas J. Mowbray and William A. Ruh, Inside CORBA: Distributed Object Standards and Applications (Addison Wesley Longman, Inc., 1997)

4 Appendix A: Administrator Guide

4.1 System Setup

1.
Setup VisiBroker for Java 3.4 following instructions of system administrator.

2.
Create an Oracle8i account.

3. Modify the parameters of the DriverManager.getConnection methods in IncidentImpl.java, ResourceImpl.java, AccessControlImpl.java and DynaWinHandler.java according to the particulars of the Oracle8i account. Compile the Java files.

4. Run all the SQL DDL files in Oracle SQLPlus to create the required database objects.

5. In the OPERATOR table, insert records with the OPERATOR and PASSWORD fields set to your preferred values. In the USER_ table, insert records with the USER_ field set to your preferred values. These values will be used to login the CAD system.

6. Start VisiBroker Osagent, CORBA name service, VisiBroker Gatekeeper and CadServerNs – the Java application hosting all the server objects. See the commands file for examples.

7. Install Java Plugin 1.3 on the front-end platform.

8. Point the Web browser to the TCP/IP port listened by Gatekeeper. After downloading the JAR files, the CAD applet should show up.

9. Finish. Try out the screen update multicasting, drag-and-drop mechanism and context-sensitive popup menu. These commands can be entered in the CAD applet command line: IC, IU, ID, IL, ILD, IRAS, IRAR, RC, RU, RD, RLD, LOGOUT, CLS. For help, simply enter the command and press enter.

4.2 Trouble Shooting

Send questions to the author at smithchau@hotmail.com.

5 Appendix B: List of Source Files

File Name
Description

cad.html
HTML anchoring the CAD applet

inc_queue.sql
SQL DDL of INC_QUEUE table

inc_res_relation.sql
SQL DDL of INC_RES_RELATION table

incident.sql
SQL DDL of INCIDENT table

incident_hist.sql
SQL DDL of INCIDENT_HIST table

incident_log.sql
SQL DDL of INCIDENT_LOG table

incident_log_hist.sql
SQL DDL of INCIDENT_LOG_HIST table

operator.sql
SQL DDL of OPERATOR table

res_list.sql
SQL DDL of RES_LIST table

resource_.sql
SQL DDL of RESOURCE_ table

resource_hist.sql
SQL DDL of RESOURCE_HIST table

resource_log.sql
SQL DDL of RESOURCE_LOG table

resource_log_hist.sql
SQL DDL of RESOURCE_LOG_HIST table

user_.sql
SQL DDL of USER_ table

seq_inc_number.sql
SQL DDL of SEQ_INC_NUMBER sequence

CadApplet.java
Java source of the applet

CbxCloseReason.java
Java source of close reason combo-box

CbxDistrict.java
Java source of district combo-box

CbxResType.java
Java source of resource type combo-box

PnlLogin.java
Java source of login panel

PnlIncClose.java
Java source of incident closure panel

PnlIncCreate.java
Java source of incident creation panel

PnlIncDisplay.java
Java source of incident display panel

PnlIncLogDisplay.java
Java source of incident log display panel

PnlIncLogInput.java
Java source of incident log input panel

PnlIncUpdate.java
Java source of incident update panel

PnlResCreate.java
Java source of resource creation panel

PnlResDisplay.java
Java source of resource display panel

PnlResLogDisplay.java
Java source of resource log display panel

PnlResUpdate.java
Java source of resource update panel

AccessControl.java
Java source of AccessControl interface

AccessControlHelper.java
Java source of helper class of AccessControl interface

AccessControlHolder.java
Java source of holder class of AccessControl interface

AccessControlImpl.java
Java source of implementation of AccessControl interface

CadServerNs.java
Java source of the server process

DatabaseError.java
Java source of DatabaseError exception

DatabaseErrorHelper.java
Java source of help class of DatabaseError exception

DatabaseErrorHolder.java
Java source of holder class of DatabaseError exception

DynaWinHandler.java
Java source of DynaWinHandler interface

DynaWinHandlerHelper.java
Java source of helper class of DynaWinHandler interface

DynaWinHandlerHolder.java
Java source of holder class of DynaWinHandler interface

DynaWinHandlerImpl.java
Java source of implementation of DynaWinHandler interface

IncQueueEntry.java
Java source of IncQueueEntry class

IncQueueEntryHelper.java
Java source of helper class of IncQueueEntry interface

IncQueueEntryHolder.java
Java source of holder class of IncQueueEntry interface

IncQueueEntrySeqHelper.java
Java source of helper class of IncQueueEntrySeq sequence

IncQueueEntrySeqHolder.java
Java source of holder class of IncQueueEntrySeq sequence

IncQueue.java
Java source of IncQueue interface

IncQueueHelper.java
Java source of helper class of IncQueue interface

IncQueueHolder.java
Java source of holder class of IncQueue interface

IncQueueImpl.java
Java source of implementation of IncQueue interface

Incident.java
Java source of Incident interface

IncidentHelper.java
Java source of helper class of Incident interface

IncidentHolder.java
Java source of holder class of Incident interface

IncidentImpl.java
Java source of implementation of Incident interface

OperationFailed.java
Java source of OperationFailed exception

OperationFailedHelper.java
Java source of helper class of OperationFailed exception

OperationFailedHolder.java
Java source of holder class of OperationFailed exception

ResListEntry.java
Java source of ResListEntry class

ResListEntryHelper.java
Java source of helper class of ResListEntry class

ResListEntryHolder.java
Java source of holder class of ResListEntry class

ResListEntrySeqHelper.java
Java source of helper class of ResListSeq sequence

ResListEntrySeqHolder.java
Java source of holder class of ResListSeq sequence

ResList.java
Java source of ResList interface

ResListHelper.java
Java source of helper class of ResList interface

ResListHolder.java
Java source of holder class of ResList interface

ResListImpl.java
Java source of implementation of ResList interface

Resource.java
Java source of Resource interface

ResourceHelper.java
Java source of helper class of Resource interface

ResourceHolder.java
Java source of holder class of Resource interface

ResourceImpl.java
Java source of implementation of Resource interface

_AccessControlImplBase.java
Java source of skeleton class of AccessControl interface

_DynaWinHandlerImplBase.java
Java source of skeleton class of DynaWinHandler interface

_IncQueueImplBase.java
Java source of skeleton class of IncQueue interface

_IncidentImplBase.java
Java source of skeleton class of Incident interface

_ResListImplBase.java
Java source of skeleton class of ResList interface

_ResourceImplBase.java
Java source of skeleton class of Resource interface

_st_AccessControl.java
Java source of stub class of AccessControl interface

_st_DynaWinHandler.java
Java source of stub class of DynaWinHandler interface

_st_IncQueue.java
Java source of stub class of IncQueue interface

_st_Incident.java
Java source of stub class of Incident interface

_st_ResList.java
Java source of stub class of ResList interface

_st_Resource.java
Java source of stub class of Resource interface

LimitedPasswordField.java
Java source of extended PasswordField class with limited length capability

LimitedTextField.java
Java source of extended TextField class with limited length capability

stringSeqHelper.java
Java source of helper class of stringSeq sequence

stringSeqHolder.java
Java source of holder class of stringSeq sequence

PmuRelation.java
Java source of incident-resource relation popup menu

LstIncident.java
Java source of incident-queue list

LstResource.java
Java source of resource-list list

External systems, e.g. those in immigration and transportation departments.

Figure � SEQ Figure * ARABIC �16�. Interaction of objects during login.

� EMBED Word.Picture.8 ���

Figure � SEQ Figure * ARABIC �15�. Interaction of objects during logout.

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

Figure � SEQ Figure * ARABIC �6�. The context-sensitive popup menu in the dynamic incident queue.

Figure � SEQ Figure * ARABIC �5�. The user interface of the CAD system.

� EMBED Word.Picture.8 ���

Historic resource

Incident creation

Resource creation

Figure � SEQ Figure * ARABIC �14�. Interaction of objects when resource functions are performed.

Figure � SEQ Figure * ARABIC �13�. Interactions of objects when incident functions are performed.

� EMBED Word.Picture.8 ���

Figure � SEQ Figure * ARABIC �17�

� EMBED Word.Picture.8 ���

Resource deletion

Arrive resource at incident

Assign resource to incident

Release resource from incident

Resource

Incident

Resource

display

Resource update

Resource log display

Incident update

Incident display

Incident log input

Incident log display

Historic incident

Incident closing

Computer Aided Despatch System

Telephone call from public network

Private Automatic Branch Exchange (PABX)

Management Information System (MIS)

Historic incident & historic resource

Address information

Geographic Information System (GIS) / Global Positioning System (GPS)

Radio call information

Mobile Radio Systems

Figure � SEQ Figure * ARABIC �7�. The context-sensitive popup menu in the dynamic resource list.

Figure � SEQ Figure * ARABIC �8�. An incident is being dragged from the dynamic incident queue.

Figure � SEQ Figure * ARABIC �9�. An incident is being dropped into the dynamic resource list.

Figure � SEQ Figure * ARABIC �10�. A resource is being dropped into the dynamic incident queue.

Figure � SEQ Figure * ARABIC �11�. A resource is being dragged from the dynamic resource list.

Figure � SEQ Figure * ARABIC �18�. The login panel.

Figure � SEQ Figure * ARABIC �19�. The incident creation panel.

Figure � SEQ Figure * ARABIC �20�. The incident update panel.

Figure � SEQ Figure * ARABIC �21�. The incident display panel.

Figure � SEQ Figure * ARABIC �22�. The scene window.

Figure � SEQ Figure * ARABIC �23�. The map window.

Figure � SEQ Figure * ARABIC �24�. The incident close panel.

Figure � SEQ Figure * ARABIC �25�. The incident log input panel.

Figure � SEQ Figure * ARABIC �26�. The incident log display panel.

Figure � SEQ Figure * ARABIC �27�. The resource creation panel.

Figure � SEQ Figure * ARABIC �28�. The resource update panel.

Figure � SEQ Figure * ARABIC �29�. The resource display panel.

Figure � SEQ Figure * ARABIC �30�. The resource log display panel.

IIOP

ResList

IncQueue

Web browser JVM

ORB

DynaWinHandler

AccessControl

Server JVM

Incident

ORB

JDBC

CadApplet

RDBMS

Resource

Calls

Callbacks

PAGE
36

_1025770804.doc

CadApplet

ResList

IncQueue

AccessControl

Resource

Incident

DynaWinHandler

resource operations

addRes/updateRes/deleteRes

addInc/updateInc/deleteInc

addRes/updateRes/deleteRes

addInc/updateInc/deleteInc

_1025770851.doc

CadApplet

ResList

IncQueue

AccessControl

Resource

Incident

DynaWinHandler

incident operations

addRes/updateRes/deleteRes

addRes/updateRes/deleteRes

addInc/updateInc/deleteInc

addInc/updateInc/deleteInc

_1026628018.doc

CadApplet

ResList

IncQueue

AccessControl

Resource

Incident

DynaWinHandler

resource operations

addRes/updateRes/deleteRes

addInc/updateInc/deleteInc

addRes/updateRes/deleteRes

addInc/updateInc/deleteInc

_1016287998.doc
[image: image1.png]Interface
Repository

Object Request Broker Core (IIOF)

_1025770681.doc

CadApplet

ResList

IncQueue

AccessControl

Resource

Incident

DynaWinHandler

logout

unregisterResList

unregisterIncQueue

_1025770633.doc

CadApplet

ResList

IncQueue

AccessControl

Resource

Incident

DynaWinHandler

login

registerResList

registerIncQueue

fillIncQueue

fillResList

_1016275749.doc
[image: image1.png]Common Facilities (CORBAfaciIities)\
: ~ Vertical Common Facilities

Application
Objects

Horizontal Common Facilities

D@‘ tr(blg‘tcd lnfgmagon 5y‘étc“m5 Task
 |Dogumentts Management | Managemént | Management

-4

‘Ektc’nna zatl'qn' ‘Ev;cnt«s‘ Trans,agﬂona e Kcla‘lrhips Srartup
‘ Common Object Services (CORBAservices)

