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WS-DREAM: A Distributed Reliability Assessment Mechanismfor
Web Services

Abstract

Redundancy-based fault tolerance strategies are proposedfor building reliable Service-Oriented Applications

(SOA), which can be developed on the unpredictable remote Web services. This paper proposes and implements

a distributed reliability assessment mechanism for Web services, named WS-DREAM. Based on this mechanism,

we provide a systematic comparison of various replication strategies by theoretical formula and real-world ex-

periments. Moreover, a user-participated strategy selection algorithm is proposed and verified. Experiments are

conducted to illustrate the advantage of this mechanism. Inthese experiments, users from six different locations

all over the world perform evaluation of Web services distributed in six countries. Over 1,000,000 test cases are

executed in a collaborative manner and detailed results arealso provided.
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Chapter 1

Introduction

1.1 Introduction

Web services are self-contained, self-describing, and loosely-coupled computational components designed to

support Machine to Machine interaction via networks, including the Internet. They are widely employed to im-

plement the increasingly popular Service-Oriented Architectures/Applications (SOA). Because the reliability and

effectiveness of remote Web services are unclear, and the performance of Internet is also unpredictable, it is diffi-

cult to guarantee the performance (e.g., response latency,failure-rate, stability and so on) of these service-oriented

applications, which are developed on Web services.

WS-ReliableMessaging [1] is a Web service specification designed to allows messages to be delivered reliably

between distributed applications. However, it can only guarantee communication reliability. Problems, such as

unavailability of remote Web service (server crash down, overload, network disconnect, and so on), and poor per-

formance (long latency, unstable, high failure-rate, and so on), are remain unsolve. A number of application/Web

service level redundancy-based fault tolerance strategies have been proposed in the recent literature for establishing

trustworthy and reliable service-oriented applications [2, 3, 4, 5]. These strategies use Web services with similar or

identical interfaces as redundant replicas for fault tolerance and performance improvement purpose. There are two

commonly used replication strategies: passive replication and active replication [6]. Passive replication, which

employs a primary replica to process the request first and invokes backup replicas only when the primary replica

fails, has been employed in FT-SOAP [7] and FT-CORBA [8]. Active replication, which invokes all replicas in

parallel and employs the first properly returned response asthe final outcome, has been employed in FTWeb [9],

Thema [10], WS-Replication [11] and in work [12]. Also, an N-version model is involved in WS-FTM [13] for

Web services. Design diversity and voting are employed in FT-Grid [14] and in work [15] to tolerant faults.

It is a challenge for application developers to select out the optimal replication strategy, which requires per-

formance information of the target replicas and good knowledge on various available replication strategies. A
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number of investigations are focus on individual Web service evaluation [16, 17, 18, 19, 20, 21], however, the

investigations on replication strategies evaluation and selection is still limited.

1.2 Contributions

Assuming that the developers have obtained several appropriate replicas manually or using approaches proposed

in [6, 31], this paper proposes a distributed assessment mechanism for suggesting an optimal replication strategy

for service users. The contribution of this paper includes:

• Design and implement a distributed reliability assessmentmechanism for Web services and replication

strategies.

• Provide a systematic introduction of various replication strategies, and propose a replication strategy selec-

tion algorithm.

• Comprehensive real-world experiments are conducted, where more than 1,000,000 test cases are executed

by users in six locations all over the world on target Web services located in six countries.

1.3 Organization

This paper is organized as follows: Chapter 2 proposes a distributed reliability assessment mechanism for Web

services. Chapter 3 introduces various replication strategies. Chapter 4 provides an optimal strategy selection

algorithm. Chapter 5 implements a prototype of our assessment mechanism. Chapter 6 presents experimental

results, and Chapter 7 concludes the report.
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Chapter 2

A Distributed Assessment Mechanism

When conducting replication strategies evaluation and selection, there are several challenges to be solved:

• Evaluation location: The service-oriented applications are usually distributed around different locations

after being deployed, and the network conditions of these locations are different from each other. Therefore,

conducting evaluation on the target Web services from various locations is necessary.

• Evaluation accuracy: To conduct accurate Web services and replication strategies evaluation, the service

users need to have professional knowledge on various replication strategies, test case generation [22], test

result analysis and so on. Unfortunately, few service usersmeet these requirements.

• Evaluation efficiency: It is time-consuming for service users to conduct evaluation themselves, which will

entail studying various available strategies, designing test cases, implementing evaluation mechanisms and

conducting evaluation in various locations. More efficientapproaches are required.

Taking the viewpoint of service users where the remote Web service is treated as a black box without any in-

ternal design or implementation information, this sectionproposes a distributed Web service/replication reliability

assessment mechanism to address the above challenges. Thismechanism, which have also been introduced in

[23], employs the concept of user-collaboration, which hascontributed to the recent success of BitTorrent [24] and

Wikipedia [25]. In this mechanism, users in different geographical locations help each other to conduct evaluation

of individual Web services or replication strategies underthe coordination of a centralized server. Historical test

cases and evaluation results are saved in a data center for further use (e.g. performance prediction, evaluation

efficiency and accuracy improvement). As shown in Fig.2.1, WS-DREAM includes a centralized server with a

number of distributed clients. The overall process can be explained as follows.

1) Evaluation registration: Users submit evaluation requests with related information, such as the target Web

service addresses, particular test cases, preferred replication strategies, and so on, to the server.
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Figure 2.1. Architecture of WS-DREAM

2) Client-side application loading: A client-side evaluation application is loaded and executed in the user’s

computer.

3) Test case generation:The TestCase Generatorin the server automatically creates test cases based on

the interface of the target Web Service (WSDL file). User-contributed test cases as well as accumulated

historical test cases are retrieved from the database of theserver. Fault injection techniques [22, 26, 27] are

employed to create various fault-trigger test cases in addition to normal test cases. Two types of test cases

are created: single test cases for individual Web service performance evaluation, and multiple test cases,

which contain several test cases and a running rule, for fault tolerance replication strategy evaluation.

4) Test coordination: TheTest Coodinatorschedules testing tasks based on the number of current usersand

test cases.

5) Test cases dispatch:Distributed client-side evaluation applications gets test cases from the server.

6) Test cases execution:Distributed client-side evaluation applications executetesting on the target Web

services.

7) Test result collection: The test result is sent back to the server. Then steps 5, 6 and 7are repeated to execute

more test cases.
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8) Test cases analysis:After the test is completed, the server engages aTestResult Analyzerto process the

collected data. Moreover, historical evaluation data relating to the target Web services are obtained from the

database for efficiency and accuracy improvement. The detailed evaluation result is sent to the user.

The challenges shown above can be addressed by WS-DREAM. Theevaluation duration is greatly shortened by

employing historical evaluation result of the same target Web service. The challenge of conducting evaluation from

various locations under different network condition can beaddressed by conducting evaluation in a collaborative

manner. The quality of test cases is greatly improved, sinceusers can contribute individually-designed test cases

to supplement the test cases generated automatically by theevaluation server. Therefore, those users who plan

to assess the same Web service benefit from the intelligence of each other (due to their individual design of test

cases). They also benefit from the cumulated intelligence ofprior users who have performed the Web evaluation

before. Finally, the evaluation efficiency is also greatly improved, because in contrast to design and implement the

evaluation mechanism all by themselves, it is much more efficient to employ the WS-DREAM as proposed in this

paper, which can be implemented and launched by a third-party. With WS-DREAM, it is much easier for users to

conduct accurate and efficient evaluation of individual Webservice or replication strategies.
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Chapter 3

Replication Strategies

Dependability is a major issue when applying Web services tocritical domains, such as government management

systems, commercial trading systems and so on. Nowadays, there are a number of identical or similar Web

services available in the Internet, making redundancy-based fault tolerance strategies [28] a natural choice for

building reliable service-oriented applications out of unreliable remote Web services. There are two types of

redundancy: time redundancy (repetition of computation orcommunication), and space redundancy (replication

of hardware or software) [29]. Only time redundancy and software redundancy will be discussed in this paper;

hardware redundancy is outside our scope.

Time redundancy is based on using extra execution time to tolerate faults.Retry, which employs time re-

dundancy, is a commonly used strategy for reliability improvement. AlthoughRetry can be employed to mask

temporal faults, it will increase response time and cannot tolerate permanent faults. Therefore, space redundancy

is also needed to provide better reliability performance.

Space redundancy is based on using extra resources, such as hardware or software, to mask faults. There

are two types of software redundancy: active replication and passive replication [30]. Active replication, such

as N-Version Programming (NV P ), is performed by invoking all replicas at the same time to process the same

request. There are two ways to determine the final result:voting and without voting[6]. Majority voting is

usually employed to mask logical faults by design diversityin traditional fault tolerance techniques. Thewithout

voting approach involves the first properly returned response as the final outcome. It is usually employed to

mask network communication faults and remoteService Unavailablefaults. Active replication is computing and

networking resource consuming.

On the other hand, passive replication, through means such as a recovery block (RB), invokes a primary replica

to process the request first. Standby replicas will be invoked only when the primary replica fails. In an erroneous

environment, the response time of the passive replication strategy is large, since different replicas are invoked

sequentially. Also, performance overheads will be increased by the failure-detection, failure-handling and system
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Table 3.1. Combination of Replication Strategies

NVP Retry RB

NVP 1.NVP 4.NVP+Retry 6.NVP+RB

Retry 5.Retry+NVP 2.Retry 8.Retry+RB

RB 7.RB+NVP 9.RB+Retry 3.RB

reconfiguration actions employed by passive replication.

As shown in Table 3.1, combining the three basic replicationstrategies: time redundancy (Retry), active repli-

cation (NV P ) and passive replication (RB), will generate more complex replication strategies. The theory and

explanation of these replication strategies are as follows:

A1

A2

Av

B1

B2

Bv

If Fail

If Fail

If Fail

If Fail

A1

A2

Av

B1

B2

Bv �� �� �� ����

�� ����

�� �� ���� �� �� ����

���	�
 �� ������ �������	�
�� 
�������� �� ������
��
�� 
����� �� ���
���� �������� �� ��������

Figure 3.1. Replication Strategies

1) NVP: NV P invokes all then replicas in parallel. Because most failures of Web servicesare caused by

network communication faults or server unavailability,Without votingis employed to determine the final

result. The system reliability (r) and mission time (t) of this strategy are shown in Eq. (3.1) below, wheren

is the number of all replicas,Tc is a set of Round-Trip Times (RTT) of the properly returned test cases, and

Tf is a set of Round-Trip Times of the failed test cases. When alltest cases are failed (|Tc| = 0), the max

RTT value of the failed test cases is employed as the overall mission time, sinceNV P does not know itself
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fail until all test cases return.

r = 1 −
n

∏

i=1

(1 − ri); t =







min{Tc} : |Tc| > 0

max{Tf} : |Tc| = 0
;T = {t1, ..., tn} = Tc ∩ Tf (3.1)

2) Retry: Time redundancy is employed in retry. The same Web service will be tried for a certain number of

times if it fails. m is the retried times.

r = 1 − (1 − r1)
m; t =

m
∑

i=1

ti(1 − r1)
i−1; (3.2)

3) RB: In this strategy, another standby Web service will be tried sequentially if the original Web service fails.

m is the recovered times.

r = 1 −
m
∏

i=1

(1 − ri); t =
m

∑

i=1

ti

i−1
∏

k=1

(1 − rk) (3.3)

4) NVP+Retry: As shown in Fig. 3.1, onlyv best performing replicas among all then replicas are employed.

The wholeNV P will be re-executed if fails.m is the retried times.

r = 1 − (
v

∏

i=1

(1 − ri))
m; t =

m
∑

i=1

ti(
v

∏

j=1

(1 − rj))
i−1; ti =







min{T i
c} :

∣

∣T i
c

∣

∣ > 0

max{T i
f} :

∣

∣T i
c

∣

∣ = 0
; (3.4)

5) Retry+NVP: As shown in Fig. 3.1, onlyv best performing replicas among all then replicas are employed.

The replicas in the NVP will be retried individually if they fail.

r = 1 −
v

∏

i=1

(1 − ri)
m; t =







min{Tc} : |Tc| > 0

max{Tf} : |Tc| = 0
; ti ∈ T =

m
∑

j=1

tij(1 − ri)
j−1; (3.5)

6) NVP+RB: As shown in Fig. 3.1, another NVP employing the secondaryv replicas will be tried if the first

NVP fails. m is the retried times.

r = 1 −
m
∏

i=1

v
∏

j=1

(1 − rij); t =
m

∑

i=1

ti

i−1
∏

k=1

v
∏

j=1

(1 − rkj); ti =







min{T i
c} :

∣

∣T i
c

∣

∣ > 0

max{T i
f} :

∣

∣T i
c

∣

∣ = 0
; (3.6)

7) RB+NVP: As shown in Fig. 3.1, a replica in theNV P will try another standby replica sequentially if it

fails. m is the retried times, andv is the number of replicas in theNV P
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r = 1 −
v

∏

j=1

m
∏

i=1

(1 − rij); t =







min{Tc} : |Tc| > 0

max{Tf} : |Tc| = 0
; ti ∈ T =

m
∑

j=1

tij

j−1
∏

k=1

((1 − rik); (3.7)

8) Retry+RB: A replica will retry itself first form times. Then another standby replica will be executed. Only

u best performing replicas are employed among all then replicas.

r = 1 −
u

∏

i=1

(1 − ri)
m; t =

u
∑

i=1

((
m

∑

j=1

ti(1 − ri)
j−1)

i−1
∏

k=1

(1 − rk)
m); (3.8)

9) RB+Retry: A replica will try another standby replica first if it fails. After tryingu replicas without success,

the whole RB process will be retried.m is the retried times.

r = 1 − (
u

∏

i=1

(1 − ri))
m; t =

m
∑

i=1

((
u

∑

j=1

tj

j−1
∏

k=1

(1 − rk)(
u

∏

j=1

(1 − rj))
i−1); (3.9)

These replication strategies can be divided into three types as follows:

1) Parallel (Strategy 1): Parallel strategies invoke all standby replicas at the sametime and employ the first

properly returned response as the final result. They can be employed to obtain good response time per-

formance. However, they consume a considerable amount of computing and networking resources. Also,

opening too many network connections at the same time may lead to network jam-up at the client-side,

especially when the communication data size is large.

2) Sequential (Strategies 2, 3, 8 and 9):Sequential strategies employRetry or RB to mask faults. The

standby replicas are invoked one by one. Sequential strategies consume fewer resources, but suffer from

bad response time performance in erroneous environments.

3) Hybrid (Strategies 4, 5, 6 and 7):Hybrid strategies combine both sequential and parallel approaches. They

only invoke a handful of best performing replicas at the sametime, and if these primary replicas fail,Retry

or RB will be employed to mask faults. This approach consumes fewer resources than parallel strategies

and has better response time performance than sequential strategies.
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Chapter 4

Replication Strategy Selection

Optimal replication strategies for service-oriented applications vary from case to case, which are influenced not

only by objective replica performance, but also by subjective performance requirement of service users (applica-

tion developers). For example, developers of latency-sensitive applications may prefer parallel strategies to obtain

better response time performance, while developers of resource-constrained applications may prefer sequential

strategies for better resource conservation. In this section, based on both objective replica performance and sub-

jective user requirements, we propose an algorithm for replication strategy selection.

The following defines some notations.

{ws}n
i=1: a set of ranked Web service replicas.

ti: the average Round-Trip Time (RTT) ofwsi.

fi: the failure-rate ofwsi.

si: the overall performance ofwsi.

tuser : the response time requirement provided by users.

fuser : the failure-rate requirement provided by users.

a: the performance threshold for replicas.

b: the performance degrade threshold for replicas.

c: the failure threshold for replicas.

The subjective user requirements are obtained by requiringthe user to provide two values:tuser andfuser. tuser

represent the user requirement on response time improvement of increasing one parallel replica. It is designed to

facilitate the user to make a tradeoff between the response time performance and resource consuming.tuser with

small value means response time performance is regarded as more desirable than resource conservation. Such kind

of users are more likely to call more replicas in parallel to obtain better response time performance, although more

resource will be consumed.fuser represents the user requirement on failure-rate of the application.

All the target Web service replicas{wsi}
n
i=1 are ranked by their performancesi, wherews1 is the best per-
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forming replica (smallestsi value). The performance of a particular target Web servicesi can be obtained by

calculatingsi = ti
tuser

+ f i

fuser
. The underlying consideration is that performance of a particular response time is

related to user requirement. For example, 100ms is a large latency for the latency-sensitive applications,while it

is neglectable for non-latency-sensitive applications. By using ti
tuser

, wheretuser represents the user requirement

on response time, we can have a better representation of the response time performance for various users with

different requirements. Failure rate is similarly considered.

By finding out the optimal parallel replica numberv, the optimal strategy type can be determined as:Sequential

(v = 1), Hybrid (1 < v < n) andParallel (v = n). The value ofv can be obtained by solving the following

optimization problem:

Problem 1: Given:

• A set of target Web service replicas{wsi}
n
i=1, which are ranked by the performance.

• The overall response time performance of employing the firstx (1 ≤ x ≤ n) replicas in parallelT (x),

which is obtained byT (x) = 1

g
×

∑g
i=1

t(i, x), wheret(i, x) is the response time of theith test case by

employingx parallel replicas, andg is the number of test cases.

• User’s subjective expectation on response time improvement by increasing one parallel replicatuser.

Maximize: x, the number of parallel replicas.

Subject to:

• |T (x) − T (x − 1)| ≥ tuser.

If v = 1, sequential strategies (Strategies 2, 3, 8 and 9) will be selected. To determine the optimal sequential

strategy, the poor performing replicas, which may greatly influence the response time performance of sequential

strategies, will be excluded. A set of good performance replicasW will be selected out by usingW = {wsi|si ≤

a&&1 ≤ i ≤ n}, wherea is the replica performance threshold. When|W | = 0 (no replica meet the performance

requirement), the user needs to include other good performing replicas or reduce the performance thresholda.

When|W | = 1, Strategy 2 (Retry) is employed, since all other strategies need space redundant replicas. When

|W | = n, Strategy 3 (RB) is employed. Otherwise, Strategy 8 (Retry + RB) and Strategy 9 (RB + Retry) are

optimal. p1, which is the performance degradation betweenws1 andws2 obtained byp1 = s2 − s1, is employed

to find out the optimal strategy between Strategies 8 and 9. When the performance degradation is large (p1 ≥ b),

retrying thews1 first is more likely to obtain better performance (Strategy 8) than invoking the secondary backup

replica (Strategy 9).

If 1 < v < n, hybrid strategies will be selected.p2, obtained byp2 = 1

v

∑

v
i=1(si+v − si), represents the

performance difference between the primaryv replicas and the secondaryv replicas. If the performance difference

is large (p2 ≥ b), retrying the original parallel block first is more likely to obtain better performance (Strategies 4
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and 5) than invoking the secondaryv backup replicas (Strategies 6 and 7).p3 is the failure frequency of the firstv

replicas, which can be calculated byp3 = 1

v

∑

v
i=1fi. In erroneous environment (p3 ≥ c), performance of Strategy

4 and Strategy 6 is not good, because they need to wait for all replicas to fail before retrying/recovering, making

the response time longer. Therefore, Strategies 5 and 7 are optimal.

If v = n, Strategy 1 (NV P ), which invokes all the target replicas in parallel, will beselected to obtain better

response time performance. Figure 4.1 shows the strategy selection procedure. First, the sequential, hybrid, and

parallel types are selected based on the values ofv. Then, the detailed strategy will be determined based on the

value of|W |, p1, p2 andp3. Values ofa, b, c and verifications of this algorithm will be presented in Section 6.3.

���� �!��

" # $ % & '

(
)*+, -.,./ .0* 1+, -., +2 -.2 +2 -.2

3435/6078 * *9
:

; ;
Figure 4.1. Replication Strategy Selection Tree

(R1): if v = 1&& |W | = 1 ⇒ Strategy 2.

(R2): if v = 1&&1 < |W | < n&&p1 < b ⇒ Strategy 9.

(R3): if v = 1&&1 < |W | < n&&p1 ≥ b ⇒ Strategy 8.

(R4): if v = 1&& |W | = n ⇒ Strategy 3.

(R5): if 1 < v < n&&p2 < b&&P3 < c ⇒ Strategy 6.

(R6): if 1 < v < n&&p2 < b&&P3 ≥ c ⇒ Strategy 7.

(R7): if 1 < v < n&&p2 ≥ b&&P3 < c ⇒ Strategy 4.

(R8): if 1 < v < n&&p2 ≥ b&&P3 ≥ c ⇒ Strategy 5.

(R9): if v = n ⇒ Strategy 1.
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Chapter 5

Implementation

To illustrate the distributed assessment mechanism designed in Section 2, as well as the strategy selection algorithm

proposed in Section 4, a prototype [34] is implemented usingJava. To provide a convenient way for users to

conduct testing seamlessly, the client-side evaluation application is realized as a signedJava Applet, which can be

run and updated automatically by users’ Internet browsers.The server-side includes anHTTP Web site(running on

an Apache HTTP Server), aTestCaseGenerator(Java project), aTestCoodinator(Java Servlet running on Tomcat

6.0), and a data center for recording results and test cases (MySQL).

To provide meaningful illustration of WS-DREAM, more than 1,000,000 test cases are executed by users in

six locations (CMU@US, CUHK@HK, NTU@SG, SYSU@CN, NTHU@TW and SUT@AU) all over the world

under various network conditions to eight target Web services located in six countries (US, JP, DE, CA, FR and

UK). The nine replication strategies discussed in Section 3are evaluated and compared, and the strategy selection

algorithm proposed in Section 4 is verified.

The eight target Web services involved in the experiment include six identical commercial Amazon Web ser-

vices in different geographical locations [32] for book information displaying (will be used as replicas), a Global

Weather Web service [33] for weather information displaying, and a GeoIP Web service [33] for geographical

location information querying by IP addresses. The non-commercial Global Weather Web service and GeoIP

Web service are involved for making comparison with the commercial Amazon Web services. In this experiment,

the timeout threshold is set to be 10 seconds. If a Web servicedoes not respond within the 10-second period,

the request will be terminated and a timeout failure is recorded. In practice, the value of timeout threshold is

application-dependent and can be set by users based on the need of their applications. Detailed information of test

cases, test plans, and test results of the experiment is available in [34].

Three types of experiments are conducted:

1) Evaluation of individual Web services to illustrate the WS-DREAM, as well as to get typical information

13



for the strategy selection algorithm.

2) Evaluation of various replication strategies for performance comparison.

3) Verification of the strategy selection algorithm by two scenarios.

14



Chapter 6

Experiments

6.1 Evaluation of Individual Web Services

Table 6.1 shows the detailed experimental results of individual target Web services employing WS-DREAM.cn,

tw, au, sg, hk, usstand for the six user locations that conducted the evaluation. a-us, a-jp, a-de, a-ca, a-franda-uk

stand for the six Amazon Web Services located in US, Japan, Germany, Canada, France, and UK, respectively.

GWandGIP stand for the corresponding Global Weather Web Service and GeoIP Web Service located in the USA.

Casesshows the failure rate (R%), which is the number of failed test cases (Fail) divided by the number of all

executed test cases (All). RTTshows the average (Avg), standard deviation (Std), minimum (Min) and maximum

(Max) values of test case communication Round-Trip-Times (RTT). Only values of correct cases are calculated in

the RTT, because most of the failed cases have large RTT values, which distort the accuracy of the result. All time

units are in milliseconds (ms).

As shown in Table 6.1, RTT values of target Web services change dramatically from place to place. For ex-

ample, in our experiment, accessinga-usonly needs 74 milliseconds on average from the USA, while it needs

4184 milliseconds on average from Mainland China. Moreover, even in the same location, the RTT values vary

drastically from case to case, especially in user locationsunder poor network conditions. As shown in Fig. 6.2, in

Mainland China, the RTT values vary from 562 milliseconds to9926 milliseconds. This RTT variance degrades

service quality and affects user experiments.

The experimental result indicates that RTT is mainly made upof network latency. As described in

RTT = NetworkLatency + ProT, (6.1)

RTT is composed of two parts.NetworkLatencyis the time occupied by network package transmission, andProT

is the time consumed by a Web service server for processing the request. Figure 6.3 shows ProT values of the

six Amazon Web services. The ProT of GW and GIP are unavailable, as these two Web services server do not

15



Table 6.1. Evaluation Results of the Eight Target Web Services
Location Cases RTT (ms) Location Cases RTT (ms)

L WS All Fail R% Avg Std Min Max L WS All Fail R% Avg Std Min Max

a-us 484 109 22.52 4184 2348 562 9906 a-us 2470 0 0 902 294 578 4609

a-jp 482 128 26.55 3892 2515 547 9937 a-jp 2877 1 0.03 791 315 407 5016

a-de 487 114 23.40 3666 2604 687 9844 a-de 2218 0 0 1155 355 765 4547

a-ca 458 111 24.23 4074 2539 610 9953 a-ca 2612 5 0.19 899 300 562 4032

a-fr 498 96 19.27 3654 2514 687 9999 a-fr 2339 0 0 1144 370 734 4813

a-uk 493 100 20.28 3985 2586 719 9875 a-uk 2647 1 0.03 1150 363 750 5093

GW 409 337 82.39 6643 2003 2094 9969 GW 1981 35 1.76 1105 1401 343 9844

cn

GIP 540 32 5.92 2125 1927 531 9781

tw

GIP 2822 60 2.12 732 1270 265 9875

a-us 1140 0 0 705 210 500 3782 a-us 1895 0 0 561 353 297 4406

a-jp 1143 0 0 577 161 406 2594 a-jp 1120 0 0 503 322 250 3687

a-de 1068 0 0 933 272 672 6094 a-de 1511 0 0 638 409 375 4735

a-ca 1113 0 0 697 177 500 2672 a-ca 1643 0 0 509 240 297 4125

a-fr 1090 0 0 924 214 672 2906 a-fr 1635 0 0 638 310 390 5468

a-uk 1172 3 0.25 921 235 672 3859 a-uk 1615 0 0 650 308 375 4297

GW 1104 5 0.45 503 544 234 9375 GW 1363 0 0 1403 1544 265 9937

au

GIP 1125 0 0 355 609 234 9360

sg

GIP 1312 0 0 571 878 265 9594

a-us 21002 81 0.38 448 304 250 9547 a-us 3725 0 0 74 135 31 3171

a-jp 20944 11 0.05 388 321 203 9937 a-jp 3578 0 0 317 224 109 9219

a-de 21130 729 3.45 573 346 343 9360 a-de 3766 0 0 298 271 109 9390

a-ca 21255 125 0.58 440 286 250 9515 a-ca 3591 0 0 239 260 31 9515

a-fr 21091 743 3.52 575 349 343 9703 a-fr 3933 0 0 433 222 187 3906

a-uk 20830 807 3.87 570 348 328 9734 a-uk 3614 0 0 293 260 124 9157

GW 21148 1426 6.74 1563 1560 406 9999 GW 3837 0 0 1290 1346 125 9828

hk

GIP 21007 1263 6.01 849 1582 203 9999

us

GIP 3621 0 0 675 1348 125 9938

provide the ProT information. As shown in Fig. 6.3, the average ProT values of all the six Amazon Web services

are less than 30 milliseconds, which is very small compared with the RTT, indicating that RTT consist mainly of

network latency rather than server processing time. Among all the six Amazon Web services,a-jp provides the

worst performance, which may be related to the server workload.

Users under poor network conditions are more likely to suffer from unreliable service, since unstable RTT

performance will degrade service quality and can even lead to timeout failure. As shown in Fig. 6.1 and Table

6.1, users with worst RTT performance (in Mainland China) have the highest failure rate, while users with best

RTT performance (in USA) have the lowest failure rate. This indicates that failures are substantially caused by

excessive RTT. Moreover, failure rate is related to requestfrequency. For example, in our experiment, user in

Hong Kong suffer from high failure rate, although its RTT performance is good. The failures arose because the

high request frequency make the user blocked by the server from time to time, , triggering aServiceUnavailable

failure (httpcode 503). Among all 6322 failure cases observe in our experiment, 3865 areTimeout(longer than
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Figure 6.1. RTT of the Eight Web Services from Different Locations

10 seconds), 2456 areService Unavailable(http code 503) and 1 is due toBad Gateway(http code 502). All the

Service Unavailableoccur in Hong Kong, where the request frequency is designed to be much higher than other

locations.

The response time and failure-rate performance of the target Web services will be employed for replication

strategy selection in Section 6.3.

6.2 Evaluation of Replication Strategies

WS-DREAM also can be employed to conduct performance evaluation of various replication strategies. The

six identical Amazon Web services are used as redundant replicas in this experiment to show the performance

of various replication strategies. In this experiment, strategy 1 invokes all the six replicas at the same time; in

strategies 4, 5, 6 and 7, only the first three best performing replicas are invoked at the same time, while the

remaining replicas are employed as standby replicas; in strategies 2, only the best performing replica is employed;

in strategy 3, all the six replicas are used as standby replicas; in strategies 8 and 9, only the top three performing

replicas are employed.

To clearly show the performance of these strategies in erroneous networking conditions, fault injection tech-

niques [8,9] are applied to generate faulty test cases. Table 6.2 shows the performance of various replication

strategies under correct cases and faulty cases.

As shown in Table 6.2, the parallel type strategy (strategy 1:NVP) has the bestRTT performance under both the

correctcases andfaultycases, since it invokes all the six replicas at the same time and employs the first properly

response as the final result. However, its failure-rate is high compared with other strategies. All the eight failures

of this strategy are due to timeout of all the six replicas. This may be caused by a client-side network problem,
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Figure 6.2. RTT of Accessinga-usfrom the Six User Locations

since several connections are opened simultaneously. Nevertheless, the failure rate of 0.027% and 0.097% in the

correctcases andfaultycases respectively is relatively small compared with the failurerate incurred without

employing any replication strategies, as shown in Table 6.1.

RTT performance of sequential type strategies (strategies 2, 3, 8 and 9) is worse than other strategies, especially

in thefaultycases, because they invoke replicas one by one. The reliability performance of these strategies are

the best, without any failure. This may be the result of employing time redundancy for fault tolerance, which is

not used in the parallel type strategy.

Hybrid type strategies (strategies 4, 5, 6 and 7) have goodRTT performance in both thecorrectcases and

faultycases, although not the best. The reliability performance is alsoin the middle, better than parallel type

strategy and worse than sequential type strategies. From Fig. 6.4, we can clearly see that the theRTT performance
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Figure 6.3. Process Time of the Six Amazon Web Services

of strategy 1:NV P (parallel type) is the best, theRTT performance of strategy 2:Rety (Sequential type) is in

the worst, and theRTT performance of strategy 4:NV P + Rety (Hybrid type) is in the middle.

6.3 Replication Strategy Selection Scenarios

We provide two scenarios in this section to illustrate and verify the strategy selection algorithm. The values of

a, b andc in the algorithm are set to be20, 5, 5%, respectively.
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Table 6.2. Evaluation Results of Replication Strategies
Correct Cases Faulty Cases

Type
All Fail R% Avg Std Min Max All Fail R% Avg Std Min Max

1 21556 6 0.027 279 153 203 3296 2043 2 0.097 321 163 203 3375

2 22719 0 0 389 333 203 17922 2460 0 0 751 721 203 11312

3 23040 0 0 374 299 203 8312 2495 0 0 833 681 203 6031

4 21926 4 0.018 311 278 203 10327 2412 0 0 397 376 203 10375

5 21926 1 0.004 312 209 203 10828 2393 0 0 401 259 203 3781

6 21737 2 0.009 311 225 203 10282 2318 0 0 425 384 203 8000

7 21737 2 0.009 310 240 203 13953 2350 0 0 420 326 203 3781

8 21735 0 0 411 1130 203 51687 2400 0 0 761 961 203 35031

9 21808 0 0 388 304 203 9360 2335 0 0 765 694 203 9953

6.3.1 Scenario 1: Commercial Web site in Hong Kong

We assume a user named Ben in Kong Hong plans to employ the Amazon Web services for book displaying

and selling in his commercial Web site. The followings are performance requirements provided by Ben:

1) Reliability. Since the Web site is commercial, Ben aims to make it as reliable as possible to maximize

business benefit and reputation. Therefore, the fail-rate (fuser) is set to be 0.1%.

2) Response time & resource conservation.Too large response latency will lead to loss of business; however,

invoking too many parallel replicas for response time improvement will increase computing and networking

overhead to the Web site server. After making a tradeoff, Bensets thetuser to be 100 milliseconds.

The strategy selection algorithm proposed in Section 4 is employed to help Ben select the optimal strategy. The

selection procedure is shown in Table 6.3.

Based on the strategy selection algorithm proposed in Section 4, the selection procedure is shown in Table 6.3,

where{ws}6
i=1 is a set of ranked target Web services. Values ofti, fi are provided by WS-DREAM (see Table 6.1

for detailed results).T (i) is the overallRTT values of invokingi number of parallel replicas, the values of which

are also provided by WS-DREAM. Based on the values ofT (i) andtuser, the value ofv is calculated by solving

theProblem 1in Section 4. Sincev = 1, sequential type strategy will be selected. Because|W | = 3 (only the top

three performing replicas are selected), andp1 < 5 the difference between primary replica and secondary replica

is not significant), Strategy 9 (RB + Retry) is selected.

As shown in Table 6.1, from the location of Hong Kong, networkcondition is good and the failure-rate is low.

The improvement of invoking replicas in parallel is quite limited; therefore, sequential strategies are reasonable.

Our algorithm can provide suitable selection in this scenario.
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Figure 6.4. RTT Performance of Replication Strategies

6.3.2 Scenario 2: Noncommercial Web page in Mainland China

Another user named Tom in Mainland China also plans to employthe Amazon Web services to provide book

information query service in his personal Home page. The performance requirements of Tom are as follows:

1) Reliability. Since the Home page of Tom is noncommercial and the Web service is not used for critical

purposes, the fail-rate (fuser) is set to be 5%.

2) Response time & resource conservation.Since Tom’s Home page are running on a server with narrow

network bandwidth, network resource conservation is important. Therefore, thetuser is set to be 500 mil-

liseconds.
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Table 6.3. Scenario 1: Selection Procedure

a = 20; b = 5; c = 5%

n = 6; g = 21587; tuser = 100; fuser = 0.1%

{wsi}
6
i=1 ={a-jp, a-us, a-ca, a-de, a-fr, a-uk};

{ti}
6
i=1 = {388, 448, 440, 573, 575, 570};

{fi}
6
i=1 = {0.05%, 0.38%, 0.58%, 3.45%, 3.52%, 3.87%};

{si}
6
i=1 = {4.38, 8.28, 10.2, 40.23, 40.95, 44.4};

{T (i)}6
i=1 = (321, 285, 282, 281, 280, 279);

v = 1;

W = {wsi|si =≤ 20&&1 ≤ i ≤ 6} = {4.38, 8.28, 10.2};

|W | = 3;

p1 = s2 − s1 = 3.9;

v = 1&&1 < |W | < 6&&p1 < 5 ⇒ Strategy 9;

Table 6.4. Scenario 2: Selection Procedure

a = 20; b = 5; c = 5%

n = 6; g = 576; tuser = 500; fuser = 5%

{wsi}
6
i=1 =( a-fr, a-jp, a-de, a-uk, a-us, a-ca);

{ti}
6
i=1 = (3654, 3192, 3666, 3985, 4184, 4074);

{fi}
6
i=1 = (19.27%, 26.55%, 23.4%, 20.28%, 22.52%, 24.23%);

{si}
6
i=1 == (11.16, 11.69, 12.01, 12.02, 12.87, 12.99);

{T (i)}6
i=1 = (4462, 3052, 2344, 1920, 1686, 1491);

v = 3;

p2 = 1

3
×

∑

3
i=1 si+v − si = 1.01;

p3 = 1

3
×

∑

3
i=1 fi = 23.07%;

1 < v < 6&&p2 < 5&&p3 ≥ 5% ⇒ Strategy 7.
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After conducting the selection procedure as shown in Table 6.4, Strategy 7 (RB + NV P ) with three replicas

is selected as the optimal strategy for Tom. In this scenario, the network condition is poor and failure-rate is high,

hybrid strategy with suitable number of parallel replicas can employed to improve the performance. Our algorithm

can provide suitable selection for this scenario.
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Figure 6.5. (a)RTT and (b)Failure-rate Performance with Different Replica Number

The detailedRTT and failure-rate performance with different replica number of these two scenarios are shown

in Fig.6.5, where Fig. 6.5(a) shows the RTT performance, andFig. 6.5(b) shows the failure-rate performance.

Fig.6.5 (a) indicates that response time improvement by invoking parallel replicas is significant under poor network

condition (Scenario 2: Mainland China), while under good network condition (Scenario 1: Hong Kong), the

improvement is limited. Fig.6.5 (b) shows that failure-rate is greatly reduced by invoking parallel replicas in

Mainland China, indicating that the failure-rate improvement by invoking replicas in parallel is significant under

erroneous environment, while in Hong Kong it is not obvious and unnecessary (failure-rate of Hong Kong is not

shown in the figure since all values are 0 with parallel replicas). Also, Fig.6.5 (b) shows that the experimental

failure-rate observed in Mainland China is quite close to the theoretical failure-rate, which can be calculated by
∏v

i=1 fi, indicating the accuracy of our experiment.

In summary, by employing the evaluation results provided WS-DREAM, the replication strategy selection al-

gorithm can provide suitable selections for users in these two scenarios. When the general property of the Web

service execution scenarios can be obtained and analyzed, asystematic selection procedure under various replica-

tion strategies can be quantitatively formulated, and moreinclusive mathematical models can be constructed for a

comprehensive system assessment. This will be pursued in our future work.
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Chapter 7

Conclusion

This paper proposes a distributed reliability assessment mechanism for Web services. Based on this mechanism,

we compare various replication strategies by using theoretical formulas and experimental results. A strategy selec-

tion algorithm is also proposed. Real world experiments on Web services and replication strategies are conducted

to illustrate the mechanism as well as verify the selection algorithm. With the facility of WS-DREAM, accurate

evaluation of target Web services can be acquired though user collaboration, and optimal replication strategies

engaging fault tolerance and design diversity schemes can be effectively obtained to improve the reliability of

service-oriented applications.

Our future work will include an automatic mechanism for users to search for similar or identical Web Ser-

vices as replicas for design diversity purpose, the tuning of selection algorithm for better performance, and the

improvement of the system feature for facilitating user test case contributions.

24



Acknowledgements

I would like to thank Prof. Michael R. Lyu for his kind guidance. I also thank Dr. Jianke Zhu for providing the

template of this report.

25



Bibliography

[1] WS-ReliableMessaging, http://docs.oasis-open.org

[2] W.T. Tsai, R Paul, L Yu, A Saimi, Z Cao,”Scenario-Based Web Service Testing with Distributed Agents,”

IEICE Transaction on Information and System, Vol. E86-D, No.10, pp. 2130-2144, 2003.

[3] H. Foster, S. Uchitel, J. Magee, and J. Kramer, ”Model-based Verification of Web Service Compositions”, in

18th IEEE International Conference on Automated Software Engineering, pp.152-161, 2003.

[4] P. W. Chan, M.R. Lyu and M. Malek, ”Reliable Web Services:Methodology, Experiment and Modeling,” in

IEEE International Conference on Web Services, pp. 679-686, 2007.

[5] P.W. Chan, M.R. Lyu, and M. Malek, ”Making Services FaultTolerant,” in the 3rd International Service

Availability Symposium (ISAS 2006), Helsinki, Finland, May 15-16, pp. 43-61, 2006.

[6] N. Salatge and J.C. Fabre, ”Fault Tolerance Connectors for Unreliable Web Services,” in 37th Annual

IEEE/IFIP International Conference on Dependable Systemsand Networks (DSN’07), Edinburgh, UK, pp.

51-60, 2007.

[7] D. Liang, C. Fang, and C. Chen, ”FT-SOAP: A Faulttolerantweb service,” in Tenth Asia-Pacific Software

Engineering Conference, Chiang Mai, Thailand, 2003.

[8] D. Liang, C. Fang and S. Yuan, ”A Fault-Tolerant Object Service on CORBA,” Journal of Systems and Soft-

ware, Vol. 48, pp. 197-211, 1999.

[9] G. T. Santos, L. C. Lung, and C. Montez, ”FTWeb: A Fault Tolerant Infrastructure for Web Services,” in Ninth

IEEE International EDOC Enterprise Computing Conference (EDOC’05), pp. 95-105, September 2005.

[10] M. G. Merideth, A. Iyengar, T. Mikalsen, S. Tai, I. Rouvellou, and P. Narasimhan, ”Thema: Byzantine-

faulttolerant middleware for Web-service applications”,in IEEE Symposium on Reliable Distributed Systems,

pp. 131 - 140, 2005.

26



[11] J. Salas, F. Perez-Sorrosal, M. Patino-Martinez, and R. Jimenez-Peris, ”WS-Replication: a framework for

highly available web services”, In 15th International Conference on the World Wide Web, pp. 357-366, 2006.

[12] J. Osrael, L. Froihofer, K. M. Goeschka, S. Beyer, P. Galdamez, and F. Munoz, ”A system architecture for

enhanced availability of tightly coupled distributed systems”, In 1st International Conference on Availability,

Reliability and Security (ARES06), pp. 400C407, 2006.

[13] N. Looker and M. Munro, WS-FTM: A Fault Tolerance Mechanism for Web Services, University of Durham,

Technical Report, 19 Mar. 2005.

[14] P. Townend, P. Groth, N. Looker, and J. Xu, Ft-grid: A fault-tolerance system for e-science, Proc. of the UK

OST e-Science Fourth All Hands Meeting (AHM05), Sept. 2005.

[15] N. Looker, M. Munro, and J. Xu, ”Increasing Web Service Dependability Through Consensus Voting”, 2nd

Int. Workshop on Quality Assurance and Testing of Web-BasedApplications, COMPSAC, Edinburgh, Scot-

land, July, 2005.

[16] L.Z. Zeng, B. Benatallah, A.H.H.Ngu, M.Dumas, J.Kalagnanam, and H.Chang, ”Qos-Aware Middleware for

web services composition”, IEEE transaction on software engineering, Vol.30, No.5, May 2004.

[17] E.M. Maximilien, and M.P.Singh, ”Conceptual Model of Web Service Reputation”, ACM SIGMOD Record

(Special section on semantic web and data management), vol.31, issue 4, pp.36-41, 2002.

[18] G. Wu, J. Wei, X. Qiao and L. Li, ”A Bayesian network basedQos assessment model for web services”, in

IEEE International Conference on Services Computing(SCC 2007), Utah, USA, pp.498-505, 2007.

[19] V. Deora, J.H. Shao, W.A.Gray and N.J.Fiddian, ”A Quality of service management framework based on

user expectations”, in First International Conference on Service Oriented Computing (ICSOC 2003), Trento,

Italy, 2003.

[20] F. Tartanoglu, V. Issarny, A. Romanovsky, and N. Levy, ”Dependability in the Web Services Architecture,”

In Architecting Dependable Systems. LNCS 2677, June 2003.

[21] L.H. Vu, M. Hauswirth, and K.Aberer. Qos-Based ServiceSelection and Ranking with Trust and Reputation

Management. Coopis 2005.

[22] M. Vieira, N. Laranjeiro, and He. Madeira, ”Assessing Robustness of Web-Services Infrastructures,” in 37th

Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’07), Edinburgh,

UK, pp. 131-136, 2007.

27



[23] Z. Zheng, M.R. Lyu, ”WS-DREAM: A Distributed Reliability Assessment Mechanism for Web Services”, in

38th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’08), Anchor-

age, Alaska, USA, June 24-27, 2008.

[24] BitTorrent, http://www.bittorrent.com

[25] Wikipedia, http://www.wikipedia.org

[26] X. Bai, W. Dong, W.T. Tsai and Y. Chen (2005),”WSDL-Based Automatic Test Case Generation for Web

Services Testing”, Proceedings of IEEE Workshop on Service-Oriented System Engineering, pp. 207 - 212,

2005.

[27] N. Looker and J. Xu, ”Assessing the Dependability of Soaprpc-based Web Services by Fault Injection,” In

Proc. of the 9th IEEE International Workshop on Object-oriented Real-time Dependable Systems, pp. 163-

170, 2003.

[28] M.R. Lyu, ”Software Fault Tolerance”, Wiley Trends in Software book series, John Wiley & Sons, Chich-

ester, February 1995.

[29] D. Leu, F. Bastani and E. Leiss, ”The effect of statically and dynamically replicated components on system

reliability”, IEEE Transactions on Reliability, vol.39, issue 2, pp.209-216, June 1990.

[30] D. Pradhan, Editor, Fault-Tolerant Computing: Theoryand Techniques Vol. II, Prentice Hall, Englewood

Cliffs, NJ (1986).

[31] J. Wu and Z. Wu, ”Similarity-based Web Service Matchmaking,” in IEEE International Conference on Ser-

vices Computing (SCC’05), Vol-1, pp. 287-294, 2005.

[32] Amazon Web Service Homepage, http://aws.amazon.com

[33] WebServiceX.NET, http://www.webservicex.net

[34] WS-DREAM, http://www.wsdream.net

28


