
The Chinese University of Hong Kong

Department of Computer Science and Engineering

Ph.D. – Term Paper

Title: Fault Tolerance and Performance Analysis

in Wireless CORBA

Name: Chen Xinyu

Student I.D.: 01409620

Contact Tel. No.: 2609-8427 Email A/C: xychen

Supervisor: Prof. Michael R. Lyu

Markers: Prof. Jerome Yen (SEEM) & Prof. John C.S. Lui

Mode of Study: Full-time

Submission Date: November 28, 2002

Term: 2

Fields:

Presentation Date: December 9, 2002 (Monday)

Time: 10:30 am – 11:30 am

Venue: Rm. 1021, Ho Sin-Hang Engineering Building

Abstract

The emerging mobile wireless environment poses exciting challenges for distributed fault tolerant (FT) com-

puting. This term paper first proposes a message logging and recovery protocol on the top of Telecom Wireless

CORBA and FT-CORBA architectures. It uses the storage available at the Access Bridge as the stable storage to

log messages and checkpoints on behalf of a mobile host. Our approach engages both quasi-sender-based and

receiver-based logging methods and makes seamless handoff in the presence of faults. The details of how to tol-

erate mobile host disconnection, mobile host crash and Access Bridge crash are described. Then we analyzes the

execution performance and the average availability of equi-number checkpointing with given message number.We

will show how checkpointing and handoff influence these two metrics, under what conditions checkpointing is ben-

eficial, and the optimal checkpointing interval for minimizing the total program execution time and maximizing

the average availability.

I

Contents

1. Introduction 1

2. Wireless CORBA Architecture 2

3. Fault Tolerant Wireless CORBA 3

3.1. Data Structures . 5

3.2. Message Logging and Checkpointing . 5

3.3. Mobile Host Handoff . 6

3.4. Mobile Host Disconnection . 8

3.5. Mobile Host Crash . 9

3.6. Access Bridge Crash . 10

4. Performance and Availability Analysis 11

4.1. Program Execution without Checkpointing . 11

4.1.1 Model Description . 12

4.1.2 Execution Time and Average Availability without Checkpointing 13

4.2. Equi-number Checkpointing . 14

4.2.1 Model Description . 14

4.2.2 Execution Time and Average Availability with Checkpointing 15

4.3. Simulations and Comparisons . 17

5. Summary and Future Work 19

A Proof of the program execution time without checkpointing 22

B Proof of the program execution time with equi-number checkpointing 23

II

1. Introduction

Advances in wireless networking technology and portable information appliances have brought about a new

paradigm of decentralized computing, called mobile computing [8]. A mobile computing system is considered

as an extension of distributed systems, in which much of the action takes place at the middleware level. CORBA

(Common Object Request Broker Architecture), standardized by Object Management Group (OMG), is one of

the most popular middlewares for distributed systems nowadays. OMG also published Telecom Wireless CORBA

specification [17] to provide wireless access and terminal mobility in CORBA.

Mobile computing enables users to access and exchange information while they roam around in mobile envi-

ronments. But it causes physical damage of mobile hosts (MHs) more probable [15]. MHs inherit slow processors

and small memories. The wireless link usually suffers with a high bit error rate, a little bandwidth, and a long

transfer delay. Mobile terminals even disconnect from the hosting network intermittently [23]. Mobile systems

are more often subject to environmental conditions which can cause loss of communications or data [10]. All of

these cause transient failures more frequent. Thus, mobile computing requires techniques to provide fault tolerance

to continue its services despite such permanent and transient failures.

OMG has specified Fault Tolerant CORBA (FT-CORBA) [18] as a standard. FT-CORBA is based on entity

replication. It employs three replication styles: Cold Passive, Warm Passive and Active Replication. Logging and

checkpointing mechanisms record messages and entity states in logs. All these are intended for wired networks.

How to provide fault tolerance in a mobile computing environment is a new challenge for decentralized systems.

This term paper proposes a message logging and recovery protocol on the top of Wireless CORBA and FT-CORBA

architectures [2]. The storage available at the Access Bridge is employed as the stable storage to log messages and

checkpoints on behalf of an MH. Both the quasi-sender-based and the receiver-based logging methods are engaged

in our approach . The checkpointing strategy is equi-number checkpointing. The Access Bridge hides mobile host

disconnection from other network hosts [26] and makes a seamless handoff when fault tolerant properties are

called upon. We also discuss how to tolerate mobile host disconnection, mobile host crash and Access Bridge

crash.

After we engage the checkpointing, message logging and rollback techniques in mobile environments, how

would the performance be changed and what benefit would we get? Checkpointing avoids the failed program to

rollback to its beginning. However, the benefit of checkpointing comes at a price. Excessive checkpointing would

result in performance degradation, while deficient checkpointing would still incur an expensive recovery over-

head [11]. Therefore, a trade-off exists. There are numerous mathematical models have been proposed to evaluate

the execution performance and to derive the optimal checkpointing interval. But these models assume that the

1

total program execution time with no failure is known in advance. In mobile environments, applications are dis-

tributed by sending and receiving computational and control messages. The total execution time is dependent on

multiple factors, such as link bandwidth etc., so it varies during different runs. But the number of total computa-

tional message received is not changed. Another special factor that should be considered is handoff. In this term

paper, we will use these observations to analyze the execution performance and the average availability with and

without equi-number checkpointing strategy. We will derive the expected program execution time and the average

availability under some assumptions. We will show how checkpointing and handoff influence these two metrics,

under what conditions checkpointing is beneficial, and the optimal checkpointing interval for minimizing the total

program execution time and maximizing the average availability. At last we will show the results of simulations

and the comparisons between the performance and availability of programs with and without checkpointing.

2. Wireless CORBA Architecture

Before delving into the details of how to provide fault tolerance and performance and availability analysis,

let’s take a look at Wireless CORBA architecture briefly. Figure 1 shows the architecture, which identifies three

Home Domain

Home
Location
Agent

Terminal
Bridge

Terminal
Domain

Access
Bridge

Visited Domain

Access
Bridge

Access
Bridge

GIOP
Tunnel

Static
Host

Static
Host

mh1

Terminal
Bridge

Terminal
Domain

mh1

Access
Bridge

ab1

ab2

Hanoff

Figure 1. Wireless CORBA architecture

different domains: Terminal Domain, Visited Domain and Home Domain [17]. The Terminal Domain is an

MH which can move around while maintaining network connections by a wireless interface. The MH hosts a

Terminal Bridge (TB) through which the objects on the MH can communicate with objects in other wired or

wireless networks. The Visited Domain contains several Access Bridges (ABs) to provide communication with

2

some objects on MHs. It also contains some Static Hosts (SHs). All communications in the Visited Domain are

via wired links. ABs reside on MSSs which have necessary wireless facilities to communicate with MHs and have

wired interfaces to communicate with static hosts and other MSSs. The Home Domain is composed by the Home

Location Agent (HLA) which keeps track of the ABs that the MH has associated with when it moves around.

Each MSS has a geographical area within which it can communicate with MHs directly, which is plotted as

dashed circle in Figure 1. When an MH moves across the border of the geographical area, a handoff occurs

between the new AB and the old AB.

All hosts communicate with each other by messages only. The GIOP (General Inter-ORB Protocol) tunnel is

the communication channel, through which the GTP (GIOP Tunnel Protocol) messages are transmitted between

an AB and a TB. The GTP messages can be classified into two categories: control message and computational

message. No messages can be exchanged among TBs directly. All messages to and from an MH are relayed by its

currently associated ABs. During handoff, no computational messages can be transmitted between the ABs and

the MH.

3. Fault Tolerant Wireless CORBA

Figure 2 presents an architectural overview of our FT Wireless CORBA. Our approach is based on checkpoint-

ing and message logging, which are the well-known techniques to minimize loss of computation in the presence

of failures by periodically save the programs’ states and log transmitted messages on stable storage during failure

free execution. Each of the saved states is called a checkpoint [5], and the saving process of such states is called

checkpointing. After a failure, there is a repair process which brings the failed device back to normal operation.

Following the repair, the process of reloading the program status saved at the most recent checkpoint is often

called a rollback. The reprocessing of the program, starting from the most recent checkpoint, applying the logged

messages and until the point just before the failure, is called a recovery process [16].

An MH may become unavailable due to (i) mobile host disconnection, (ii) mobile host crash, and (iii) Access

Bridge crash. As mentioned above, the MH suffers different permanent and transient failures and the storage

on it is limited, so the storage is not suited to be treated as stable storage. Otherwise, an AB is on the border

between wireless and wired network. In the Wireless CORBA architecture, all messages to and from an MH are

traversed through ABs. Every message has a local copy in AB already, so it does not need to send an extra copy

of each message elsewhere for logging purpose to tolerate the mobile host crash. So we choose the storage at

AB as stable storage for the message logging and checkpointing protocol. The message logging mechanism in

AB applies different methods for messages received from and sent to TB. AB logs messages after it receives them

3

Client Object

ORB

Terminal Bridge

Platform

Recovery
Mechanism

Logging
Mechanism

Mobile Host

Access Bridge

Mobile Support Station

Mobile
Side

Fixed
Side

Server Replica

GIOP
Tunnel

Platform

Recovery
Mechanism

Logging
Mechanism

ORB

Static Server

Platform

Recovery
Mechanism

Logging
Mechanism

ORB

Object Replica

Multicast
Messages

Figure 2. Fault tolerant architecture overview

from TB (receiver-based), but logs messages which is received from other hosts before it relays them to TB (quasi-

sender-based). Quasi-sender-based message logging is not the sender but the intermediate proxy to log messages.

TB may send back an acknowledgement depending on the received message’s type.

The checkpointing strategy in an MH’s is denoted as equi-number checkpointing. Equi-number checkpointing

means checkpoints are equally placed with respect to the number of received messages
�

. It can be treated as two

ways, one is the message number in each checkpointing interval is not changed and the other is the checkpoint

number is not changed. We denote these two as equi-number checkpointing with respect to message number and

equi-number checkpointing with respect to checkpoint number respectively. The first one is very naturally derived

from the equidistant checkpointing strategy [16] as we change the required program execution time to the required

message number. Because we choose the storage at AB as stable storage, after taking checkpoints, the data will be

transmitted via wireless links and then saved at the current associated ABs. But the mobile computing environment

does not restrict a user’s location. When a user moves from one MSS to another, the carried MH should change

its connected AB. So the location of the stable storage also would be changed during handoff [21]. It is one of the

duties of our recovery protocol to find where the last checkpoint is located. An AB contains multiple associated

TBs at the same time, but these TBs uses the AB only as a proxy, and there is no dependency between these TBs

from the viewpoint of the AB . So an AB keeps different logs for different associated TBs.

A remote static server is replicated in passive or active style according the FT-CORBA standard. An AB

communicates with remote static servers by a group communication system.It should detect and suppress duplicate

4

requests and replies, and deliver a single request or reply to the MH. The fault tolerance of HLA also can be

achieved with the same schema. A lot of papers has discussed server replication and group communication [1, 6,

12, 13, 14, 22], so in this term paper we do not discuss static server’s and HLA’s fault tolerance in detail.

3.1. Data Structures

We employ the following data structures in our message logging and checkpointing mechanism.� Sequence Number (SN). Each message exchanged in GIOP Tunnel has an SN, which identifies the message

itself and the order in which the message is sent. An AB ensures the SN is distinct for a dedicated TB, but

the SNs may be same between different TBs.� Message Record (MR). There are two types of message record for two message logging mechanisms. The

first type contains a message received by an AB from an TB and the status after the AB processes it. The

second type includes an additional SN of the corresponding acknowledgement message, which indicates the

order in which the message is received by an MH. The second type is used for messages sent to an TB.� CheckpointData and CheckpointDataReply Messages. When an MH takes a checkpoint, it utilizes these

two messages to reliably save the checkpoint in the current AB.� PurgeCheckpoint Message. This message is sent out to clear old checkpoints when an AB receives a Check-

pointData Message. It needs not be delivered reliably.� FetchCheckpoint and FetchCheckpointReply Messages. A FetchCheckpoint Message is initialized when an

MH detects a failure and starts to restore the state before the failure. A FetchCheckpointReply contains the

last checkpoint of the MH.

3.2. Message Logging and Checkpointing

Let’s see an event sequence in which a mobile client makes a request to a remote server when engaging pes-

simistic message logging. The steps, illustrated in Figure 3, are (1) A mobile client sends a request message x via

a GIOP tunnel to the currently connected AB; (2) The AB logs x in the local stable storage pessimistically, sends

an acknowledgement back to the client, and relays x to a remote server, then the AB waits for a reply; (3) After

receiving the reply message y, the AB logs y, and dispatches it to the mobile client; (4) The mobile client sends a

message back to acknowledge y and delivers y to the top level; (5) The AB logs the SN in the acknowledgement

message with message y.

5

Mobile
Client

Current
Access Bridge

Remote
Server

Logging

Logging

Logging

Req.

Req.

Rep.

Ack.

Rep.

Ack.

1

2

3

4

5

Figure 3. Normal Operation Sequence

When a TB receives a predefined number of messages since its last checkpoint, the TB will initialize a check-

pointing procedure. The TB encapsulates the checkpoint in a CheckpointData message and sends this message

to the current AB. To save wireless bandwidth, the checkpoint may not be sent out immediately, and it can be

piggybacked with the next message from TB to AB [19]. The AB logs the checkpoint in its local stable storage

and informs the HLA that a new checkpoint of the MH is saved in this AB. This information will be used in the

recovery process to fetch the last checkpoint. The checkpointing interval is determined by the application require-

ments, the failure rate of the MH and the message arrival rate. It is also determined by the handoff frequency of

the MH.

If an MH takes a checkpoint in the currently associated AB, the message logs and checkpoints prior to this

checkpoint can be deleted since they are no longer necessary for recovery of the MH. So the AB will send

a PurgeCheckpoint message to the HLA to delete those obsolete checkpoints and message records. This mes-

sage needs not be reliably delivered, so long as any future PurgeCheckpoint message of the same MH will be

delivered [9]. After the HLA receives the purge message, it will forward this request to the ABs in the itinerary

track of the MH so that they can purge the unnecessary messages and collect the stable storage.

3.3. Mobile Host Handoff

In wireless networks which are organized in cells, a handoff is a mechanism for an MH to seamlessly change

a connection from one AB to another. Handoff can be started due to two causes: normal operation and sudden

connectivity loss. In normal operation, the MH will create a connection with a new AB. But in the second case,

there is another successful outcome of the handoff procedure: connectivity re-established to the same AB as

6

before [17]. We identify two ABs in a handoff procedure with:� Old Access Bridge (OAB) that was connected by an MH before the handoff.� New Access Bridge (NAB) that would be connected after the handoff, which may be the same as the OAB.

Figure 4 depicts the handoff procedure where a mobile terminal re-establish connectivity to a new but different

Access Bridge. In this figure, the MH creates a network connectivity (in network layer) with the NAB. Then it

Mobile
Terminal

Old
Access Bridge

New
Access Bridge

Logging

EstablishTunnelRequest

1

2

3

4

Remote
Server

GetContext

EstablishTunnelReply

ReleaseTunnelRequest

5

6

ReleaseTunnelReply
7

Rep.

Rep.Forward

8

9

Rep.

Ack.

10

Logging

11

Ack.Forward

Figure 4. Handoff Procedure

sends a request message to establish a tunnel (message 1). The NAB uses information contained in the request

message or acquired by querying the HLA to get the OAB of this MH. The NAB sends a message to the HLA to

update this MH’s location and invokes a handoff operation at the OAB (message 2). The OAB forwards necessary

context data, such as Sequence Number, Last Sequence Number Received, Connection ID, to reconstruct the exe-

cution context in the NAB (message 3). The NAB sends the tunnel establishment reply to the MH (message 4) and

the MH breaks the connection with the OAB (message 5 and 6). Afterwards, the MH sends and receives all mes-

sages through the NAB. The messages received by the OAB during the handoff (message 7), such as the replies

to former requests, are forwarded to the NAB (message 8) and the NAB relays them to the MH (message 9). The

acknowledgement messages (message 10) are forwarded to the OAB (message 11) to update the corresponding

7

message status in the logs to keep these message logs integrity. The GIOP requires that a reply should be sent in

the same GIOP connection as the request came in [17]. So if a message is a reply for a request that was received

through the OAB before the handoff, this message is encapsulated in a forward format and when the NAB receives

it, the NAB should relay it to the OAB. All these forwarded messages are logged in the OAB.

3.4. Mobile Host Disconnection

An AB functions as a proxy between an MH and a static host. Its major function is to forward messages to

and from the MH. We construct an AB with two parts (see Figure 5): Mobile side and Fixed side [17]. The

mobile side connects with the MH by GIOP Tunnel, while the fixed side uses normal IIOP (Internet Inter-ORB

Protocol) connections to communicate with remote static hosts. The AB keeps different maps between these two

parts by Connection ID specified in [17] for every associated TB. Using the AB as a proxy, we can hide sudden

mobile host disconnection from the remote host [26].

GTP

GTP Adaptation Layer

Transport Layer

Connection ID
Mapping

Mobile Side

IIOP

TCP

Fixed Side

Figure 5. Access Bridge ORB

According to the fact that an AB is a proxy for relaying GIOP messages, we define three statuses of a message

in an AB.� Received. This is the default status for a message when an AB receives this message.� Sent. When a message is relayed to an MH, a static host or another AB but before receiving the acknowl-

edgement or the reply, the status of the message is Sent.� Processed. After an AB receives an acknowledgement message or a reply, it changes the corresponding

message’s status to Processed.

If an AB receives a message which does not need to be relayed, the status of this message will be directly changed

to Processed after the AB processes this message.

During a sudden mobile host disconnection, the last connected AB still keeps IIOP connections with remote

hosts for a predefined time period. When the AB receives messages from the remote hosts, it logs messages but

8

does not forward them to the target MH (as message 7 in Figure 4) . When the AB gets a notification that the

MH reconnects with the network, it forwards these received-but-not-sent messages to the MH (reconnects with

the same AB) or the currently associated AB of this MH (reconnects with a new AB). If the MH recovers the

connection with the same AB in a predefined time period, the AB will reuse these IIOP connections for succeeded

communications. Otherwise the AB terminates all IIOP connections established for this MH. If the AB receives

all the reply messages sent back from the remote host, it also closes these connections.

3.5. Mobile Host Crash

During disconnection, the state of the MH is kept intact. In case of mobile host crash, the local state is lost and

needs to be recovered from the message logs. The MH is assumed to be fail-stop, i.e., the associated AB is able to

detect the failure of the MH. Each failed MH can perform handoff and recovery procedure independently, which

means that no other mobile hosts need to roll back together.

First the MH initiates a handoff procedure as depicted in Section 3.3. After the successful handoff, it starts a

state recovery procedure. This procedure includes four phases:

1. The HLA finds the location of the last checkpoint and forwards it to the NAB;

2. The HLA collects all succeeded message records from the itinerary track of the MH and forwards them to

the NAB;

3. The NAB sends the checkpoint, sorts the processed messages by their acknowledgement SNs, forwards

these messages sequentially, and delivers the sent messages sequentially in their own SN order;

4. The MH initializes the application using the checkpoint and then executes the application. If a generated

message has a counterpart message in the message record set, this message is inhibited and will not be sent

out.

After applying the recovery procedure, the state of the MH will be restored to the state before failure. (We assume

the application is deterministic.)

A GIOP tunnel is shared by all GIOP connections to and from the TB [17] , so some messages maybe arrive at

the TB earlier than the messages sent before them. We adopt a quasi-sender-based message logging mechanism

for these messages [9]. For reconstructing the same sequence of messages arriving before failure, we use the

SNs of the corresponding acknowledgements in MRs to sort these processed messages before sending them out

sequentially.

9

In our approach, if a user moves from one MSS to another, the stable storage for storing checkpoints and

messages is changed accordingly. So if the mobile user traverses many times during a checkpointing period, the

logged messages are scattered in these ABs. If we want to recover an MH from a failure or to revoke the stable

storage for outdated messages, we need a method to find all these messages. Because the HLAs keep one itinerary

track for each MH, we can employ these tracks to facilitate the messages collection and storage revocation, as

described in Section 3.2.

The recovery period is time consuming because visiting different ABs is required to collect necessary message

records. The reason is that when a failure occurs, the messages are scattered. We can improve this recovery

procedure by collecting messages to a stable storage near or in the current AB. A strategy proposed in [21] ensures

that the message logs and the checkpoint corresponding to the MH are at the “predecessor” AB. To achieve this,

during handoff, a message is sent to the predecessor AB to transfer the checkpoint and logs. But if the MH moves

frequently to another AB, this strategy will still create heavy volume of data transfer. We improve this strategy

by letting the HLA trigger the transfer of the checkpoint and logs. In the HLA, there is a daemon and an array

of timers for each MH. If one timer is expired, the daemon will dispatch a thread to handle the data transfer for

the corresponding MH. The thread will collect the last checkpoint and successive message logs for this MH and

save the data in the current AB of this MH. The timer is adaptive. It will extend the time period if an MH moves

frequently and it will shorten the time period if the MH maintains connection with an AB for a long time. If a

checkpoint is taken during this message collection period, the HLA stops the related thread. We also can use the

number of handoff as the trigger of message collection.

3.6. Access Bridge Crash

An AB facilitates the connection mapping between an MH and a static host, so the AB is in the critical path

between the MH and the static host. For tolerating an AB failure, normal replication strategy can be adopted.

Recognizing the nomadic feature and the handoff mechanism in the mobile computing environment, we utilize

a strategy that replicates the execution context and messages in an AB to its Previous AB (PAB) for each MH.

An PAB for an MH is an AB in its movement track just one hop before its current AB. If there is no movement

track for this MH, we choose the HLA as the “previous” AB. This strategy is passive. Some messages that do not

change the status of the AB will not be replicated. Because each MH has different movement tracks, this strategy

generates different AB replicas for different mobile hosts. After an AB failure, different mobile hosts can move to

different NABs to start the handoff procedures.

If an AB crashes, all the associated MHs will detect this failure and then start handoff procedures independently.

10

If in the current location area there is only one MSS, the mobile user should explicitly move to another location for

handoff. The handoff procedure has some differences from the normal handoff. The NAB first queries the HLA

for the location of the replicated message logs and makes a request to the AB. The AB re-constructs the execution

context from the message logs and sends this context to the NAB. The NAB initializes a new context for this MH

according the received context and re-sends those messages which have no acknowledgments or replies to the MH

and those target hosts. For saving the wireless bandwidth, the SNs in those messages to the MH are not in the

vector which contains all the SNs of the messages received by this MH after the last checkpoint. After a successful

handoff, the terminal informs the HLA that the recovery procedure is finished and continues to work as in normal

condition. The HLA removes the failed AB from the MH track to avoid to select the failed AB as an PAB. If the

MH moves back to the previous AB, the recovery procedure will be more efficient because all messages required

to recovery are in the local storage. If the AB restarts after a failure, the MH can create connectivity with this AB

just as a normal handoff from the PAB.

To avoid re-execute resent messages after an AB crash, a remote server should do some special work. When

the server sends a reply message to the crashed AB, it learns that the AB is not reachable and then logs this reply

message locally. After a successful handoff, the NAB reissues the same request through a new GIOP connection,

the server identifies this request, retrieves the corresponding reply from its local log, and sends it back. Therefore

the server does not process the same request more than once and keeps the data consistent.

4. Performance and Availability Analysis

In this section, we’ll discuss the performance and availability of program executed on MH with and without

engaging checkpointing. We do not take the effects of message logging into account.

4.1. Program Execution without Checkpointing

As mentioned above, GTP messages are transmitted through GIOP tunnels via wireless links during a program

execution. These messages can be identified into two classes: control message and computational message. During

different runs of an application, an MH will receive a given number of computational messages, but the number

of control messages received may be varied as the failures and handoffs are random events. So let us consider the

execution of a program in an MH with a given number of computational messages in the presence of failures and

handoffs.

11

4.1.1 Model Description

Let
�

denote the number of computational messages that a program in an MH should receive. The execution of

this program in the presence of failures and handoffs is shown in Figure 6. After a failure, the program should

be restarted from its beginning. All computation from its beginning to the failure is lost. These computation is

denoted as wasted computation [20]. The program will eventually terminate successfully if it receives
�

messages

continuously before next failure. During a handoff, no computational message is sent to the MH. Only after a

handoff, computational messages can be transmitted continuously.

Figure 6. Program execution without checkpointing

We denote the ����� failure, ���
	����������� , and its time of occurrence by ��� and ��������� respectively, where ������������
. Without loss of generality, we assume that the program starts processing at time � � �

[24]. Let !"� , �#�
	$��%�����&� ,
be the inter-failure time between ��� and ���('*) , that is, !��+�,�������('*)&�"-.�&������� and !0/1�2�����3)�� . After a failure, there

is a repair time 4 . The restarting time is not changed despite when the failure occurs, so we ignore it. We define5 � as time period between the time when the repair is finished after � ��� failure and the time when the program

receives
�

messages if there is no failure afterwards.
5 / is the program execution time if there is no failure.

We also denote the 6��7� handoff, 68�9	$��%�����&� , and its time of occurrence by :<; and ����:<;�� , where �&��:=;>�<� �
,

respectively. Let ?@; , 6A�9	��B%�����&� , be the inter-handoff time as ?@;C�D����:<;�'*)��@-E�&��:=;�� and ? /=�F�&��:C)�� . The

handoff time is : . Additionally, the following assumptions are adopted [4]:

Assumption 1. The instants of the occurrences of the failures form a homogeneous Poisson process of parameterG
, i.e., ! � , �#�
	$��%�����&� , are independent exponential random variables with parameter

G
.

Assumption 2. Time between two successive message arrivals to a program is modeled as exponential distribu-

12

tion with parameter H .

Assumption 3. Time between two successive handoff events is modeled as exponential distribution with param-

eter I .

Assumption 4. Failures do not occur when the program is in the repair process.

Assumption 5. A failure is detected as soon as it occurs.

4.1.2 Execution Time and Average Availability without Checkpointing

Under the above assumptions, the random variable
5 � has an N-stage Erlang distribution with parameter H [25].

Let
5 � � � be the total program execution time with the

�
computational messages.

The Laplace-Stieltjes Transform (LST) of the program execution time
5 � � � has the formJ0K ��L$� � �M� ��LON G �PH"QSR)TVU '�WX'"Y�'"Z\[7] N)T^U '�WX'_Ya`bZ�ced_f�g T^U [�[7] -)TVU '�WX'"Y�'"ZB`bZ�cedbf�g T^U [�[7]�h��L@N G �M- G�J0i �jL��1kj	+-
l WU '�WX'"Y0m Q+n � (1)

and the expectation of program execution time
5 � � � iso � 5 � � �\�*� k 	G N o ��4p� nrq�s HtN GH u Q -E	BvwN I �yx&o �j:z�HtN G q 	+- s H=N GHtN G N{I�u Q '*) vw� (2)

In the above equations,
J_i ��L�� , o ��4p� , J0| �jL�� and

o ��:A� denote the LST and the expectation of repair time and

handoff time respectively.

A proof is given in Appendix A. Equation (2) shows that the expectation of program execution time is an

exponential function of the number of messages
�

. It also depends on failure rate
G

, message arrival rate H and

handoff rate I . The second term at the right side of Equation (2) tends to
�

as I tends to
� ' , which implies the

effect of handoffs could be ignored or the execution of a program will complete before the MH makes its first

handoff. From this we know that the first term stands for the expected execution time if we do not take the effect

of handoffs into account, in which }V	�~ G N o ��4p��� denotes the expectation of inter-failure time and the following

repair time, and }��P	�N G ~>H�� Q -t	B� denotes the expected number of failure occurrence during executions. The second

term stands for how handoffs influence the program execution time. We know that }��7HpN G ��~b�7HpN G N�I%����Q '*) can

be regarded as a constant when
�

is large enough. So the second term is a linear function of the message number�
, while the first term has an exponential relationship with

�
.

Average availability can be defined as how much of the time an MH is in uptime interval during an execution.

An execution of a program in an MH may be decomposed into uptime and downtime intervals which occur in

alternation [20]. If a program produces useful work towards its completion then it is in uptime interval, and a

downtime interval is one in which the program does not produce useful work. The average availability is equal to

13

��� �P������~0� ��� �P�����@NS���>�1�0�P������� . The times when the MH is in repair or in handoff are considered as downtime

interval. If the MH is functional but the program is not producing useful computation, as mentioned as wasted

computation, the time interval is also regarded as downtime interval. According to our definitions of uptime

interval and downtime interval, the expected execution time of a program without failures and handoffs is the

uptime and the expected execution time of a program in the presence of failures and handoffs is the sum of the

uptime and downtime. So the average availability of a program without checkpointing which is required to receive�
messages, denoted as �#� � � , is �#� � �M� �H x�o � 5 � � ��� � (3)�#� � � decreases as message number

�
or handoff arrival rate I increases and as message arrival rate H decreases.

As
�

tends to �P	�~ Gb� , �#� � � tends to
�
, which means the program needs infinite long time to successful com-

plete. So it needs some techniques to cut down the wasted computation time to increase the average availability.

Checkpointing and rollback are such techniques which are suitable to achieve this object.

4.2. Equi-number Checkpointing

Equi-number checkpointing means checkpoints are equally placed with respect to the number of received mes-

sages
�

. It can be treated as two ways, one is the message number in each checkpointing interval is not changed

and the other is the checkpoint number is not changed. We denote these two as equi-number checkpointing with

respect to message number and equi-number checkpointing with respect to checkpoint number respectively. The

first one is very naturally derived from the equidistant checkpointing strategy [16] as we change the required

program execution time to the required message number.

4.2.1 Model Description

The number of messages
�

is divided into � equal intervals, so each interval has �=� � ~�� messages. Despite of�
, the checkpointing strategy will be equi-number checkpointing with respect to checkpoint number if � is fixed

and be equi-number checkpointing with respect to message number if � is fixed. Actually these two approaches

have the same mathematical expression of the expected execution time and average availability. So afterwards we

only consider equi-number checkpointing with respect to message number. For simplicity, we take a checkpoint

even when a program finishes. Therefore there is always a checkpoint at the end of each interval, thus a total of �
checkpoints. The execution times of the � intervals are independent and identically distributed random variables.

In each interval, the execution is the same as the execution without failures except that the program restarts from

its most recent checkpoint. Figure 7 shows the execution with equi-number checkpointing in the �����%� �C� �����"�
14

interval, in which
5<� ���%�&�\! � ���%�&��? � ���%�&����� � ��	$��%���&��� , denote the same events as

5 ���%�&�\!#�^������?t���%�&���1� � ��	��B%���&�&� ,
in Figure 6.

Figure 7. Program execution with equi-number checkpointing

Let � denote the checkpoint creation time. We know � contains two parts of time, which are the time to take a

checkpoint and the time to save the checkpoint on stable storage. In our mobile model, as we know, the MH is not

safe to be treated as stable storage. Checkpoints should be transmitted through a wireless link, which suffers with

little bandwidth and long transfer delay, and then be saved on the stable storage of currently associated AB. So the

latter part is the most significant one. After a failure, a recent checkpoint should be reloaded into the MH through

a wireless link. As the same reason, the main part of the rollback time is consumed by checkpoint transmission.

So we let the rollback time also be � . We adopt one more assumption that failures do not occur when the program

is in the rollback process.

4.2.2 Execution Time and Average Availability with Checkpointing

Let
5 � � ����� denote the total execution time of a program which is divided into

� ~�� intervals, each interval should

receive � messages continuously without failure. The LST of
5 � � ����� is given by

J0K ��L�� � �B���M���� ��LON G �PH��+R f> T^U '"Y�'"Z\[TVU '�WX'"Y�'"Z\[7¡ N f> TVU '"Y�[T^U '%WX'"Ya`�Z�ced"f�g TVU [7[7¡ - fa TVU '"Y�'"Z\[TVU '�WX'"Y�'"ZB`bZ%cedbf�g TVU [7[7¡ h��LON G �M- GbJ0i ��L�� J"¢ ��L��£R�	�- l WU '�WX'_Y�m � J"¢ ��LON G � h ¤¥ Q ¦ � � (4)

and the expectation of program execution time iso � 5 � � �B���P�§� � � k 	G N o ��4p�"N o �7�t� n k J"¢ �P- G � s H#N GH u � -E	 n
15

N I �¨x�o ��:A�H=N G q 	�- J ¢ �7I%� s HtN GH#N G N�I©u � '*) vª� (5)

A proof is given in Appendix B. Equation (5) shows that
o � 5 � � �B����� is a linear function of the number of

messages
�

and an exponential function of the number of messages � in each interval. In Equation (5), the

first term also stands for the expected execution time if we do not consider the effect of handoffs, in which
� ~��

denotes the number of checkpointing intervals during an execution. The other terms have similar expressions with

Equation (2). With checkpointing, the expectation of program execution time decreases dramatically.

In the program execution utilizing checkpointing, if we treat the checkpoint creation time and the time to

rollback to the most recent checkpoint also as downtime, then the average availability �t� � ����� can be computed

from �#� � �B���M� �H x�o � 5 � � �B���\� � (6)

which has the same form with Equation (3). With equi-number checkpointing which respects to message number,�#� � ����� is a constant and does not vary with
�

. But it still changes with
�

in equi-number checkpointing with

respect to checkpointing number, which has the same curve shape with �t� � � .
We know that the benefit of checkpointing comes at a price. During failure free execution, checkpointing

delays the message delivery. After a failure, there is a time to reload the program status in a checkpoint. So

there exists an optimal checkpointing interval which minimizes the total program execution time or maximizes the

average availability. The optimal checkpointing interval «� can be obtained by solving ��¬"~�¬"���&} o � 5 � � �\�������_� �
or ��¬"~�¬"���&}�#� � �����j��� �

. The second term in Equation (5) can be regarded as a constant when � is large enough

and is insignificant compared with the first term , so we ignore it. The derived equation iss H#N GH u � k 	£-®�O¯V° s H#N GH u n � J"¢ � G �&� (7)

Using the expansion of }��7H=N G �\~>H0� � as far as the second degree term, the approximate solution of the equation

above is «�ª±��²²²��³ �}V	�- J_¢ � G ���¯V° l WX'"YW
m ´´´¥ � (8)

from which we know that «� is independent of the required message number
�

, but it depends not only on the

failure rate
G

and the message arrival rate H , but also on the distribution of checkpoint duration. The optimal

checkpoint count is «�8�µ� � ~�«� � . We denote the minimal value of the expected program execution time and the

maximal value of the average availability as
or¶ � 5 � � �B����� and � ¶ � � �B��� respectively when �®��«� . Compared

with the execution without checkpointing, the execution with equi-number checkpointing is beneficial only if

16

o � 5 � � �B���P� � o � 5 � � �\� , the approximate solution is given by

�¸· ²²²²�
J"¢ �P- G � l WX'_YW
m � -E	�CR¹¯V° l WX'"YW m h�º - 	¯V° l WX'"YW m ´´´´¥ � (9)

4.3. Simulations and Comparisons

To verify the correctness of the expected execution time with and without checkpointing we derived, we made

two simulations respectively. In these two simulations, we considered the following values:� mean message arrival rate H��
	 � `") ;� mean failure arrival rate
G �
	 � `%» ��	 � `%¼ ��	 � `�½ ;� mean checkpoint creation time

o �7�#�M�
	 ;� checkpoint count
� ~�� is fixed and is 10;� mean repair time
o ��4p�M�
	 � ;� mean handoff rate I#�
	 � `%» and mean handoff time

o ��:A�M�
	 � .
We run each simulation 50 times given different failure arrival rates and the results of the mean execution time are

shown in Figure 8. These two figures show that the simulations match the curves of derived expected execution

time. To see how the failure rate influences the program execution time, we depict Y axis as the ratio of the

expectation of execution time with failure to the expectation without failure. In each case, the curves increase

exponentially and have the same shape as the number of messages required increases. Figure 8(a) and 8(b) are

similar, except that the labels of X axis. The difference between them is exact the value of
� ~�� . We know that in

each checkpointing interval, the execution process is similar with the process without checkpointing. From another

point, checkpointing decreases the failure arrival rate to 	�~0� � ~���� of the failure arrival rate without checkpointing

.

Figure 9 shows the result of average availability as we change the value of checkpoint count
� ~$� . From this

graph, we see that for the given message arrival rate H , failure arrival rate
G

and handoff rate I , there is a descend

of average availability when the required message count decreases to a certain value. The larger the
� ~$� is, the

greater the transition point is. This is to say that under some conditions, more checkpoints bring more overhead

than we expect. Certainly, as the required message number increases, more checkpoints will be more beneficial.

The dashed curve represents the average availability without checkpointing as
G �F	 � `b½ , which is always above

17

10
2

10
3

10
4

10
5

0

100

200

300

400

500

600

700

800

900

1000

Message Number

E
xe

cu
tio

n
T

im
e

R
at

io

10
3

10
4

10
5

10
6

0

100

200

300

400

500

600

700

800

900

1000

Message Number

E
xe

cu
tio

n
T

im
e

R
at

io

E(X(N))
N/λ N/λ

E(X(N,a))

γ = 10−1

ρ = 10−3
E(R) = 10
E(C) = 10
E(H) = 10

λ = 10−3
λ = 10−4
λ = 10−5

N N

(a) without checkpointing (b) checkpointing with respect to checkpointing number

Figure 8. Simulation result without checkpointing and with checkpointing

the curve of checkpointing as
G �§	 � `�¼ and

� ~��®�¸	 � . Because there are some overheads in checkpointing,

such as checkpoint creation time, etc. We treat these overheads as downtime. Another difference is there is no

descend of average availability without checkpointing as the required message number decreases. It hints that

checkpointing is not always beneficial to the program execution time or the average availability. We will see it in

Figure 10.

To illustrate whether the checkpointing can be used to reduce the overall execution time or increase the average

availability, we compare the average availability time with and without checkpointing from another viewpoint.

This time we utilize equi-number checkpointing with respect to message number, i.e., the number of messages

required � is a constant in each checkpointing interval, under which the average availability is a constant, shown as

horizontal lines in Figure 10. The average availability increases as � decreases, which means more checkpoints are

to be taken in execution. While excessive checkpointing decreases the availability, as shown in Figure 11. These

horizontal lines have intersections with those curves which represent no checkpoint is taken during execution.

Naturally, under these intersections, a program can be run more economically by not taking checkpoints and by

rerunning from the beginning of the program [7].

Figure 11 shows that when we engage equi-number checkpointing with respect to message number, there exists

an optimized «� maximizing the average availability. The approximation solution of «� is expressed in Equation (8).

Under the parameters provided in this figure, «�¾�F¿$¿ and � ¶ � � �����1� � �À�Á%	 . With equi-number checkpointing

18

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.4

0.5

0.6

0.7

0.8

0.9

1

Message Number

A
ve

ra
ge

 A
va

ila
bi

lit
y

with checkpointing
λ = 10−4
without checkpointing
λ = 10−5

γ = 10−1

ρ = 10−3
E(R) = 10
E(C) = 10
E(H) = 10

N/a = 10

N/a = 50

N/a = 100

Figure 9. Equi-number checkpointing with respect to checkpoint number

which respects to checkpoint number � and �,�µ	 � , the availability gets maximal value as
� �Â¿�¿ � . Under� ��À$, checkpointing can not get any benefit on the availability.

Figure 12 demonstrates the variation of average availability with message arrival rate H and handoff rate I
when engaging checkpointing with respect to checkpoint number or not. The average availability decreases asI increases, despite engaging checkpointing or not. The availability increases as H increases when the program

executes without checkpointing. But with checkpointing which respects to checkpoint number, the availability

increases first and then it decreases. When message arrival rate is low, checkpointing increases the availability.

But when message arrival rate is high, the program will be completed by experiencing less failures. Most of the

checkpoints do not contribute to the availability. So checkpointing incurs overhead more seriously. Under this

condition, we should take checkpoints less frequently to reduce these overheads.

Figure 9– 12 demonstrate that there are several factors to be weighted before determining that any checkpoint is

worth taking [7], such as failure arrival rate, message arrival rate, handoff rate, checkpoint creation cost, message

number, etc. So if we can adaptively adjust the checkpointing parameters and choose among checkpointing with

respect to checkpoint number, checkpointing with respect to message number and no checkpointing, we will get

more performance improvement.

5. Summary and Future Work

This term paper discusses how to engaging checkpointing and message logging in Wireless CORBA firstly. It

employs both quasi-sender-based and receiver-based message logging methods. The protocol can tolerate mobile

19

0 500 1000 1500 2000 2500 3000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Message Number

A
ve

ra
ge

 A
va

ila
bi

lit
y

λ = 10−4
λ = 10−5

γ = 10−1

ρ = 10−3
E(R) = 10
E(C) = 10
E(H) = 10

without
checkpointing

a=100 a=1000

a=10000

a=1000

Figure 10. Equi-number checkpointing with respect to message number

host disconnection, mobile host crash and Access Bridge crash. It introduces two equi-number checkpointing

strategies which respects to checkpoint number and message number respectively. It chooses the storage available

at the Access Bridge as the stable storage to log messages and checkpoints. To tolerate the Access Bridge crash,

it replicates an Access Bridge’s state in the previous Access Bridge for each mobile host. It also engages the

handoff mechanism as a means to recover from the Access Bridge crash. Then it analyzes the program execution

time and average availability with and without checkpointing, which is under the assumption that the number of

total received computational message
�

is not changed during a run and the inter-failure arrival time, the inter-

message arrival time and the inter-handoff time are exponentially distributed. The program execution time is

an exponential function of
�

without checkpointing and is a linear function of
�

with checkpointing. It has a

linear relationship with handoff rate despite engaging checkpointing or not. We also showed that under certain

conditions, checkpointing incurs worse performance than no checkpointing. So the individual programs are best

off by adopting checkpointing suited to these parameters or not.

In fault tolerant wireless CORBA, we assume faults have been detected already. Actually we should think about

how to detect a fault. A fault detector is an oracle that provides MHs with information on the behavior of the other

MHs or SHs. Within a distributed system dominated by uncertainty, such as asynchrony, failures etc., we need a

consensus to provide correct host with a single view of the system. The hosts may attempt to agree on whether

to classify a host as faulty. Mobile environments are often subject to link failures, mobile host failures, and MHs

may be disconnect intermittently. So consensus problems are more difficult to solve. Additionally, the algorithm

20

92 440 1000 1500 2000 2500 3000 3500 4000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Message Number

A
ve

ra
ge

 A
va

ila
bi

lit
y

without checkpointing

with checkpointing
N/a = 10

λ = 10−4
γ = 10−1

ρ = 10−3
E(R) = 10
E(C) = 10
E(H) = 10

with checkpointinga = 300

a = 10

a = 44

Figure 11. Comparison between checkpointing and without checkpointing

should lead to a faster solution and reduce communication cost. In our performance analysis model, we assume

that after a failure the messages still arrive as normal situation with exponential distribution. But during repair,

rollback and recovery interval, the messages are queued in ABs. So after a failure, there should be a time interval

in which the time between two successive message arrivals is not distributed exponentially. We should take this

into account to make the analysis model more realistic.

How to provide fault tolerance in ad hoc network is another future work. Ad hoc network is a collection of

MHs without the need of infrastructure support. There is not stable storage can be used as the wireless CORBA.

Ad hoc network is self-organizing and adaptive. All these are challenges to fault tolerance.

21

0
2

4
6

8
10

0

0.5

1
0

0.2

0.4

0.6

0.8

1

Message Arrival Rate
Handoff Rate

A
ve

ra
ge

 A
va

ila
bi

lit
y

0
2

4
6

8
10

0

0.5

1
0

0.002

0.004

0.006

0.008

0.01

Message Arrival Rate
Handoff Rate

A
ve

ra
ge

 A
va

ila
bi

lit
y

λ= 10−4

E(R) = 10
E(C) = 10
E(H) = 10
N = 1000
N/a = 10

(a) without checkpointing (b) checkpointing with repsect to checkpointing number

Figure 12. Average availability vs. message arrival rate and handoff rate

Appendix1

A Proof of the program execution time without checkpointing

If
5 / ��Ã , ! / �ÅÄ and ? / ��Æ , we have

5 � � ��Ç KMÈ�ÉbÊ>Ë Ì&ÈBÉbÍ�Ë Î�È�É0Ï �ÑÐÒÒÒÒÓ ÒÒÒÒÔ
Ã ÕÖ��×
Ã � Äp���"�pÃ � ÆÃªN{I�Ã0: ÕÖ��×
Ã � Äp���"�pÃ · ÆÄ1NE4EN 5 � � � ÕÖ��×
Ã · Ä0� (10)

If Ã � ÄA���"�AÃ � Æ , then the program will complete in Ã units of time without failures and handoffs. IfÃ � ÄC���_�<Ã · Æ , then the program will make I�Ã handoffs on average before it receives
�

messages without

failures. In this case, there is an expected handoff time I%Ãb: . If Ã · Ä , then a failure occurs before the program

receives
�

messages. In this case, there is a repair time 4 after which the program execution is restarted from its

beginning, which means that the program is required to receive
�

messages without interrupt again [16].

The LST of (10) can be written as

J0K ��L$� � ��Ç KMÈ�É0Ê>Ë Ì&È�É0Í&Ë Î$È�É0Ï � ÐÒÒÒÒÓ ÒÒÒÒÔ
� ` U Ê Õ¸��×ØÃ � Äp���"�pÃ � Æ� ` U Ê } J | ��L���� Z Ê Õ¸��×ØÃ � Äp���"�pÃ · Æ� ` U Í J i ��L�� J K ��L�� � � Õ¸��×ØÃ · Ä0� (11)

1The proofs in Appendix A and B follow the same method in [16].

22

Unconditioning on
5 / , !b/ and ? / , we getJ0K ��L$� � �µ� Ù¾ÚÊ�É / ÙAÚÍ�É / Ù¾ÚÏ\É / JbK ��L$� � ��Ç KMÈ�É0Ê>Ë Ì&È�É0Í&Ë Î�ÈBÉbÏ x H Q Ã Q `") � `�W Ê� � -Û	���Ü x G � `bY Í x I%� `bZ Ï ��Æ$��Ä���Ã� H Q k 	��LON�HtN G N{I�� Q N 	��LON{H#N G -AI�¯V° J0| ��L��\� Q - 	�jLONEHtN G N�I#-AI�¯V° J0| �jL��\� Q nN GbJ0i ��L�� J0K ��L$� � �L�N G q 	+- H Q��L@NEHtN G � Q v (12)

From (12), we haveJbK ��L$� � �©� ��LON G �PH Q R)T^U '%WX'"Y�'_Z�[] N)T^U '%WX'"Ya`�Z�cedbf�g TVU [7[] -)TVU '�WX'"Y�'"ZB`bZ�cedbf�g TVU [7[]�h�jLON G � - GbJ i ��L��1kj	+- l WU '�WX'"Y m Q n (13)

Using the relations
o � 5 � � �\�©�F-<Ý f�Þ TVU Ë Q [Ý U Ç U É / , o ��4p�O�D-=ß f�à T^U [ß U Ç U É / , J0i � � �@�F	 , o ��:A�@�á-=ß f g T^U [ß U Ç U É / , andJb| � � �M�
	 [3], the expected program execution time in the presence of failures and handoffs is given byo � 5 � � �\�*� k 	G N o ��4p� nrq�s HtN GH u Q -E	BvwN I �¨x&o �j:z�HtN G q 	+- s H=N GHtN G N{I u Q '*) v (14)

B Proof of the program execution time with equi-number checkpointing

First we only consider the program execution time in ����� interval. In each interval, we can use the same

procedure in Appendix A. If
5 � � � � ��Ã , ! � � � � ��Ä and ? � � � � ��Æ , we have

5=� � � ������Ç K â T /�[É0Ê>Ë Ì�â T /�[É0Í&Ë Î�â T /�[ÉbÏ �ãÐÒÒÒÒÓ ÒÒÒÒÔ
Ã�NE� Õ¸��×
ÃªN�� � Äª���"�pÃªNE� � ÆÃ�NE�SN�I%Ãb: Õ¸��×
ÃªN�� � Äª���"�pÃªNE� · ÆÄ�NÛ4EN��,N 5 � �j��� Õ¸��×
ÃªN�� · Äb� (15)

If Ã=N,� � Ä=���"�=Ã=N,� � Æ , then the program will complete the ����� interval in Ã=Nä� units of time without

failures and handoffs. If Ã � Ä����"�pÃ · Æ , then the program will make I�Ã handoffs on average before it receives� messages without failures. In this case, there is an expected handoff time I%Ãb: . If Ã=Nä� · Ä , then a failure

occurs before the program receives � messages. In this case, there is a repair time 4 and a state restore time �
after which the program execution is restarted from its current interval’s beginning.

The LST of (15) can be written as

J0Kåâ �jL�� � ������Ç K â T /�[É0Ê>Ë Ì�â T /B[É0Í&Ë Î�â T /�[É0Ï � ÐÒÒÒÒÓ ÒÒÒÒÔ
� ` U Ê J"¢ ��L�� ÕÖ��×
ÃªN�� � Äp���"�pÃ�NE� � Æ� ` U Ê J"¢ ��L��&} Jb| ��L���� Z Ê ÕÖ��×
ÃªN�� � Äp���"�pÃ�NE� · Æ� ` U Í J0i ��L�� J_¢ �jL�� J0K â ��L��B��� ÕÖ��×
ÃªN�� · Äb�

(16)

23

Unconditioning on
5<� � � �&��! � � � � and ? � � � � , we getJ0Kåâ �jL�� � �����µ� Ù¾ÚÊ�É / ÙAÚÍ�É / Ù¾ÚÏ\É / JbK â �jL�� � ������Ç K â T /�[É0Ê>Ë Ì�â T /�[É0Í&Ë Î�â T /�[É0Ï x%H��&Ãb� `") � `�W Ê���ª-E	��&Ü x G � `bY Í x I%� `bZ Ï ��Æ���Ä���Ã

� H � k J_¢ �jLON G N�I���jLONEHtN G N�I�� � N J_¢ �jLON G ���LON�HtN G -®I�¯V° J0| ��L���� � - J"¢ ��LON G N{I����L@N�H=N G N�It-AI�¯V° J0| ��L���� � nN GbJ i ��L�� J ¢ �jL�� J K â ��L�� � �B���L�N G k�	+- H � J ¢ ��L@N G ���L N{H#N G � � n (17)

From (17), we haveJbK â �jL�� � ������� �jLON G �PH � R f TVU '"Y�'_Z�[T^U '%WX'"Y�'_Z�[¡ N f TVU '"Y�[TVU '�WX'"Y>`bZ�ced_f g TVU [7[¡ - f T^U '_Y�'"Z\[T^U '�WX'_Y�'"ZB`bZ%cedbf g TVU [7[¡ h��L@N G �©- GbJ i ��L�� J ¢ ��L��+RV	£- l WU '�WX'"Ybm � J ¢ �jLON G � h (18)

The total execution time
5 � � �B��� is the sum of

� ~�� independent random variables
5 �

, so the Laplace form isJ K ��L$� � �����©�æ} J Kåâ ��L$� � ������� Q ¦ � (19)

Using the relations
o � 5<� � � �B���\�M�D- Ý f Þ â TVU Ë Q Ë � [Ý U Ç U É / , o ��4p� �á-=ß f�à TVU [ß U Ç U É / , Jbi � � � �D	 , o ��:A� �D-=ß f g TVU [ß U Ç U É / ,J | � � � �æ	 , o �7�#�M�D-=ß f T^U [ß U Ç U É / , and

J ¢ � � � �
	 , the expected program execution time of the � ��� interval in the

presence of failures and handoffs is given byo � 5 � � � �B���\�M� k 	G N o ��4p�bN o �ç�#� n k J ¢ �P- G � s HrN GH u � -Û	 n N I%� x�o ��:A�H#N G q 	+- J ¢ �7I%� s HtN GH#N G N�IMu � '*) v
(20)

Finally, we have that o � 5 � � �B���P�§� � � o � 5 � � � �B���\�� � � k 	GèN o ��4p�"N o �7�t� n k J"¢ �P- G � s H#N GH u � -E	 nN I �¨x�o ��:A�H=N G q 	�- J"¢ �7I%� s HtN GH#N G N�I u � '*) v (21)

24

References

[1] M. Barborak, M. Malek, and A. Dahbura. The consensus problem in fault-tolerant computing. ACM Computing

Sruverys, 25(2):171–220, June 1993.

[2] X. Chen and M. R. Lyu. Message logging and recovery in Wireless CORBA using access bridge. The 6th International

Symposium on Autonomous Decentralized Systems, April 2003.

[3] D. R. Cox. Renewal Theory. Methuen & Co Ltd., London, 1962.

[4] A. Duda. The effects of checkpointing on program execution time. Information Processing Letters, 16:221–229, June

1983.

[5] M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A survey of rollback-recovery protocols in message-passing

systems. ACM Computing Surveys, 34(3):375–408, September 2002.

[6] P. Felber, B. Garbinato, and R. Guerraoui. The design of a CORBA group communication service. The 15th Symposium

on Reliable Distributed Systems, pages 150 –159, October 1996.

[7] D. P. Jasper. A discussion of checkpoint/restart. Software Age, 3(10):9–14, October 1969.

[8] J. Jing, A. Helal, and A. Elmagarmid. Client-server computing in mobile environments. ACM Computing Surveys,

31(2):117–156, June 1999.

[9] D. B. Johoson. Distributed system fault tolerance using message logging and checkpointing. Ph.D. Dissertation, Rice

University, December 1989.

[10] P. Krishna, N. H. Vaidya, and D. K. Pradhan. Recovery in distributed mobile environments. Proceedings of the IEEE

Workshop on Advances in Parallel and Distributed Systems, pages 83–88, October 1993.

[11] Y. Ling, J. Mi, and X. Lin. A variational calculus approach to optimal checkpoint placement. IEEE Transactions on

Computers, 59(7):699–708, July 2001.

[12] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia, and C. A. Lingley-Papadopoulos. Totem: A fault-

tolerant multicast group communication system. Communications of the ACM, 39(4):54–63, April 1996.

[13] L. E. Moser, P. M. Melliar-Smith, and P. Narasimhan. A fault tolearnce framework for CORBA. The 29th International

Symposium on Fault-Tolerant Computing, pages 150–157, June 1999.

[14] P. Narasimhan, K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith. Providing support for survivable CORBA

applications with the immune system. The 19th IEEE International Conference on Distributed Computing Systems,

pages 507–516, May 1999.

[15] N. Neves and W. K. Fuchs. Adaptive recovery for mobile environments. Communications of the ACM, 40(1):68–74,

January 1997.

[16] V. F. Nocola. Checkpointing and the modeling of program execution time. Software Fault Tolerance, edited by Michael

R. Lyu,John Wiley & Sons Ltd., pages 167–188, 1995.

[17] Object Management Group. Telecom wireless CORBA. OMG Doucment dtc/01-06-02, June 2001.

[18] Object Management Group. The Common Object Request Broker: Architecture and specification, 2.6.1 edition. OMG

Document formal/02-05-15, May 2002.

25

[19] T. Park and H. Y. Yeom. An asynchronous recovery scheme based on optimistic message logging for the mobile

computing systems. The 20th International Conference on Distributed Computing Systems, pages 436–443, April

2000.

[20] J. S. Plank and M. G. Thomason. The average availability of uniprocessor checkpointing systems, revisited. Technical

Report UT-CS-98-400, Dept. of Computer Science, Univ. of Tennessee, August 1998.

[21] D. K. Pradhan, P. Krishna, and N. H. Vaidya. Recovery in mobile environments: Design and trade-off analysis. The

26th International Symposium on Fault-Tolerant Computing, June 1996.

[22] R. V. Renesse, K. P. Birman, and S. Maffeis. Horus: A flexible group communication system. Communications of the

ACM, 39(4):76–83, April 1996.

[23] R. Ruggaber and J. Seitz. Using CORBA applications in nomadic environment. The 3rd IEEE Workshop on Mobile

Computing Systems and Applications, pages 161–170, December 2000.

[24] A. N. Tantawi and M. Ruschitzka. Performance analysis of checkpointing strategies. ACM Transactions on Computer

Systems, 2(2):123–144, June 1984.

[25] K. S. Trivedi. Probability and Statistics with Reliability, Queueing and Computer Science Applications, 2nd edition.

John Wiley & Sons Ltd., New York, 2002.

[26] B. Yao and W. K. Fuchs. Proxy-based recovery for applications on wireless hand-held devices. The 19th IEEE

Symposium on Reliable Distributed Systems, pages 2–10, October 2000.

26

