
The Chinese University of Hong Kong
Department of Computer Science and Engineering

Ph.D. – Term Paper

Title: Testing Effectiveness and Fault Correlation Modeling

for Diverse Software Systems

Name: CAI, Xia

Student I.D.: 03440020

Contact Tel. No.: 3163-4257 Email A/C: xcai@cse.cuhk.edu.hk

Supervisor: Prof. Michael R. Lyu

Markers: Prof. Ada Fu & Prof. Jeffrey Yu (SEEM)

Mode of Study: Full-time

Submission Date: April 20, 2005

Term: 4

Fields:

Presentation Date: April 28, 2005(Thursday)

Time: 9:45–10:15 am

Venue: Rm. 1021, Ho Sin-Hang Engineering Building

Testing Effectiveness and Fault Correlation Modeling for Diverse
Software Systems

Abstract

While fault tolerant software is seen as a necessity, it is also controversial and a factor of regulatory uncer-

tainty. Up to date researchers do not know what creditable reliability models for fault tolerant software are, how

to test for fault tolerance, and how effective fault tolerant software can achieve. In particular, we cannot system-

atically develop models to predict reliability of fault tolerant software systems, and provide evidences regarding

the validity of these models. One difficulty lies on the fact that there is no proper model to describe the nature and

interactions of software faults regarding how they are manifested and how they are correlated. As currently, there

are no quantitative assessment schemes for a comprehensive evaluation of fault tolerant software including model

comparisons and trade-off studies with software testing techniques. This research is aimed at providing such an

assessment for a systematic evaluation of fault tolerant software techniques.

In this term paper, we first survey the background, techniques, reliability modeling and applications for software

fault tolerance. Then based on our previous experiment on software reliability analysis on fault tolerance, we

conduct further experiments and analyze the experimental data to learn the correlations among these faults and

the relation to their resulting failures. we apply the experimental data on current famous reliability modeling to

examine their effectiveness.

Furthermore, we investigate the effectiveness of data flow coverage and mutation coverage in testing for design

diversity. We examine different hypotheses on software testing and fault tolerance schemes, and find that code

coverage is a positive indicator for fault detection capability of a given test set. Particularly, for exceptional test

case, code coverage is clearly a strong indicator for its testing effectiveness.

I

Contents

1 Introduction 1

1.1 Fault Correlation Models for Design Diversity .1

1.2 The Effectiveness of Software Testing .2

1.3 Organization of this Term Paper .3

2 Background Study 5

2.1 Historical Background .5

2.1.1 Definitions .6

2.1.2 Rationale .7

2.1.3 Practice .7

2.2 Fault-Tolerant Software Techniques .8

2.2.1 Single Version Software Techniques .9

2.2.2 Multi-version Software Techniques .11

2.3 Modeling Schemes on Design Diversity .16

2.3.1 Eckhardt and Lee’s Model .16

2.3.2 Littlewood and Miller’s Model .16

2.3.3 Dugan and Lyu’s Dependability Model .17

2.3.4 Tomek and Trivedi’s Stochastic Reward Nets Model .17

2.3.5 Popov and Strigini’s Reliability Bounds Model .17

2.3.6 Experiments and Evaluations .18

2.4 Applications .19

2.5 Our Former Project Descriptions and Experimental Procedure21

II

3 Fault Correlation Models 23

3.1 Evaluation on Popov, Strigini et al’s Reliability Bounds Model23

3.1.1 Prediction Results Using Our Data Set .24

3.1.2 Comparison and Discussion .26

3.2 Evaluation on Dugan and Lyu’s System Reliability Model .29

3.3 Summary .33

4 The Effectiveness of Code Coverage 36

4.1 Effectiveness of Code Coverage in Different Testing Profiles .36

4.2 Experimental Evaluation and Testing Results .38

4.2.1 The relationship revealed in different test case regions38

4.2.2 The relationship revealed in functional testing versus random testing40

4.2.3 The relationship revealed in normal operational testing versus exceptional testing43

4.2.4 The relationship revealed in different combinations for various coverage metrics45

4.3 Discussions .46

4.4 Summary .47

5 Conclusion and Future Work 49

III

Chapter 1

Introduction

Software permeates our modern society, and its complexity and criticality is ever increasing. There is an urgent

need for a systematic development of highly reliable, continuously available, and extremely safe software. As

faults are inevitable to software systems, fault tolerance is the system survival attribute which allows seamless

delivery of expected service even after faults have manifested themselves within a software-intensive system.

While fault tolerant software is seen as a necessity, it is also controversial and a factor of regulatory uncertainty.

Up to date researchers do not know what creditable reliability models for fault tolerant software are, how to test

for fault tolerance, and how effective fault tolerant software can achieve. In particular, we cannot systematically

develop models to predict reliability of fault tolerant software systems, and provide evidences regarding the validity

of these models. One difficulty lies on the fact that there is no proper model to describe the nature and interactions

of software faults regarding how they are manifested and how they are correlated. Several models have been

proposed, yet debates among experts are frequent and heated. Moreover, there is lacking of real world project

data for investigation on software testing and fault tolerance techniques together, with comprehensive analysis

and evaluation. Without new research, it is doubtful that this impasse can be broken.

1.1 Fault Correlation Models for Design Diversity

Design diversity is one of the main techniques for software fault tolerance. This approach was proposed to

achieve quality and reliability of software systems by detecting and tolerating software faults during operation.

Its basic idea is to employ different development teams in building different program versions independently ac-

cording to one single specification [58]. During program executions, the final consensus output is either voted by

multiple versions, or verified by an acceptance test, which can be one of the program versions. The multi-version

programs are expected to fail with low probability of coincident failures. Although many research efforts have

1

been conducted for investigation, experimentation, modeling and evaluation of software design diversity, it still

remains a debatable approach compared with other software engineering techniques. One main reason is the lack

of real world project data on collecting the features of design diversity; and the other is the failures in diverse

versions may not occur independently, making it difficult to establish justifiable predictive reliability models.

Nevertheless, to attempt the modeling of reliability and fault correlations achieved in design diversity, some

methods have been proposed. Eckhardt and Lee [25] proposed the first model of fault correlation for diverse

systems. Later Littlewood and Miller [53] showed a conceptual model in which the reliability of a pair of ver-

sions may even be better than what is under the assumption of independence. Dugan and Lyu [23] proposed a

dependability model for N-version programming to parameterize the possibility of fault correlations. Recently,

Popov Strigini et al [73] further pointed out that the bounds on the reliability of multiple-version systems can be

estimated by dividing the demand space of the test cases into disjoint sub-domains.

1.2 The Effectiveness of Software Testing

As the main fault removal technique, software testing is one of the most effort-intensive activities during software

development [7]. The key issue in software testing is test case selection and evaluation. An effective test set should

detect software faults that do not easily lead to failure by other test cases. To improve the test resource allocation,

code coverage has been proposed as an indicator of testing effectiveness and completeness for the purpose of test

case selection and evaluation [63, 78, 81]. Code coverage is measured as the fraction of program codes that are

executed at least once during the test. Various code coverage criteria have been suggested [36], including block

coverage, decision coverage, C-use coverage and P-use coverage, etc.

However, it remains a controversial issue about whether code coverage is a good indicator for fault detection

capability of test cases. Some previous studies show that high code coverage brings high software reliability

and low fault rate [28, 36, 78, 89]. Such experimental data indicate that both code coverage and fault detected

in programs grow over time, as testing progresses. For example, [16] observed this correlation between the

code coverage and software reliability using experimentation with randomly generated flow graphs. In [92], it

is reported that the correlation between test effectiveness and block coverage is higher than that between test

effectiveness and the size of test set. [29] showed that an increase in reliability comes with an increase in at

least one code coverage measures, and a decrease in reliability is accompanied by a decrease in at least one code

coverage measures.

Furthermore, considering code coverage is a positive indicator for software reliability and quality, some re-

searchers try to model the relationship between code coverage and code quality by hypergeometric distribution

2

modeling [90] (under the assumption of a uniform probability and a random distribution of defects in the unit

code, and independence between defects). Some suggest code coverage as an additional parameter for the predic-

tion of software failures in operation [15]. Some model the relation among testing time, coverage and reliability

altogether [65].

On the other hand, despite the observations of correlation existing in code coverage and fault coverage, a

question is raised [14]: Can this phenomenon of concurrent growth be attributed to a causal dependency between

code coverage and fault detection, or is it just coincidental due to the cumulative nature of both measures? A

simulation experiment involving Monte Carlo simulation was conducted on the assumption that there is no causal

dependency between code coverage and fault detection. The testing result on published data did not support a

causal dependency between code coverage and defect coverage.

Overall, the relationship between code coverage and fault detection is very complicated. More empirical data

and theoretical insight are needed to explore the causal dependency between the two measures. In our previous

work, we performed mutation testing and code coverage testing [64]. The results indicate that in most situations

additional coverage of the code was achieved when the mutants were killed by a new test case. It observes that

the increase in code coverage is related to more fault detections by a large portion (61.5%) among 21 program

versions, although the range (from 22.2% to 94.7%) is very wide among different versions. In this paper, we will

further study the relationship between code coverage and fault detection capability under different testing profiles.

1.3 Organization of this Term Paper

As described in the term paper of last year, in order to obtain new real-world data regarding fault tolerant

software. we conducted fault tolerant software experiments which applying coverage-based and mutation-based

testing techniques, and collect data for detailed analysis. Comprehensive experimentation was performed to study

the nature, source, type, detectability, and effect of faults uncovered in the program versions.

What have been done in the past year are listed as follows:

• Survey the background, techniques, reliability modeling and applications for software fault tolerance1;

• Conduct further experiments and analyze the experimental data to learn the correlations among these faults

and the relation to their resulting failures. Apply our experimental data on current famous reliability mod-

eling to examine their effectiveness2.

1This is an invited paper for Encyclopedia of Computer Science and Engineering, to be published by Wiley
2Xia Cai and Michael R. Lyu, ”An Empirical Study on Reliability and Fault Correlation Models for Diverse Software Systems”,

ISSRE’2003, St-Malo,France, Nov.2003

3

• Investigate the effectiveness of data flow coverage and mutation coverage in testing for design diversity. We

examine different hypotheses on software testing and fault tolerance schemes, and find that code coverage is

a positive indicator for fault detection capability in software testing with our software fault tolerance project

3.

The remainder of this term paper is organized as follows. The review of software fault tolerance and software

reliability modeling are listed in the Chapter 2 (Background Stduy). The experimental setup and procedures are

also mentioned in this chapter. Then we conduct further experiments and analysis on the correlations among faults

in design diversity and compare the performance of current reliability models, which are included in Chapter 3.

Chapter 4 shows our new findings about the effect of code coverage on fault detection capability in fault-tolerance

software testing. Finally, Chapter 5 concludes this term paper by stating our conclusion and future work.

3Xia Cai and Michael R. Lyu, ”The Effect of Code Coverage on Fault Detection Capability under Different Testing Profiles”, A-MOST

of ICSE’2005, St. Louis, Missouri, May, 2005

4

Chapter 2

Background Study

Fault tolerance is the survival attribute of a system or component to continue operating as required despite the

manifestation of hardware or software faults [39]. Fault-tolerant software is concerned with all the techniques

necessary to enable a software system to tolerate software design faults remaining in the system after its develop-

ment [58]. When a fault occurs, fault-tolerant software provides mechanisms to prevent the system failure from

occurring [75].

Fault-tolerant software delivers continuous service complying with the relevant specification in the presence of

faults typically by employing either single version software techniques or multiple version software techniques.

We will address four key perspectives for fault-tolerant software: historical background, techniques, modeling

schemes and applications.

2.1 Historical Background

Most of the fault-tolerant software techniques were introduced or brought up in 1970s. For example, as one

of single version fault-tolerant software techniques, early research and discussions on exception handling began

to appear in the 1970s and led to more mature definitions, terminology and exception mechanisms later on [19].

Another technique, checkpointing and recovery, was also commonly used to enhance software reliability and

increase their computational efficiency, as shown in the literatures [68].

In the early 1970s, a research project was conducted at the University of Newcastle [77]. The idea of the

recovery block (RB) evolved from this project and it became one of the methods currently used for safety-critical

software. Recovery block is one of three main approaches in so-called design diversity, which is also known

as multi-version fault-tolerant software techniques. N-version programming was introduced in 1977 [5], which

involved redundancy of three basic elements in the approach: process, product and environment [4]. N self-

5

Figure 2.1. The Transition of Fault, Error and Failure

checking programming approach was introduced long after the previous two methods, yet it based on the concept

of self-checking programming which has long been introduced [49].

Since then, many other approaches and techniques have been proposed for fault-tolerant software, and various

models and experiments have been employed to investigate the features of these approaches. Some of them will be

addressed in the following part of this paper.

2.1.1 Definitions

As fault-tolerant software is capable of providing the expected service despite the presence of software faults

[5, 76], we first introduce the concepts related to this technique [51].

Failures. A failure occurs when the user perceives that a software program is unable to deliver the expected

service [49]. The expected service is described by a system specification or a set of user requirements.

Errors. An error is part of the system state which is liable to lead to a failure. It is an intermediate stage in

between faults and failures. An error may propagate, i.e., produce other errors.

Faults. A fault, sometimes called a bug, is the identified or hypothesized cause of the software failure. Software

faults can be classified as design faults and operational faults according to the phases of creation. Although the

same classification can be used in hardware faults, we only interpret them in the sense of software here.

Design faults. A design fault is a fault occurring in software design and development process. Design faults

can be recovered with fault removal approaches by revising the design documentation and the source code.

Operational faults. An operational fault is a fault occurring in software operation due to timing, race condi-

tions, workload-related stress and other environmental conditions. Such a fault can be removed by recovery, i.e.,

rollback to the initial state and executed again.

Fault-tolerant software thus attempts to prevent failures by tolerating software errors caused by design faults.

The progression “fault-error-failure” shows their causal relationship, as shown in Figure 2.1. There are two major

groups of approaches to deal with design faults: 1) fault avoidance (prevention) and fault removal during the

software development process, and 2) fault tolerance and fault/failure forecasting after the development process.

6

These terms can be defined as follows:

Fault avoidance (prevention). To avoid or prevent the introduction of faults by engaging various design method-

ologies, techniques and technologies, including structured programming, object-oriented programming, software

reuse, design patterns and formal methods.

Fault removal. To detect and eliminate software faults by techniques such as reviews, inspection, testing, verifi-

cation and validation.

Fault tolerance. To provide a service complying with the specification in spite of faults, typically by means

of single version software techniques or multi-version software techniques. Note that, although fault tolerance

is a design technique, it handles manifested software faults during software operations. Although software fault

tolerance techniques are proposed to tolerant software errors, they can help to tolerate hardware faults as well.

Fault/failure forecasting. To estimate the existence of faults and the occurrences and consequences of failures

by dependability-enhancing techniques consisting of reliability estimation and reliability prediction.

2.1.2 Rationale

The principle of fault-tolerant software is to deal with residual design faults. For software systems, the major

cause of residual design faults can be complexity, difficulty and completeness involved in software design, imple-

mentation and testing phases. The aim of fault-tolerant software, thus, is to prevent software faults from incorrect

operations, including severe situations such as hanging or as the worst, crashing a system. To achieve this pur-

pose, appropriate structuring techniques should be applied for proper error detection and recovery. Nevertheless,

fault tolerance strategies should be simple, coherent and general in their application to all software systems.

Moreover, they should be capable of coping with multiple errors, including the ones detected during the error

recovery process itself, which is usually deemed fault-prone due to its complexity and lack of thorough testing.

To satisfy these principles, strategies like checkpointing, exception handling and data diversity are designed for

single version software, while recovery block (RB), N-version programming (NVP) and N self-checking program-

ming (NSCP) have been proposed for multi-version software. The details of these techniques and their strategies

are discussed in Section 3.

2.1.3 Practice

From a user’s point of view, fault tolerance represents two dimensions: availability and data consistency of the

application [38]. Generally, there are four layers of fault tolerance. The top layer is composed of general fault tol-

erance techniques which are applicable in all applications, including checkpointing, exception handling, recovery

7

Hardware

Operating / Database Systems

Application Software Systems

Generic Software Systems

duplex, TMR, ...

signals, monitor, watchdog,

mirroring, FT-DBMS, ...

reusable component,

 message logging and recovery, ...

checkpointing, exception handling,

RB, NVP, NSCP, ...

Figure 2.2. Layers of Fault Tolerance

block, N-version programming, N-self checking programming and other approaches. Some of the top-level tech-

niques will be addressed in the following section. The second layer consists of application-specific software fault

tolerance techniques and approaches such as reusable component, fault-tolerant library, message logging and

recovery, etc. The next layer involves the techniques deployed on the level of operating and database systems, e.g.,

signal, watchdog, mirroring, fault-tolerant database (FT-DBMS), transaction and group communications. Finally,

the underlying hardware also provides fault-tolerant computing and network communication services for all the

upper layers, i.e., duplex, triple modular redundancy (TMR), symmetric multiprocessing (SMP), shared memory

and so on. Summary of different layers for fault tolerance techniques and approaches are shown in Figure 2.2.

Technologies and architectures have been proposed to provide fault tolerance for some mission-critical applica-

tions. These applications include airplane control systems (e.g., Boeing 777 airplane and AIRBUS A320/A330/A340

aircraft) [11, 35], aerospace applications [67], nuclear reactors, telecommunications products [38], network sys-

tems [46], and other critical software systems.

2.2 Fault-Tolerant Software Techniques

We examine two different groups of techniques for fault-tolerant software: single version and multi-version

software techniques [58]. Single version techniques involve improving the fault detection and recovery features

of a single piece of software on top of fault avoidance and removal techniques. The basic fault-tolerant features

include program modularity, system closure, atomicity of actions, error detection, exception handling, checkpoint

and restart, process pairs, and data diversity [58, 85].

In more advanced architectures, design diversity is employed where multiple software versions are developed

8

Execution

Error Detection

Checkpoint

Memory

Output

Input

checkpoint

Retry

Figure 2.3. Logic of checkpoint and recovery

independently by different program teams using different design methods, yet they provide the equivalent service

according to the same requirement specifications. The main techniques of this multiple version software approach

are recovery blocks, N-version programming, N self-checking programming, and other variants based on these

three fundamental techniques.

All the fault-tolerant software techniques can be engaged in any artifact of a software system: procedure,

process, software program, or the whole system including the operating system. The techniques can also be

selectively applied to those components especially prone to faults because of the design complexity.

2.2.1 Single Version Software Techniques

Single-version fault tolerance is based on temporal and spacial redundancies applied to a single version of

software to detect and recover from faults. Single-version fault-tolerant software techniques include a number of

approaches. We focus our discussions on two main methods: checkpointing and exception handling.

Checkpointing and Recovery

For single-version software, the technique most often mentioned is the checkpoint and recovery mechanism [74].

Checkpointing is used in (typically backward) error recovery, by saving the state of a system periodically. When

a failure is detected, the previous state is recalled and the whole system is restored to that particular state. A

recovery point is established when the system state is saved, and discarded if the process result is acceptable. The

basic idea of checkpointing is shown in Figure 2.3. It has the advantages of being independent of the damage

caused by a fault.

The information saved for each state includes the values of variables in the process, its environment, control

information, register values, and so on. Checkpoints are snapshots of the state at various points during the

9

normal

 operation

exception

handling

local

exceptions

return

Service

request

Normal

response

Service

request

Normal

response

Interface

exceptions

Failure

exceptions

Interface

exceptions

Failure

exceptions

Figure 2.4. Logic of exception handling

execution.

There are two kinds of checkpointing and recovery schemes: single process systems with a single node, and

multiple communicating processes on multiple nodes [75]. For single process recovery, a variety of different

strategies is deployed to set the checkpoints. Some strategies use randomly-selected points, some maintain a

specified time interval between checkpoints, and others set a checkpoint after a certain number of successful

transactions have been completed.

For multiprocess recovery, there are two approaches: asynchronous and synchronous checkpointing. The dif-

ference between the two is that the checkpointing by the various nodes in the system is coordinated in synchro-

nous checkpointing, but not coordinated in asynchronous checkpointing. Different protocols for state saving and

restoration have been proposed for the two approaches [75].

Exception Handling

Ideal fault-tolerant software systems should recognize interactions of a component with its environment, provide a

means of system structuring that make it easy to identify what part of the system to use to cope with each kind of

error, and provide normal and abnormal (i.e., exception) responses within a component and among components’

interfaces [52]. The structure of exception handling is shown in Figure 2.4.

Exception handling, proposed in the 1970’s [31], is often considered as a limited approach to fault-tolerant

software [18]. Since departure from specification is likely to occur, exception handling aims at handling abnormal

responses by interrupting normal operations during program execution. In fault-tolerant software, exceptions are

signaled by the error detection mechanisms as a request for initiation of an appropriate recovery procedure. The

design of exception handlers requires consideration of possible events that can trigger the exceptions, prediction

of the effects of those events on the system, and selection of appropriate mitigating actions.

10

A component generally needs to cope with three kinds of exceptional situations: interface exceptions, local

exceptions and failure exceptions. Interface exceptions are signaled when a component detects an invalid service

request. This type of exception is triggered by the self-protection mechanisms of the component and is treated by the

component that made the invalid request. Local exceptions occur when a component’s error detection mechanisms

find an error in its own internal operations. The component returns to normal operations after exception handling.

Failure exceptions are identified by a component after it has detected an error that its fault processing mechanisms

were unable to handle successfully. In effect, failure exceptions notify the component making the service request

that it has been unable to provide the requested service.

2.2.2 Multi-version Software Techniques

The multi-version fault-tolerant software technique is the so-called design diversity approach. This involves

developing two or more versions of a piece of software according to the same requirement specifications. The ra-

tionale for the use of multiple versions is the expectation that components built differently (i.e., different designers,

different algorithms, different design tools, etc) should fail differently [5]. Therefore, in the case that one version

fails in a particular situation, there is a good chance that at least one of the alternate versions is able to provide

an appropriate output.

These multiple versions are executed either in sequence or in parallel, and can be used as alternatives (with

separate means of error detection), in pairs (to implement detection by replication checks) or in larger groups (to

enable masking through voting). Three fundamental techniques are known as recovery block, N-version program-

ming and N self-checking programming.

Recovery Block

The recovery block technique involves multiple software versions implemented differently such that an alternative

version is engaged after an error is detected in the primary version [76, 77]. The question of whether there is an

error in the software result is determined by an acceptance test (AT). Thus the recovery block uses an acceptance

test and backward recovery to achieve fault tolerance. As the primary version will be executed successfully most of

the time, the most efficient version is often chosen as the primary alternate and the less efficient versions are placed

as secondary alternates. Consequently, the resulting rank of the versions reflects, in a way, their diminishing

performance.

The usual syntax of the recovery block is as follows. First of all, the primary alternate is executed; if the output

of the primary alternate fails the acceptance test, a backward error recovery is invoked to restore the previous

11

recovery cache

primary version

alternate 1

alternate n

acceptance test

...

Input
 Output

Figure 2.5. The recovery block (RB) model

establish

checkpoint

execute

alternate

restore

checkpoint

entry

exit

acceptance

test

discard

checkpoint

pass

new alternate

exists &

deadline not

expired

Yes

exception

signals

fail

Figure 2.6. Operation of recovery block

state of the system, then the second alternate will be activated to produce the output; similarly, every time an

alternate fails the acceptance test, the previous system state will be restored and a new alternate will be activated.

Therefore, the system will report failure only when all the alternates fail the acceptance test, which may happen

with a much lower probability than in the single version situation. The recovery block model is shown in Figure

2.5, while the operation of the recovery block is shown in Figure 2.6.

The execution of the multiple versions is usually sequential. If all the alternate versions fail in the acceptance

test, the module must raise an exception to inform the rest of the system about its failure.

12

Decision

Algorithm
Input
 Output

version 1

version 2

version n

.
.
.

Figure 2.7. The N-version programming (NVP) model

N-Version Programming

The concept of N-version programming (NVP) was first introduced in 1977 [5]. It is a multi-version technique in

which all the versions are typically executed in parallel and the consensus output is based on the comparison of

the outputs of all the versions [58]. In the event that the program versions are executed sequentially due to lack of

resources, it may require the use of checkpoints to reload the state before a subsequent version is executed. The

N-version software model is shown in Figure 2.7.

The NVP technique uses a decision algorithm (DA) and forward recovery to achieve fault tolerance. The use of

a generic decision algorithm (usually a voter) is the fundamental difference of NVP from the RB approach, which

requires an application-dependent acceptance test. The complexity of the decision algorithm is generally lower

than that of the acceptance test. In NVP, since all the versions are built to satisfy the same specification, it requires

considerable development effort but the complexity (i.e., development difficulty) is not necessarily much greater

than that of building a single version. Much research has been devoted to the development of methodologies that

increase the likelihood of achieving effective diversity in the final product [4, 9, 24, 47].

N-Self Checking Programming

N self-checking programming (NSCP) was developed in 1987 by Laprie et al. [50, 49]. It involves the use of

multiple software versions combined with structural variations of the recovery block and N-version programming

approaches. Both acceptance test and decision algorithms can be employed in NSCP to validate the outputs of

multiple versions.

The N self-checking programming method employing acceptance tests is shown in Figure 2.8. Same as RB and

NVP, the versions and the acceptance tests are developed independently but each designed to fulfill the require-

ments. The main difference of NSCP from the RB approach is in its use of different acceptance tests for different

13

version 1

version 2

version n

Decision

Algorithm
Input
 Output
.
.
.

Acceptance test 1

.
.
.

Acceptance test 2

Acceptance test n

Figure 2.8. N self-checking programming using acceptance test

version 1-A

version 1-B

version n-A

comparison

comparison

Decision

Algorithm

Input

version n-B

…

…

Output

…

…

Figure 2.9. N self-checking programming using decision algorithm

versions. The execution of the versions and tests can be done sequentially or in parallel but the output is taken

from the highest-ranking version that passes its acceptance test. Sequential execution requires a set of checkpoints,

and parallel execution requires input and state consistency algorithms.

N self-checking programming engaging decision algorithms for error detection is shown in Figure 2.9. Similar

to N-version programming, this model has the advantage of using an application-independent decision algorithm

to select a correct output. This variation of self-checking programming has the theoretical vulnerability of encoun-

tering situations where multiple pairs pass their comparisons but the outputs differ between pairs. That case must

be considered and an appropriate decision policy should be selected during the design phase.

Comparison among RB, NVP and NSCP

Each design diversity technique, recovery block, N-version programming, and N self-checking programming, has

its own advantages and disadvantages compared with the others. We compare the features of the three and list

them in Table 2.1.

The differences between acceptance test (AT) and decision algorithm (DA) are: 1) AT is more complex and

14

Table 2.1. Comparison of design diversity techniques

Features RB NVP NSCP

Minimum number

of versions 2 3 4

Decision Algorithm and

Output mechanism Acceptance Test Decision Algorithm Acceptance Test

Execution time primary version slowest version slowest pair

forward and

Recovery scheme backward recovery forward recovery backward recovery

difficult in implementation, but it can still produce correct output when multiple distinct solutions exist in multiple

versions; 2) DA is more simple, efficient and liable to produce correct output since it is just a voting mechanism;

but it is less able to deal with multiple solutions.

Other Techniques

Besides the three fundamental design diversity approaches listed above, there are some other techniques available,

essentially variants of RB, NVP and NSCP. They include consensus recovery block, distributed recovery block,

hierarchical N-version programming, t/(n-1)-variant programming, and others. Here we introduce some of these

techniques briefly.

Distributed Recovery Block

The distributed recovery block (DRB) technique, developed by Kim in 1984 [45], is adopted in distributed

and/or parallel computer systems to realize fault tolerance in both hardware and software. DRB combines recovery

blocks and a forward recovery scheme to achieve fault tolerance in real-time applications. The DRB uses a pair of

self-checking processing nodes (PSP) together with both the software-implemented internal audit function and the

watchdog timer to facilitate real-time hardware fault tolerance. The basic DRB technique consists of a primary

node and a shadow node, each cooperating with a recovery block, and the recovery blocks execute on both nodes

concurrently.

Consensus Recovery Block

The consensus recovery block approach combines N-version programming and the recovery block technique to

improve software reliability [79]. The rationale of consensus recovery blocks is that RB and NVP each may suffer

from its specific faults. For example, the RB acceptance tests may be fault-prone, and the decision algorithm in

NVP may not be appropriate in all situations, especially when multiple correct outputs are possible. The consensus

recovery block approach employs a decision algorithm as the first layer decision. If a failure is detected in the first

15

layer, a second layer using acceptance tests is invoked. Obviously having more levels of checking than either RB

or NVP, consensus recovery block is expected to have an improved reliability.

t/(n-1)-Variant Programming

t/(n-1)-variant programming (VP) was proposed by Xu and Randell in 1997 [93]. The main feature of this

approach lies in the mechanism engaged in selecting the output among the multiple versions. The design of the

selection logic is based on the theory of system-level fault diagnosis. The selection mechanism of t/(n-1)-VP has a

complexity of O(n) - less than some other techniques - and it can tolerate correlated faults in multiple versions.

2.3 Modeling Schemes on Design Diversity

There have been numerous investigations, analyses and evaluations of the performance of fault-tolerant soft-

ware techniques in general and of the reliability of some specific techniques [75]. Here we list only the main

modeling and analysis schemes that assess the general effectiveness of design diversity.

To evaluate and analyze both the reliability and the safety of various design diversity techniques, different

modeling schemes have been proposed to capture design diversity features, describe the characteristics of fault

correlation between diverse versions, and predict the reliability of the resulting systems. The following modeling

schemes are discussed in chronological order.

2.3.1 Eckhardt and Lee’s Model

Eckhardt and Lee (EL Model) [25] proposed the first probability model that attempts to capture the nature of

failure dependency in N-version programming. The EL model is based on the notion of “variation of difficulty”

over the user demand space. Different parts of the demand space present different degrees of difficulty, making

the program versions built independently more likely to fail with the same “difficult” parts of the target problem.

Therefore, failure independency between program versions may not be the necessary result of “independent” de-

velopment when failure probability is averaged over all demands. For most situations, in fact, positive correlation

between version failures may be exhibited for a randomly chosen pair of program versions.

2.3.2 Littlewood and Miller’s Model

Littlewood and Miller [53] (LM model) showed that the variation of difficulty could be turned from a disad-

vantage into a benefit with forced design diversity [73]. “Forced” diversity may insist that different teams apply

different development methods, different testing schemes, and different tools and languages. With forced diversity,

a problem that is more difficult for one team may be easier for another team (and vice versa). The possibility of

16

negative correlation between two versions means that the reliability of a 1-out-of-2 system could be greater than it

would be under the assumption of independence. Both EL and LM models are “conceptual” models because they

do not support predictions for specific systems and they depend greatly on the notion of difficulty defined over the

possible demand space.

2.3.3 Dugan and Lyu’s Dependability Model

The dependability model proposed by Dugan and Lyu in [23] provides a reliability and safety model for fault-

tolerant hardware and software systems using a combination of fault tree analysis and the Markov modeling

process. The reliability/safety model is constructed by three parts: a Markov model details the system structure,

and two fault trees represent the causes of unacceptable results in the initial configuration and in the reconfigured

state. Based on this three-level model, the probability of unrelated and related faults can be estimated according

to experimental data.

In a reliability analysis study [23], the experimental data showed that DRB and NVP performed better than

NSCP. In the safety analysis, NSCP performed better than DRB and NVP. In general, their comparison depends

on the classification of the experimental data.

2.3.4 Tomek and Trivedi’s Stochastic Reward Nets Model

Stochastic reward nets (SRNs) are a variant of stochastic Petri nets. SRNs are employed in [84] to model three

types of fault-tolerant software systems: RB, NVP and NSCP. Each SRN model is incorporated with the complex

dependencies associated with the system, such as correlation failures and separate failures, detected faults and

undetected faults. A Markov reward model underlies the SRN model. Each SRN is automatically converted into a

Markov reward model to obtain the relevant measures. The model has been parameterized by experimental data

in order to describe the possibility of correlation faults.

2.3.5 Popov and Strigini’s Reliability Bounds Model

Popov and Strigini attempted to bridge the gap between the conceptual models and the structural models by

studying how the conceptual model of failure generation can be applied to a specific set of versions [73]. This

model estimates the probability of failure on demand given the knowledge of subdomains in a 1-out-of-2 diverse

system. Various alternative estimates are investigated for the probability of coincident failures on the whole

demand space as well as in subdomains. Upper bounds and likely lower bounds for reliability are obtained by

using data from individual diverse versions. The results show the effectiveness of the model in different situations

17

having either positive or negative correlations between version failures.

2.3.6 Experiments and Evaluations

Experiments and evaluations are necessary to determine the effectiveness and performance of different fault-

tolerant software techniques and the corresponding modeling schemes. Various projects have been conducted

to investigate and evaluate the effectiveness of design diversity, including UCLA Six-Language project [42, 58],

NASA 4-University project [24, 73, 88], Knight and Leveson’s experiment [47], Lyu-He study [23, 61], etc.

These projects and experiments can be classified into three main categories: 1) evaluations on the effectiveness

and cost issues of the final product of diverse systems [1, 5, 10, 41, 43, 47, 34]; 2) experiments evaluating the design

process of diverse systems [4]; and 3) adoption of design diversity into different aspects of software engineering

practice [61, 64].

To investigate the effectiveness of design diversity, an early experiment [5], consisting of running sets of student

programs as 3-version fault-tolerant programs, demonstrated that the N-version programming scheme worked

well with some sets of programs tested, but not others. The negative results were natural since inexperienced

programmers cannot be expected to produce highly reliable programs. Another student-based experiment [47] in-

volved 27 program versions developed differently. Test cases were conducted on these program versions in single

and multiple version configurations. The results showed that N-version programming could improve reliability;

yet correlated faults existed in various versions, adversely affecting design diversity. In another study, Kelly et

al. [43] conducted a specification diversity project, using two different specifications with the same requirements.

Anderson et al. [1] studied a medium-scale naval command and control computer system developed by profes-

sional programmers through the use of the recovery block. The results showed that 74% of the potential failures

could be successfully masked. Another experiment evaluating the effectiveness of design diversity is the Project

on Diverse Software (PODS) [10]. This consisted of three diverse teams implementing a simple nuclear reactor

protection system application. There were two diverse specifications and two programming languages adopted in

this project. With good quality control and experienced programmers, high quality programs and fault-tolerant

software systems were achieved.

For the evaluation of the cost of design diversity, Hatton [34] collected evidence to indicate that diverse fault-

tolerant software techniques are more reliable than producing one good version, and more cost effective in the

long run. Kanoun [41] analyzed work hours spent on variant design in a real-world study. The results showed

that costs were not doubled by developing a second variant.

In a follow-up to the work of Avizienis and Chen [5], a six language NVP project was conducted using a

18

proposed N-version Software Design Paradigm [57]. The NVP paradigm was composed of two categories of ac-

tivities: standard software development procedures and concurrent implementation of fault tolerance techniques.

The results verified the effectiveness of the design paradigm in improving the reliability of the final fault-tolerant

software system.

To model the fault correlation and measure the reliability of fault-tolerant software systems, experiments have

been employed to validate different modeling schemes. The NASA 4-University project [88] involved 20 two-

person programming teams. The final twenty programs went through a three-phase testing process, namely, a set

of 75 test cases for acceptance test, 1100 designed and random test cases for certification test, and over 900,000

test cases for operational test. The same testing data have been widely employed [24, 53, 73] to validate the

effectiveness of different modeling schemes.

The Lyu-He study [61] was derived from an experimental implementation involving 15 student teams guided

by the evolving NVP design paradigm in [4]. Moreover, a comparison was made between the NASA 4-University

project, the Knight-Leveson experiment, the Six-Language project and the Lyu-He experiment in order to further

investigate and discuss the effectiveness of design diversity in improving software reliability. The results were

further used in [23] to evaluate the prediction accuracy of Dugan and Lyu’s Model. Lyu et al [64] reported a multi-

version project on The Redundant Strapped-Down Inertial Measurement Unit (RSDIMU), the same specification

employed in the NASA 4-University project. The experiment developed 34 program versions, from which 21

versions were selected to create mutants. Following a systematic rule for the mutant creation process, 426 mutants,

each containing a real program fault identified during the testing phase, were generated for testing and evaluation.

The testing results were subsequently engaged to investigate the probability of related and unrelated faults using

the PS and DL models.

Current results indicate that for design diversity techniques, NSCP is the best candidate to produce a safe result,

while DRB and NVP tend to achieve better reliability than NSCP, although the difference is not significant.

2.4 Applications

There are many application-level methodologies for fault-tolerant software techniques. As we have indicated,

the applications include airplane control systems (e.g., Boeing 777 airplane [35] and AIRBUS A320/A330/A340

aircraft [87]), aerospace applications [67], nuclear reactors, telecommunications products [38], network systems

[46], and other critical software systems such as wireless network, grid-computing, etc. Most of the applications

adopt single version software techniques for fault tolerance, i.e., reusable component, checkpointing and recovery,

etc. The design diversity approach has only been applied in some mission-critical applications, e.g., airplane

19

control systems, aerospace, and nuclear reactor applications. There are also emerging experimental investigations

into the adoption of design diversity in practical software systems, such as SQL database servers [72].

We may summarize the fault-tolerant software applications into four categories: 1) reusable component library,

e.g., [38]; 2) checkpointing and recovery schemes, e.g., [17, 74]; 3) entity replication and redundancy, e.g.,

[40, 86]; 4) early applications and projects on design diversity, e.g., [35, 72, 87]. An overview of some of these

applications is given below.

Huang and Kintala [38] developed three cost-effective reusable software components, i.e., watchd, libft, and

REPL, to achieve fault tolerance in the application level based on availability and data consistency. These com-

ponents have been applied to a number of telecommunication products.

According to [74], the new mobile wireless environment poses many challenges for fault-tolerant software due

to the dynamics of node mobility and the limited bandwidth. Particular recovery schemes are adopted for the

mobile environment. The recovery schemes combine a state-saving strategy and a handoff strategy, including two

approaches (No Logging and Logging) for state-saving, and three approaches (Pessimistic, Lazy, and Trickle)

for handoff. Chen and Lyu [17] have proposed a message logging and recovery protocol on top of the CORBA

architecture. This employs the storage available at the access bridge to log messages and checkpoints of a mobile

host in order to tolerate mobile host disconnection, mobile host crash and access bridge crash.

Entity replication and modular redundancy are also widely used in application software and middleware. Tow-

nend and Xu [86] proposed a fault-tolerant approach based on job replication for Grid computing. This approach

combines a replication-based fault tolerance approach with both dynamic prioritization and dynamic scheduling.

Kalbarczyk et al [40] proposed an adaptive fault-tolerant infrastructure, named Chameleon, which allows differ-

ent levels of availability requirements in a networked environment, and enables multiple fault tolerance strategies

including dual and TMR application execution modes.

The approach of design diversity, on the other hand, has mostly been applied in safety critical applications.

The most famous applications of design diversity are the Boeing 777 airplane [35] and AIRBUS A320/A330/A340

aircraft [87]. The Boeing 777 primary flight control computer is a triple-triple configuration of three identical

channels, each composed of three redundant computation lanes. Software diversity was achieved by using differ-

ent programming languages targeting different lane processors. In the AIRBUS A320 series flight control computer

[87], software systems are designed by independent design teams to reduce common design errors. Forced diver-

sity rules are adopted in software development to ensure software reliability. In an experimental exploration of

adopting design diversity in practical software systems, Popov and Strigini [72] implemented diverse off-the-shelf

versions of relational database servers including Oracle, Microsoft SQL and Interbase databases in various ways.

20

The servers are distributed over multiple computers on a local network, on similar or diverse operating systems.

The early results support the conjecture that reliability increases with the investment of design diversity.

2.5 Our Former Project Descriptions and Experimental Procedure

Motivated by the lack of empirical data, we conducted a real-world project for design diversity in the year 2002.

The Redundant Strapped-Down Inertial Measurement Unit (RSDIMU) project involved more than one hundred

students and 34 program versions were developed for a period of 12 weeks according to the same specification.

The specifications of a critical avionics instrument, Redundant Strapped-Down Inertial Measurement Unit (RS-

DIMU), were used in our project investigation. RSDIMU was first engaged in [24] for a NASA-sponsored 4-

university multi-version software experiment. It is part of the navigation system in an aircraft or spacecraft.

In this application, developers are required to estimate the vehicle acceleration using the eight accelerometers

mounted on the four triangular faces of a semi-octahedron in the vehicle. As the system itself is fault tolerant, it

allows the calculation of the acceleration when some of the accelerometers fail. Figure 2.10 show the system data

flow diagram.

Figure 2.10. RSDIMU System Data Flow Diagram

In this project, eventually, 21 out of the 34 versions were selected to create mutants, each of which was injected

with a single fault identified in the testing phase. Following a systematic rule for the mutant creation process,

mutants were generated for testing and evaluation.

To investigate the nature and features of software failures, 1200 test cases were executed on these program

21

versions as well as the generated mutants for evaluation test. Based on these results, a number of analysis and

evaluations were conducted, including fault classification and distribution, effectiveness of code coverage and

mutant coverage, and the similarities between different mutants.

The test cases conducted in the evaluation test is described in Table 2.2. Other details of the project and

development procedures are discussed in out previous term paper and [64].

Table 2.2. Test case description

1 A fundamental test case to test basic functions.

2-7 Test cases checking vote control in different order.

8 General test case based on test case 1 with different display mode.

9-19 Test varying valid and boundary display mode.

20-27 Test cases for lower order bits.

28-52 Test cases for display and sensor failure.

53-85 Test random display mode and noise in calibration.

87-110 Test correct use of variable and sensitivity of the calibration procedure.

86, 111-149 Test on input, noise and edge vector failures.

150-151 Test various and large angle value.

152-392 Test cases checking for the minimal sensor noise levels for failure declaration.

393-800 Test cases with various combinations of sensors failed on input and up to one

additional sensor failed in the edge vector test.

801-1000 Random test cases. Initial random seed for 1st 100 cases is: 777, for 2nd

100 cases is: 1234567890

1001-1200 Random test cases. Initial random seed is: 987654321 for 200 cases.

22

Chapter 3

Fault Correlation Models

3.1 Evaluation on Popov, Strigini et al’s Reliability Bounds Model

Popov, Strigini et al’s model (PS model) [73] gave the upper and “likely” lower bounds for probability of

failures on demand for a 1-out-of-2 diverse system. To get these bounds, complete knowledge on the whole demand

space should be provided. As it is hard to obtain such knowledge, the demand space can be partitioned into some

disjoint subsets, which are called subdomains. Given the knowledge on subdomains, failure probabilities of the

whole system can be estimated as a function of the subdomain to which a demand belongs. The main idea is as

follows.

For each subdomainSi (i = 1, · · · , n), we assume that the following probabilities are known: The probability

P (Si) of a random demand during software operation being drawn fromSi and the probabilities of failure (pfds)

of A and B (PA,B|Si
) for demands fromSi, PA|Si

andPB|Si
. Then

PA,B|Si
= PA|Si

PB|Si
+ covi(ΩA, ΩB). (3.1)

The upper bound on the probability of system failure is determined as a weighted sum of upper bounds within

subdomains:

P(A,B) ≤
∑

i

min (PA|Si
, PB|Si

)P (Si). (3.2)

The “likely” lower bound can be drawn from the assumption of conditional independence:

PA,Bsub−ind
=

∑

i

PA|Si
PB|Si

P (Si), (3.3)

wherePA,Bsub−ind
is the actual probability of coincident failures in each subdomain if the versions fail indepen-

dently.

23

Table 3.1. Alternative expressions for the pfd of a 1-out-of-2 system (from [73])∑
x∈D

ωA(x) · ωB(x) · P (x)

PA · PB + cov(ΩA, ΩB)

(would bepfd in case of

independence)

(accounts for variation of score between individual demands)

PA · PB + cov(PA|Si
, PB|Si

) + E(covi(ΩA, ΩB))

(term for variation of

pfd between subdo-

mains)

(term for variation of

score within each sub-

domain)
∑

i
PA|Si

PB|Si
P (Si) + E(covi(ΩA, ΩB))

(pfd in case of independence in each subdomain)

PA,Bsub−ind + E(covi(ΩA, ΩB))

Alternative expressions forPA,B as the pfd of a 1-out-of-2 version system are given in Figure 3.1.

This model can be applied to real-world data collected for diverse software. The upper bound and the lower

bound can be estimated for applications using Point Estimate method or Confidence Bounds method. In our

experiment, we adopt Point Estimate method to illustrate the modeling results.

3.1.1 Prediction Results Using Our Data Set

In our experiment, we created 426 mutants from 21 program versions, where each mutant was injected with one

real fault into the final program versions passing the qualification test. Note the meaning of a mutant is different

from that of a version, in the sense that a mutant is not a real final version but with faults injected manually. Here

we treat each mutant, which contains only one real programming fault as a real version. From the analysis of

severity of different faults, we notice that some faults can be more severe or even critical for the whole program,

while others may have little influence on the program functionality. In this experiment, we only engage those

mutants which passed the first 800 test cases1 (as a qualification test set) to study the failure correlation of the

diverse versions.

The RSDIMU application receives input values from redundant sensors and produces a consensus inertial

measurement for avionic vehicles. The input domain for RSDIMU can be represented by various sensor failure

conditions. In order to get the disjoint subdomains on the demand space, we follow the method described in

[24] by dividing the 1200 test cases into 7 categories, i.e.,S0,0, S0,1, S1,0, S1,1, S2,0, S2,1 and “others.” These

1Out of the 1200 test cases conducted during qualification test, the first 800 test cases were designed to test various functionality of the

application, while the last 400 test cases were randomly generated according to real operational scenarios.

24

categories (or so-called “states”) denote different situations that the number of faulty sensors prior to or during

the measurement operations. For example,S1,0, indicates the “state” of the environment with a single faulty

sensor prior to testing and no more sensor failures during the testing. We add the 7th state, i.e., “others” to denote

the situations other than the above 6 operational states. It represents those test cases in which the whole RSDIMU

system would fail under some extreme circumstances. Although it is indicated in [24] that such situation has little

chance of occurring in mission-critical diverse systems, we still consider it as a subdomain of the total test cases

due to the following reasons: 1) these seven disjoint subdomains compose the whole demand space which cannot

be fully represented with only six states; 2) for reliable systems, the diverse versions need to react correctly to

extreme situations.

As stated, we use the first 800 test cases as the qualification test. All the mutants which passed the qualification

test are adopted in this experiment, and each mutant is treated as a single version. We apply the remaining 400

test cases on these selected mutants. The number of failures of these mutants (belonging to different versions) with

respect to the states of test case are listed in Table 3.2. Note that the six mutants are from different initial versions

with injection of different design and programming faults.

Table 3.2. Failure data of mutants passing qualification test

Mutant ID S0,0 S0,1 S1,0 S1,1 S2,0 S2,1 Sothers

117 0 0 0 0 0 0 3

215 0 0 0 1 0 0 0

223 0 0 0 0 0 0 3

305 2 1 2 0 0 0 0

382 0 0 0 8 0 0 1

403 0 0 0 0 0 0 3

To apply PS model, we define the hypothetical demand profiles for calculation and illustrate the effect of the

demand profile on the upper bounds and lower bounds. The adjusted demand profile is shown in Table 3.3.

The former three in Table 3.3 are hypothetical demand files described in [73], while the last one (DP4) is the

real probability distribution in our 400 test cases. Furthermore, in order to simulate the model more accurately

and realistically, we select mutants belonging to different program versions, e.g., pair (117,305), (215,382) and

(382,403). We adopt Demand Profile 4 in our analysis, which is the real probability distribution in our experiment.

In [73], Popov, Strigini et al discuss the use of both observed frequencies and of conservative confidence bounds

as estimates of the conditional pfds, and favour the second alternative. Particularly in our case, according to Table

3.2, no failure was observed in some subdomains. Thus we adopt confidence bounds method to estimate the joint

pfds in our experiment. Table 3.4 shows the 90% confidence upper bounds on pfds of mutants in subdomains, and

25

Table 3.3. Demand Profile

DP1 DP2 DP3 DP4

p(s0,0) 0.99 0.4 0.15 0.4

p(s0,1) 0.005 0.2 0.15 0.1175

p(s1,0) 0.003 0.2 0.15 0.14

p(s1,1) 0.001 0.1 0.15 0.085

p(s2,0) 0.0005 0.05 0.15 0.0825

p(s2,1) 0.0003 0.03 0.15 0.0275

pothers 0.0002 0.02 0.10 0.1475

Table 3.6 displays the lower bounds. Our testing results for upper bounds and lower bounds on joint pfds under

four demand profiles are listed in Table 3.5 and Table 3.7, respectively.

Table 3.4. 90 percent confidence upper bounds on mutants’ pfds in subdomains

Mutant ID S0,0 S0,1 S1,0 S1,1 S2,0 S2,1 Sothers

117 0.0142 0.0468 0.0396 0.0637 0.0655 0.1746 0.1080

215 0.0142 0.0468 0.0396 0.1066 0.0655 0.1746 0.0376

223 0.0142 0.0468 0.0396 0.0637 0.0655 0.1746 0.1080

305 0.0327 0.0786 0.0907 0.0637 0.0655 0.1746 0.0376

382 0.0142 0.0468 0.0396 0.3446 0.0655 0.1746 0.0633

403 0.0142 0.0468 0.0396 0.0637 0.0655 0.1746 0.1080

3.1.2 Comparison and Discussion

The target objects engaged in our experiment and NASA 4-university experiment studied in [73] are different. In

the latter, diverse versions are employed to explore the granularity of failure correlations between different pairs

of versions. But in our experiment, we treat mutants as the target diverse versions, and we know the exact fault

each mutant contains. This is more helpful in finding realistic features of faults and their coincidence in diverse

systems. Furthermore, to make the comparison more reasonable, we only test the mutants passing the qualification

test and then capture their behavior in the subsequent operation testing. For better realism, i.e., similarity with

real-world multiple-version systems, we select mutants derived from different program versions.

The behavior of three pairs of mutants show three different features of fault coincidence of design diversity. For

pair (117, 305), the two mutants fail differently on the seven subdomains. In this case,P117,305upper is tighter

26

Table 3.5. Upper bounds on the joint pfds under Demand Profiles

Pair P117 90% P305 90% min(P117 90%, P305 90%) P117,305upper90%

DP1 0.0146 0.0332 0.0146 0.0146

(117, DP2 0.0400 0.0626 0.0400 0.0386

305) DP3 0.0715 0.0796 0.0715 0.0644

DP4 0.0483 0.0562 0.0483 0.0379

P215 90% P382 90% min(P215 90%, P382 90%) P215,382upper90%

DP1 0.0146 0.0149 0.0146 0.0146

(215, DP2 0.0429 0.0672 0.0429 0.0429

382) DP3 0.0709 0.1091 0.0709 0.0709

DP4 0.0415 0.0656 0.0415 0.0415

P382 90% P403 90% min(P382 90%, P403 90%) P382,403upper90%

DP1 0.0149 0.0146 0.0146 0.0146

(382, DP2 0.0672 0.0400 0.0400 0.0391

403) DP3 0.1091 0.0715 0.0715 0.0670

DP4 0.0656 0.0483 0.0483 0.0417

Table 3.6. 90 percent confidence lower bounds on mutants’ pfds in subdomains

Mutant ID S0,0 S0,1 S1,0 S1,1 S2,0 S2,1 Sothers

117 0.00065 0.00219 0.00185 0.00301 0.00309 0.00874 0.02939

215 0.00065 0.00219 0.00185 0.01529 0.00309 0.00874 0.00175

223 0.00065 0.00219 0.00185 0.00301 0.00309 0.00874 0.02939

305 0.00686 0.01113 0.01949 0.00301 0.00309 0.00874 0.00175

382 0.00065 0.00219 0.00185 0.16154 0.00309 0.00874 0.00890

403 0.00065 0.00219 0.00185 0.00301 0.00309 0.00874 0.02939

(smaller) thanmin(P117, P305) consistently for all demand profiles, although the difference between the two are

insignificant under DP1. The reason behind is that the subdomains where mutant 117 performs better are those

where mutant 305 performs worse, and vice versa, consistently. As the behavior of the two mutants are different

in all subdomains, the covariance shown in Table 3.7 is a small positive number under DP1, while negative in the

other three demand profiles. Thus the “likely” lower boundP117,305sub ind10%
is greater thanP117 ∗ P305 under

DP1, but smaller under DP2, DP3 and DP4.

For the second pair of mutants (215,382), the covariance is positive under all demand profiles, indicating that

the two mutants have related faults and may fail at the same subdomains. The upper boundP215,382upper equals to

min(P215, P382) under all demand profiles, since mutant 382 performs worse than mutant 215 in all subdomains.

As the correlation between the two mutants, the lower bounds with 90% confidence are always tighter (greater)

27

Table 3.7. Lower bounds on the joint pfds under Demand Profiles

Pair P117 10% P305 10% cov(S117 10%, S305 10%) P117 10%P305 10% P117,305sub ind10%

DP1 6.73 · 10−4 6.91 · 10−3 3.86 · 10−8 4.65 · 10−6 4.69 · 10−6

(117, DP2 2.37 · 10−3 9.62 · 10−3 −4.26 · 10−6 2.28 · 10−5 1.86 · 10−5

305) DP3 5.87 · 10−3 8.02 · 10−3 −1.80 · 10−5 4.71 · 10−5 2.91 · 10−5

DP4 5.87 · 10−3 7.79 · 10−3 −2.47 · 10−5 4.57 · 10−5 2.09 · 10−5

P215 10% P382 10% cov(S215 10%, S382 10%) P215 10%P382 10% P215,382sub ind10%

DP1 6.80 · 10−4 8.27 · 10−4 2.39 · 10−6 5.26 · 10−7 2.95 · 10−6

(215, DP2 3.05 · 10−3 1.78 · 10−2 1.98 · 10−4 5.43 · 10−5 2.52 · 10−4

382) DP3 4.95 · 10−3 2.76 · 10−2 2.50 · 10−4 1.37 · 10−4 3.86 · 10−4

DP4 2.83 · 10−3 1.63 · 10−2 1.70 · 10−4 4.62 · 10−5 2.16 · 10−4

P382 10% P403 10% cov(S382 10%, S403 10%) P215 10%P382 10% P382,403sub ind10%

DP1 8.27 · 10−4 6.73 · 10−4 4.62 · 10−7 5.57 · 10−7 1.02 · 10−6

(382, DP2 1.78 · 10−2 2.37 · 10−3 1.61 · 10−5 4.23 · 10−5 5.84 · 10−5

403) DP3 2.76 · 10−2 5.87 · 10−3 −4.86 · 10−5 1.62 · 10−4 1.13 · 10−4

DP4 1.63 · 10−2 5.86 · 10−3 −1.16 · 10−5 9.56 · 10−5 8.40 · 10−5

than P215 ∗ P382 under all subdomains. This positive covariance case supports the concept of “variation of

difficulty” between and within different demand subdomains.

The third pair (382,403) shows the possibility of negative covariance on DP3 and DP4. The covariance is a

small negative number, and thus the lower bound is smaller than the probability under independence scenario.

It indicates that with design diversity, the covariance of different versions may become a benefit instead of a

disadvantage. Nevertheless, as in [73], our data also show that this situation is less likely to happen under DP1.

The reason behind may be that the two mutants have correlations on some subdomains and no correlation on

other subdomains, i.e., they have coincident failures onSothers, but no coincident failures onS1,1. In DP1, the

probability of the “independence” subdomainS1,1 is a small number; while in other three demand profiles, the

probability ofS1,1 is large enough to affect the overall correlation and make the reliability even higher than that

of assuming “independence”.

In order to assess whether the approach proposed in [73] is useful in practice, we need to answer the following

questions:

1. “Does this method always produce tighter bounds thanPA ∗ PB andmin(PA, PB)?” From the analysis

and discussion above, we can see that the confidence bounds are tighter under most circumstances except two

situations: 1) one mutant performs worse than the other in all subdomains; and 2) with negative covariance, the

lower bound is smaller than the probability under independent scenario.

28

2. “Does this method give tight enough predictions when used in practice?” To this question, we cannot give

answers on the basis of our data, since in our experiment probabilities of common failure are measured directly

from the number of common failures observed. The original method in [73] is meant for cases in which one

can obtain estimates of failure probabilities (per subdomain) for the two versions separately, but does not have

a chance of observing the two versions on the same test cases before making a prediction. Further experimental

data are needed to be explored to answer this question.

Overall, the approach proposed in [73] of analyzing the behaviors of the versions by subdomains appears to

help, with our project data, in revealing the features of failure correlation among diverse programs.

3.2 Evaluation on Dugan and Lyu’s System Reliability Model

Dugan and Lyu (DL model) proposed a dependability modeling methodology for fault-tolerant software and

systems [23]. The DL reliability model is constructed by three parts: a Markov model details the system structure,

and two fault trees represent the causes of unacceptable results in the initial configuration and in the reconfig-

ured degraded state. Based on this 3-level reliability model, three parameters can be estimated according to the

experimental data:PV , the probability of an unrelated fault in a version;PRV , the probability of a related fault

between two versions; andPRALL, the probability of a related fault in all versions. The fault tree models for 2,

3 and 4 version systems are shown in Figure 3.1. The three parameters are calculated by the following equations

for 3-version systems:

PV =
F1

NF0 + F1
, (3.4)

PRV =
2F2PV (1− PV)− (N − 1)F1P

2
V

2F2PV (1− PV) + (N − 1)F1(1− P 2
V)

, (3.5)

PRALL =
F3 − PV

3

1− PV
3 , (3.6)

whereF1,F2 andF3 represent the observed frequency of a single failure, two and three coincident failures, re-

spectively, in a 3-version configuration.

In order to verify the effectiveness and consistency of DL model, we apply new data to this model and compare

our results with original results in [23]. In this experiment, we employ the same six mutants passing the quali-

fication test as the target versions in this fault tree model and their failure characteristics are investigated. The

400 operational test cases were executed on these mutants and the failures encounter in each mutant are shown

29

Figure 3.1. Fault tree models for 2, 3 and 4 version systems (from [23])

in Table 3.8. We can see from Table 3.8 that the average failure probability for single version is 0.01, which is

much smaller compared with the original experimental data in [23]. It indicates that the versions we used in this

experiment is more reliable. Moreover, the small failure frequency does not affect the prediction accuracy in terms

of magnitude.

Table 3.8. failure Characteristics for individual mutants
Mutant ID Number of failures Prob. By-case

117 3 0.0075

215 1 0.0025

223 3 0.0075

305 5 0.0125

382 9 0.0225

403 3 0.0075

Average 4 0.01

We configure the six mutants in pairs, and compare their outputs for each test case. Table 3.9 yields an estimate

of PV = 0.0084 for the probability of raising an unrelated failure in a 2-version configuration, and an estimate

PRV = 0.0016 for the probability of a related failure.

Table 3.9. failure Characteristics for 2-version configurations

Category Number of cases Frequency

F0 - no failure 5890 0.9817

F1 - single failure 100 0.0167

F2 - two coincident 10 0.0017

Total 6000 1.0000

30

Next, the six mutants are configured in sets of three. Table 3.10 shows the number of times that 0, 1, 2 and 3

failures occurred in the 3-version configuration. The data yields an estimate ofPV = 0.0071 for the probability

of an independent failure. The comparison between the predicted probability of 0, 1, 2 and 3 failures using

independence model and observed frequency are shown Table 3.11. Unlike the previous experiment reported in

[22], our data shows that the observed frequency for two and three simultaneous failures is higher than that of

the independence model. The data also yields the estimation ofPRV = 0.0013 for the probability of two related

failures, andPRALL = 0.0004 for the probability of failures involving all three versions.

Table 3.10. failure Characteristics for 3-version configurations

Category Number of cases Frequency

F0 - no failure 7797 0.9746

F1 - single failure 169 0.0211

F2 - two coincident 31 0.0039

F3 - three coincident 3 0.0004

Total 8000 1.0000

Table 3.11. Comparison of independent model with observed data for 3 versions

No. of failures Independent model Observed frequency

0 0.9786 0.9746

1 0.0213 0.0211

2 0.0002 0.0039

3 0 0.0004

The mutants are then analyzed in combinations of four programs. Table 3.12 shows the number of times that

0, 1, 2, 3 and 4 failures occurring in the 4-version configuration. The data yields an estimate ofPV = 0.0063

for the probability of an independent failure. The comparison between the predicted probability of 0, 1, 2, 3

and 4 failures using independence model and observed frequency are shown in Table 3.13. Just like 3-version

configuration, our data shows that the observed frequency for three and four coincident failures is higher than

that of the independence model. The data also yields the estimation ofPRV = 0.0028 for the probability of two

related faults, andPRALL = 0 for the probability of coincident failures in all four versions.

Table 3.14 summarizes the parameters estimated from our data. The parameters are applied to the fault tree

model shown in Figure 3.1. The predicted system failure probability using derived parameters in the fault tree

models agrees quite well with the observed data, especially with the 2- and 3-version configurations. For the

4-version configuration, the predicted probability is close to zero but the observed frequency is 0.0015. Our

31

Table 3.12. failure Characteristics for 4-version configurations

Category Number of cases Frequency

F0 - no failure 5811 0.9685

F1 - single failure 147 0.0245

F2 - two coincident 33 0.0055

F3 - three coincident 9 0.0015

F4 - four coincident 0 0.0000

Total 6000 1.0000

Table 3.13. Comparison of independent model with observed data for 4 versions

No. of failures Independent model Observed frequency

0 0.9750 0.9685

1 0.0247 0.0245

2 0.0002 0.0055

3 0 0.0015

4 0 0

experiment shows that the predicted system failure probability from fault tree model is very close to the observed

values in most situations, except that there is a gap between the two in 4-version model. This should be further

investigated to validate the effectiveness and accuracy of the fault tree model.

Table 3.14. Summary of parameter values derived from our data

2-version model 3-version model 4-version model

PV = 0.0084 PV =0.0072 PV =0.0063

PRV = 0.0016 PRV = 0.0013 PRV =0.0028

PRALL= 0.0004 PRALL= 0

Predicted system failure probability (from the model)

0.0017 0.0045 0.000048

Predicted system failure probability (from the data)

0.0017 0.0043 0.0015

Figure 3.2 compares the predicted reliability of three different configurations, including 2-version configuration

for Distributed Recovery Block (DRB) [76], 3-version configuration for N-Version Programming (NVP) [3, 61],

and 4-version configuration for N-Self Checking Programming (NSCP) [48]. We can see from our experiment that

DRB is the most reliable of the three to produce a correct result, while NSCP is the least reliable. Compared with

the original experimental data in [22], the prediction performance of the three configurations in our experiment

32

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time (hours)

P
ro

ba
bi

lit
y

of
 U

na
cc

ep
ta

bl
e

R
es

ul
t

DRB
NVP
NSCP

Figure 3.2. Predicted reliability by different configurations

are consistent with those in [22]. However, if we look into the first hundreds of hours, the three configurations

performs differently, as shown Figure 3.3. Here NSCP depicts higher reliability than DRB and NVP, although it

gives the least reliability in the long run.

Figure 3.4 compares the predicted safety of the three systems. Here we assume that the decider used in the NVP

and NSCP has a failure probability of only 0.0001 and that for DRB has a failure rate of 0.001 [23]. According to

Figure 3.4, NSCP is the most likely to produce a safe result, while DRB are an order of magnitude less safe than

NSCP. This is also consistent with the original experimental results in [23].

Overall, compared our project with former project in [23], the reliability and safety performance of DRB, NVP,

NSCP shows consistency of DL model with respect to our experimental data. The discrepancy in the first hundreds

of hours may indicate dependence on operational domains and needs further investigations. Furthermore, the

above predictions are on the basis of our primary data, some assumptions in [23] and the fault tree modeling.

To achieve more accurate results, the information about the correlation between successive executions should be

included [80].

3.3 Summary

In this chapter, we perform analysis and investigation on reliability and fault correlation issues for diverse

software systems. We apply our RSDIMU project data to evaluate the effectiveness and prediction accuracy of

existing reliability models for fault tolerant software. In our experiment, mutants with real faults are engaged.

400 operational test cases were executed on six mutants which passed a qualification test to investigate the fault

33

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

time (hours)

P
ro

ba
bi

lit
y

of
 U

na
cc

ep
ta

bl
e

R
es

ul
t

DRB
NVP
NSCP

Figure 3.3. Predicted reliability by different configurations

correlation features between any pairs of mutants.

We first apply Popov, Strigini et al’s reliability bounds model to locate the upper and lower bounds for reliability

of diverse programs. The results reveal that the confidence bounds are tighter with our data in most situations. It

verifies the hypothesis of “variety of difficulties” on different demand subdomains, and supports the effectiveness

of design diversity with small fraction of positive fault correlations and existence of negative correlations. Further-

more, we adopt Dugan and Lyu’s dependability model to parameterize the reliability of different configurations.

The analysis shows that NSCP is the least reliable but most safe approach among the three, while DRB inherits

the highest reliabililty but the lowest safety according to our experimental data in the long run. The discrepancies

in the first hundreds of hours may relate to the operational domain and needs further investigation.

As our future work, we will further analyze the prediction accuracy of these reliability and fault correlation

models on design diversity. Other comprehensive models such as Tomek and Trivedi’s model using stochastic

reward nets will be parameterized and analyzed by our data set. Further testing and verification will be explored

on our data set to collect more experimental results.

34

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−3

time (hours)

P
ro

ba
bi

lit
y

of
 U

ns
af

e
R

es
ul

t

DRB
NVP
NSCP

Figure 3.4. Predicted safety by different configurations

35

Chapter 4

The Effectiveness of Code Coverage

4.1 Effectiveness of Code Coverage in Different Testing Profiles

As we have mentioned above, the relationship between code coverage and fault coverage is very complicated

according to former empirical observations. The correlation between the two measures varies in different exper-

iments, thus causing the question on whether a causal-effect dependency exists in code coverage and reliability.

Both theoretical insight and empirical data are needed to clarity this question.

As code coverage is measured as the portion of program code, which is defined by different coverage criterion.

The four popularly used code coverage criteria are: block coverage, decision coverage, C-use and P-use. The

definitions for different coverage are given in [36]. We give brief descriptions of each as follows:

Block coverage is measured as the portion of basic blocks executed. Basic blocks are maximal code fragment

without branching, containing no internal flow of control change;

Decision coverage is measured as the portion of decisions executed. A decision is a code fragment associated

with a branch predicate.

C-use coverage is measured by computational uses covered. It refers to a pair of definition and computational

use of a variable.

P-use coverage is measured by predicate uses covered. It refers to a pair of definition and predicate use of a

variable.

From the definitions of these four coverage metrics, block coverage and C-use contain no control flow change

while decision coverage and P-use are related to branch predicates.

According to previous work from others and ourselves, we notice that the effect of code coverage on fault

coverage is positive in general. However, this correlation varies a lot in different reports. The intuitive reason of

36

using code coverage as an indicator for software reliability is that code constructs not exercised during test may

contain faults. But considering the requirements in specification, on the one hand, test set with additional code

coverage is more effective in detecting faults; on the other hand, some test cases with less code coverage can still

detect more program faults, when new code fragments are exercised which are not covered by other test cases.

Based on these considerations, we hypothesize that: 1) the effect of code coverage on fault detection varies if

different testing profiles are examined; 2) different code coverage metrics may have influence on such correlation.

To investigate the above effect of different code coverage metrics under different testing profiles, empirical data

are seriously needed. It requires a software project with bug history recorded, so that real faults can be studied,

code coverage can be measured, test effectiveness can be quantified and test cases can be analyzed. Moreover,

in such experiment, the development process should be controlled, the population of program versions should be

large enough, and the application should be complicated as real-world projects in practice to ensure the software

complexity.

Motivated by the lack of experimental data satisfying the requirement above, we conducted a experiment adopt-

ing the RSDIMU avionics application [64]. The application was part of the navigation system in an aircraft or

spacecraft, and was first engaged in [24] for NASA-sponsored 4-university multi-version software project.

We employ mutation testing in our investigation. Mutation testing is one of the main schemes for test case

selection and evaluation [71]. It starts with creating many versions of a program. Each version is “mutated” to

introduce a single fault. These ”mutant” programs are run against test cases with the purpose of causing each

faulty version to fail. Each time when a test case causes a faulty version to fail, the mutant is considered “killed”.

An effective test case always kills more mutants than a less effective test case does.

Based on the detected software faults, we selected 21 program versions and created 426 software mutants, and

conducted coverage testing [63] and mutation testing [71]. The contribution of each test case in block coverage of

the total 426 mutants, measured across all executed mutants, is recorded and depicted in Figure 4.1. The decision,

C-use and P-use coverage measures expose almost exactly the same pattern except for their absolute values, and

thus omitted here.

The contribution of each test case in covering (killing) the mutant population is shown in Figure 4.2. Figure

4.1 and Figure 4.2 clearly portray certain patterns between block coverage and fault detection under six different

test profiles, as delimited by A-E in the figures. On the one hand, test coverage and mutant coverage show similar

capability in revealing patterns in the test cases. On the other hand, higher and more stable code coverage, e.g.,

that achieved by test cases 1001-1200, may result in lower and unstable fault coverage.

For the overall test set, the former 800 test cases are designed according to the specification, which are named

37

as functional testing. To latter randomly generated 400 test cases are so-called random testing.

Other detailed descriptions of the test set as well as the experiment can be found in [64].

4.2 Experimental Evaluation and Testing Results

Based on our former experimental data, we further explore the relationship between code coverage and fault

detection capability for the current 1200 test cases which fall into six regions according to the various patterns

revealed in Figure 4.1 and Figure 4.2. As described above, these test cases can be classified as functional testing

(1-800) and random testing (801-1200). They can also be categorized by the system status: normal operation

testing and exceptional operation testing. In this study, we examine the relationship in all these classifications and

survey their similarities and differences.

To answer the question: Is code coverage a good indicator of fault detection capability? We investigate the sta-

tistical relationship between code coverage and fault coverage using linear regression model. In our experiment,

each mutant stands for one real fault in the software development process. Thus the terms “fault” and “mutant”

are used interchangeably in this paper.

In the following, we will examine the different relationship on three aspects: 1) the situations in overall test set

and different regions; 2) the situations in functional testing versus random testing; and 3) the situations in normal

operational testing versus exceptional operational testing.

4.2.1 The relationship revealed in different test case regions

As mentioned before, the former 800 test cases were designed to target different functions of the system, and

the latter 400 test cases were randomly generated to simulate the operational environment. Moreover, as shown

in Figure 4.1 and Figure 4.2, block coverage and fault coverage show different patterns in different parts on the

whole test set. We divide the whole test set into six regions according to their patterns (see Table 4.1). These six

clusters also reflect the underlying design principles of different test cases. After applying linear regression model

on current data, we get the parameters and the quality of fit of linear models in various regions as well as in the

whole test case space, as illustrated in Table 4.1. The results show that the relationship between block coverage

and mutant coverage can be predicted by linear model at the whole test case space with the value of R-square of

0.781 (see Figure 4.3). But as a measure of the quality of fit,R2 ranges dramatically from 0.189 (in Region IV) to

0.98 (in Region VI) in different test case regions, as shown in Figure 4.4 and Figure 4.5.

Figure 4.3 indicates that code coverage is a moderate indicator for fault detection capability of given test cases.

Generally, the larger of the code coverage that a test case executes, the more mutants it kills in program versions.

38

1 71 141 211 281 351 421 491 561 631 701 771 841 911 981 1051 1121 1191
0

10

20

30

40

50

60

70

80

90

100

Test case id

P
er

ce
nt

ag
e

of
 b

lo
ck

 c
ov

er
ag

e

A B C D E

Figure 4.1. Test Case Contribution on Program Coverage

But different phenomenon can be observed if we view the whole figure as a combination of two clusters: one with

block coverage at about 35% and mutant coverage at 90-150, and the other with block coverage at about 50%

and mutant coverage at 150-270. In each cluster, the relationship between block coverage and mutant coverage

is not always a positive correlation. Test cases with larger block coverage may kill less mutants, while test cases

with smaller block coverage may cause more mutants to fail.

However, if we look into the linear regression relations between block coverage and mutant coverage in each of

the six regions, we can find the most fit in Region IV and the least fit in Region VI. Note that test cases in Region IV

Table 4.1. Parameter and fitness of linear models in different test case regions

Test case region R-square

Overall (1-1200) 0.781

Region I (1-111) 0.634

Region II (112-151) 0.724

Region III (152-392) 0.672

Region IV (393-800) 0.981

Region V (801-1000) 0.778

Region VI (1001-1200) 0.189

39

1 71 141 211 281 351 421 491 561 631 701 771 841 911 981 1051 1121 1191
0

50

100

150

200

250

300

350

400

Test case id

N
um

be
r

of
 F

au
lts

A B C D E

Figure 4.2. Test Case Contribution on Mutant Coverage

are designed with various combinations of the system status, while test cases in Region VI are randomly generated

with a single initial random seed. One of the reasons behind this phenomenon may be because of the design

principle of test cases in Region IV, which targets at the main control flow of the program. The more program code

portion they execute, the more likely that program versions fail. This agrees with the traditional assumption and

observation that more code coverage brings more fault coverage. The other reason lies that for Region VI, all the

200 test cases have very close block coverage (from 48% to 52%). It agrees with our earlier observation in two

clusters: If the code coverage is in a small range, the linear correlation between code coverage and fault coverage

may be insignificant. Furthermore, as shown in the latter analysis, we believe the strong correlation in Region IV

lies in the fact that large number (277/373) of exceptional test cases contained in this region.

4.2.2 The relationship revealed in functional testing versus random testing

Functional testing and random testing are two basic methods employed in test case generation. In our test set,

800 test cases are functional test cases based on the basic operational requirements in the specification. The other

400 test cases are randomly generated with different seeds to simulate the large data set in real operations. The

linear correlation in functional testing and random testing can be seen in Table 4.2. The correlation in functional

testing is larger than that in random testing, but the difference is not significant. In general, functional test cases

are designed to increase their code coverage (i.e., to cover more code fragments), while random test cases are

40

Figure 4.3. Linear Regression Relations between Block Coverage and Defect Coverage

Figure 4.4. Linear Regression Relations between Block Coverage and Defect Coverage in Region IV

generated to simulate real operational environment and not likely to improve code coverage. From our results,

some functional test cases inherit the strong linear correlation between code coverage and fault coverage (e.g.,

in Region IV), while some random test cases show little correlation between the two measures (e.g., in Region

VI). The underlying reason may be that there is no exceptional test cases in Region VI, while a large number of

exceptional test cases (277 in Region IV while 373 in total test set) in Region IV. For another random test region,

i.e., Region V, positive correlation is also observed withR2 0.778 as there are 56 exceptional test cases in this

region.

However, in average, the correlations between code coverage and fault coverage vary from 0.837 in functional

testing to 0.558 in random testing. In both situations, code coverage is a moderate indicator for fault detection

capability.

The effectiveness of random testing has been a controversial [92]. For the question whether random testing is

41

Figure 4.5. Linear Regression Relations between Block Coverage and Defect Coverage in Region VI

Table 4.2. R-square value in testing profiles

Testing profile(size) R-square

Whole test set(1200) 0.781

Functional test(800) 0.837

Random test(400) 0.558

Normal test(827) 0.045

Exceptional test(373) 0.944

an effective testing approach, we can see some positive signs from our statistical data. First, although random test

cases are not designed to improve code coverage, they can still achieve similar code coverage as those functional

test cases, e.g., the similar code coverage (around 50%) obtained in Region VI as that in Region IV. Secondly,

random test can kill mutants whose faults are hard to detect, i.e., with small number of failure occurrence. If we

examine the failure details of mutants that failed at less than 20 test cases (which means these mutants inherit low

failure occurrence), we find that there are 94 random test cases and 169 functional test cases that can detect these

faults. The percentage 35.7% (94
94+169) shows that random test cases are effective to detect hard-to-kill mutants

as well as functional test cases. The numbers and failure occurrence of mutants that failed in only functional

testing as well as in random testing are listed in Table 4.3. The figures indicate that there are 382 mutants killed

in functional testing and 371 mutants killed in random testing. Among all these mutants, 362 mutants failed at

both testing, 20 mutants (with mean failure number of 4.5) killed by functional testing only and nine mutants

(with 3.67 failures in average) failed at random test cases only. This means that random testing may miss 5.2%

(20/382) faults compared with functional testing, but it kills 2.4% (9/371) additional faults which are not detected

42

by functional testing. These nine newly-killed mutants inherit pretty low failure occurrence.

Table 4.3. The failure number of mutants that failed in different testing

Test case type Mutants Mean failure Std.

killed number deviation

Functional testing 20/382 4.50 3.606

Random testing 9/371 3.67 2.236

Normal testing 36/371 120.00 221.309

Exceptional testing 20/355 55.05 99.518

Overall, random testing is a necessary complement to functional testing. Code coverage is still a good indicator

of fault detection capability for functional as well as random test cases.

4.2.3 The relationship revealed in normal operational testing versus exceptional testing

Test cases are designed to detect and remove residual faults in program versions which are developed to satisfy

the requirements in the software specification. There are two major system status according to the specifica-

tion: normal operation and exception handling. A test set should contain test cases designed according to these

two system operation scenarios to hit all kinds of faults. The classification of normal and exceptional status is

application-dependent and defined by the specification. Particularly in RSDIMU application, normal operations

refer to those situations where at most two sensors fail as the input and at most one sensor fails during the test. All

the other cases, which cause the difficult conditions where acceleration of the instrument unable to be estimated,

are viewed as exceptional operations.

As shown in Table 4.2, the linear correlation of code coverage and fault coverage changes dramatically from

normal testing (0.045) to exceptional testing (0.944). It clearly indicates the strong correlation of the two measures

in exceptional testing, but no correlation in normal testing, as seen in Figure 4.6 and Figure 4.7, respectively.

In normal testing, the code coverage range is relatively small (see Figure 4.6), between 48% and 52%. This

agrees with the design principle of normal test cases. The normal operations should execute the major part of the

program versions. In such a situation, although high code coverage may be obtained, it cannot be employed to

predict the fault detection capability of a normal operational test case. On the contrary, in the case of exceptional

testing, the value of R-square of 0.944 indicates an obvious positive correlation between code coverage and fault

coverage.

Figure 4.7 contains two main clusters. We examine the exceptional test cases and find that these two clusters

43

Figure 4.6. Linear Regression Relations between Block Coverage and Defect Coverage in normal

testing

are caused by the specific application. Because of the complexity of the RSDIMU application, some functions

such as acceleration estimation, contain large-scale computational code. In some exceptional cases, part of these

functions can be executed but others be skipped (e.g., When four sensors on exactly two faces have failed before the

test, and no additional sensor fails during the test); while in other cases, all these computational codes are skipped

according to the system status. This explains why the code coverage shows two different ranges and a big gap exists

between the two clusters. Although this phenomenon is application specific, the strong correlation pattern provides

a positive support for the code coverage. We postulate that even in other applications, since different exceptional

test cases simulate different exceptional situations, a variation of code coverage are achieved although the ranges

of code coverage may be larger or smaller compared with our application. Test cases with higher code coverage

are likely to detect more faults, i.e., the correlation between code coverage and fault coverage may still hold. Of

course, this needs further empirical investigation.

According to Table 4.3, the mutants killed by exceptional testing only fail less frequently (with 55 failures in

average) than those failed at normal testing only (with 120 failures in average). Considering the total numbers of

test cases in normal testing and exceptional testing are 827 and 373, the normalized failure occurrences of these

two classes of mutants are similar (120/827 vs. 55/373). Normal testing can detect more faults than exceptional

testing (371 vs. 355), yet it contains larger test set than exceptional testing.

Table 4.3 also reveals that mean failure numbers under functional testing and random testing are significantly

different from those under normal testing and exceptional testing. It may imply the different features and rela-

tionship among the four testing profiles. Functional testing (which designed according to the specification) and

44

Figure 4.7. Linear Regression Relations between Block Coverage and Defect Coverage in exceptional

testing

random testing (which designed according to operations) have a big overlap. Most cases under the two testing

profiles can detect similar faults. Only a small amount of function-specific faults or faults under some extreme

situations can be detected by functional testing or random testing only. But for normal testing and exceptional

testing, the two testing profiles are parallel, i.e., they contain no overlap. A fault only occurring under normal

operations may fail at many normal test cases, but it cannot be detected by exceptional testing, and vice versa.

The different features and relationship among testing profiles can also explain the various patterns they inherit in

terms of the correlation between code coverage and fault coverage: there is a similarity between functional testing

and random testing, but a major difference between normal testing and exceptional testing.

In summary, both normal operational testing and exceptional testing are important for software testing. But

code coverage is clearly a good indicator of fault detection capability of exceptional test cases, rather than normal

test cases. This can also give some hints on designing the exceptional test cases: increasing the code coverage of

such test cases will gain benefits on fault detection capability.

4.2.4 The relationship revealed in different combinations for various coverage metrics

From the data shown above, we observe that the effect of code coverage on fault coverage is significant in

exceptional testing, while weak in normal testing. The difference between functional testing and random testing

is not obvious, but still code coverage is a moderate indicator for test effectiveness. To further illustrate such

effect, we examine the correlation pattern in different testing profile combinations. The linear regression fit in

the four combinations are listed in Table 4.4. It is shown that the combinations containing exceptional testing

45

(random/exceptional and functional/ exceptional) indicate strong correlation, while the combinations containing

normal testing (random/normal and functional/normal) inherit weak correlation.

Table 4.4. Linear Regression Fitness for combinations

Testing Combination R-Square

random & normal 0.045

random & exceptional 0.949

functional & normal 0.076

functional & exceptional 0.950

Table 4.5. R-square value in different code coverage and testing profiles

Testing profile(size) block decision C-use P-use

coverage coverage

Whole test set(1200) 0.781 0.832 0.774 0.834

Functional test(800) 0.837 0.880 0.830 0.881

Random test(400) 0.558 0.646 0.547 0.648

Normal test(827) 0.045 0.368 0.019 0.398

Exceptional test(373) 0.944 0.952 0.954 0.954

To investigate the correlation pattern between different code coverage metrics and test effectiveness under

various testing profiles, the R-square values of linear regression for decision coverage, C-use and P-use are listed

in Table 4.5, compared with that of block coverage. The other three coverage metrics show similar patterns as

block coverage. There is an insignificant difference between block coverage/C-use and decision coverage/P-use

under normal testing. One possible reason may be that the variation of decision coverage and P-use coverage are

larger under normal operations, as they are related to the control flow change in the program code. According to

our previous observation, larger variation in code coverage implies more correlation in terms of the relationship

among different clusters.

4.3 Discussions

Based on our project data, we investigate the effect of different code coverage metrics under different testing

profiles. we focus on the following two questions: 1) Does the effect of code coverage on fault detection vary under

different testing profiles? 2) Do different code coverage metrics have various effects on such relationship?

46

For the first question, based on above experimental data, our answer is supportive. The correlation varies

under different testing profiles. In particular, there is a significant correlation between code coverage and fault

detection capability for exceptional test cases. Positive linear correlation holds with an overall R-square of 0.944.

The relationship shows no correlation for normal operational test cases. The phenomenon of different correlation

revealed in different test case regions can be explained by the effect under exceptional testing. The strong positive

correlation in Region IV is caused by large number (277/373) of exceptional test cases contained in this region.

On the other hand, code coverage implies fault detection capability moderately in both functional testing and

random testing. The difference between the two testing profiles is not obvious.

For the second question, we cannot give conclusive answer according to our data. The correlation pattern

seems similar for all coverage metrics under various testing profiles. There is a small discrepancy between block

coverage/C-use and decision coverage/P-use. It may be caused by the control flow diversion related to decision

predicate. But as the difference is not statistically significant, we cannot tell whether the coverage metrics have

influences on the concerned correlation.

As our project data are based on RSDIMU application, which is computation-intensive, the size of some func-

tions is very large compared with other applications. We find that there is a gap between the coverage of different

exceptional test cases, which is determined by the execution of these functions. It is the reason behind the two

clusters shown in some of the patterns. As RSDIMU is a real-world application from critical avionics industry,

the correlations and patterns that are observed in our experiment should be representative to a certain degree.

However, since this is only a case study of investigation, further real-world empirical data are still needed.

The significance of the clear positive correlation in exceptional testing is that it can provide guidelines for

selection and evaluation of exceptional test cases. Test cases with high code coverage tend to detect more faults,

although it does not necessarily mean that test cases with low coverage are useless. For functional testing, test

cases with low coverage may detect faults related to specified operations. For random testing or operational

testing, code coverage can estimate the fault detection capability for exceptional test cases.

4.4 Summary

Software testing is a key procedure to ensure high quality and reliability of software programs. The key issue in

software testing is the selection and evaluation of different test cases. Code coverage has been proposed to be an

estimator for testing effectiveness, but it remains a controversial topic and lack of support from empirical data.

In this chapter, we employ coverage testing and mutation testing to investigate the relationship between code

coverage and fault detection capability for test cases selection and evaluation purpose. A unique contribution

47

of our work is an innovative approach is establishing the relationship according to different testing profiles. We

conduct a large-scale project with real-world application to address such relationship with different coverage

metrics under different testing profiles. From our experimental data, code coverage is a moderate indicator for

the capability of fault detection on the whole test set. The effect of code coverage on fault detection varies under

different testing profiles. The correlation between the two measures is high with exceptional test cases, while weak

in normal testing.

Furthermore, there is no sign on various influence of different coverage metrics. All the four coverage metrics

show similar patterns on the linear relationship between code coverage and fault detection. Moreover, the data

support the effectiveness of random test cases due to its significant fault detection capability.

The new finding about the effect of code coverage on fault detection can be used to guide the selection and

evaluation of test cases under various testing profiles, although this still needs supports and evaluations from

more empirical data.

48

Chapter 5

Conclusion and Future Work

In this term paper, we first survey the background, techniques, reliability modeling and applications for software

fault tolerance. Then based on our previous experiment on software reliability analysis on fault tolerance, we

conduct further experiments and analyze the experimental data to learn the correlations among these faults and

the relation to their resulting failures. we apply the experimental data on current famous reliability modeling to

examine their effectiveness.

Furthermore, we investigate the effectiveness of data flow coverage and mutation coverage in testing for design

diversity. We examine different hypotheses on software testing and fault tolerance schemes, and find that code

coverage is a positive indicator for fault detection capability in software testing with our software fault tolerance

project.

As our future work, we will focus on proposing our own fault correlation modeling to estimate the fault correla-

tion among multiple versions/mutants. More investigations and experiments will be conducted based on statistical

data. We are generating millions of random test cases and exercise them on the current versions to collect statis-

tical fault correlation data.

Another possible research direction is the evaluation of test effectiveness. Although we have found that code

coverage is a positive indicator for testing effectiveness, especially under the context of exceptional testing, a

quantitative assessment about the relationship can be formulized.

49

Bibliography

[1] T. Anderson, P. A. Barrett, D. N. Halliwell, and M. R. Moulding. Software fault tolerance: an evaluation.

IEEE Transactions on Software Engineering, 12(1):1502–1510, January 1985.

[2] J. Arlat, K. Kanoun, and J. C. Laprie. Dependability modeling and evaluation of software fault-tolerant

systems.IEEE Transactions on Computers, 39(4):504–513, September 1990.

[3] A. Avizienis. The n-version approach to fault-tolerant software.IEEE Transactions on Software Engineering,

11(12):1491–1501, December 1985.

[4] A. Avizienis. Dependable computing depends on structured fault tolerance. InProceedings of the 1995 6th

International Symposium on Software Reliability Engineering, pages 158–168, Toulouse, France, 1995.

[5] A. Avizienis and L. Chen. On the implementation of N-version programming for software fault tolerance

during execution. InProceedings of the Computer Software and Application Conference (COMPSAC77),

pages 149–155, Chicago, Illinois, November 1977.

[6] A. Avizienis, J. Laprie, B. Randell, and C. Landwehr. asic concepts and taxonomy of dependable and secure

computing.IEEE Transactions on Dependable and Secure Computing, 1(1):11–33, December 2004.

[7] B. Beizer.Software Testing Techniques. Van Nostrande Reinhold Co., New York, 1990.

[8] F. Belli and P. Jedrzejowicz. Fault-tolerant programs and their reliability.IEEE Transactions on Reliability,

29(2):184–192, 1990.

[9] P. G. Bishop. Software fault tolerance by design diversity. In M. R. Lyu, editor,Software Fault Tolerance,

pages 211–230. Wiley, New York, 1995.

[10] P. G. Bishop, D. G. Esp, M. Barnes, P. Humphreys, G. Dahll, and J. Lahti. PODS - a project on diverse

software.IEEE Transactions on Software Reliability, 12(9):929–940, 1986.

50

[11] R. J. Bleeg. Commercial jet transport fly-by-wire architecture considerations. InAIAA/IEEE 8th Digital

Avionics Systems Conference, pages 399–406, October 1988.

[12] A. Bondavalli, S. Chiaradonna, F. D. Giandomenico, and L. Strigini. A contribution to the evaluation of

the reliability of iterative-execution software.Software Testing, Verification, and Reliability, 9(3):145–166,

March 1999.

[13] L. Briand and D. Pfahl. Using simulation for assessing the real impact of test coverage on defect coverage.

In Proceedings of the 10th International Symposium on Software Reliability Engineering, pages 124–157,

West Palm Beach, Florida, November 1999.

[14] L. Briand and D. Pfahl. Using simulation for assessing the real impact of test coverage on defect coverage.

IEEE Transactions on Reliability, 49(1):60–70, March 2000.

[15] M. H. Chen, M. R. Lyu, and W. E. Wong. Effect of code coverage on software reliability measurement.IEEE

Transactions on Reliability, 50(2):165–170, June 2001.

[16] M. H. Chen, A. P. Mathur, and V. J. Rego. Effect of testing techniques on software reliability estimates

obtained using time domain models. InProceedings of the 10th annual software reliability symposium,

pages 116–123, Denver, Colorado, June 1992.

[17] X. Chen and M. R. Lyu. Message logging and recovery in wireless corba using access bridge. InProceedings

of the 6th International Symposium on Autonomous Decentralized Systems (ISADS2003), pages 107–114,

Pisa, Italy, April 2003.

[18] F. Cristian. Exception handling and software fault tolerance. InProceedings of the 10th International

Symposium on Fault-Tolerant Computing (FTCS-10), pages 97–103, 1980.

[19] F. Cristian. Exception handling and tolerance of software faults. In M. R. Lyu, editor,Software Fault

Tolerance, pages 81–107. Wiley, New York, 1995.

[20] A. Csenki. Recovery block reliability analysis with failure clustering. In A. Avizienis and J. C. Laprie, editors,

Dependable Computing for Critical Applications(DCCA-1). Santa Barbara, USA, 1991.

[21] E. Delamaro, C. Maldonado, and A. Mathur. Interface mutation: An approach for integration testing.IEEE

Transactions on Software Engineering, 27(3):228–247, March 2001.

51

[22] J. B. Dugan and M. R. Lyu. System reliability analysis of an N-version programming application.IEEE

Transactions on Reliability, 43(4):513–519, December 1994.

[23] J. B. Dugan and M. R. Lyu. Dependability modeling for fault-tolerant software and systems. In M. R. Lyu,

editor,Software Fault Tolerance, pages 109–138. Wiley, New York, 1995.

[24] D. E. Eckhardt, A. K. Caglavan, J. C. Knight, L. D. Lee, D. F. McAllister, M. A. Vouk, and J. P. J. Kelly. An

experimental evaluation of software redundancy as a strategy for improving reliability.IEEE Transactions

on Software Engineering, 17(7):692–702, July 1991.

[25] D. E. Eckhardt and L. D. Lee. A theoretical basis for the analysis of multiversion software subject to coinci-

dent errors.IEEE Transactions on Software Engineering, 11(12):1511–1517, December 1985.

[26] M. Ege, M. Eyler, and M. Karakas. Reliability analysis in n-version programming with dependent failures.

In Proceedings of 27th Euromicro Conference, pages 174 –181, Warsaw, Poland, September 2001.

[27] R. C. et al. Orthogonal defect classification - a concept for in-process measurements.IEEE Transactions on

Software Engineering, 18(19):943–956, November 1992.

[28] P. G. Frankl and E. J. Weyuker. An applicable family of data flow testing criteria.IEEE Transactions on

Software Engineering, 14(10):1483–1498, October 1988.

[29] F. D. Frate, P. Garg, A. P. Mathur, and A. Pasquini. On the correlation between code coverage and software

reliability. In Proceedings of the 6th International Symposium on Software Reliability Engineering, pages

124–132, Toulouse, France, October 1995.

[30] A. Gnrarov, J. Arlat, and A. Avizienis. On the performance of software fault-tolerance strategies. InPro-

ceedings of 10th International Symposium on Fault Tolerant Computing (FTCS-10), pages 251–253, Ky-

oto,Japan, July 1980.

[31] J. B. Goodenough. Exception handling: issues and a proposed notation.Communications of the ACM,

18(12):683–693, 1975.

[32] K. E. Grosspietsch. Optimizing the reliability of the component-based n-version approaches. InProceed-

ings of International Parallel and Distributed Processing Symposium (IPDPS 2002), pages 138–145, Fort

Lauderdale, Florida, April 2002.

52

[33] K. E. Grosspietsch and A. Romanovsky. An evolutionary and adaptive approach for n-version programming.

In Proceedings of 27th Euromicro Conference, pages 182–189, Warsaw, Poland, September 2001.

[34] L. Hatton. N-version design versus one good version.IEEE Software, pages 71–76, Nov/Dec 1997.

[35] A. D. Hills and N. A. Mirza. Fault tolerant avionics. InAIAA/IEEE 8th Digital Avionics Systems Confer-

ence, pages 407–414, October 1988.

[36] J. R. Horgan, S. London, and M. R. Lyu. Achieving software quality with testing coverage measures.IEEE

Computer, 27(9):60–69, September 1994.

[37] W. E. Howden. Weak mutation testing and completeness of test sets.IEEE Transactions on Software Engi-

neering, 8(4):371–379, July 1982.

[38] Y. Huang and C. Kintala. Software fault tolerance in the application layer. In M. R. Lyu, editor,Software

Fault Tolerance, pages 231–248. Wiley, New York, 1995.

[39] IEEE. IEEE Standard Computer Dictionary: A Compilation of IEEE Standard Computer Glossaries. Insti-

tute of Electrical and Electronics Engineers, New York, 1990.

[40] Z. T. Kalbarczyk, R. K. Iyer, S. Bagchi, and K. Whisnant. Chameleon: a software infrastructure for adaptive

fault tolerance.IEEE Transactions on Parallel and Distributed Systems, 10(6):560–579, June 1999.

[41] K. Kanoun. Real-world design diversity: a case study on cost.IEEE Software, pages 29–33, July/August

2001.

[42] J. Kelly, D. Eckhardt, M. Vouk, D. McAllister, and A. Caglayan. A large scale generation experiment in

multi-version software: Description and early results. InProceedings of the 18th International Symposium

on Fault-Tolerant Computing, pages 9–14, June 1988.

[43] J. P. Kelly and A. Avizienis. A specification-oriented multi-version software experiment. InProceedings of

the 13th Annual International Symposium on Fault-Tolerant Computing (FTCS-13), pages 120–126, Milano,

June 1983.

[44] K. Kim, M. A. Vouk, and D. F. McAllister. An empirical evaluation of maximum likelihood voting in high

inter-version failure correlation conditions. InProceedings of the 7th International Symposium on Software

Reliability Engineering, pages 330–339, October 1996.

53

[45] K. H. Kim. Distributed execution of recovery blocks: an approach to uniform treatment of hardware and

software faults. InProceedings of the 4th International Conference on Distributed Computing Systems,

pages 526–532, 1984.

[46] K. H. Kim. The distributed recovery block scheme. In M. R. Lyu, editor,Software Fault Tolerance, pages

189–210. Wiley, New York, 1995.

[47] J. C. Knight and N. G. Leveson. An experimental evaluation of the assumption of independence in multiver-

sion programming.IEEE Transactions on Software Engineering, 12(1):96–109, January 1986.

[48] J. C. Laprie, J. Arlat, C. Beounes, and K. Kanoun. Definition and analysis of hardware- and software-

fault-tolerant architectures.IEEE Computer, 23(7):39–51, July 1990.

[49] J. C. Laprie, J. Arlat, C. Beounes, and K. Kanoun. Architectural issues in software fault tolerance. In M. R.

Lyu, editor,Software Fault Tolerance, pages 47–80. Wiley, New York, 1995.

[50] J. C. Laprie, J. Arlat, C. Beounes, K. Kanoun, and C. Hourtolle. Hardware and software fault tolerance:

definition and analysis of architectural solutions. InProceedings of the 17th International Symposium on

Fault-Tolerant Computing (FTCS-17), pages 116–121, Pittsburgh, PA, 1987.

[51] J. C. Laprie and K. Kanoun. Software reliability and system reliability. In M. R. Lyu, editor,Handbook of

Software Reliaiblity Engineering, pages 27–69. McGraw-Hills, New York, 1996.

[52] P. A. Lee and T. Anderson.Fault Tolerance: Principles and Practice. Springer-Verlag, New York, 1990.

[53] B. Littlewood and D. Miller. Conceptual modeling of coincident failures in multiversion software.IEEE

Transactions on Software Engineering, 15(12):1596–1614, December 1989.

[54] B. Littlewood, P. Popov, and L. Strigini. Design diversity: an update from research on reliability modelling.

In Proceedings of the 21th Safety-Critical Systems Symposium, Bristol, U.K., 2001.

[55] B. Littlewood, P. Popov, and L. Strigini. Modelling software design diversity - a review.ACM Computing

Surveys, 33(2):177–208, June 2001.

[56] B. Littlewood, P. Popov, and L. Strigini. Assessing the reliability of diverse fault-tolerant software-based

systems.Safety Science, 40:781–796, 2002.

[57] M. R. Lyu.A Design Paradigm for Multi-Version Software. PhD thesis, UCLA, Los Angeles, May 1988.

54

[58] M. R. Lyu, editor.Software Fault Tolerance. Wiley, New York, 1995.

[59] M. R. Lyu, editor.Handbook of Software Reliability Engineering. McGraw-Hill and IEEE Computer Society,

New York, 1996.

[60] M. R. Lyu. Reliability-oriented software engineering: Design, testing, and evaluation techniques.IEE

Software Proceedings, 145(6):191–197, December 1998.

[61] M. R. Lyu and Y. T. He. Improving the N-version programming process through the evolution of a design

paradigm.IEEE Transactions on Reliability, 42(2):179–189, March 1993.

[62] M. R. Lyu, J. R. Horgan, and S. London. A coverage analysis tool for the effectiveness of software testing. In

Proceedings of the 4th International Symposium on Software Reliability Engineering, pages 25–34, Denver,

November 1993.

[63] M. R. Lyu, J. R. Horgan, and S. London. A coverage analysis tool for the effectiveness of software testing.

IEEE Transactions on Reliability, 43(4):527–535, December 1994.

[64] M. R. Lyu, Z. Huang, K. S. Sze, and X. Cai. An empirical study on testing and fault tolerance for soft-

ware reliability engineering. InProceedings 14th IEEE International Symposium on Software Reliability

Engineering (ISSRE’2003), pages 119–130, Denver, Colorado, November 2003.

[65] Y. K. Malaiya, M. N. Li, J. M. Bieman, and R. Karcich. Software reliability growth with test coverage.IEEE

Transactions on Reliability, 51(4):420–426, December 2002.

[66] J. Musa.Software Reliability Engineering: More Reliable Software Faster and Cheaper. AuthorHouse, 2nd

edition, 2004.

[67] P. G. Neuman.Computer Related Risks. Addison-Wesley, Boston, 1995.

[68] V. F. Nicola. Checkpointing and the modeling of program execution time. In M. R. Lyu, editor,Software

Fault Tolerance, pages 167–188. Wiley, New York, 1995.

[69] A. J. Offutt, A. Lee, G. Rothermel, R. Untch, and C. Zapf. An experimental determination of sufficient mutant

operators.ACM Transactions on Software Engineering Methodology, 5(2):99–118, 1996.

[70] A. J. Offutt and J. Pan. Automatically detecting equivalent mutants and infeasible paths.The Journal of

Software Testing, Verification, and Reliability, 7(3):165–192, September 1997.

55

[71] J. Offutt and S. D. Lee. An empirical evaluation of weak mutation.IEEE Transactions on Software Engi-

neering, 20(5):337–344, May 1994.

[72] P. Popov and L. Strigini. Diversity with off-the-shelf components: a study with SQL database servers. In

Proceedings of the International Conference on Dependable Systems and Networks (DSN 2003), pages

B84–B85, 2003.

[73] P. T. Popov, L. Strigini, J. May, and S. Kuball. Estimating bounds on the reliability of diverse systems.IEEE

Transactions on Software Engineering, 29(4):345–359, April 2003.

[74] D. K. Pradhan.Fault Tolerant Computer System Design. Prentice Hall, New Jersey, 1996.

[75] L. L. Pullum.Software Fault Tolerance Techniques and Implementation. Artech House, Boston, 2001.

[76] B. Randell. System structure for software fault tolerance.IEEE Transactions on Software Engineering,

1(2):220–232, 1975.

[77] B. Randell and J. Xu. The evolution of the recovery block concept. In M. R. Lyu, editor,Software Fault

Tolerance, pages 1–21. Wiley, New York, 1995.

[78] S. Rapps and E. J. Weyuker. Selecting software test data using data flow information.IEEE Transactions on

Software Engineering, 11(4):367–375, April 1985.

[79] R. K. Scott, J. W. Gault, and D. F. McAllister. Fault tolerant software reliability modeling.IEEE Transactions

on Software Engineering, 13(5):582–592, 1987.

[80] L. Strigini. On testing process control software for reliability assessment: the effects of correlation between

successive failures.Software Testing Verification and Reliability, 6(1):33–48, January 1996.

[81] S. K. Sze and M. R. Lyu. ATACOBOL: A COBOL test coverage analysis tool and its applications. In

Proceedings of the 11th International Symposium on Software Reliability Engineering (ISSRE’2000), pages

327–335, San Jose, California, October 2000.

[82] A. T. Tai, A. Avizienis, and J. F. Meyer. Performability enhancement of fault-tolerant software.IEEE Trans-

actions on Reliability, Special Issue on Fault-Tolerant Software, 42(2):227–237, June 1993.

[83] X. Teng and H. Pham. A software-reliability growth model for n-version programming systems.IEEE

Transactions on Reliability, 51(3):311–321, September 2002.

56

[84] L. A. Tomek and K. S. Trivedi. Analyses using stochastic reward nets. In M. R. Lyu, editor,Software Fault

Tolerance, pages 139–165. Wiley, New York, 1995.

[85] W. Torres-Pomales. Software fault tolerance: a tutorial. Technical Report TM-2000-210616, NASA Langley

Research Center, Hampton, Virginia, Oct. 2000.

[86] P. Townend and J. Xu. Fault tolerance within a grid environment. InProceedings of the UK e-Science All

Hands Meeting 2003, pages 272–275, Nottingham, UK, September 2003.

[87] P. Traverse. Dependability of digital computers on board airplanes. InProceedings of the 2nd IFIP Working

Conference on Dependable Computing for Critical Applications, pages 133–152, Tucson, Arizona, 1991.

[88] M. A. Vouk, A. Caglayan, D. E. Eckhardt, J. Kelly, J. Knight, D. McAllister, and L. Walker. Analysis of faults

detected in a large-scale multi-version software development experiment. InProceedings of Digital Avionics

Systems Conference, pages 378–385, October 1990.

[89] E. J. Weyuker. The cost of data flow testing: an empirical study.IEEE Transactions on Software Engineering,

16(2):121–128, February 1988.

[90] T. W. Williams, M. R. Mercer, J. P. Mucha, and R. Kapur. Code coverage: what does it mean in terms

of quality? In Proceedings of the Annual Reliability and maintainability Symposium, pages 420–424,

Philadelphia, PA, USA, January 2001.

[91] W. Wong and A. Mathur. Reducing the cost of mutation testing: An empirical study.The Journal of Systems

and Software, 31(3):185–196, December 1995.

[92] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur. Effect of test set size and block coverage on the

fault detection effectiveness. InProceedings of the 5th International Symposium on Software Reliability

Engineering, pages 230–238, Monterey, CA, November 1994.

[93] J. Xu and B. Randell. Software fault tolerance: t/(n-1)-variant programming.IEEE Transactions on Relia-

bility , 46(1):60–68, March 1997.

57

