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Abstract 

 

Software testing and software fault tolerance are two major techniques for developing reliable software 

systems, yet limited empirical data are available in the literature to evaluate their effectiveness.  We 

conducted a major experiment to engage 34 programming teams to independently develop multiple 

software versions for an industry-scale critical flight application, and collected faults detected in these 

program versions.   To evaluate the effectiveness of software testing and software fault tolerance, mutants 

were created by injecting real faults occurred in the development stage.  The nature, manifestation, 

detection, and correlation of these faults were carefully investigated.  The results show that coverage 

testing is generally an effective mean to detecting software faults, but the effectiveness of testing coverage 

is not equivalent to that of mutation coverage, which is a more truthful indicator of testing quality. We also 

found that exact faults found among versions are very limited. This result supports software fault tolerance 

by design diversity as a creditable approach for software reliability engineering.  Finally we conducted 

domain analysis approach for test case generation, and concluded that it is a promising technique for 

software testing purpose. 

 

1. Introduction 

Fault removal and fault tolerance are two major approaches in software reliability engineering [1].  

Fault removal techniques detect and remove software faults during software development so that they will 

not be present in the final product, while fault tolerance techniques detect and tolerate software faults 

during software operation so that they will not interrupt the service delivery. 

The main fault removal technique is software testing.  The key issue in software testing is the selection 

of test cases and the evaluation of testing effectiveness.  Two major schemes in test case selection and 

evaluation are data flow coverage testing [2] and mutation testing [3]. 

Data flow coverage is a technique to provide measure of test sets and test completeness by executing 

the test cases and measuring how program codes are exercised. Some studies show the high data flow 

coverage brings high software reliability [4]. The observation of a correlation between good data flow 

testing and a low field fault rate is reported for the usefulness of data flow coverage testing [5, 6].  Impact 

of test coverage to fault detection is also performed [7].  Furthermore, research efforts have been conducted 

to establish relationship between test coverage and software reliability [8, 9].  As most experimental 



investigations are “once-only” efforts, however, conclusive evidence about the effectiveness of coverage is 

still lacking. 

The approach to mutation testing, on the other hand, begins by creating many versions of a program. 

Each of these versions is "mutated" to introduce a single fault. These "mutant" programs are then run 

against test cases with the goal of causing each faulty version to fail. Each time a test case causes a faulty 

version to fail, that mutant is considered "killed.”  Empirical studies on mutation testing are widely 

performed [10, 11, 12, 13]. Mutation testing is also applied for integration testing [14] and program 

analysis [15].  However, in most previous investigations, mutants are artificially generated with 

hypothetical faults.  The testing process produces an enormous number of mutants, and each mutant must 

be recompiled and tested.  These mutants are either too trivial (too easily killed) or too unrealistic (too hard 

to be activated). 

On the fault tolerance side, the main technique is software design diversity, including recovery blocks 

[16], N-version programming [17], and N self-checking programming [18].  Design diversity approach 

achieves fault-tolerant software systems through the independent development of program versions from a 

common specification. It is a software reliability engineering technique subject to continuous investigations 

by many researchers regarding its experimentation [19, 20, 21], modeling [22, 23, 24], and evaluation [25, 

26, 27].  The effectiveness of design diversity, however, heavily depends on the failure correlation among 

the developed multiple program versions [28, 29, 30], which remains a debatable research issue.  

Our research is motivated by the lack of real world project data for investigation on software testing 

and fault tolerance techniques together, with comprehensive analysis and evaluation.  Subsequently we 

conducted a real-world project and engaged multiple programming teams to independently develop 

program versions based  on an industry-scale avionics application.  We conducted detailed experimentation 

to study the nature, source, type, detectability, and effect of faults uncovered in the program versions, and 

to learn the relationship among these faults and the correlation of their resulting failures. We applied the 

mutation testing techniques to reproduce mutants with real faults, and investigated the effectiveness of data 

flow coverage, mutation coverage, and design diversity for fault coverage.  From the results, we examined 

different hypotheses on software testing and fault tolerance schemes, and drew a number of interesting 

observations.  Finally, we performed a new software test case generation technique [31] based on domain 

analysis approach [32] and evaluated its effectiveness. 

 

2. Project Descriptions and the Experimental Procedure 

 

In the spring of 2002 we formed 34 independent programming teams at the Chinese University of Hong 

Kong to design, code, test, evaluate, and document a critical application taken from industry.  Each team 

was composed of 4 senior-level undergraduate Computer Science students for a 12-week long project in a 



software engineering course.  We portray the project details, the software development procedure and the 

creation of mutants with the faults uncovered during software testing phase. Setup for the evaluation test 

environment and the initial metrics are also described. 

2.1 RSDIMU Project 

The specifications of a critical avionics instrument, Redundant Strapped-Down Inertial Measurement 

Unit (RSDIMU), were used in our project investigation.  RSDIMU was first engaged in [33] for a NASA-

sponsored 4-university multi-version software experiment.  It is part of the navigation system in an aircraft 

or spacecraft.  In this application, developers are required to estimate the vehicle acceleration using the 

eight accelerometers mounted on the four triangular faces of a semi-octahedron in the vehicle. As the 

system itself is fault tolerant, it allows the calculation of the acceleration when some of the accelerometers 

fail. Figure 1 show the system data flow diagram. 

 

 

Figure 1  RSDIMU System Data Flow Diagram 

 

The accelerometer measures specific force along its associated measurement axis where specific force 

is the difference between the RSDIMU’s inertial linear acceleration and the acceleration due to gravity.  

There are two kinds of input processing. The first type is the information describing the system geometry 

(“Geometry Information”). The second type is the accelerometer readings from the accelerometers, which 

need to be pre-processed through calibration (“Calibrate”) and scaling (“Scale”). 

The program should perform two major functions. First is to conduct a consistency check to detect and 

isolate failed accelerometers (“Failure Detection”). The second is to use the accelerometers found to be 

good by the first check to provide estimates of the vehicle’s linear acceleration expressed as components 

along different alignments (“Alignment” and “Estimate Vehicle State”). 



For output processing, the primary outputs are the accelerometer status vector specifying either a failed 

or an operational mode (“Failure Detection”), and a set of estimates for the vehicle’s linear acceleration 

based on various subsets of the operational accelerometers (“Estimate Vehicle State”). The secondary 

output is the information which drives a display panel and provides system status (“Display Processor”). 

 

2.2 Software Development Procedure 

The waterfall model was applied in this software development project.  Six phases were conducted in 

the development process: 

Phase 1: Initial design document (duration: 3 weeks) 

The purpose was to allow the programmers to get familiar with the specifications, so as to design a 

solution to the problem. At the end of this phase, each team delivered a preliminary design document, 

which followed specific guidelines and formats for documentation. 

Phase 2: Final design document (duration: 3 weeks) 

The purpose was to let each team obtain some feedback from the coordinator to adjust, consolidate, and 

complete their final design. Each team was also requested to conduct at least one design walkthrough. At 

the end of this phase, each team delivered (1) a detailed design document, and (2) a design walkthrough 

report. 

Phase 3: Initial code (duration: 1.5 weeks) 

By the end of this phase, programmers finished coding, conducted a code walkthrough, and delivered 

the initial, compliable code in the C language. Each team was required to use the RCS revision control tool 

for configuration management of the program modules. 

Phase 4: Code passing unit test (duration: 2 weeks) 

Each team was supplied with sample test data sets for each module to check the basic functionalities of 

the module. They were also required to build their own test harness for the testing purpose.  

Phase 5: Code passing integration test (duration: 1 week) 

Several sets of test data were provided to each programming team for integration testing. This testing 

phase was aimed to guarantee that the software was suitable for testing as an integration system. 

Phase 6: Code passing acceptance test (duration: 1.5 weeks) 

Programmers formally submitted their programs for a stringent acceptance test, where 1200 test cases 

were used to validate the final code.  At the end of this phase all 34 teams passed the acceptance test.  It is 

noted, that the requirement for this acceptance test was the same as the operational test conducted in [33], 

which was much tougher than the original acceptance test in [33]. 



 

2.3 Mutant creation 

RCS was required for source control for each team. Every code change of each program file at each 

check-in can therefore be identified. Software faults found during each stage are also identified. These 

faults were then injected into the final program versions to create mutants, each contain one programming 

fault. We selected 21 program versions for detailed investigation, and created 426 mutants.  We 

disqualified the other 13 versions as their developers did not follow the development and coding standards 

which were necessary for generating meaningful mutants from their projects. 

The following rules are applied in the mutant creation process: 

1. Low-grade errors, for example compilation error and core dump exception, are not created. 

2. Some changes were only available in middle versions. For example, the changes between 1.1 and 1.2 

may not be completely identified in the final version. These changes are then ignored. 

3. Code changes for debugging purposes are not included. 

4. Modifications of the function prototypes are excluded. 

5. As the specification does not mention about memory leaks, mutants are not created for any faults 

leading to memory leaks. 

6. The same programming error may span in many blocks of code. For example: a vector missed the 

division by 1000.0 may occur everywhere in a source file.  It is counted as a single fault. 

 

2.4 Setup of Evaluation Test 

In order to evaluate the effectiveness of data flow testing schemes, we set up an evaluation test 

environment. We employed the ATAC (Automatic Test Analysis for C) [6, 34] tool to analyze and 

compare coverage of testing conducted in the 21 program versions, together with their 426 mutants.  For 

each round of evaluation test, all 1200 acceptance test cases were exercised on these mutants.  This was a 

very intensive testing procedure, as all the resulting failures from each mutant were analyzed, their 

coverage measured, and cross-mutant failure results compared. 

60 Sun machines running Solaris were involved in the evaluation test. The evaluation test script run on 

a master host, and distributed each mutant as a running task to another machine. The execution results were 

collected in network file systems (NFS). One cycle of evaluation test took 30 hours, and the test results 

generated around 20GB of a total of 1.6 million files 

 

2.5 Program Metrics 



Table 1 shows the program metrics for the 21 versions engaged in the evaluation test, and the mutants 

each of them generated.  It can be noted that the size of these programs varies from 1455 to 4512 source 

lines of code. Each version produced a number of mutants ranging from 9 to 31.  The data flow metrics are 

also listed in Table 1. 

 

3. Static Analysis of Mutants: Fault Classification and Distribution 

Judging from the number of programming teams involved and the quantify of mutants generated, this 

investigation is probably the largest scale experiment in the literature regarding injecting actual 

programming faults in real-world software application for multiple program versions.  We first perform 

static analysis of the mutants regarding their defect type, qualifier, severity, development stage occurrence 

and effect code lines.  Note we use “defect” and “fault” interchangeably. 

3.1 Mutant Defect Type Distribution 

Each mutant is assigned with a defect type according to [35].  The statistics is show in Table 2. 

3.2 Mutant Qualifier Distribution 

Each mutant is assigned with a qualifier. The statistics is show in Table 3, with the following 

definitions: 

• Incorrect – The defect was a mistake in computing. For example: typo, wrong algorithm, etc. 

• Missing – Something was missing to cause the defect. 

• Extraneous – Useless addition caused the error. 

 

 



 
Id Lines Modules Functions Blocks Decisions C-Use P-Use Mutants 
01 1628 9 70 1327 606 1012 1384 25
02 2361 11 37 1592 809 2022 1714 21
03 2331 8 51 1081 548 899 1070 17
04 1749 7 39 1183 647 646 1339 24
05 2623 7 40 2460 960 2434 1853 26
07 2918 11 35 2686 917 2815 1792 19
08 2154 9 57 1429 585 1470 1293 17
09 2161 9 56 1663 666 2022 1979 20
12 2559 8 46 1308 551 1204 1201 31
15 1849 8 47 1736 732 1645 1448 29
17 1768 9 58 1310 655 1014 1328 17
18 2177 6 69 1635 686 1138 1251 10
20 1807 9 60 1531 782 1512 1735 18
22 3253 7 68 2403 1076 2907 2335 23
24 2131 8 90 1890 706 1586 1805 9
26 4512 20 45 2144 1238 2404 4461 22
27 1455 9 21 1327 622 1114 1364 15
29 1627 8 43 1710 506 1539 833 24
31 1914 12 24 1601 827 1075 1617 23
32 1919 8 41 1807 974 1649 2132 20
33 2022 7 27 1880 1009 2574 2887 16

Average 2234.2 9.0 48.8 1700.1 766.8 1651.5 1753.4 Total: 426

Table 1  Program metrics for 21 versions 

 
Defect types Number Percent 

Assign/Init: 136 31%
Function/Class/Object: 144 33%
Algorithm/Method: 81 19%
Checking: 60 14%
Interface/OO Messages 5 1%

Table 2  Defect Type Distribution 
 
 

Qualifier Number Percent 
Incorrect: 267 63%
Missing: 141 33%
Extraneous: 18 4%

Table 3  Qualifier Distribution 

 

3.3 Mutant Severity Distribution 

The severity distribution according to the following definitions is listed in Table 4. 

A Level (Critical): If the mutant could not generate final result (in this project, it’s the acceleration 

value) due to the fault. 

B Level (High): If the mutant generated wrong final result due to the fault. 



C Level (Low): If the mutant generated the correct final result but produced some other incorrect output 

(for example, the display results were erroneous.) 

D Level (Zero): If the mutant passed all test cases but failed for some special minor reason (for example, 

incorrect voting sequence without affecting out values.) 

Note that in Table 4, “Highest Severity” records the highest level of severity among all failed test cases 

for a mutant, while “First Failure Severity” records the failure severity at the first time when a failure 

occurred to the mutant. 

 

3.4 Fault Distribution over Development Stage  

The sources of faults came from different stages of the development. This distribution is shown in 

Table 5. 

 

3.5 Mutant Effect Code Lines 

The number of code lines span affected by each mutant was measured by manual inspection. Table 6 

lists the details.  In previous research efforts on mutation testing, usually the faults were artificially injected 

which simple code changes such as the replacement of a logic operator in a conditional statement or the 

modification of a operand value, and the code line span was limited to one or a few lines.  It can be seen 

from Table 6 that in our experiment, an average 11.39 code lines were affected by a fault, truthfully 

reflecting the reality. 
 

Highest Severity First Failure Severity 
Severity 

Level 
Number

 
 

Percentage
 

Number Percentage

A Level 
(Critical): 

12 2.8% 3 0.7%

B Level 
(High): 

276 64.8% 317 74.4%

C Level 
(Low): 

95 22.3% 99 23.2%

D Level 
(Zero): 

43 10.1% 7 1.6%

Table 4  Severity Distribution 

 

Stage Number Percentage
Init Code 237 55.6% 
Unit Test 120 28.2% 
Integration Test 31 7.3% 
Acceptance Test 38 8.9% 

Table 5  Development Stage Distribution 

 
 



Lines Number Percent 
1 line: 116 27.23%
2-5 lines: 130 30.52%
6-10 lines: 61 14.32%
11-20 lines: 43 10.09%
21-50 lines: 53 12.44%
>51 lines: 23 5.40%
Average 11.39

Table 6  Fault Effect Code Lines 

 

4. Dynamic Analysis of Mutants: Effects on Software Testing and Fault Tolerance 

The test cases conducted in the evaluation test is described in Table 7.  Based on execution of these test 

cases over the mutants, we analyzed fault and failure relationship. We examined the effectiveness of the 

test cases by their test coverage measures, and their ability to kill the mutants.  We also studied the fault 

detecting capability of each test case, and obtained the non-redundant set of test cases which can cover all 

mutants. 

 

4.1 Effectiveness of Code Coverage 

In order to answer the question whether testing coverage is an effective means for fault detection, we 

executed the 426 mutants over all test cases and observed whether additional   coverage of the code was 

achieved when the mutants were killed by a new test case. In the experiment, we excluded the mutants 

which failed upon the first test case, as we wanted to take a more conservative view in evaluating test 

coverage by analyzing only those mutants which passed at least the first test case and then failed in later 

cases.  There were a total of 252 mutants included in this analysis. 

Effectiveness of testing coverage in revealing faults is shown in Table 8. Here we use the common test 

coverage measures: block coverage, decision coverage, C-use coverage and P-use coverage [2, 36]. The 

second to fifth column identify the number of faults in relation to changes of blocks, decision, c-uses and p-

uses, respectively. For example, “6/11” for version ID “1” under the “Blocks” column means during the 

evaluation test stage, six out of eleven faults in program version 1 showed the property that when these 

faults were detected by a test case, block coverage of the code increased. On the other hand, five faults of 

program version 1 were detected by test cases without increasing the block coverage. The last column 

“Any” counts the total number of mutants whose coverage increased in any of the four coverage measures 

when the mutants were killed. 

The result clearly shows the increase in coverage is closely related to more fault detections. Out of 252 

mutants under analysis, 155 of them show some kinds of coverage increase when they were killed.  This 

represents a high ratio of 61.5%.  The range, however, is very wide (from 22.2% to 94.7%) among different 



versions.  This indicates programmer’s individual capability accounted for a large variety in the faults they 

created and the detectability of these faults. 

One may hypothesize that when there are more (or less) faults in a program version, it may be easier (or 

more difficult) to detect these faults with coverage-based testing schemes. A plot of the number of mutants 

against effective percentage of coverage is therefore obtained in Figure 2.  It can be seen in Figure 2 that 

the number of mutants in each version (i.e., the number of faults in the program) can not indicate one way 

or the other the effectiveness of test coverage in exploring the faults (by killing the mutants). 

 
Case ID Description of the test cases. 

1 A fundamental test case to test basic functions. 
2-7 Test cases checking vote control in different order. 

8 General test case based on test case 1 with different display mode. 

9-19 Test varying valid and boundary display mode. 
20-27 Test cases for lower order bits. 
28-52 Test cases for display and sensor failure. 
53-85 Test random display mode and noise in calibration. 

87-110 Test correct use of variable and sensitivity of the calibration 
procedure. 

86, 111-
149 

Test on input, noise and edge vector failures.  

150-151 Test various and large angle value. 

152-392 Test cases checking for the minimal sensor noise levels for failure 
declaration. 

393-800 Test cases with various combinations of sensors failed on input and 
up to one additional sensor failed in the edge vector test. 

801-1000 Random test cases. Initial random seed for 1st 100 cases is: 777, for 
2nd 100 cases is: 1234567890 

1001-
1200 

Random test cases. Initial random seed is: 987654321 for 200 cases.

 

Table 7  Test Case Description 

 



 

Figure 2  Relations between Numbers of Mutants against Effective Percentage of Coverage 

 

 
Versio
n ID 

Blocks Decisions C-Use P-Use Any 

1 6/11 6/11 6/11 7/11 7/11(63.6%) 
2 9/14 9/14 9/14 10/14 10/14(71.4%) 
3 4/8 4/8 3/8 4/8 4/8(50.0%) 
4  7/13 8/13 8/13 8/13 8/13(61.5%) 
5 7/12 7/12 5/12 7/12 7/12(58.3%) 
7 5/11 5/11 5/11 5/11 5/11(45.5%) 
8 1/9 2/9 2/9 2/9 2/9(22.2%) 
9 7/12 7/12 7/12 7/12 7/12(58.3%) 

12 10/19 17/19 11/19 17/19 18/19(94.7%) 
15 6/18 6/18 6/18 6/18 6/18(33.3%) 
17 5/11 5/11 5/11 5/11 5/11(45.5%) 
18 5/6 5/6 5/6 5/6 5/6(83.3%) 
20 9/11 10/11 8/11 10/11 10/11(90.9%) 
22 12/14 12/14 12/14 12/14 12/14(85.7%) 
24 5/6 5/6 5/6 5/6 5/6(83.3%) 
26 2/11 4/11 4/11 4/11 4/11(36.4%) 
27 4/9 5/9 4/9 5/9 5/9(55.6%) 
29 10/15 10/15 11/15 10/15 12/15(80.0%) 
31 7/15 7/15 7/15 7/15 8/15(53.3%) 
32 3/16 4/16 5/16 5/16 5/16(31.3%) 
33 7/11 7/11 9/11 10/11 10/11(90.9%) 

Overal
l

131/252 
(60.0%) 

145/252
(57.5%)

137/252
(53.4%)

152/252
(60.3%)

155/252 
(61.5%) 

Table 8  Fault Detection Related to Changes of Test Coverage 

 

4.2 Test Case Contribution: Test Coverage vs. Mutant Coverage 

The contribution of each test case in block coverage of the total 426 mutants, measured across all 

executed mutants, is recorded and depicted in Figure 3. The vertical axis indicates the average percent of 

block coverage by each test case. Lines A, B, C, D, E represent the border for test cases 111, 152, 393, 801 



and 1001, respectively. They mark the distinct boundaries of different test cases described and tabulated in 

Table 7.  Figure 3 shows various fault detection capabilities of different kinds of test cases, as separated by 

the lines. The total average block coverage is 45.86%, with a range from 32.42% to 52.25%.  

The decision, C-use and P-use coverage measures expose exactly the same pattern except for their 

absolute values, and thus omitted here.  The overall average value of these measures is shown in Table 9. 

 

 

Figure 3  Test Case Contribution on Program Coverage 

 
Percentage 

of 
Coverage 

 
Blocks

 
Decision

 
C-Use

 
P-Use

Average 45.86% 29.63% 35.86% 25.61%
Maximum 52.25% 35.15% 41.65% 30.45%
Minimum 32.42% 18.90% 23.43% 16.77%

Table 9  Percentage of Test Case Coverage 

 

The contribution of each test case in covering (killing) the mutant population is shown in Figure 4. The 

vertical axis represents the number of mutants that can be killed by each test case. Lines A, B, C, D, E 

represent again the distinct boundaries of different test cases. Similar to Figure 3, Figure 4 also clearly 

portrays the fault detection profiles of each kind of test case. The average number of faults detected by a 

test case is 248, with 163 as minimum and 334 as maximum.   

The comparison between Figure 3 and Figure 4 offers profound implications: they reveal similarity and 

difference between code coverage and fault coverage.  On the one hand, test coverage and mutant coverage 

show similar capability in revealing patterns in the test cases, giving credit to code coverage as a good 

indicator for test variety.  On the other hand, the code coverage value alone is not a good indicator for test 

quality in terms of fault coverage.  Higher and more stable code coverage, e.g., that achieved by test cases 

1001-1200, may result in lower and unstable fault coverage. 



 

   Figure 4  Test Case Contributions on Mutant Coverage 

 

We note that this kind of quantitative analysis on test case efficiency with the injection of actual faults 

in real-world project has seldom been reported in the literature. 

 

4.3 Finding Non-redundant Set of Test Cases 

One important issue in software testing is the removal of redundant test cases. If two test cases kill 

exactly the same mutants, one of them can be regarded as redundant. By eliminating all such redundant 

cases, the remaining test cases constitute a non-redundant test set. 

Figure 5 shows the non-redundant test set from the 1200 test cases. The gray lines indicate redundant 

cases, while the black blocks indicate the set of non-redundant test cases. The size of this test set is 698 test 

cases. 

 

 

Figure 5  Non-redundant Set of Test Cases 

 

We observe that redundant test case is rare after test case 800.  In examining Table 7, we note that test 

cases after 800 are random test cases.  They do not focus on any particular aspect of the program, thus 

avoiding redundancy. 



 

4.4 Relationship between Mutants 

In the interest of software fault tolerance, we also investigated fault similarity and failure correlation 

based on the mutant population. The test result of every success/failure test result can be collected to form a 

binary string of 1200 bits. Based on comparisons of the binary strings from all 426 mutants, three mutant 

relations can be defined: 

• Related mutants: Two mutants have the same success/failure result on the 1200-bit binary string. 

• Similar mutants: Two mutants have the same binary string and with the same erroneous output 

variables. 

• Exact mutants: Two mutants have the same binary string with the same erroneous output variables, 

and erroneous output values are exactly the same.  

Table 10 shows distribution of these mutant relations, and their percentages out of total combinations 

(90525). 

Relationship Number of pairs Percentage 
Related mutants 1067 1.18%
Similar mutants 38 0.042%
Exact mutants 13 0.014%

Table 10  Mutants Relationship 

 

4.5 Relationship between the Programs with Mutants 

During the evaluation test, we also determined the correlation among the program version based on mutant 

executions.   We defined two types of relationships: program versions with similar mutants, and program 

versions with   exact mutants.  The former includes program versions  which  generate  similar  mutants, while 

the  latter  includes  those  generating  exact  mutants.  The results are shown, respectively, in Table 11 and Table 

12. Each axis in these tables shows the program ID, and the values in the content, if any, indicate the number of 

similar or exact mutants between two corresponding program versions.  Note these tables are symmetric. 

Table 13 summarizes total program version pairs with similar and exact mutants. The pairs with exact 

mutants are interesting and valuable for analysis in detail.  There are seven pairs of exact mutants.  All 

these pairs were due to five exact faults, in which four exact fault occurs in two versions while one exact 

fault span three versions. Table 14 (a)-(e) provide a summary of these faults. 

Here are the descriptions on the causes of these faults: 

Pair 1 – Versions 4 and 8 

The display mode is incorrectly calculated for a missing operation. 

Pair 2 – Versions 12 and 31 



Wrong calibration was made due to incorrect alignment access of array elements. 

 

ID 01 02 03 04 05 07 08 09 12 15 17 18 20 22 24 26 27 29 31 32 33
01                      
02    02      02            
03                      
04  02     01   02 01 01     01     
05                      
07       02   02 01      01     
08    01  02    04 02 01          
09                      
12           01        01   
15  02  02  02 04    03          01
17    01  01 02  01 03            
18    01   01               
20                      
22                      
24                      
26                      
27    01  01                
29                      
31         01           01  
32                   01   
33          01            

 
Table 11  Program Versions with Similar Mutants 

 
ID 01 02 03 04 05 07 08 09 12 15 17 18 20 22 24 26 27 29 31 32 33
01                      
02                      
03                      
04       01   01 01           
05                      
07                      
08    01                  
09                      
12                   01   
15    01       01          01
17    01      01            
18                      
20                      
22                      
24                      
26                      
27                      
29                      
31         01           01  
32                   01   
33          01            

 
 Table 12  Program Versions with Exact Mutants 

 



Pair 3 – Versions 15 and 33 

Version 15 missed code to perform mod 4096 in calculating the average value in calibration. Version 

33 missed code to ignore redundant data for calibration. 

Pairs 4, 5, and 6 – Versions 4, 15, and 17 

In estimation, all versions missed code to multiply a factor in calculation. 

 
Relationship Number of pairs Percentage
Programs with Similar 
Mutants 

19 9.05% 

Programs with Exact 
Mutants 

7 3.33% 

 
Table 13  Summary of Program Relationship 

 
 Version 4 Version 8 

Module Display 
Processor 

Display 
Processor 

Stage Initcode Initcode 
Defect 
Type 

Assign/Init Assign/Init 

Severity C C 
Qualifier Missing Missing 

 
Table 14 (a)  Exact Pair 1: Versions 4 and 8 

 
 Version 12 Version 31 

Module Calibrate Calibrate 
Stage Initcode Initcode 
Defect 
Type 

Algorithm/Method Algorithm/Method 

Severity B B 
Qualifier Incorrect Incorrect 

 
Table 14 (b)  Exact Fault Pair 2: Versions 12 and 31 

 
 Version 15 Version 33 

Module Calibrate Calibrate 
Stage Initcode Initcode 
Defect 
Type 

Algorithm/Method Algorithm/Method 

Severity B B 
Qualifier Missing Missing 

 
Table 14 (c)  Exact Fault Pair 3: Versions 15 and 33 

 
 Version 4 Version 15 Version 17 

Module Estimate 
Vehicle State

Estimate 
Vehicle State

Estimate 
Vehicle State 

Stage Initcode Initcode Initcode 
Defect Assign/Init Assign/Init Algorithm/Met



Type hod 
Severity B B B 
Qualifier Incorrect Incorrect Incorrect 

 
Table 14 (d)  Exact Fault Pairs 4, 5, and 6: 

Versions 4, 15 and 17 
 
 

 Version 31 Version 32 
Module Calibrate Calibrate 
Stage Unit Test Acceptance Test
Defect 
Type 

Checking Checking 

Severity B B 
Qualifier Incorrect Incorrect 

 
Table 14  (e) Exact Fault Pair 7: Versions 31 and 32 

 

Pair 7 – Versions 31 and 32 

Version 31 contained an error in checking when checkout the sensors with excessive noise. Version 32 

committed the same error in marking sensor status.  These exact faults, however, were detected in different 

testing stages 

We note that the amount of exact faults among program versions is very limited.  This implies that 

design diversity involving multiple program versions can be an effective mechanism for software reliability 

engineering.  

 

4.6 Major Findings in Dynamic Analysis 

The major findings in the evaluation test are regarding the effectiveness of test coverage criteria and 

software design diversity.  The coverage experiments show in average 61.5% faults can be detected with an 

increase of coverage. Therefore, looking for coverage increase is an effective means to detecting more 

faults.  However, coverage measure itself does not guarantee such an indicator.  High coverage of a test 

case does not necessarily lead to more fault detection.   

The number of programs with exact mutants is very small, indicating the potential benefit of software 

fault tolerance.  On the other hand, the number of related mutants is not negligible.  Thus effective error 

detection and recovery schemes play a crucial role in distinguishing faults failing on the same data but with 

different results. 

 

5. Software Testing using Domain Analysis 



Zhao [31] proposed a new approach to generate test cases based on domain analysis of specifications 

and programs. In her technique, the differences of the functional domain and the operational domain are 

examined by analyzing the set of boundary conditions. Test cases are then designed by verifying the 

overlaps of operational domain and functional domain to locate the faults resulting from the discrepancies 

between these two domains. 

Based on the new domain analysis approach we developed 90 new test cases, which are listed in Table 

15.  The major design principle of these test cases is to allow for exercising different legitimate 

boundaries of the operational domain not clearly identified in the specifications. 

Case ID Description 
1-6 Modify linStd to short int boundary 
7-16 Set LinFailIn array to short int 

boundary 
17-25, 
27-41, 
42-65 

Set RawLin to boundary 

26,66, 
67-73, 
86 

Modify offRaw array to boundary 

74-79 Set DisplayMode in [ –1..100] 
boundaries 

80-85 Set nsigTolerance to various values
87-90 Set base=0, 99.999999, 999999, 

1.000000, respectively 
Note: Italic names in the table represent input variables 

 
Table 15  Test Cases Generated by Domain Analysis 

 

We executed these 90 test cases on the mutants we created.  All 426 mutants can be killed by this test 

set. The diagram for individual test case contribution is depicted in Figure 6. 

 

 

Figure 6  Contribution of Test Cases Generated by Domain Analysis 



The average number of fault detected by each new test case, illustrated in Figure 6, is 183, ranging from 

139 to 223.  After redundant test cases are eliminated, a non-redundant set of 42 test cases is obtained, as 

shown in  the black lines in Figure 7. 

 

Figure 7  Non-redundant Test Set for Test Cases Generated by the Domain Analysis. 

The newly designed test cases based on domain analysis display a completely different nature from that 

of the original test cases.  In comparison with the non-redundant set of 698 test cases obtained from the 

original test set, this non-redundant set of only 42 test cases generated by the domain analysis approach is 

surprisingly effective.  Both test sets kill all the 426 mutants, but the new set requires much less test cases. 

It is noted, however, that although both data sets (including 698 and 42 test cases, respectively) are non-

redundant, they are not necessarily minimal test sets in killing all the 426 mutants 

Furthermore, within the original 1200 test cases, each case in average can kill 248 mutants.  For the 

newly generated 90 test cases, on the other hand, each test case can only kill an average of 183 mutants.  

When collected together in a test set, however, the new test cases can kill the same number of mutants 

more effectively. This implies that the capability of individual test case in killing mutants does not 

represent its capability in forming a minimal test set for an overall mutant coverage.  A more critical factor 

is whether different test cases can explore different features of the program versions, thus killing different 

types of mutants. 

Domain analysis helps generate test cases satisfying this critical factor. From our result, test cases 

generated based on boundary conditions via domain analysis are more effective in covering different 

aspects of the code in dealing with various border line cases within the operational domain. As this avoids 

producing test cases with similar capacities, the total number of test cases needed to detect the entire 

known fault set would tend to be smaller. 

 

6. Conclusions  

In this research effort we performed an empirical investigation on evaluating fault removal and fault 

tolerance issues as software reliability engineering techniques. We conducted a major experiment engaging 

multiple programming teams to develop a critical application whose specifications and test cases were 

obtained from the avionics industry.  We applied mutation testing techniques with actual faults committed 



by programmers, and studied various aspects of the faults, including their nature, their manifestation 

process, their detectability, and their correlation.  The evaluation results provided very positive support to 

current fault removal and fault tolerance techniques, with quantitative evidences.   

Regarding the fault removal techniques, our experiment indicated that faults could be detected and 

removed with increase of testing coverage. We also observed some caveats about testing and fault 

tolerance: coverage measures and mutation scores cannot be evaluated in isolation, and an effective 

mechanism to distinguish related faults is critical.  

We also conceived that a good test case should be characterized not only by its ability to detect more 

faults, but also by its ability to detect faults which are not detected by other test cases in the same test set.  

Our empirical data provided numerical supports to confirm this intuition.  In our experiment, domain 

analysis was shown to be an effective approach to generating test cases. The newly generated test cases by 

this approach further revealed additional evidences that the individual fault detection capability of each test 

case in a test set does not represent the overall capability of the test set to cover more faults.  Diversity 

natures of the test cases are more important. 

Furthermore, our results implied that design diversity involving multiple program versions can be an 

effective solution for software reliability engineering, since the portion of program versions with exact 

faults is very small.  The quantitative tradeoff between these two approaches, however, remains a research 

issue.  Currently we can only generally perceive that software fault removal and software fault tolerance 

are complementary rather than competitive.  As our future work, we will apply software reliability models 

on the program versions with similar and exact mutants to investigate their reliability, fault detection, and 

fault tolerance features.  
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