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Abstract

With ever growing use of Internet, Web services become increasingly popular

and their growth rate surpasses even the most optimistic predictions. Ser-

vices are self-descriptive, self-contained, platform-independent and openly-

available components that interact over the network. They are written

strictly according to open specifications and/or standards and provide im-

portant and often critical functions for many business-to-business systems.

Failures causing either service downtime or producing invalid results in such

systems may range from a mere inconvenience to significant monetary penal-

ties or even loss of human lives. In applications where sensing and control of

machines and other devices take place via services, making the services highly

dependable is one of main critical goals. Currently, there is no experimen-

tal investigation to evaluate the reliability and availability of Web services

systems. In this paper, we identify parameters impacting the Web services

dependability, describe the methods of dependability enhancement by redun-

dancy in space and redundancy in time and perform a series of experiments

to evaluate the availability of Web services. To increase the availability of

the Web service, we use several replication schemes and compare them with

a single service. The Web services are coordinated by a replication man-

ager. The replication algorithm and the detailed system configuration are

described in this paper.
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Chapter 1

Introduction

1.1 Introduction

With service-oriented computing becoming a reality, there is an increasing

demand for dependability. Service-oriented Architectures (SOA) are based

on a simple model of roles. Every service may assume one or more roles such

as being a service provider, a broker or a user (requestor).

This model simplifies interoperability as only standard communication

protocols and simple broker-request architectures are needed to facilitate

exchange (trade) of services. Not surprisingly, the use of services, especially

Web services, became a common practice. The expectations are that services

will dominate software industry within the next five years. As services begin

to pervade all aspects of life, the problems of service dependability, security

and timeliness are becoming critical and appropriate solutions need to be

found.

Several fault tolerance approaches have been proposed for Web services in
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the literature [1, 2, 3, 4, 5, 6], but the field still requires appropriate theory,

appropriate models, effective design paradigms, a practical implementation,

and an in-depth experimentation for building highly-dependable Web ser-

vices.

In this paper, we propose such experimental setting and offer a roadmap

to dependable Web services. We compose a list of parameters that are closely

related to evaluating quality of service from the dependability perspective.

We focus on service availability and timeliness and consider them a cor-

nerstone of our approach. Security, which can also be viewed as a part of

dependability, is beyond the scope of this paper.

1.2 Research Objective

There are many fault-tolerant techniques that can be applied to Web services

including replication and diversity. Replication is one of the efficient ways for

creating reliable systems by time or space redundancy. Redundancy has long

been used as a means of increasing the availability of distributed systems,

with key components being re-executed (replication in time) or replicated

(replication in space) to protect against hardware malfunctions or transient

system faults. Another efficient technique is design diversity. By indepen-

dently designing software systems or services with different programming

teams, diversity provides an ultimate resort in defending against permanent

software design faults. In this paper, we focus on the systematic analysis

of the replication techniques when applied to Web services. We analyze the

performance and the availability of the Web services using spatial and tem-
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poral redundancy and study the tradeoffs between them. A generic Web

service system with spatial as well as temporal replication is proposed and

experimented with.

1.3 Contribution

In the paper, we have the following main contributions:

• Survey on reliability methodologies

• Survey on Web Services reliability

• Proposed an architecture for dependable Web Services

• Develop a reliability model for the proposed scheme

1.4 Structure of Report

The rest of the paper is organized as follows. Related work and the back-

ground is presented in Chapter 2. Failure respond stage of Web Services is

introduced in Chapter 3. We then review methodologies for reliable Web

services, present our approach with a list of key parameters, and propose

a roadmap for further development and experimentation in Chapter 4. In

Chapter 5 we describe the architecture and system configuration, and then

we document execution of Web service experiments and present the results.

Reliability Model of the proposed system in Chapter 6. Finally, in Section 7

we draw some conclusions and sketch the outlook.
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Chapter 2

Background

Web service is a self-contained, modular application built on deployed net-

work infrastructure including XML and HTTP. It uses open standards for

description (Web Service Definition Language, WSDL), discovery (Universal

Description, Discovery, and Integration, UDDI) and invocation (Simple Ob-

ject Access Protocol, SOAP). Web service becomes more popular and fault

tolerance becomes essential property for a Web service. There are different

proposed approaches for improving the reliability of the web services, includ-

ing N-version programming, replication, reliable messaging, message ordering

and duplicate elimination.

Let first have brief introduction of Web Service, an overview of state-of-

the-arts technologies in reliability and a literature review of current reliable

Web Service systems.
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2.1 Web Services

Web Services are self-contained business function that operate over the In-

ternet. They are written to strict open specifications to work together and

with other similar kinds of components.

Web Services are useful to business as they enable systems in different

companies to interact with each other, more importantly, in a far easier

way than before. With business needing closer operation between suppliers

and customers, engaging in more joint ventures, and facing the prospect of

more mergers and acquisitions, companies need the capability to link up

their established systems quickly and efficiently with other companies. Thus

Web Services give companies the capability do more e-business, with more

potential business partners, in more and different ways than before, and at

reasonable cost.

The recent growth in use of the www on the internet has cased a sig-

nificant increase in the demand on web services Web services have gained

high popularity in the development of distributed application systems. Some

critical applications also consider using web services paradigm due to the

benefit of interoperability, reusability, and adaptability. To support criti-

cal applications, existing web service model needs to be extended to assure

survivability.

2.1.1 Technologies in Web Services

A Web Service is programmable application logic accessible using standard

Internet protocols. Web Services combine the best aspects of component-
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based development and the Web. Like components, Web Services represent

black-box functionality that can be reused without worrying about how the

service is implemented. Unlike current component technologies, Web Services

are not accessed via object-model-specific protocols, such as DCOM, RMI,

or IIOP. Instead, Web Services are accessed via ubiquitous Web protocols

(such as HTTP) and data formats (such as XML).

A Web service is an interface that describes a collection of operations that

are network-accessible through standardized XML messaging. A Web service

performs a specific task or a set of tasks. A Web service is described using a

standard, formal XML notation, called its service description, that provides

all of the details necessary to interact with the service, including message

formats (that detail the operations), transport protocols, and location. Web

service descriptions are expressed in WSDL.

A service provider creates a Web service and its service definition and

then publishes the service with a service registry based on a standard called

the Universal Description, Discovery, and Integration (UDDI) specification.

Once a Web service is published, a service requester may find the service

via the UDDI interface. The UDDI registry provides the service requester

with a WSDL service description and a URL (uniform resource locator) point-

ing to the service itself. The service requester may then use this information

to directly bind to the service and invoke it.

The architecture of Web Service is shown in Figure 2.1

Properties of Web Services:

• Perform encapsulated business functions using request/reply as well as
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Figure 2.1: Architecture of Web Service
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business process interactions

• Looser coupling via less reliance on pre-defined interfaces

• Can be mixed and matched to create complete process

• Enable dynamic integration through embedded capability of service

discovery and binding

2.1.2 Problem of current Web Services

Transaction

Atomicity is not provided. The key point is that HTTP is stateless, however,

business processes or transactions are useful.

Security

Add-on measures such as Encryption are needed to deal with the insecure

Internet transportation

Interoperability

IBM, Microsoft, intel, BEA and other companies formed the Web Services In-

teroperability Organization (WS-I), a non-profit organization for promoting

Web Services standard. The idea behind WS-I was not create new standards,

but rather to assemble ”profiles” of standards from the W3C, OASIS and oth-

ers. The profiles are sets of related standard against which conformance tests

and certifications can be established.
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Reliability

The Internet is inherently unreliable. Currently there is no singel underly-

ing transport protocols (HTTP, FTP, SMTP) addresses all reliability issues,

namely guaranteed delivery, ordered delivery, and duplicate elimination. For

collaborative e-business and e-transaction scenarios, message reliability be-

comes a criticak issues.

2.2 Methodologies for reliable Web Services

2.2.1 Introduction

Reliability is a measure of the success with which the system conforms to

some authoritative specification. Reliability engineering provides the theo-

retical and practical tools whereby the probability and capability of parts,

components, equipment, products and systems to perform their required

functions for desired periods of time without failure, in specified environ-

ments and with a desired confidence, can be specified, designed in, predicted,

tested and demonstrated. [25]

Reliability includes:

• Guaranteed delivery: ensure that all information to be sent actually

received by the destination or error reported.

• Duplicate elimination: ensure that all duplicated information can be

detected and filtered out

• Ordering: communication between parties consist of several individual
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message exchanges. This aspect ensure that Message Exchanges are

forwarded to the receiver application in the same order as the sender

application issued.

• Crash tolerance: ensures that all information prescribed by the protocol

is always available regardless of possible physical machine failure

• State synchronization: if the MEP is cancelled for any reason then

it is desirable for both nodes to set their state as if there were no

communication between the parties.

There are number of method can be applied in the reliability issues, in-

cluding:

• Redundancy

• Diversity

The following sections will discuss these techniques.

2.2.2 Redundancy

It is a well-known fact that fault tolerance can be achieved via spatial or tem-

poral redundancy, including replication of hardware (with additional compo-

nents), software (with special programs), and time (with the repetition of

operations) [8, 9, 10].

Spatial redundancy can be dynamic or static. Both use replication but in

static redundancy, all replicas are active at the same time and voting takes

place to obtain a correct result. The number of replicas is usually odd as
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and the approach is known as n-modular redundancy. For example, under

a single fault assumption, if services are triplicated and one of them fails

the remaining two will still guarantee the correct result. The associated spa-

tial redundancy cost is high (three copies plus a voter). The time overhead

of managing redundant modules such as voting and synchronization is also

considerably large for static redundancy. Dynamic redundancy, on the other

hand, engages one active replica at one time while others are kept in an

active or in standby state. If one replica fails, another replica can be em-

ployed immediately with little impact on response time. In the second case,

if the active replica fails, a previously inactive replica must be initialized

and take over the operations. Although this approach may be more flexible

and less expensive than static redundancy, its cost may still be high due to

the possibility of hastily eliminating modules with transient faults. It may

also increase the recovery time because of its dependence on time-consuming

error-handling stages such as fault diagnosis, system reconfiguration, and

resumption of execution.

Redundancy can be achieved by replicating hardware modules to provide

backup capacity when a failure occurs, or redundancy can be obtained using

software solutions to replicate key elements of a business process.

2.2.3 Diversity

In any redundant systems, common-mode failures (CMFs) result from fail-

ures that affect more than one module at the same time, generally due to a

common cause. These include design mistakes and operational failures that
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may be caused externally or internally. Design diversity has been proposed in

the past to protect redundant systems against common-mode failures [11, 12]

and has been used in both hardware and software systems [13, 14]. The ba-

sic idea is that, with different designs and implementations, common failure

modes will probably cause different error effects. One of the design diversity

techniques is N-version programming, and another one is Recovery Blocks.

The key element of N-version programming or Recovery Block approaches

is diversity. By attempting to make the development processes diverse it

is hoped that the independently designed versions will also contain diverse

faults. It is assumed that such diverse faults will minimize the likelihood of

coincident failures.

2.3 Related Work

A Web Services Reliable Messaging Protocol is proposed in [1], which using

flooding and acknowledgement ensures that messages are delivered reliably

between distributed applications in the presence of software component, sys-

tem, or network failures.

This specification (WS-ReliableMessaging) describes a protocol that al-

lows messages to be delivered reliably between distributed applications in the

presence of software component, system, or network failures. The protocol

is described in this specification in a transport-independent manner allowing

it to be implemented using different network technologies. To support inter-

operable Web services, a SOAP binding is defined within this specification.

The protocol defined in this specification depends upon other Web services
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specifications for the identification of service endpoint addresses and policies.

How these are identified and retrieved are detailed within those specifications

and are out of scope for this document.

WS-FTM (Web Service-Fault Tolerance Mechanism) is an implementa-

tion of the classic n-Version model for use with Web Services [2] which can

easily be applied to systems with a minimal change. The Web Services are

implemented in different versions and the voting mechanism is in the client

program.

FT-SOAP [3] is aimed at improving the reliability of the SOAP when

using Web service. The system includes different function replication man-

agement, fault management, logging/recovery mechanism and client fault

tolerance transparency.

FT-SOAP is based on the work of FT-CORBA [24], a fault-tolerant SOAP

based middleware platform is proposed. There are two major targets in FT-

SOAP: 1) to define a fault-tolerant SOAP service standard recommendation,

and 2) to implement an FT-SOAP service prototype.

FT-Grid [7] is another design, which is a development of design-diverse

fault tolerance in Grid. It is not specified for Web services but the techniques

are applicable to Web Services. The FT-Grid allows a user to manually search

through any number of public or private UDDI repositories, select a number

of functionally-equivalent services, choose the parameters to supply to each

service, and invoke those services. The application can then perform voting

on the results returned by the services, with the aim of filtering out any

anomalous results.
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2.3.1 Summary

Although a number of approaches have been proposed for increasing the Web

service reliability, there is a need for systematic modeling and experiments

to understand the tradeoffs and verify reliability of the proposed methods.
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Chapter 3

Failure Response Stages of Web

Services

Web services will go through different stages when failure occurred and the

failure response of Web services can be classified into different stages [15].

When failure occurred, the Web service is confined Fault detection techniques

are applied to find out the failure causes and the failed components are

repaired or recovered. Then, reconfiguration, restart and reintegration will

be done. The flow of the failure response of Web service is shown in Figure

3.1 and the details of each stage are described as follows:

3.1 Fault confinement

This stage limits the spread of fault effects to one area of the Web service, thus

preventing contamination of other areas. Fault-confinement can be achieved

through use of: fault detection within the Web services, consistency checks
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Figure 3.1: Flow of the failure response of Web services.
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and multiple requests/confirmations.

3.2 Fault detection

This stage recognizes that something unexpected has occurred in a Web ser-

vice. Fault latency is the period of time between the occurrence of a fault

and its detection. Techniques fall in two classes: off-line and on-line. With

off-line techniques, such as diagnostic programs, the service is not able to

perform useful work while under test. On-line techniques, such as duplica-

tion, provide a real-time detection capability that is performed concurrently

with useful work.

3.3 Diagnosis

This stage is necessary if the fault detection technique does not provide

information about the fault location.

3.4 Reconfiguration

This stage occurs when a fault is detected and located. The Web services

can be composed of different components. When providing the service, there

may be a fault in individual components. The system may reconfigure its

components either to replace the failed component or to isolate it from the

rest of the system.

17



3.5 Recovery

This stage utilizes techniques to eliminate the effects of faults. Two basic

recovery approaches are based on: fault masking, retry and rollback. Fault-

masking techniques hide the effects of failures by allowing redundant informa-

tion to outweigh the incorrect information. Web services can be replicated

or implemented with different versions (NVP). Retry undertakes a second

attempt at an operation and is based on the premise that many faults are

transient in nature. Web services provide services through network; retry

would be a practical approach as requests/reply may be affected by the state

of the network. Rollback makes use of the fact that the Web service oper-

ation is backed up (checkpointed) at some point in its processing prior to

fault detection and operation recommences from that point. Fault latency is

important here because the rollback must go back far enough to avoid the

effects of undetected errors that occurred before the detected error.

3.6 Restart

This stage occurs after the recovery of undamaged information.

• Hot restart: resumption of all operations from the point of fault detec-

tion and is possible only if no damage has occurred.

• Warm restart: only some of the processes can be resumed without loss.

• Cold restart: complete reload of the system with no processes surviving.

The Web services can be restarted by rebooting the server.

18



3.7 Repair

At this stage, a failed component is replaced. Repair can be off-line or

on-line. Web services can be component-based and consist of other Web

services. In off-line repair either the Web service will continue if the failed

component/sub-Web service is not necessary for operation or the Web ser-

vices must be brought down to perform the repair. In on-line repair the

component/sub-Web service may be replaced immediately with a backup

spare or operation may continue without the component. With on-line re-

pair Web service operation is not interrupted.

3.8 Reintegration

At this stage the repaired module must be reintegrated into the Web service.

For on-line repair, reintegration must be performed without interrupting Web

service operation.
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Chapter 4

Dependable Web Services

Architecture

4.1 Introduction

The previous chapter, the stages represent a general approach to system fault

tolerance. In the following section, we propose a replication Web service sys-

tem for reliable Web services. In our system, the dynamic hardware approach

is considered and its architecture is shown in Figure 4.1.

4.2 Scheme details

In this system, the Web service is replicated on different machines, but only

one Web service provides service at a time, which is called primary Web ser-

vice. The Web service is replicated identically on different machines; there-

fore, when the primary Web service fails, the other Web services can imme-
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diately provide the required service. The replication mechanism shortens the

recovery time and increases the availability of the system.

The main component of this system is the replication manager (RM),

which acts as a coordinator of the Web services. The replication manager is

responsible for:

1. Creating a Web service.

2. Choosing (with anycasting algorithm) the best (fastest, most robust,

etc.) Web service [13] to provide the service which is called the primary

Web service.

3. Registering the Web Service Definition Language (WSDL) with the

Universal Description, Discovery, and Integration (UDDI)

4. Continuously checking the availability of the primary Web service by

using a watchdog.

5. Selecting another service if the primary service fails to ensure fault

tolerance.

When the primary Web service fails, the replication manager selects the

best suitable Web service again to continue providing the service. The repli-

cation manager maps the new address of the new primary Web service to

the WSDL, thus the clients can still access the Web service with the same

URL. This failover process is transparent to the users. The detail procedure

is shown in Figure 4.1.

The work flow of the replication manager is shown in Figure 4.2. The

replication manager is running on a server, it keeps checking the availability
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Figure 4.1: Proposed architecture for dependable Web services.
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of the web services by the polling method. It sends messages to the web

services periodically. If it does not get the reply from the primary Web

Service, it will select another Web service to replace the primary one and

map the new address to the WSDL. The system is considered failed if all the

Web Services have failed.

Figure 4.2: Workflow of the Replication Manager

23



4.3 Roadmap for Experimental Research

We take a pragmatic approach by starting with a single service without any

replication. The only approach to fault tolerance in this case is the use of

redundancy in time. If a service is considered as an atomic action or a trans-

action where the input is clearly defined, no interaction is allowed during its

execution and the termination has two outcomes: correct or incorrect. In this

case, the only way to make such service fault tolerant is to retry or reboot it.

This approach allows tolerance of temporary faults, but it will not be suffi-

cient for tolerating permanent faults within a server or a service. One issue is

how much delay can a user tolerate, and another issue is the optimization of

the retry or the reboot time; in other words, deciding when a current request

should be timed out. By handling services as atomic transactions, exception

handling does not help in dealing directly with inherent problems within a

service, it is only possible to perform it at incorrect termination points or at

timeout by re-execution using a retry or a reboot.

If redundancy in time is not sufficient to meet dependability requirements

or time overhead is unacceptable, the next step is redundancy in space. Re-

dundancy in space for services means replication where multiple copies of a

given service may be executed sequentially or in parallel. If the copies of the

same services are executed on different servers, different modes of operations

are possible:

1. Sequentially, meaning that we await a response from a primary service

and in case of timeout or a service delivering incorrect results, we invoke

a back up service (multiple backup copies are possible). It is often called
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failover.

2. In parallel, meaning that multiple services are executed simultaneously

and if primary service fails, the next one takes over. It is also called

a failover. Another variant is that the service whose response arrives

first is taken.

3. There is also a possibility of majority voting using n modular redun-

dancy (NMR), where results are compared and the final outcome is

based on at least n/2 + 1 services agreeing on the result.

4. If diversified versions of different services are compared, the approach

can be seen as either a Recovery Block (RB) system where backup

services are engaged sequentially until the results are accepted (by an

Acceptance Test), or an N-version programming (NVP) system where

voting takes place and majority results are taken as the final outcome.

In case of failure, the failed service can be masked and the processing

can continue.

NVP and RB have undergone various challenges and vivid discussions.

Critics would state that the development of multiple versions is too expen-

sive and dependability improvement is questionable in comparison to a single

version, provided the development effort equals the development cost of the

multiple versions. We argue that in the age of service-oriented computing,

diversified Web services permeate and the objections to NVP or RB become

obsolete. Based on market needs, service providers competitively and in-

dependently develop their services and make them available to the market.
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With abundance of services for specific functional requirements, it is appar-

ent that fault tolerance by design diversity will be a natural choice. NVP

should be applied to services not only for dependability but also for higher

performance.

Finally, a hybrid method may be used where both space and time re-

dundancy are applied and depending on system parameters a retry might be

more effective before switching to the back up service. This type of approach

will require a separate study.

We also need to formulate several additional quality-of-service parameters

to service customers. We propose a number of fault injection experiments

showing both dependability and performance with and without diversified

Web services. The outlined roadmap to fault-tolerant services leads to ultra

reliable services where hybrid techniques of spatial and time redundancy can

be used for optimizing cost-effectiveness tradeoffs. In the next section, we

describe the various approaches and some experiments in more detail.
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Chapter 5

Experiments

A series of experiments are designed and performed for evaluating the relia-

bility of the Web service, including single service without replication, single

service with retry or reboot, and a service with spatial replication. We will

also perform retry or failover when the Web service is down. A summary of

five (0-4) experiments is stated in Table 5.1.

Our experimental system is implemented with Visual Studio .Net and

runs with .Net framework. The Web service is replicated on different ma-

chines and the primary Web service is chosen by the replication manager.

Table 5.1: Summary of the experiments

None Retry/Reboot Failover Both(hybrid)

0 Single service, no retry 0 – – –

1 Single service with retry – 1 – –

2 Single service with reboot – 2 – –

3 Spatial replication – – 3 4
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Table 5.2: Parameters of the experiments

Parameters Current setting/metric

1 Request frequency 1 req/min

2 Polling frequency 5 ms

3 Number of replicas 5

4 Client timeout period for retry 10 s

5 Failure rate λ number of failures/hour

6 Load (profile of the program) percentage or load function

7 Reboot time 10 min

8 Failover time 1 s

In the experiments, faults are injected in the system and the fault injec-

tion techniques are similar, for example, to the ones referred in [4, 20]. A

number of faults may occur in the Web service environment [18, 19], includ-

ing network problem, resource problem, entry point failure, and component

failure. These faults are injected in the experimental system to evaluate the

reliability of our proposed scheme. Our experimental environment is defined

by a set of parameters. Table 5.2 shows the parameters of the Web service

in our experiments.

5.1 Experimental results

We compare five approaches for providing the Web services. The details of

the experiments are described in as follows:
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0. Single service without retry and reboot

The Web service is provided by a single server without any replication.

No redundancy technique is applied to this Web service.

1. Single service with retry

Web service provides the service and the client retries another Web ser-

vice when there is no response from the original Web service after time-

out.

2. Single service with reboot

Web service provides the service and the Web service server will reboot

when there is no response from the Web service. Clients will not retry

after timeout when there is no response from the service.

3. Spatial replication with failover

We use a generic spatial replication: The Web service is replicated on

different machines and it is transferred to another machine when the

primary Web service fails (failover). The replication manager coordinates

among the replicas and carries out a failover in case of a failure. Clients

will only submit the request once and will not retry.

4. Spatial replication with failover and retry (hybrid approach)

Similar to the Experiment 3 where the Web service is replicated on dif-

ferent machines and it is transferred to another one (failover) when the

primary Web service fails. But the client will retry if there is no response

from the Web service after timeout.

The Web services were executed for 360 hours generating a total of 360x60

req/hr = 43200 requests from the client. A single failure is counted when

the system cannot reply to the client. For the approach with retry, a single
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Table 5.3: Experimental results

Experiments over 360 hour Normal Resource Problem Entry Point Failure Network Level

period (43200 reqs) Fault Injection

Exp0 4928 6130 6492 5324

Exp1 2210 2327 2658 2289

Exp2 2561 3160 3323 5211

Exp3 1324 1711 1658 5258

Exp4 1089 1148 1325 2210

failure is counted when a client retries five times and still cannot get the

result. A summary of the results is shown in Table 5.3 and the Figures 5.1

to 5.4 show the number of failures as the time increases.

Reliability of Web services are tested under different scenarios, including

normal operation, resource problem by increasing the load of the server, entry

point failure by rebooting the server periodically and a number of faults that

are injected to the system by fault injection techniques.

In the fault injection, WS-FIT fault injection is applied. The WS-FIT

fault injection method is a modified of Network Level Fault Injection. WS-

FIT differs from standard Network Level Fault Injection techniques in that

the fault injector decodes the SOAP message and can inject faults into in-

dividual RPC parameters, rather than randomly corrupting a message, for

instance bit-flipping. This enables API-level parameter value modification to

be performed in a non-invasive way as well as standard Network Level Fault

Injection.
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Figure 5.1: Number of failures when the server operates normally
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Figure 5.2: Number of failures under resource problem
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Figure 5.3: Number of failures under entry point failure
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Figure 5.4: Number of failures under Network Level Fault Injection
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5.2 Discussion

When there is no redundancy techniques applied on the Web service system

(Exp 0), it is clearly shown that the failure rate of the system is the highest.

Consequently, we try to improve the reliability of the Web service in two

different ways, including spatial redundancy with replication and temporal

redundancy with retry or reboot.

5.2.1 Resource Problem and Entry Point Failure

Under different situations, our approach improves the availability of the sys-

tem differently. When the system is under resource problem and entry point

failure, the experiment shows that the temporal redundancy helps to improve

the availability of the system.

For the Web service with retry (Exp 1), the percentage of failures of the

system (number of failed requests/total number of requests) is reduced from

11.97% to 4.93%. This shows that the temporal redundancy with retry can

significantly improve the availability of the Web service. When there is a

failure occurrence in the Web service, on the average, the clients need to

retry twice to get the response from the web service.

Another temporal redundancy is Web service with reboot (Exp 2). For

the experimental result, it is found that the failure rate of the system is

also reduced: from 11.97% to 6.44%. The improvement is good, but not as

substantial as the temporal redundancy with retry. It is due to the fact that

when the Web service cannot be provided, the server will take time to reboot.

Spatial redundancy is applied in the system in Exp 3, which is the ap-

35



proach we have proposed. The availability of the system is improved even

more significantly: the failure rate of the system is reduced from 11.97% to

3.56%. The Web service performs failover when the Web service cannot re-

spond. The replication manager keeps checking the availability of the Web

services. If the primary service fails, the replication manager selects another

Web service to provide the service. The replication manager sends a mes-

sage to the Web server to check the availability every 5 ms. It shortens the

potential downtime of the Web service, thus the failure rate is reduced. In

the experiment, on the average, the replication manager detects that there

are around 600 failures in the Web services and performs the failovers.

To further improve the reliability of the Web service, both spatial and

temporal redundancy is applied in the system in the Experiment 4. The

failure rate is reduced from 11.97% to 2.59%. In the experiment, the Web

service is replicated on five different machines and the clients will retry if they

cannot get response correctly from the service. It is demonstrated that this

setting results in the lowest failure rate. This shows that spatial and tem-

poral redundancy (a hybrid approach) achieve the highest gain in reliability

improvement of the Web service.

5.2.2 Network Level Fault Injection

When the system is under network level fault injection, the temporal redun-

dancy reduces the failure rate of the system from 12.32% to 5.12%. When

there are fault injected into the SOAP message, the system cannot process

the request correctly, which will cause error in the system. However, with
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temporal redundancy, the clients can resubmit the result to the system when

there is fault injected into the previous message, thus, the failure rate of

the system is reduced. However, the spatial redundancy approach cannot

improve the availability of the system. . It is because even the message has

injected faults and it will not trigger a failover of the system.

5.2.3 Failure Rate

The failure rate of a system is defined as:

λ = lim
∆−→0

F (t + ∆t)− F (t)

∆t
(5.1)

The failure rate of our system, using a very specific scenario has improved

from 0.114 to 0.025. The reliability of the system can be calculated with

R(t) = e−λ(t)t (5.2)

and Figure 5.5 shows the reliability of the discussed system.

Availability of the system is defined as:

A =
MTTF

MTTF + MTTR
(5.3)

And in our case

MTTF =
1

λ(t)

=
1

0.025

= 40
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MTTF = 3s

A =
40

40 + 3

= 0.93

which is quite of an improvement from A = 0.75 but still not up to

standards of today’s expectations.
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Chapter 6

Reliability Modeling

We develop the reliability model of the proposed Web service paradigm using

Markov chains[22, 21]. The model is shown in Figure 6.1.

The reliability model is verified through using the tool SHARPE [23].

In Figure 6.1(a), the state s represents the normal execution state of the

system with n Web service replicas. In the event of an error, the primary Web

service failed, the system will either go into the other states, i.e s− j which

represents the system with n− j working replicas remaining, the replication

manager responds on time, or it will go to the failure state F with conditional

probability c1. λ∗ denotes the error rate at which recovery cannot complete

in this state and c1 represents the probability that the replication manager

responds on time to switch to another Web service.

When the failed Web service is repaired, the system will go back to the

previous state, s − j + 1. µ∗ denotes the rate at which successful recovery

is performed in this state, c2 represents the probability that the failed Web

service server reboots successfully. If the Web service is failed, it goes to
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Figure 6.1: Markov chain based reliability model for the proposed system
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another Web service. When all Web services are failed, the system enters the

failure state F . λn is the network failure rate.

s−1 to s−n represents the working state of the n Web service replicas and

the reliability model of each Web service is shown in Figure 6.1(b). There

are two types of failures simulated in our experiments, they are P1 recourses

problem (server busy) and P2 entry point failures (server reboot). If failure

occurred in the Web service, either the Web service can be repaired with

µ1 or µ2 repair rate with conditional probability c1 or the error cannot be

recovered, it will go to the next state s − j − 1 with one less Web service

replica available. If the replication manager cannot response on time, it will

go to the failure state. From the graph, two formulas can be obtained:

λ∗ = λ1 × (1− C2)µ1 + λ2 × (1− C2)µ2 (6.1)

µ∗ = λ1 × µ1 + λ2µ2 (6.2)

From the experiments, we obtained the error rates and the repair rates

of system, the values are shown in Table 6.1:
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Table 6.1: Model parameters

ID Description Value

λN Network failure rate 0.02

λ∗ Web service failure rate 0.025

λ1 Resource problem rate 0.142

λ2 Entry point failure rate 0.150

µ∗ Web service repair rate 0.286

µ1 Resource problem repair rate 0.979

µ2 Entry point failure repair rate 0.979

C1 Probability that the RM response on time 0.9

C2 Probability that the server reboot successfully 0.9
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Chapter 7

Conclusion and Future Work

In the paper, we surveyed replication and design diversity techniques for reli-

able services and proposed a hybrid approach to improving the availability of

Web services. Furthermore, we carried out a series of experiments to evalu-

ate the availability and reliability of the proposed Web service system. From

the experiments, we conclude that both temporal and spatial redundancy

is important to the availability improvement of the Web service. In the fu-

ture, we plan to test the proposed schemes with a wide variety of system,

environment and fault injection scenarios and analyze the impact of various

parameters on availability. Moreover, we will also evaluate the schemes with

design diversity techniques.
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