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Abstract

Augmented Reality (AR) technology for digital composition of animation

with real scenes is to bring new experience to the viewers. Augmented Reality

is a form of human-machine interaction. The key feature of the Augmented

Reality technology is to present auxiliary information in the field of view

for an individual automatically without human intervention. To achieve the

new Augmented Reality experience, object tracking is one of the hey point.

Object tracking is the key component in Augmented Reality which provide

the registration function to the system. To tackle this problem, we study the

current technologies of augmented reality, object tracking and active appear-

ance model. In this paper, a survey of augmented reality, object tracking and

active appearance mode are presented and the proposed system architecture

and its components are described in detail.

i



Contents

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Objective . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Structure of Report . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 4

2.1 Augmented Reality . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Related Projects . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 Augmented Reality for Visualization . . . . . . . . . . 8

2.1.4 Augmented Reality for Maintenance/Repair Instructions 10

2.1.5 Augmented Reality for Outdoor Applications . . . . . 13

2.1.6 Application for Entertainment . . . . . . . . . . . . . . 15

2.1.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Survey on Video Object Tracking . . . . . . . . . . . . . . . . 17

2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Object tracking . . . . . . . . . . . . . . . . . . . . . . 18

ii



2.2.3 Current Techniques on Object Detection and Tracking 19

2.2.4 Object tracking using motion information . . . . . . . 24

2.2.5 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Survey on Active Appearance Model . . . . . . . . . . . . . . 30

2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.2 Basic Active Appearance Models . . . . . . . . . . . . 31

2.3.3 Extension of AAMs . . . . . . . . . . . . . . . . . . . . 44

3 Object Tracking with Active Appearance Model and Kalman

Filter 45

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Scheme details . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.1 Object Matching by Active Appearance Model . . . . . 47

3.2.2 Motion Modelling . . . . . . . . . . . . . . . . . . . . . 53

3.2.3 Combining the Active appearance model and the Kalman

filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Design Experimentation . . . . . . . . . . . . . . . . . . . . . 56

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Conclusion and Future Work 58

iii



List of Figures

2.1 Milgrams real-to-virtual continuum . . . . . . . . . . . . . . . 6

2.2 Collaborartive interioir design . . . . . . . . . . . . . . . . . . 9

2.3 (a) The see through display (b) The structure overlapped over

the real view . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 (a) Triangular trackers attached to various parts . . . . . . . 12

2.5 MARS - Mobile Augmented Reality System . . . . . . . . . . 13

2.6 GRIDS - Showing Geospatial registration of information . . . 14

2.7 The Generic Framework of ARCADE . . . . . . . . . . . . . . 15

2.8 The linear shape model of an independent AAM. The model

consists of a triangulated base mesh s0 plus a linear combina-

tion of shape vectors sis . . . . . . . . . . . . . . . . . . . . . 34

2.9 Example of the combination of the 2D AAMs shape models . 34

2.10 The linear appearance variation of an independent AAM. The

model consists of a base appearance image A0 and Ai s . . . . 36

2.11 Example of appearance models in the AAM . . . . . . . . . . 37

2.12 Sample of linear combination of appearance of the AAM . . . 41

3.1 Overview of the tracking system . . . . . . . . . . . . . . . . . 46

iv



3.2 The complete picture of the operation of the Kalman filter . . 55

v



List of Tables

2.1 Timeline for development of AAMs and ASMs . . . . . . . . . 32

vi



Chapter 1

Introduction

1.1 Introduction

Augmented reality is a new area of research in which a virtual world is

overlayed on top of the real world. Instead of the completely immersive en-

vironment of virtual reality, augmented reality attempts to use the flexibility

of the digital world to enhance the environment in which we all live. Users

of an augmented reality system are able to maintain the context of their sur-

rounding environment, while still obtaining the benefit of additional sensory

input and information.

One of the key step of augmented reality is registration to the system.

Object tracking is the key technologies for this problem. In augmented reality

system, a registration is needed such that the objects in the video is being

detected and tracked. Then, the virtual object can be placed onto the objects

of the video. In object tracking system, a model is need to be applied to

estimate the shape and the motion of the objects. The Active Appearance
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Model (AAM) algorithm has proved to be a successful method for matching

statistical models of appearance to new images. Thus, in our newly proposed

scheme, we applied the AAM in the object tracking system in the modelling

part. Also, Kalamn filters are added to the fitting part of the AAM fitting

algorithm to increase the speed of the tracking system.

1.2 Research Objective

Object tracking is an important techniques in the augmented reality area.

There have been many approaches to object tracking described in the lit-

erature. The approaches differs in the goals of the tracking processes, the

assumptions that are made about the scene, the types of moving objects and

their motion characteristics and the camera motion. However, there are still

number of problems need to be solved.

Active appearance model is a recent research area for modelling objects.

It is a powerful tools for estimating the model and the appereance of the

objects.

In our research, we analyze the current technologies of object tracking and

the active appearance model. We propose a object tracking algorithm which

applied the active apperance model, Kalman filter and occulsion detection.

1.3 Contribution

In the paper, we have the following main contributions:

• Survey on object tracking technologies
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• Survey on Active Appearance Models (AAMs)

• Proposed a real time tracking system with AAMs and Kalman filters

• Proof of the general nature of AAMs

1.4 Structure of Report

This paper is organized into 4 chapters. The next chapter introduces the

issues related to augmented reality, active appearance model and the object

tracking techniques, a brief summary for current tracking techniques and a

review for active appearance model are provided. A proposed object tracking

system is described in chapter 3 and the experimental results are followed

by. Finally, a conclusion and the future direction would be given in chapter

4.
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Chapter 2

Background

Virtual Reality (VR) is stimulating the user’s senses in such a way that a

computer generated world is experienced as real. In order to get a true il-

lusion of reality, it is essential for the user to have influence on this virtual

environment. VR is used as a powerful interface with computers. By wear-

ing a head mounted audio-visual display, position and orientation sensors,

and tactile interface devices, one can actively inhabit an inclusive computer

generated environment. With increasing computing power allowing for the

processing of huge amounts of information in real time, VR technology has

become more effective.

Augmented reality (AR) works on the same principles as virtual reality.

However, different from VR where the user is immersed in a completely vir-

tual environment, augmented reality overlays virtual objects and information

over the real world. This is usually achieved by the use of see-through head

mounted displays and tracking devices.

Let first have an overview of state-of-the-arts technologies in augmented
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reality and a literature review of current active appearance model and object

tracking technologies.

2.1 Augmented Reality

2.1.1 Introduction

An augmented reality system supplements the real world with virtual objects

that appear to coexist in the same space as the real world. An augmented

reality system has the following properties

• Combine real and virtual objects in a real environment

• Runs interactively, and in real time

• Registers(aligns) real and virtual objects with each other

Ivan Sutherland, the computer graphics pioneer, is largely credited with

the concept of Augmented Reality [2]. The Head-Mounted Display, which was

prototyped by Ivan Sutherland in the late 1960s, started out as an Augmented

Reality viewing device. It was so heavy that the device was called the ”Sword

of Damocles” because it had to be suspended from the ceiling to off set most of

the weight from the head of the user. Since then Augmented Reality systems

have come a long way and their progress has increased rapidly through the

1990’s. The following sections take a look at some of the augmented reality

applications that have been developed or are under research.

Augmented Reality is a variation of Virtual Reality as it is more com-

monly called. Virtual Reality technologies completely immerse a user inside
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a synthetic environment. While immersed, the user cannot see the real world

around him. In contrast, Augmented Reality allows the user to see the real

world, with virtual objects superimposed upon or composited with the real

world. Therefore, AR supplements reality, rather than completely replacing

it. Ideally, it would appear to the user that the virtual and real objects

coexisted in the same space.

Milgram [3] defined a continuum of real-to-virtual environments, in which

AR is one part of the general area of mixed reality, shown in Figure 2.1. In

both augmented virtuality, in which real objects are added to virtual ones,

and virtual environments (or virtual reality), the surrounding environment

is virtual, while in AR the surrounding environment is real.

Real


environment


Augmented


reality


Augmented


virtuality


Virtual


environment


Mixed reality


Figure 2.1: Milgrams real-to-virtual continuum

Augmented Reality enhances a user’s perception of and interaction with

the real world. The virtual objects display information that the user cannot

directly detect with his own senses. The information conveyed by the virtual

objects helps a user perform real-world tasks [4].

The critical problem with present augmented reality systems is the lack

of real-time and accurate tracking. Since the information has to overlap with

the real world, smallest errors in tracking information are detected by the

human eye. Any mismatch between augmented objects and real objects can
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be discomforting and also result in incorrect information being given to the

user.

There are numbers of enabling technologies for building compelling AR

environments. Examples of these technologies include displays, tracking,

registration and calibration.

2.1.2 Related Projects

In recent years, Augmented Reality technologies have been applied to differ-

ent areas. Following are some projects related to Augmented Reality.

Boeing Computer Seattle is developing two real-time applications – one

in virtual reality, the other one in augmented reality – aimed at putting

more information directly in front of the engineers designing aircraft and the

manufacturing workers who build them [5].

For many years, military aircraft and helicopters have used Head-Up Dis-

plays (HUDs) and Helmet-Mounted Sights (HMS) to superimpose vector

graphics upon the pilot’s view of the real world. Besides providing basic nav-

igation and flight information, these graphics are sometimes registered with

targets in the environment, providing a way to aim the aircraft’s weapons.

For example, the chin turret in a helicopter gunship can be slaved to the

pilot’s HMS, so the pilot can aim the chin turret simply by looking at the

target. Future generations of combat aircraft will be developed with an HMD

built into the pilot’s helmet [6].

Augmented Reality technologies are also applied in satellites. The Au-

tonomous Vision System on TeamSat (AVS) [7] is a fully autonomous star
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tracker and vision system. The objectives of the AVS were to verify, in space,

multiple autonomous processes intended for spacecraft applications such as

autonomous star identification and attitude determination, identification and

tracking of non-stellar objects, imaging and real-time compression of image

and science data for further ground analysis. The object tracking techniques

are employed in the project.

2.1.3 Augmented Reality for Visualization

The use of augmented reality for visualization purposes has been restricted

due to speed limitations in realistic real-time rendering. However, flat shaded

renderings have been employed to use augmented reality for spatial visual-

ization.

The collaborative design system developed at ECRC [8] is a demonstra-

tion of interactive graphics and real-time video for the purpose of interior

design. The system combines the use of a heterogeneous database system of

graphical models, an augmented reality system, and the distribution of 3D

graphics events over a computer network [9].

The scenario for this application consists of an office manager who is

working with an interior designer on the layout of a room. On a computer

monitor they can see a picture of the room from the viewpoint of the camera.

By interacting with various manufacturers over a network, they select furni-

ture by querying databases using a graphical paradigm. The system provides

descriptions and pictures of furniture that is available from the various manu-

factures who have made models available in their databases. Pieces or groups
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of furniture that meet certain requirements such as color, manufacturer, or

price may be requested. The manager chooses pieces from this ”electronic

catalogue” and 3D renderings of this furniture appear on the monitor along

with the view of the room. The furniture is positioned using a 3D mouse.

Furniture can be deleted, added, and rearranged until the users are satisfied

with the result; they view these pieces on the monitor as they would appear

in the actual room. As they move the camera they can see the furnished

room from different points of view Figure 2.2.

Figure 2.2: Collaborartive interioir design

The users can consult with colleagues at remote sites who are running

the same system. Users at remote sites manipulate the same set of furniture

using a static picture of the room that is being designed. Changes by one

user are seen instantaneously by all of the others, and a distributed locking

mechanism ensures that a piece of furniture is moved by only one user at a

time. In this way groups of users at different sites can work together on the

layout of the room. The group can record a list of furniture and the layout

of that furniture in the room for future reference.
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2.1.4 Augmented Reality for Maintenance/Repair In-

structions

Various industries have been funding development of Augmented Reality

systems for instruction/ maintenance.

Augmented Reality in Architectural Construction, Inspection, and

Renovation

The Computer Graphics and User Interfaces Lab at Columbia University has

worked on two augmented reality systems for use in structural engineering

and architectural applications. The first, called “Architectural Anatomy,”

overlays a graphical representation of portions of the building’s structural

systems over a user’s view of the room in which they are standing [10]. A

see-through head-mounted display provides the user with monocular aug-

mented graphics and tracks the position and orientation of their head with

an ultrasonic tracking system Figure 2.3.

Figure 2.3: (a) The see through display (b) The structure overlapped over

the real view

The above application can be used effectively in teaching architectural
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technology. The other augmented reality testbed system addresses space-

frame construction [11]. The spaceframe is assembled one component (strut

or node) at a time. For each step of construction, the augmented reality

system:

• Directs the worker to a pile of parts and tells which part to pick up by

playing a sound file containing verbal instructions.

• Confirms that the worker has the correct piece by reading a barcode

on the component.

• Directs the worker to install the component. A virtual image of the

next piece, with a textual description fixed near it, indicates where to

install the component, and verbal instructions played from a sound file

explain how to install it.

• Confirms that the component is installed by asking the worker to place

hand at a particular location on it (denoted by the barcode), then

determining the position of the hand.

This research demonstrates the potential of augmented reality’s x-ray vi-

sion and instructional guidance capabilities for improving architectural con-

struction, inspection, and renovation.

Knowledge-based Augmented Reality for Maintenance Assistance

(KARMA)

KARMA is a prototype system that a see-through head-mounted display to

explain simple end-user maintenance for a laser printer. Several Logitech
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3D trackers (the small triangles in the Figure 2.4 were attached to key com-

ponents of the printer, allowing the system to monitor their position and

orientation [12].

Figure 2.4: (a) Triangular trackers attached to various parts

AR in Aircraft industry

The Integrated Media Systems Center at University of Southern California is

working with McDonnell Douglas engineers to create an AR system that will

display text and graphics so aircraft assemblers at its Douglas Aircraft Co.

facility in Long Beach can build planes more quickly and accurately. Such a

system would help workers by relieving them of the need to refer back and

forth to blueprints or instruction manuals.

At Boeing, David Mizell is using a grant from the Defense Advanced

Research Projects Agency to try to use AR to simplify the process of bundling

hundreds of wires. Traditionally, workers use foam boards with complicated
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pre-printed diagrams to lace the wires into a bundle. AR might allow a

worker to use a blank board and rely on graphics in a head-mounted display

to show where each wire should go.

2.1.5 Augmented Reality for Outdoor Applications

A Mobile Augmented Reality Systems for Exploring the Urban

Environment(MARS)

This prototype system developed by the Computer Graphics and User Inter-

faces Lab, Columbia University acts as a campus information system, assist-

ing a user in finding places and allowing to query information about items

of interest, like buildings, statues, etc. [13]. The user carries a backpack

computer with a wireless network and wears a head-mounted display. The

position of the user is tracked by differential GPS while orientation data is

provided by the head-mounted display itself. As the user looks around the

campus, the see-through headworn display overlays textual labels on cam-

pus buildings. The user can interact with the system to bring up related

information about any building.

Figure 2.5: MARS - Mobile Augmented Reality System
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Geospatial Registration of Information for Dismounted Soldiers

(GRIDS)

GRIDS is an Augmented Reality system currently under research, that can

offer an intuitive, natural way for dismounted soldiers to understand elec-

tronic information [14]. An infantryman wears a see-through Head-Mounted

Display (HMD) hat which overlays computer graphics directly upon his view

of the surrounding environment. The graphics are spatially registered with

objects in the environment. A soldier wearing an HMD sees information

labels from the tactical database directly superimposed over seen or unseen

individuals and objects. The crucial requirement is that the graphic labels

be properly registered to the correct objects in the environment. Accurate

registration requires accurate tracking of the user’s location and direction of

gaze.

Figure 2.6: GRIDS - Showing Geospatial registration of information
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2.1.6 Application for Entertainment

Augmented Reality Computing Arena for Digital Entertainment

(ARCADE)

Augmented Reality Computing Arena for Digital Entertainment (ARCADE)

[15] is an environment to develop and execute Augmented Reality applica-

tions targeted for digital entertainment. The computing arena is the collec-

tion of software tools, algorithms, designs, and configurations within a highly

automated execution environment for Augmented Reality entertainment ap-

plications. Figure 2.7 shows the logical framework of ARCADE.

ARCADE Logical Framework


Camera
, 
Color
, 


Lighting and 


Target Object 


Calibration


Object Tracking 


and Lighting 


Information 


Recovery


3
D Animation 


Matrix Estimation


Computer 


Animated Images


Display 


Tecnnology


Video Shooting 


Environment

Video Object Tracking


Auxiliary 


Information


Perception 


Technology


Figure 2.7: The Generic Framework of ARCADE

Since Augmented Reality entertainment applications will be executed

across different hardware platforms, and some of the hardware may be pro-

prietary, ARCADE intends to ease the hurdle of applying Augmented Real-

ity technology for digital entertainment sectors through this generic logical

framework.

ARCADE aids developers in deploying Augmented Reality entertainment

experience and applying Augmented Reality technology for content creation.

We deliver the architecture design of the ARCADE along with a fully tested

implementation including the following components:

15



1 Video Object Tracking Engine (VOTE)

2 Video Object Tracking Techniques

3 Pilot Augmented Reality Entertainment

Applications

2.1.7 Summary

Augmented reality is a newly research area and there are number of research

project that are undergoing. There are many application that augmented

reality would applied on.
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2.2 Survey on Video Object Tracking

2.2.1 Introduction

Accurately tracking the user’s viewing orientation and position is crucial for

AR registration. Two major components can be distinguished in a typical

object tracker. Target representation and localization is mostly a bottom-

up process which has to cope with changes in the appearance of the target.

Filtering and data association is mostly a top-down process dealing with

the dynamics of the tracked object, learning of scene priors, and evaluation

of different hypotheses. The way the two components are combined and

weighted is application-dependent and plays a decisive role in the robustness

and efficiency of the tracker.

Videos can be considered aa a sequences of images, which called a frame.

The video frames are displayed in a fast enough frequency so that human eyes

percept the continuity of its content. It is obvious that all image processing

techniques can be applied to individual frames, including object detection

and tracking. Also, the contents of two consecutive frames are usually closely

related, which can be a useful information for many techniques.

Object detection in videos involves verifying the presence of an object

in image sequences and possibly locating it precisely for recognition. Ob-

ject tracking is to monitor an object’s spatial and temporal changes during

a video sequence, including its presence, position, size, shape, etc. This is

done by solving the temporal correspondence problem, the problem of match-

ing the target region in successive frames of a sequence of images taken at

closely-spaced time intervals. These two processes are closely related because

17



tracking usually starts with detecting objects, while detecting an object re-

peatedly in subsequent image sequence is often necessary to help and verify

tracking.

2.2.2 Object tracking

Object tracking techniques can be divided into two main streams: marker-

based object tracking [16], [17], [18] and marker-less-based object tracking

[19]. General tracking technologies include mechanical arms and linkages:

accelerometers and gyroscopes, magnetic fields, radio frequency signals, and

acoustics. Tracking measurements are subject to signal noise, degradation

with distance, and interference sources. Active tracking systems require cal-

ibrated sensors and signal sources in a prepared and calibrated environment.

Among passive tracking approaches, computer vision methods can determine

pose as well as detect, measure, and reduce pose tracking errors derived by

other technologies. The combined abilities to both track pose and manage

residual errors are unique to vision-based approaches.

Several different approaches for object tracking exist. Comaniciu [20]

proposed a new approach toward target representation and localization of

the central component in visual tracking of nonrigid objects. The feature

histogram-based target representations are regularized by spatial masking

with an isotropic kernel. The masking induces spatially-smooth similarity

functions suitable for gradient-based optimization; hence, the target local-

ization problem can be formulated using the basin of attraction of the local

maxima.
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Oron [21] proposed an algorithm for multi-object tracking method for

video images. This algorithm is based on motion estimation and image dif-

ference techniques. It provides an improved capability for object tracking,

especially for cases of non-stationary background conditions due to radiomet-

ric changes, camera motion instability and motion of different objects within

the images.

Natural feature tracking is another challenging topic. Natural feature

tracking algorithms detect and track target objects in the scene automati-

cally without any pre-defined figures or objects. In [22], a natural feature

tracking algorithm is proposed. Natural scene features stabilize and extend

the tracking range of augmented reality pose-tracking systems. Point and

region features are automatically and adaptively selected for properties that

lead to robust tracking.

2.2.3 Current Techniques on Object Detection and Track-

ing

Template-based object detection

Template-based object detection is used when a template describing a spe-

cific object is available. In such case, object detection becomes a process of

matching features between the template and the image sequence under anal-

ysis. Object detection with an exact match is computationally expensive and

the quality of matching depends on the details and the degree of precision

provided by the object template. In general, there are two types of object

template matching, fixed and deformable template matching.[37]
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Fixed template matching Fixed templates are useful when object shapes

do not change with respect to the viewing angle of the camera. Two major

techniques have been used in fix template matching, image subtraction and

correlation.

In Image subtraction, the template position is determined from minimiz-

ing the distance function between the template and various positions in the

image. Although image subtraction techniques require less computation time

than the following correlation techniques, they perform well in restricted en-

vironments where imaging conditions, such as image intensity and viewing

angles between the template and images containing this template are the

same.

For correlation, the position of the normalized cross-correlation peak be-

tween a template and an image to locate the best match is used. This

technique is insensitive to noise and illumination effects in the images, but

suffers from high computational complexity caused by summations over the

entire template. Point correlation can reduce the computational complexity

to a small set of carefully chosen points for the summations. [39]

Deformable template matching Deformable template matching approaches

are more suitable for cases where objects vary due to rigid and non-rigid de-

formations. These variations can be caused by either the deformation of the

object per se or just by different object pose relative to the camera. Because

of the deformable nature of objects in most video, deformable models are

more appealing in tracking tasks.

In this approach, a template is represented as a bitmap describing the
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characteristic contour/edges of an object shape. A probabilistic transfor-

mation on the prototype contour is applied to deform the template to fit

salient edges in the input image. An objective function with transformation

parameters which alter the shape of the template is formulated reflecting the

cost of such transformations. The objective function is minimized by itera-

tively updating the transformation parameters to best match the object [37].

The most important application of deformable template matching techniques

is motion detection of objects in video frames which we will review in the

following section. [51, 53]

Feature-based object detection

In feature-based object detection, standardization of image features and reg-

istration (alignment) of reference points are important. The images may need

to be transformed to another space for handling changes in illumination, size

and orientation. One or more features are extracted and the objects of inter-

est are modeled in terms of these features. Object detection and recognition

then can be transformed into a graph matching problem.

Shape-based approaches Shape-based object detection is one of the hard-

est problems due to the difficulty of segmenting objects of interest in the

images. In order to detect and determine the border of an object, an image

may need to be preprocessed. The preprocessing algorithm or filter depends

on the application. Different object types such as persons, flowers, and air-

planes may require different algorithms. For more complex scenes, noise

removal and transformations invariant to scale and rotation may be needed.
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Once the object is detected and located, its boundary can be found by edge

detection and boundary-following algorithms. The detection and shape char-

acterization of the objects becomes more difficult for complex scenes where

there are many objects with occlusions and shading. [31, 48]

Color-based approaches Unlike many other image features (e.g. shape)

color is relatively constant under viewpoint changes and it is easy to be

acquired. Although color is not always appropriate as the sole means of

detecting and tracking objects, but the low computational cost of the algo-

rithms proposed makes color a desirable feature to exploit when appropriate.

[52]

[33] developed an algorithm to detect and track vehicles or pedestrians

in real-time using color histogram based technique. They created a Gaus-

sian Mixture Model to describe the color distribution within the sequence of

images and to segment the image into background and objects. Object occlu-

sion was handled using an occlusion buffer. [32] achieved tracking multiple

faces in real time at full frame size and rate using color cues. This simple

tracking method is based on tracking regions of similar normalized color from

frame to frame. These regions are defined within the extent of the object to

be tracked with fixed size and relative positions. Each region is character-

ized by a color vector computed by sub-sampling the pixels within the region,

which represents the averaged color of pixels within this region. They even

achieved some degree of robustness to occlusion by explicitly modeling the

occlusion process.
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Motion detection

Detecting moving objects, or motion detection, obviously has very important

significance in video object detection and tracking. A large proportion of

research efforts of object detection and tracking focused on this problem in

last decade. Compared with object detection without motion, on one hand,

motion detection complicates the object detection problem by adding object’s

temporal change requirements, on the other hand, it also provides another

information source for detection and tracking.

A large variety of motion detection algorithms have been proposed. They

can be classified into the following groups approximately.

Thresholding technique over the interframe difference These ap-

proaches [30] rely on the detection of temporal changes either at pixel or block

level. The difference map is usually binarized using a predefined threshold

value to obtain the motion/no-motion classification.

Statistical tests constrained to pixelwise independent decisions These

tests assume intrinsically that the detection of temporal changes is equiva-

lent to the motion detection [44]. However, this assumption is valid when

either large displacement appear or the object projections are sufficiently

textured, but fails in the case of moving objects that preserve uniform re-

gions. To avoid this limitation, temporal change detection masks and filters

have also been considered. The use of these masks improves the efficiency of

the change detection algorithms, especially in the case where some a priori

knowledge about the size of the moving objects is available, since it can be
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used to determine the type and the size of the masks. On the other hand,

these masks have limited applicability since they cannot provide an invariant

change detection model (with respect to size, illumination) and cannot be

used without an a priori context-based knowledge.

Global energy frameworks The motion detection problem is formu-

lated to minimize a global objective function and is usually performed using

stochastic (Mean-field, Simulated Annealing) or deterministic relaxation al-

gorithms (Iterated Conditional Modes, Highest Confidence First). In that

direction, the spatial Markov Random Fields [49] have been widely used and

motion detection has been considered as a statistical estimation problem. Al-

though this estimation is a very powerful, usually it is very time consuming.

2.2.4 Object tracking using motion information

Motion detection provides useful information for object tracking. Tracking

requires extra segmentation of the corresponding motion parameters. There

are numerous research efforts dealing with the tracking problem. Existing

approaches can be mainly classified into two categories: motion-based and

model-based approaches [47]. Motion-based approaches rely on robust meth-

ods for grouping visual motion consistencies over time. These methods are

relatively fast but have considerable difficulties in dealing with non-rigid

movements and objects. Model-based approaches also explore the usage of

high-level semantics and knowledge of the objects. These methods are more

reliable compared to the motion-based ones, but they suffer from high com-

putational costs for complex models due to the need for coping with scaling,
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translation, rotation, and deformation of the objects.

Tracking is performed through analyze geometrical or region-based prop-

erties of the tracked object. Depending on the information source, exist-

ing approaches can be classified into boundary-based and region-based ap-

proaches.

Boundary-based approaches

Also referred to as edge-based, this type of approaches rely on the informa-

tion provided by the object boundaries. It has been widely adopted in object

tracking because the boundary-based features (edges) provide reliable infor-

mation which does not depend on the motion type, or object shape. Usually,

the boundary-based tracking algorithms employ active contour models, like

snakes [45] and geodesic active contours. These models are energy-based or

geometric-based minimization approaches that evolve an initial curve under

the influence of external potentials, while it is being constrained by internal

energies.

Snakes Snakes is a deformable active contours used for boundary tracking

which was originally introduced by Terzopoulos et al [40]. In segmentation

and boundary tracking problems, these forces relate to the gradient of image

intensity and the positions of image features. One advantage of the force-

driven snake model is that it can easily incorporate the dynamics derived from

time-varying images. The snakes are usually parameterized and the solution

space is constrained to have a predefined shape. So these methods require

an accurate initialization step since the initial contour converges iteratively

25



toward the solution of a partial differential equation [25, 41, 50].

Considerable work has been done to overcome the numerical problems

associated with the solution of the equations of motion and to improve ro-

bustness to image clutter and occlusions. [27] proposed a B-spline represen-

tation of active contours, [29] employed polygonal representation in vehicle

tracking problems, and [43] proposed a deformable superquadric model for

modeling of shape and motion of 3D non-rigid objects.

Geodesic active contour models These models are not parameterized

and can be used to track objects that undergo non-rigid motion. In [28], a

three step approach is proposed which start by detecting the contours of the

objects to be tracked. An estimation of the velocity vector field along the de-

tected contours is then performed. At this step, very unstable measurements

can be obtained. Following this, a partial differential equation is designed to

move the contours to the boundary of the moving objects. These contours

are then used as initial estimates of the contours in the next image and the

process iterates. More recently, in [26], a front propagation approach that

couples two partial differential equations to deal with the problems of object

tracking and sequential segmentation was proposed. Additionally, in [34], a

new, efficient numerical implementation of the geodesic active contour model

has been proposed which was applied to track objects in movies.

Region-based approaches

These approaches rely on information provided by the entire region such as

texture and motion-based properties using a motion estimation/segmentation
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technique. In this case, the estimation of the target’s velocity is based on

the correspondence between the associated target regions at different time

instants. This operation is usually time consuming (a point-to-point corre-

spondence is required within the whole region) and is accelerated by the use

of parametric motion models that describe the target motion with a small set

of parameters. The use of these models introduces the difficulty of tracking

the real object boundaries in cases with non-rigid movements/objects, but

increases robustness due to the fact that information provided by the whole

region is exploited.

Optical flow [42, 46] is one of the widely used methods in this category.

In this method, the apparent velocity and direction of every pixel in the

frame have to be computed. It is an effective method but time consuming.

Background motion model can be calculated using optic flow, which serves

to stabilize the image of the background plane. Then, independent motion

is detected as either residual flow, the flow in the direction of the image

gradient that is not predicted by the background plane motion. Although

slightly more costly to compute, this measure has a more direct geometric

significance than using background subtraction on a stabilized image. This

method is very attractive in detecting and tracking objects in video with

moving background or shot by a moving camera.

2.2.5 Challenges

Although has been studied for dozens of years, object detection and tracking

remains an open research problem. A robust, accurate and high performance
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approach is still a great challenge today. The difficulty level of this problem

highly depends on how you define the object to be detected and tracked. If

only a few visual features, such as a specific color, are used as representation

of an object, it is fairly easy to identify all pixels with same color as the object.

On the other extremity, the face of a specific person, which full of perceptual

details and interfering information such as different poses and illumination, is

very hard to be accurately detected, recognized and tracked. Most challenges

arise from the image variability of video because video objects generally are

moving objects. As an object moves through the field of view of a camera,

the images of the object may change dramatically. This variability comes

from three principle sources: variation in target pose or target deformations,

variation in illumination, and partial or full occlusion of the target.

There are two sources of information in video that can be used to detect

and track objects: visual features (such as color, texture and shape) and

motion information. Combination of statistical analysis of visual features

and temporal motion information usually lead to more robust approaches. A

typical strategy may segment a frame into regions based on color and texture

information first, and then merge regions with similar motion vectors subject

to certain constraints such as adjacency. A large number of approaches have

been proposed in literature. All these efforts focus on several different re-

search areas each deals with one aspect of the object detection and tracking

problems or a specific scenario. Most of them use multiple techniques and

there are combinations and intersections among different methods. All these

make it very difficult to have a uniform classification of existing approaches.

So in the following sections, we would review most of the approaches sepa-
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rately in association with different research highlights.

2.2.6 Summary

Augmented reality becomes more and more popular and the success of the

augmented reality is highly depends on the accuracy of the object tracking

result. Although so much work has been done in object tracking, it still

seems impossible so far to have a generalized, robust, accurate and real-time

approach that will apply to all scenarios. There are number of difficulties,

including: noisy background, moving camera or observer, bad shooting con-

ditions, object occlusions, etc. Thus, object tracking is still a open research

area. As the computing power keeps increasing and network keeps develop-

ing, more complex problem may become solvable.
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2.3 Survey on Active Appearance Model

2.3.1 Introduction

The Active Appearance Model (AAM) algorithm is a powerful tool for mod-

elling images of deformable objects. AAM combines a subspace-based de-

formable model of an object’s appearance with a fast and robust method of

fitting this model to a previously unseen image.

The Active Appearance Model (AAM) algorithm, since its introduction

by Edwards et al. [74, 57], has found many applications in a variety of areas

such as face tracking, face recognition, and medical imaging [79]. AAM

uses Principal Component Analysis (PCA) based linear subspaces to model

the 2D shapes and textures of the images of a target object class. Such a

representation allows AAM to represent a certain image with a very small

number of parameters. Given a previously unseen image that belongs to the

same object class, AAM finds the optimal parameters to represent the target

image by using an iterative scheme that is fast and robust. The speed of

this algorithm comes from the assumption that the gradient matrix is fixed

around the optimal coefficients for all images. AAM numerically estimates

this fixed gradient matrix by estimating it for a set of training images around

their optimal parameters and averaging the results. Different variations of

the basic AAM algorithm have been proposed [58, 84, 89, 90]

The Active Appearance Model (AAM) algorithm has proved to be a suc-

cessful method for matching statistical models of appearance to new images.

There has been a great deal of research into using deformable models

to interpret images. Reviews are given in [57]. Active Shape Models were
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developed by Cootes et.al.[57] to match statistical models of object shape

to new images. They have been used successfully in many application areas,

including face recognition, industrial inspection [57] and medical image inter-

pretation. They have been extended to search 3D images. Active Appearance

Models were introduced more recently. They have proved very successful for

interpreting and tracking images of faces, and have been applied to medi-

cal image interpretation. They been extended to model and search colour

images.

The time line of development in Active Shape Models(ASMs) and Active

Appearance Models(AAMs) is shown in

2.3.2 Basic Active Appearance Models

Active Appearance Models were developed by Gareth Edwards et al. in

1998 and ever since been a valuable extension to the extensively used Active

Shape Models. This was a proposal and implementation of a statistical entity

capable of capturing full appearance of some object – an appearance that

can be faithfully described by the generic object shape mapped with some

overlaid textures. Such models expressed not only the variation of shape,

but also pixel intensities that are vital for full reconstruction and synthesis

of valid realistic model instances.

Shape Model

The creation of such a model firstly relies on landmarking, much as in the

case of shape models. Annotation of edges, corners and T-junctions in the
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Table 2.1: Timeline for development of AAMs and ASMs
Year Shape Modelling Appearance Modelling

1991 First parametric statistical shape

model, using PCA on inter-point

distances Cootes et. al.[55, 56]

Craw and Cameron warp faces to a ref-

erence shape before doing PCA [73]

1992 Point Distribution Model [60] Active

Shape Model, search using edge detec-

tors [59]

1993 Statistical profile models for ASM [61,

70] ASM with varying weights at each

point [61, 70] 3D ASM [79]

1994 Combining statistical and elastic shape

deformation [62, 64] Multi-resolution

ASMs [69] Non-linear ASM using Poly-

nomial Regression [85] B-spline based

ASMs [54]

Statistical models of shape and texture

[63] Statistical Appearance Models [80]

Shape model with statistical model of

concatenated profiles [77]

1995 Optimal estimation of shape and pose

fit to points [78]

1996 Statistical models of (x,y,I) surface [82]

1997 Mixture models of shape distributions

in ASM [65, 66]

1998 Active Appearance Model introduced

[74, 57] Shape-AAM (shape driven by

residuals) [58]

1999 Non-linear ASMs using Kernel PCA

[83] 2D+time ASMs [76, 75]

Wavelet compression of AAMs [87]

2000 View-based AAMs [71] Local refine-

ment of AAM search [67] Coupled

models of appearance [72]

2001 Constrained AAMs [68] Inverse Com-

positional updating scheme [31]

2002 Use of classifiers to detect features [86]

Robust estimation of shape parameters

[81]

2004 Real time combined 2D+3D active ap-

pearance model [88]
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image identifies unique attributes in some image that can be consistently

located across a whole set of examples. Furthermore, what in fact classified

such models as ones of full appearance is their ability to extract intensity

(brightness) values from a shape normalised to fit a global mean (Procrustes

analysis is used here to apply translation, rotation and scaling). Although

originally the technique was implemented in greyscale images, Stegmann et.

al. now provide an open source API that supports a corresponding RGB

appearance for face datasets. Not surprisingly, it usually required 3 times

the amount of space and time to process and any solution for grayscale data

usually extends to colour by breaking up pixel elements into 3 components.

The 2D shape of an AAM is defined by a 2D triangulate mesh and in

particular the vertex locations of the mesh. Mathematically, we define the

shape s of an AAM as the 2D coordinates of the n vertices that make up the

mesh:

s =









u1 u2 . . . un

v1 v2 . . . vn









(2.1)

AAMs allow linear shape variation. This means that the shape matrix s

can be expressed as a base shape s0 plus a linear combination of m shape

matrices si

s = s0 +
m

∑

i=1

pisi (2.2)

where the coefficients pi are the shape parameters.

AAMs are normally computed from training data consisting of a set of

images with the shape mesh (usually had) marked on them. Principal com-

33



ponent Analysis (PCA) is then applied to the training meshes. The base

shape s0 is the mean shape and the matrices si are the (reshaped) eigenvec-

tors corresponding to the m largest engienvalues. An example independent

AAM shape model is shown in Figure 2.8. The triangulated base mesh s0

is plotted in the left of the Figure 2.8. In the remainder of the figure, the

base mesh s0 is overlayed with arrows corresponding to each of the first four

shape vectors s1, s2, s3 and s4.

Figure 2.8: The linear shape model of an independent AAM. The model

consists of a triangulated base mesh s0 plus a linear combination of shape

vectors sis .

s0 is the mean shape and the matrices si are the eigenvectors correspond-

ing to the m largest eigenvalues. The resulted shape is the linear combination

of the base mesh and other shape vector. Example is shown in Figure 2.9.

Figure 2.9: Example of the combination of the 2D AAMs shape models
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Appearance Model

The appearance models encompass both shape and texture which are coded

in a single vector. The means of finding correlation between the two is eigen-

analysis of the covariance matrix where Principal Component analysis gives

encouraging results and can reduce the dimensionality of the data consider-

ably well while still accounting for much of the variation (but not all of it

of course). There is a significant improportion between the space required

(hence speed) and the loss that Principal Component analysis imposes. What

is seen in practice that the components in the analysis quickly shrink, that is,

they have a very small discriminatory power and when values become almost

negligible they can be discarded. That, of course, will depend on the re-

quirments of the system. For industrial inspection where quality is crucial or

in medical image analysis, low error rates are usually required and the pres-

ence of abnormality is difficult to spot. On the contrary, if real-time object

tracing in a video sequence is required, subsequent framed can compensate

for incorrect location and efficiency is at a premium.

The appearance of the AAM is defined within the base mesh s0. Let s0

also denote the set of pixels u = (u, v)T that lie inside the base mesh s0,

a convenient abuse of terminology. The appearance of the AAM is then an

image A(u) defined over the pixels u ∈ s0. AAMs allows linear appearance

variation. This means that the appearance A(u) can be expressed as a base

appearance A0(u) plus a linear combination of l appearance images Ai(u):

A(u) = A0(u) +
l

∑

i=1

λiAi(u) (2.3)
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where the coefficients λi are the appearance parameters. Since we can

easily perform a linear reparameterization, wherever necessary we assume

that the images Ai are orthonormal. As with the shape, the base appearance

A0 and appearance images Ai are usually computed by applying PCA to the

shape normalized training images.

The base appearance is set to be the mean image and the images Ai

to be the m eigenimages corresponding to the m largest eigenvalues. The

appearance of an example independent AAM is shown in Figure 2.10.The

appearance of an example independent AAM is shown in Figure 2.10. The

base appearance A0 is plotted on the left of the Figure 2.10. On the right,

the first four of the appearance images is plotted, A1, A2, A3 and A4. And

the sample of the linear combination of the appearance of the AAM is shown

in Figure 2.11.

Figure 2.10: The linear appearance variation of an independent AAM. The

model consists of a base appearance image A0 and Ai s

As with the shape component, the base appearance A0 and the appear-

ance images Ai are normally computed by applying PCA to a set of shape

normalised training images. Each training image is shape normalised by
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Figure 2.11: Example of appearance models in the AAM

warping the (hand labelled) training mesh onto the base mesh s0 Usually the

mesh is triangulated and a piecewise affine warp is defined between corre-

sponding triangles in the training and base meshes [11] (although there are

ways to avoid triangulating the mesh using, for example, thin plate splines

rather than piecewise affine warping [10].) The base appearance is set to be

the mean image and the images Ai to be the m eigenimages corresponding

to the m largest eigenvalues. The fact that the training images are shape

normalised before PCA is applied normally results in a far more compact

appearance eigenspace than would otherwise be obtained.

Principle Component Analysis

Throughout the process of PCA, dimensionality reduction is initially per-

formed to make the shape representation more compact, but secondly to

reduce the dimensionality of the vector describing texture variation (with

the mean shape available for normalisation) in the observed (training) data.

To obtain a model that accounts for both the above variations, namely

shape and intensity, Principal Component Analysis is again used to reduce

the dimensionality of the aggregation of the two. During this process, the cor-

relation between both of these is learned and a combined vector is formed. To
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account for different representation of texture and shape, i.e. axis aligned,

normalised and centred coordinates versus 8 bit (24 bit for RGB by most

conventions) encoding of colour, a matrix that scales both components by

some given weighing is used. The matrix elements of this weighing compo-

nent, W, define some type of transformer that improves consistency of value

range in the currently handled solumn vector. As a result of the process, a

vector which is rather compact can be obtained which describes full appear-

ance (shape and texture). Typically it is larger in size than its two original

merged components. That is made mandatory in order to account for the

same amount of variation as before. It is rather obvious though that any

level of model fidelity can be chosen and it has a direct connection with the

number of elements it comprises.

A linear PCA is used to recursively find the direction in which the vari-

ation of some data is maximal. Sometimes (for a manageable number of

dimensions) we can visualise all vectorised data in space so that an imagi-

nary cloud of points is formed. PCA is able to identify the component whose

removal would be the most harmful to classification of that data, i.e. the

direction that distinguishes different data instances most effectively. The

eigenvalues corresponding to the data in hand indicate how significant each

eignevector is with respect to data discrimination. Hence, not all existing

eigenvectors (which are linearly dependent on the data dimensionality) are

equally useful in some new, more succinct vector representation. Some of

them can be found to be 0 in which case they can be fully ignored and

dimesionality reduction that is not lossy becomes available.

The allowed range of values for each parameter in the resulting appear-
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ance model indicates a general variability property. The modes of variation,

that is, the collection of n modes is sorted in descending order of influence

on the overall appearance. Mode n will in fact be the nth vector element.

The variation of the model and the allowed range is restricted by a set of

parameters (virtually a column vector) bi that can describe a legal state of

the model when considered collectively.

Model Instantiation

To traverse image structures, the models produced are usually stretched to

fit an image under a standard optimisation routine where image differences

(pairwise difference) is first and foremost taken into account. It is not the

most attractive feature of this novel technique, but uses of this ability begin

to emerge. Interpretation of gestures through the variables b and motion

tracking are among the more interesting directions that fitting model to an

image took. Measure, inspection and diagnosis are some of the more useful

directions.

A somewhat detailed and irrelevant aspect of AAM search is to do with

optimizations, off-line training and speed-up. To allow quick and reliable

convergence between a model and an image, the relationship between pa-

rameter values and the effects they have on the error measure (inferred from

image differences) is learned before searching takes place. Not only parame-

ters are taken into account, but also rigid transformations that are vital for

matching, let us say, if we know very little about the size of a target object

in an image.

To achieve the above a long sequence of alterations to the models is
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applied and the effects on intensities is learned and recorded in some matrix

A. A collection of matrices eventually guides the steps taken in each iteration

to achieve better conversion. This matrices can be thought of as masks which

allow any real number and the matrices form a virtual image overlay.

Good initialization is normally required when it comes to the placement

of a model in some image. The search will inspect nearby pixels more than

distant ones and if nearby pixels show little potential (for fitting), if any at

all, then the algorithm will converge in some local minima (or run forever,

or maximum number of iterations will be reached). To allow for robust

performance, different resolutions of the image as well as scaled models of

appearance can be used. Gaussian averaging is normally used to produce such

analogous simpler (coarser) elements of the original data. The assumption

is that given a coarse scale the problem is simplified and something can be

learned and passed forward to the later iterations that deal with finer image

resolutions.

Equations 2.2 and 2.3 describe the AAM shape and appearance variation.

However, they do not describe how to generate a model instance. Given

the AAM shape parameters p = (pi, p2, ..., pi)
T we can use Equation 2.2

to generate the shape of the AAM s. Similarly, given the AAM appearance

parameters λ = (λ1, λ2, ..., λm)T . we can generate the AAM appearance A(x)

defined in the interior of the base mesh s0. The AAM model instance with

shape parameters p and appearance parameters λ is then created by warping

the appearance A from the base mesh s0 to the model shape s. This process

is illustrated in Figure 2.12 for concrete values of p and λ.
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Figure 2.12: Sample of linear combination of appearance of the AAM

Fitting Algorithm

For fitting the AMMs, there are number of proposed algorithms. Here we

describe the popular ones and discuss their advantages and disadvantages.

Basic Search The basic search of the AAMs if using the following algo-

rithm. This is repeated utill no improvement is made to the error, |∆I|2

Sub-sampling During Search During the search, all the points in the

model to obtain Is is sampled with the prediction on the change to the model

parameters. The change in the ith parameter, ∆ci, is given by
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Algorithm 1 Iterative Search for Fitting Active Appearance Model

Require: m: number of sample

1: Evaluate the error vector ∆I0 = Im

2: Evaluate the current error E0 = |∆I0|
2

3: Compute the predicted displacement, ∆c = R∆I0

4: Set k = 1

5: Let c1 = k∆c

6: Sample the image at this new prediction, and calculate a new error vector,

∆I1

7: if |∆I1| ≤ E0 then

8: Accept the new estimate, c1

9: else

10: try at k = 0.5, k = 0.25 etc.

11: end if
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∆ci = Ai∆I (2.4)

where Ai if the ith row of A.

To select a useful subset for all parameters, the best u% of elements for

each parameter are computed, then the union of such sets are generated. If

u is small enough, the union will be less than all the elements. Then, a new

multi-variate regression is preformed to compute the relationship. A′ between

the changes in the subset of samples, ∆I ′, and the changes in parameters

∆c = A′∆I ′ (2.5)

Search Using Shape Parameters An alternative approach is to use im-

age residuals to drive the shape parameters, ps, and thus c directly from the

image given the current shape, This approach ay be useful when there are

few shape modes.

The update equations in this case has the form

∆ps = P∆I (2.6)

where in this case ∆I is given by the different between the current image

sample gs and the best fit of the grey-level model to it, gm. The test for

convergence is by monitoring changes in the shape parameters, or simply

apply a fixed number of iterations at each resolution.
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2.3.3 Extension of AAMs

Extensions to appearance models span a large range of applications and

purposes. Some work of Cootes et al. extended the application of AAM’s to

faces so that one can switch between different models depending on the view

point. Each of these models requires a separate training and learning process

as well as relevant data that can be hard to collect. This work intended to

allow greater flexibility as the head moves and rotates. This may be of

some interest if access control systems exploit AAM’s and an almost strictly

orthogonal view on a face is difficult to acquire. The normal assumptions of

the model usually break when some landmarks get occluded. According to

Lanitis et al. this happens at when the angle that entends between the frontal

view and the aperture location extends over 22.5 degrees. More work earlier

on took place to account for 3-D data and slicing was a common requirement

as in the case for brain model (atlas) fitting. Current work attempts to

automate much of the process, annotation being a particular problem. When

this problem is solved, human intervention will become minimal and the cost

of model acquisition will go down considerably.
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Chapter 3

Object Tracking with Active

Appearance Model and Kalman

Filter

3.1 Introduction

Object tracking is an important component to augmented reality. In aug-

mented reality system, a registration is needed such that the objects in the

video is being detected and tracked. Then, the virtual object can be placed

onto the video. In object tracking system, a model is need to be applied to

estimate the shape and the motion of the objects. The Active Appearance

Model (AAM) algorithm has proved to be a successful method for matching

statistical models of appearance to new images. Thus, in our newly propose

scheme, we applied the AAM in the object tracking system in the modelling

part. Also, 3D-constraints are added to the fitting part of the AAM fitting
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algorithm to increase the speed of the tracking system.

In the following sections, the details of the proposed object tracking sys-

tem is described.

3.2 Scheme details

We propose a object tracking scheme that the active appearance model is

applied. The system includes the following parts: object matching, mo-

tion modelling, and occlusion detection. The main contribution is propose

a scheme to apply the active appearance model for tracking purpose. The

overview of the system is shown in Figure 3.1.

Training Active


Appearance


Models
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1. Shape Model


2. Appearance


Model


Initialization


Video


Kalman Filter


Active


Appearance
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Position of


the object


Occlusion
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Figure 3.1: Overview of the tracking system

Active appearance model is applied for object matching parts. When

the video is input to the system, the position of the object estimated by

the AAM. The fitting speed of the AAM algorithm is inherently dependent

on good initialization. A multi-scale AAM initialization is applied. Then

motion is modelled by Kalamn filter. Finally, the occlusion in the system is

detected.
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3.2.1 Object Matching by Active Appearance Model

A low cost active appearance model is applied in this object matching. To

match a object in a video, a training set of number of images are needed to

train the shape model and the appearance model in the AAM. The following

sections describe the AAM applied and the initialization of the AAM.

The Active Appearance Model (AAM) is a generalization of the widely

used Active Shape Model approach, but uses all the information in the image

region covered by the target object, rather than just that near modelled

edges.

Shape Formation

AAMs handle planar shape as a finite set of landmarks, i.e. corresponding

points between and within populations. The representation used for a single

n-point shape is defined as Equation 3.1

s =









u1 u2 . . . un

v1 v2 . . . vn









(3.1)

For dealing with redundancy in multivariate data, AAMs utilise the lin-

ear orthogonal transformation; principal component analysis (PCA). In this

setting a shape of n points is thus considered one observation, xi, in a 2n

dimensional space.

The shape PCA is essentially an eigen-analysis of the covariance matrix of

the shapes aligned w.r.t. position, scale and rotation, i.e. after a Procrustes

analysis.

New shape instances can thus be synthesised by deforming the mean

47



shape, s0, using a linear combination s1, s2..., and si with shape parameter

pi:

s = s0 +
m

∑

i=1

pisi (3.2)

Texture Formulation

Contrary to the prevalent understanding of the term texture in the computer

vision community, this concept will be used somewhat differently below. Here

we define texture as ”The pixel intensities across the object in question (if

necessary after a suitable normalisation)”. For l samples over the object

surface, the texture is represented as:

A = [A0, A2, ..., Al]
T (3.3)

In the shape case, the data acquisition is straightforward because the

landmarks in the shape vector constitute the data itself. In the texture-case

one needs a consistent method for collecting the texture information between

the landmarks, i.e. an image sampling function needs to be established. This

can be done in several ways. Here, a piece-wise affine warp based on the

Delaunay triangulation of the mean shape is applied.

Following the warp from an actual shape to the mean shape, a normaliza-

tion of the g-vector set is performed to avoid the influence from global linear

changes in pixel intensities. Hereafter, the analysis is identical to that of the

shapes. Hence, a compact representation is derived to deform the texture in

a manner similar to what is observed in the training set:
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A(u) = A0(u) +
l

∑

i=1

λiAi(u) (3.4)

where the coefficients λi are the appearance parameters.

Independent AAMs have separate shape p and appearance λ parameters.

On the other hand, combined AAMs just use a single set of parameters

c = (c1, c2, ..., cl)
T to parameterized shape:

s = s0 +
l

∑

i=1

cisi (3.5)

and appearance:

A(u) = A0(u) +
l

∑

i=1

ciAi(u) (3.6)

Optimization

In AAMs, the search is treated as an optimization problem in which the dif-

ference between the synthesized object delivered by the AAM and an actual

image is to be minimized. By adjusting the AAM-parameters (c and pose)

the model texture, Imodel, can be deformed to fit the image, Iimage, in the best

possible way. In this case the quadratic error norm is applied as optimization

criterion.

E =
m

∑

i=1

(Imodel − Iimage)
2 =

m
∑

i=1

(∆Ai)
2 = ‖∆A‖2 (3.7)

Though the parameterisation of the object class in question can be com-

pressed markedly by the principal component analysis it is far from an easy

task to optimize the system. This is not only computationally cumbersome

but also theoretically challenging since it is most likely non-convex. AAMs
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handle these potential problems by assuming a linear relationship between

parameter changes, ∆c, and pixel differences, ∆I.

∆c = R∆I (3.8)

We can use 3.8 in an iterative search algorithm. Given the current es-

timate of model parameters, c0, and the normalised image sample at the

current estimate, Is, each iteration proceeds as follows:

Algorithm 2 Iterative Search for Fitting Active Appearance Model

Require: m: number of sample

1: Evaluate the error vector ∆I0 = Is − Im

2: Evaluate the current error E0 = |∆I0|
2

3: Compute the predicted displacement, ∆c = R∆I0

4: Set k = 1

5: Let c1 = k∆c

6: Sample the image at this new prediction, and calculate a new error vector,

∆I1

7: if |∆I1| ≤ E0 then

8: Accept the new estimate, c1

9: else

10: try at k = 0.5, k = 0.25 etc.

11: end if

This is repeated until no improvement is made to the error, |∆I|2, and

convergence is declared.
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Initialization

The basic AAM optimization scheme is inherently dependent on good initial-

ization. To accommodate this, we devise the following search-based scheme

thus rendering the use of AAMs fully automated. The technique is inspired

by the work of Cootes et al. [57] who use a pixel difference evaluation criteria

and a threshold estimation for detecting multiple object instances.

The fact that AAMs are self-contained is exploited in the initialization.

They can fully synthesize photorealistic objects of the class that they rep-

resent concerning shape and textural appearance. Hence, we use the model

without any additional data to perform the initialization.

The idea is to exploit an inherent property of the AAM optimization V

i.e. convergence within some range from the optimum. This is utilized to

narrow down an exhaustive search from a dense to a sparse population of the

hyperspace spanned by pose- and c-parameters. In other words, normal AAM

optimizations are performed sparsely over the image using perturbations of

the pose and model parameters.

This has proven to be feasible, fast and robust. A set of relevant search

configuration ranges is established and the sampling within this set is done as

sparsely as possible. Further, this is done in scale-pyramid to increase speed.

Any available prior knowledge about pose is utilized when determining search

ranges

In pseudocode, the initialization scheme for detecting one object per im-

age is:
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Algorithm 3 Multi-scale AAM Initialization
Require: m: max number of transient iterations

Require: k: max number of final iterations (k > m)

Require: n: number of initialization candidates

Require: {Ω}: An empty candidate set with room for n result entries, {ωi}
n

i=1
= {θi, Ei}

n

i=1

Require: {Ψ}: A set of application specific search ranges for each model parameter

1: Populate the space spanned by {Ψ} as as sparsely as the linear regression allows by a set of search

configurations Θ = {θ1, ..., θn}

2: for each vector in Θ do

3: Run AAM optimization at θi (maxm iterations)

4: Calculate the fir, E ← ‖∆I‖2

5: ωmax ← maxE{Ω}

6: if E < Emax then

7: if the number of elements in {Ω} == n then

8: remove maxE{Ω}

9: end if

10: add (θi, E)to{Ω}

11: end if

12: end for

13: for each element in {Ω} do

14: Run AAM optimization at θi (max k iterations)

15: calculate and update the fit, E ← ‖∆I‖2

16: end for

17: ωinitial ← minE{Ω}

18: for each scale level do

19: Run AAM optimization at θinitial (max k iterations)

20: end for

21: return θinitial
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3.2.2 Motion Modelling

When used for tracking in a video sequence, the initial estimate in a frame

should be better predicted than just the adaptation from the previous frame.

This could be done, for example, with a simple motion estimation in a few

points, a Kalman filter, or a combination thereof.

A Kalman filter is an adaptive filter used to model the state of a discrete

dynamic system. The technique was originally developed in 1960 to filter out

noise in electronic signals [91], but has since found tracking and modelling

applications in computer vision [92, 93].

Given a set of measurements taken from the system, the filter can estimate

the next state of the system and adjust its model to allow for changes in the

system behaviour [94].

The way the problem is formulated depends on the measurements that can

be made and the results that are required. For instance, if one is interested in

positional coordinates, rotation and scale, each of these can have a value and

a first and second derivative with respect to time. This could be formulated

as a single twelve dimensional state vector x(n) with a corresponding state

transition matrix.

Alternatively, each attribute could be considered independently. There

would be four Kalman filters, each with a three dimensional state vector.

This greatly simplifies the corresponding calculations for the Kalman gain

coefficients. This is the method adopted here.

The output of the Kalman filters predicts the position of the object, which

increase the robustness of the tracking system. The information output can
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minimize the search area of the next input frame. The search space of the

fitting algorithm of the active appearance model is minimizes and improve

the performance of the AAM and increase the accuracy of object tracking

system.

In the Kalman filters, it assume that the system is linear, that observa-

tions of it are linear functions of the underlying state, and that noise, both

in the system and in the measurement, is white and Gaussian. Formally, we

have the model

xk+1 = Akxk + wk (3.9)

where the matrix Ak describe the evolution of the underlying model state,

wk is zero mean Gaussian noise.

zk = Hkxk + vk (3.10)

where the Hk are the measurement matrices, describing how the observations

are related to the model, vk is another zero mean Gaussian noise factor.

In our system, we assume the object move randomly, thus the motion

model of the object is:

xn =









xn

yn









(3.11)

xk =









1 0

0 1

















xk−1

yk−1









+ wk−1 (3.12)
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The measurement equation matrix is:

zk =









1 0

0 1

















xk

yk









+ vk (3.13)

The complete picture of the operation of the Kalman filter is shown in

Figure 3.2. In our system, x is the position of the object. In the time update

part, it project the state and covariance estimates from the previous time

k − 1 to the current time step k. Function f predict the current position of

the object with the information in the pervious frame. Ak and Wk are the

process Jacobians at step k and Qk is the process noise covariance at step k.

The measurement update equations shown in Figure 3.2, correct the state

and covariance estimates with the measurement zk. h is the measurement

matrix, Hk and V are the measurement Jacobians at step k, and Rk in the

measurement noise covariance at step k.
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Figure 3.2: The complete picture of the operation of the Kalman filter
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The matrix for estimating the motion of the object and the matrix for

measuring the error can be obtained by doing the experiments. We will

preform the experiment to obtain this two matrix.

3.2.3 Combining the Active appearance model and the

Kalman filter

The output of the Kalman filter predicts the position of the object in the

next video frame. In the fitting algorithm of the AAM, the shape model

parameter and the appearance parameter are search iteratively in the search

space. With the information provided by the Kalman, the searching space of

the AAM fitting cane be reduced. Also, the fitting algorithm would fall into

local minimum. However, the Kalman can predict the position of the object,

this can reduce the chance of trapping in the local minimum.

3.3 Design Experimentation

Experiments will be done on the proposed scheme. The tracking system

will implemented by using the AAM-API provided by DTU and the Kalman

Filter provided by OpenCV. The system is implemented according to the

architecture shown in Figure 3.1

The following steps will be done to conduct the experiments on the object

tracking system:

• The training image set is extracted form the video.

• The object is annotated using 12 landmarks.
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• Five training images are input to the AAM to train the shape model

and the appearance model.

• Video with the object in the training image is input to the system and

perform the object tracking.

The system will be run on the environment with the following config-

uration: Web cam as the input device of the system, a desktop computer

with Pentium 4 CPU 2.00GHz and 512MB RAM. Also, evaluation on the

performance of the scheme will be preformed.

3.4 Summary

In this section, an object tracking system with active appearance model

and Kalman filter is proposed. The performance of the proposed scheme

is improved. Experiments will be preformed to demonstrate it. Also, the

occlusion detection would be added to the system, such that the accuracy of

the system would be increased.
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Chapter 4

Conclusion and Future Work

In this paper, we first reviewed the current technologies in the field of aug-

mented reality, object tracking and the active appearance model. Then we

proposed a scheme for object tracking. The scheme included several compo-

nents: active appearance model, initialization, Kalman filter for prediction

and occlusion detection. Experiment will done to demonstrate the improve-

ment made by the proposed scheme.

The future of the work include:

• Implement the proposed object tracking scheme to demonstrate the

improvement made.

• Include the occlusion detection to improve the accuracy of the system.

• Model the problem for Kalman filter more accurately.

• Improve the speed of the fitting algorithm in the active appearance

model by using multi-resolution.
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